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REFINED ESTIMATES FOR SIMPLE BLOW-UPS

OF THE SCALAR CURVATURE EQUATION ON Sn

MAN CHUN LEUNG

Abstract. In their work on a sharp compactness theorem for the Yamabe
problem, Khuri, Marques and Schoen [J. Differential Geom. 81 (2009), 143–
196] apply a refined blow - up analysis (what we call ‘ second order blow - up
argument ’ in this article) to obtain highly accurate approximate solutions for
the Yamabe equation. As for the conformal scalar curvature equation on Sn

with n ≥ 4 , we examine the second order blow - up argument and obtain a
refined estimate for a blow - up sequence near a simple blow - up point. The
estimate involves the local effect from the Taylor expansion of the scalar cur-
vature function, the global effect from other blow - up points, and the balance
formula as expressed in the Pohozaev identity in an essential way.

1. Introduction

In this article, we expound local and global contributions to a refined ‘second
order’ estimate for simple blow - ups (or simple isolated blow - ups as known in some
literature) of the prescribed scalar curvature equation

(1.1) Δ1 u − c̃n n(n − 1) u + (c̃n K) u
n+2
n− 2 = 0 on Sn.

Here K , fixed once it is given, is assumed to be smooth enough (say, in C n+4 (Sn)),
Δ1 is the Laplacian on Sn with the standard metric g1 , and c̃n = n−2

4 (n− 1)

(n ≥ 3) . Via the stereographic projection Ṗ : Sn \ {N} −→ Rn , which sends
the north pole N ∈ Sn to infinity, equation (1.1) can be expressed in the simple
form

(1.2) Δo v + (c̃n K) v
n+2
n − 2 = 0 ,

(1.3)

v (y) := u (Ṗ−1(y)) ·
(

2

1 + | y| 2

)n− 2
2

and K (y) := K ( Ṗ−1(y)) for y ∈ R
n .

In (1.2), Δo is the Laplacian on Rn with the standard Euclidean metric go .
Considered as a ‘ dual ’ to the Yamabe equation, the study on the non - compact
behavior (or blow - up phenomenon) of equation (1.1) is found to be rich and vibrant.
See for example [7], [8], [15], [20], [21] and the references therein.
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1a. Simple blow-up. When (c̃nK) is equal to a constant, say, n (n − 2) ,
equation (1.2) has a family of solutions :

(1.4) A εi , ζi (y) =

(
εi

ε2i + | y − ζi|2

)n− 2
2

.

For non - constant K, a sequence of positive solutions {vi} of (1.2) which blows
up at 0 is shown to be ‘close’ to a sequence found in (1.4) . Precisely,
(1.5)∣∣∣∣ vi (y) − A εi , ζi (y)

∣∣∣∣ ≤ εi · ε
− n− 2

2
i for | y − ζi| ≤ εi Ri and i � 1 ,

with parameters εi → 0 , | ζi| → 0 and Ri → ∞ specific to {vi} (cf. (2.21) in
§2d). Here (via a rescaling), we assume throughout this article that

(1.6) (c̃nK) (0) = n (n − 2) .

Estimate (1.5) is rather weak; its accuracy in general deteriorates when i → ∞ .
Moreover, (1.5) is valid (generally) in a sequence of shrinking balls Bζi (εi Ri) .
(The order of shrinkage O (εi) makes space for the bubbles described in (1.4) to
be stacked up (developed vertically; cf. the Delaunay solution [13] ) or be put in
juxtaposition (developed horizontally) . See [15] for a classification of blow - ups for
equation (1.1).)

One can characterize simple blow - ups in a geometric manner when the bound
in (1.5) can be stabilized in terms of scale and accuracy, namely,

(1.7)

1

C
·A εi , ζi (y) ≤ vi (y) ≤ C ·A εi , ζi (y) for all | y − ζi| ≤ ρo and i � 1 .

Here ρo and C are fixed positive numbers (see Proposition 2.24 for the precise
statement; cf. also the notion of quasi - isometry). Simple blow - ups are by far the
most common non - compact behavior we encounter in equation (1.1) . In [16], [17],
[18], blow - up sequences with a fixed non - constant K (may not be symmetric) are
constructed using the Lyapunov - Schmidt reduction method (see also [25]).

1b. Description of the main result. In this article, we identify three factors
affecting the fixed scale behavior of simple blow - ups.

(I) The local behavior of K in terms of the Taylor expansion

(1.8) (c̃nK) (y) = n (n − 2) + [−P� (y)] + R�+1 (y) for y ∈ Bo (ρo) .

Here P� is a homogeneous polynomial of degree � ∈ N , and R�+1 is the remainder
in the Taylor expansion . (See (2.29) and (3.7) for the sign convention we use on
P� .) We know that if 0 is a blow - up point for equation (1.2), then � ≥ 2 (that

is, �K (0) = �0 ; see Theorem 5.1 in [15] for the precise statement ; cf. also [7]) .
Hence

(1.9) number of critical points of K is finite

=⇒ equation (1.1) has at most finite number of blow - up points .

The leading polynomial term P� comes into the picture when we find the difference
between vi and the standard solutions given in (1.4) . See (3.11) . The second order
blow - up argument allows us to discern the central information enveloped in P� .
We discuss this point more in §1c and §1d .
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(II) ‘Flexibility’ of the simple blow - up as measured by | ξi| = O (λα
i ) , where

(1.10) vi (ξi) = max
{
vi (y) | y ∈ Bo ( ρo)

}
for i � 1

and

(1.11) λi := [ vi (ξi) ]
− 2

n− 2 , ξi → 0 (the blow - up point) .

Here ρo is a small fixed number ( its size is related to other blow - up points) .
vi could have other maximal points near ξi , but their distances to ξi are at
most o (λi) for i � 1 . Refer to §2g . The position parameter ξi appears in the
expression for the difference [ vi − Aλi , ξi ] ; see (3.11) . Thanks to the work of
Chen and Lin [7], [8], one can impose conditions, including the following main ones
(see §2g for the full details) :

‖ � P� (y)‖ ≥ C | y| �− 1 for y ∈ Bo ( ρo)

and ∫
Rn

�P� (y + X )·[A1 (y)]
2n

n − 2 dy �= �0 for all X ∈ R
n \ {0} ,

resulting in
(1.12)

| ξi| = o (λi) modulo a subsequence
(
that is , λ−1

i · ξi → 0
)
.

(III) Interaction with other blow - ups . This is expressed by a global harmonic
function (or Green’s function)

(1.13)
k∑

j=0

Aj

| y − Ŷj |n−2
for y ∈ R

n \ {Ŷo = 0 , Ŷ1 , · · · , Ŷk } ,

‘effective’ outside a neighborhood containing all the blow - up points {Ŷj} k
j=0 . See

§2e . In (1.13), Aj are positive numbers. A major challenge here is to match the
information expressed in (1.13) ( the ‘collapsed region’ ) with the one in (1.5) (the
‘blow - up’ region) . See §2d.1 and §6a for a fuller discussion.

Main Theorem 1.14. For n ≥ 4 , let ui ∈ C n+4 (Sn) be a sequence of positive
solutions of equation (1.1) , with K ∈ C n+4 (Sn) , and let vi and K be associated
to ui and K via (1.3) , respectively . Assume that {ui} has a finite number of
blow - up points: one of them is at the south pole, but none at the north pole. Take
the following conditions (1.15) – (1.19) into account:

(1.15) 0 is a simple blow - up point for {vi} .

(1.16) K > 0 in Sn, and K is given by the Taylor expansion in (1.8) in
Bo (ρo) .

(1.17) ( 2 ≤ ) � ≤ n − 2 .

(1.18) The parameters λi and ξi corresponding to the simple blow - up point at
0 (via (1.10) and (1.11) , respectively ) satisfy (1.12) , that is , | ξi| = o (λi) .

(1.19) When � = n − 2 is even and there is more than one blow - up point or

when � is odd, we require that Δ
(h�)
o P� (y) ≡ 0 . Here h� is the biggest integer

less than or equal to �/ 2 .
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Then we can determine a polynomial Γ (constructible from P� via a fixed pro-
cedure ) so that the following estimate holds (modulo a subsequence ):

∣∣∣∣ vi (y) − Aλi , ξi (y) −
[
λ �+1
i × Γ (Y)

]
·[ Aλi , ξi (y) ]

n
n− 2 − OH

(
λ

n − 2
2

i

) ∣∣∣∣
(1.20)

= o
(
λ
� − n−2

2

i

)
for y ∈ Bo (ρ1) ( ρ1 ≤ ρo is fixed ) , where Y =

y − ξi
λi

.

Here the term OH

(
λ

n− 2
2

i

)
is defined via the global harmonic term (1.13) , and its

precise expression is found in (6.58) . (The precise construction of Γ is given in
Proposition 4.49.)

1c. Necessity of the condition Δ
(h�)
o P� (y) ≡ 0. At first sight the condition

(1.21) “ Δ(h�)
o P� (y) = Δo (· · · [ Δo (Δo P�) ] · ··) (y) ≡ 0

← h� →

for all y ∈ Rn ” appears to be technical. Closer examination reveals that it is an
integrated part of the discussion. In fact, under the conditions in Main Theorem

1.14, when � is even, we obtain Δ
(h�)
o P� (y) ≡ 0 with the help of the Pohozaev

identity (see Proposition 6.1). The vanishing of Δ
(h�)
o P� allows us to construct the

polynomial Γ in Main Theorem 1.14 via a reduction method, which we begin to
expound.

1d. Key features of the proof. In [12], Khuri, Marques and Schoen introduce
refined blow - up estimates for the Yamabe equation. The method is based on
a second order approximation coupled with a second order blow - up argument.
We apply these methods to the scalar curvature equation (1.1) and highlight the
following differences.

The second order inhomogeneous equation is given by

(1.22) Δo Φ+ n (n+ 2)A
4

n− 2

1 · Φ = P� ·A
n+2
n − 2

1 in R
n.

Here A1 = A1 , 0 as given in (1.4) . We observe that the linear operator ap-
peared on the left - hand side of (1.22) ; it is used extensively in the Lyapunov -
Schmidt reduction method (see for example [2], [4], [5], [16], [17], [18]). In [12], a
solution of (1.22) is found by a linear algebra method. The method does not disclose
the precise form of the solution, which is desirable when we construct sharper es-
timates for simple blow - ups. In this manuscript, we introduce a reduction method
which explores the recursive relations in equation (1.22) (expounded in §4 ). The

condition Δ
(h�)
o P� ≡ 0 comes into the picture when we terminate the recursive

process. As a consequence, we can determine in a step - by - step manner the exact
form of the solution Φ . Although the detail is shown in §4 , we indicate here that
we know precisely what Γ is in (1.23) once P� is given.

Another unique feature here is that the global influence from other blow - up
points has to be taken into account when we estimate the accuracy of O (λn− 2

i )
(see §5) . To do so, we have to extend the information given by the harmonic
function in (1.13) to the whole neighborhood of the blow - up point at 0 in a
manner so that the second blow - up argument still works. See (6.7) , §5b and §6 .
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1e. Applications: Limitation on ‘flexibility’ of simple blow - up , and
locations of the blow - up points. Consider the parameters λi and ξi corre-
sponding to the simple blow - up point at 0 via (1.10) and (1.11) . Suppose that

(1.23) ξi = λα
i · �X for a fixed vector �X and a fixed number α > 0 ,

where 1 < α < 2 . Assume also that 0 is the only simple blow - up point and
� = n − 2 . Then we have

(1.24) P� ( �X) = 0 ( here �X is considered as a point in R
n) .

See Theorem A. 6. 62 in the e -Appendix1 for the precise statement and full layers of
information available, as well as the conditions for (1.24) to hold. In case of multiple
simple blow - up points with Taylor expansions at each blow - up point given as in
(1.8), where uniformly � = n − 2 , similar limitations exist, and they involve the
locations of the simple blow - up points. See §A.7 in the e -Appendix for the exact
formulas.

The information should be helpful when one seeks examples and investigates
situations with multiple simple blow - up points (cf. [19] on using the interaction of
two close bubbles to find solutions of equation (1.1) for certain functions K .) As
a footnote, only recently a blow - up sequence with a single simple blow - up point
was constructed for a fixed and non - identically constant K [16], [17], [18] ; cf. also
[14] , and [4], [5] for the Yamabe equation .

1f. General conditions, assumptions and conventions. To keep the notation
clean, and without losing sight of the technical details, we assume that
(1.25)
u i and K are in C n+4 (Sn) , and ui is a positive solution of (1.1) .

(1.26)
“ v i and K descend from u and K via (1.3) . Moreover, K > 0 in Sn,

and (c̃n K) (0) = n (n − 2) . ”
The degree of smoothness assumed on u and K can be reduced according to the
content (especially in §2 ) .

•1 Throughout this work, the dimension n ≥ 3 , except when otherwise
specifically mentioned, and c̃n = (n − 2)/ [ 4 (n − 1)] . We observe the practice
on using C, possibly with sub - indices, to denote various positive constants which
may be rendered differently from line to line according to the contents, while we
use c̄ and C̄, possibly with sub - index, to denote a fixed positive constant which
always keeps the same value as first defined .

•2 Denote by By (r) the open ball in (Rn , go) with center at y and radius
r > 0 . Likewise, let Bx (ρ) be the open ball in (Sn, g1) with center at x ∈ Sn

and radius ρ ∈ (0 , π] . We also use the standard notation 〈 , 〉 to denote the
inner product in (Rn , go) .

•3 Given a sequence of positive numbers {λi } , and a positive number m , we
say that a sequence of numbers { γi } satisfies

(1.27) γi = Oλi
(m) ⇐⇒ | γi | ≤ C λm

i for i � 1 .

1e-Appendix is available at https://arxiv.org/pdf/1707.02401.pdf (pp. 44–83) and from
https://doi.org/10.1090/tran/6983 (Supplementary appendix).

https://arxiv.org/pdf/1707.02401.pdf
https://doi.org/10.1090/tran/6983
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Likewise,

γi = oλi
(m) ⇐⇒ | γi | ≤ ci λ

m
i for i � 1 , where ci ≥ 0 and ci → 0

as i → ∞ . The notation helps to highlight the order and manage longer expressions
inside the brackets.

•4 A statement involving a sequence is said to hold “modulo a subsequence ” if
we can select a subsequence (from the original sequence in the statement) so that
the statement is valid for this subsequence. As a rule, we assume that the statement
is true for the original sequence so that the notation remains clean.

2. Simple blow-up

2a. Simple blow - up and its analytic definition. Intuitively, simple blow - up
develops precisely one bubble in a neighborhood . Its analytic definition is given
by R. Schoen in [24] . See also [12] and [20] . Via a rotation, we assume without
loss of generality that the blow - up point is at the south pole. Let {vi} be given
as in (1.3). For a simple blow - up point, there exists a sequence { ξmi

} → 0 such
that
(2.1)
for each i � 1, ξmi

is a local maximum of vi , with lim
i→∞

vi (ξmi
) = ∞ ,

and the rescaled average

(2.2) r �−→ r
n− 2

2 ·

⎡
⎣
∫
∂B ξmi

(r)
vi dS∫

∂B ξmi
(r)

1 dS

⎤
⎦

has precisely one critical point in (0, ρo) . Here ρo > 0 is fixed (independent on vi
for i � 1 ) .

2b. Proportionality of simple blow - ups. The following estimate is essentially
taken from Proposition 2.3 in [20] . We present it in the setting of this article.

Proportionality Proposition 2.3. Under the standard conditions (1.6) , (1.25)
and (1.26), let 0 be a simple blow - up point for {vi} , and the sequence ξmi

→ 0
carries the meaning as in (2.1) and (2.2). Then there exist positive constants C̄1

and ρ̄o such that
(2.4)

vi(y) ≤ C̄1

vi (ξmi
)
· 1

| y − ξ i|n− 2
for 0 < | y− ξ i| ≤ ρ̄o and for all i � 1 .

In addition, there is a number ρ̄1 ∈ (0 , ρ̄o ) such that (modulo a subsequence)

(2.5) [ vi (ξmi
)] · vi (y) → 1

| y|n− 2
+ h (y) in C 2

loc (Bo (ρ̄1) \ {0} ) ,

where h is a harmonic function in Bo (ρ̄1) . (Recall that (c̃nK) (0) = n (n − 2).)

2c. Harmonic expression of the collapsed part. Consider a blow - up sequence
of positive solutions {ui} of equation (1.1) . Consider the situations where

“ the number of blow - up points is finite, say at βo = S , · · · , βk ∈ Sn \ {N},
(2.6)

and at least one of them is a simple blow - up point (say, β o) . ”
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Take a point

(2.7) xc �∈ {βo, · · · , βk , N } .

Under the general conditions (1.25), (1.26), and also (2.6), a subsequence of

(2.8)

{
ui

ui (xc)

}

converges to a positive C 2- function H defined on Sn \ {β1, · · · , βk} . See [15] .

With the stereographic projection Ṗ onto Rn, which sends N to infinity , H can
be expressed as (cf. the transformation in (1.3))

(2.9) H (y) := [H ◦ Ṗ−1(y)] ·
(

2

1 + | y| 2

)n− 2
2

,

(2.10) H (y) =

k∑
j=0

A j

| y − Ŷj |n− 2
for y ∈ R

n \ { Ŷ o , · · · , Ŷ k} .

Here

(2.11) Ŷj := P ( βj) for 0 ≤ j ≤ k ,

and A j are positive numbers . Refer to §4 in [15]. The convergence can be
quantified in the following manner. Given a sequence of positive numbers εj ↓ 0
and a sequence of compact sets { C j} such that

(2.12) C 1 ⊂ C 2 ⊂ · · · ,

∞⋃
j =0

C j = R
n \ { Ŷ 1 , · · · , Ŷ k} ,

there exists a sequence of natural numbers Ni ↑ ∞ so that

(2.13)

∣∣∣∣ vi (y)− [ui (xc) ]·H (y)

∣∣∣∣ ≤ εj ·[ui (xc) ] for i ≥ Nj and y ∈ C j .

We point out that when i → ∞ ,

(2.14) “ right - hand side of (2.13) ” = εj · [ui (xc)] → 0 ,

(2.15) the domain in which (2.13) holds is C j “ → ”Rn \ {Ŷ 1 , · · · , Ŷ k} ;

cf. (2.22) and (2.23) in §2d.

2c.1. Change of the base point. We observe that, in (2.8), one can replace the
base point ui (xc) by a sequence of numbers { γi } so that

(2.16) C−1 · γi ≤ ui (xc) ≤ C γi for i � 1 .

A subsequence of
{
γ−1
i · ui

}
converges to a positive C 2 - function H̃ defined

on Sn \ {βo, · · · , βk} . With the stereographic projection Ṗ onto Rn, H̃ can be
expressed as in (2.10) and (2.11), with a scaling factor lim

ı→∞
γ−1
i · ui (xc) inserted .
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2d. Renormalization and first order approximation. Let 0 be a simple blow -
up point for the sequence of positive solutions {vi} of equation (1.2) . With the
notation in (2.1) and (2.2), define
(2.17)

V i (Y) :=
vi ( ξmi

+ λmi
· Y)

vi ( ξmi
)

for Y ∈ R
n with λmi

· Y ∈ Bo ( ρo) ,

where λmi
:= [ vi ( ξmi

]−
2

n − 2 . Here V i satisfies the equation (extendable to Rn )

(2.18) Δo V i + [ (c̃n K) ( ξmi
+ λmi

· Y)] V
n+2
n − 2

i = 0 in Bo (λ
−1
mi

· ρo) .

Assuming (1.6), under the conditions (1.25) and (1.26), we invoke Proposition
2.1 in [20] (p. 333) to conclude that, modulo a subsequence, {V i} converges to
A1 = A1 , 0 as given in (1.4);2 cf. [6] and [10] . The convergence happens in
the C1 - sense, uniformly in compact subsets in R

n (for the variable Y ) . This
translates into a weak approximation of vi , which can be described in the following
manner. Given sequences of positive numbers {εi} and {Ri} with εi ↓ 0 and
Ri ↑ ∞ , via the Cantor diagonal argument on subsequences , we have

(2.19) | V i (Y) − A1 (Y)| ≤ εi

for all Y ∈ Bo (Ri) and i � 1 (modulo a subsequence) . Moreover, by choosing
Ri to be smaller if necessary, we can take it that

(2.20) εi ·R 2(n−1)
i → 0 and λi ·Ri → 0 as i → ∞ .

(See also §3a in [15] and the proof of Proposition A.6.34 in the e -Appendix for
the application of (2.20).) Via the change of variables

y = ξmi
+ λmi

Y ; Y ∈ Bo (Ri) ⇐⇒ y ∈ B ξmi
(λmi

·Ri) ,

(2.17), (2.19) and (1.4) yield
(2.21)

| vi (y) − Aλmi
, ξmi

(y) | ≤ εi

λ
n − 2

2
mi

for | y − ξmi
| ≤ λmi

·Ri and i � 1 ;

cf. (1.5) . However, we do not know, a priori, how small we can take εi (relative to
λi ) and how large we can choose Ri (relative to λ−1

i ) . In particular, the following
scenario can occur:

(2.22) “right - hand side of (2.21) ” = εi · λ
− n− 2

2
mi → ∞ ,

(2.23) the radius of the ball in which (2.21) holds = λmi
·Ri → 0 .

Our goal is to introduce bubble estimates that are accurate up to O (λτ
mi

) for
τ > 0 (as big as possible) and to “ stabilize” the domain in which the estimates
hold.

2 The job is made easier as we explain in §2f ; for simple blow - up, we can take ξi to be a

global maximum point of vi in Bo (ρo) .
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2d.1. Joint between shrinking bubble estimate and the expanding global
harmonic term. As mentioned, there are diametric contrasts between bubble
estimate (2.21) and the global harmonic estimate in (2.13) . Adding to the list,
observe that Δo H = 0 , whereas

Δo Aλmi
, ξmi

= −n (n − 2) [Aλmi
, ξmi

]
n+2
n − 2 (< 0) .

These two estimates do not immediately link to each other. We demonstrate
their intricate relation when we present estimates that are accurate up to order
Oλmi

(n − 2) .

2e. An equivalent geometric expression. Before we proceed to a closer re-
lation between V i and A1 , we examine a simpler estimate here. Not only is the
estimate useful in later discussion, it is interesting in its own right. As for the proof,
we present it in §A.1 in the e -Appendix.

Proposition 2.24. Under the standard conditions in (1.6), (1.25) and (1.26) mod-
ulo a subsequence, 0 is a simple blow - up point for {vi} if and only if there exists
a sequence ζi ∈ Rn, with

(2.25) ζi → 0 and εi :=
1

[ vi (ζi)]
2

n− 2

→ 0 , so that

(2.26)
1

C
·A εi , ζi (y) ≤ vi (y) ≤ C ·A εi , ζi (y) for all | y − ζi| ≤ ρ1 .

Here C ≥ 1 and ρ1 are positive constants independent on i .

2f. Shifting to the maximal point. Let ξi ∈ Bo (ρo) be given in (1.10) . We
can take ξmi

= ξi in (2.1) and (2.2). Moreover, suppose that there exists another

sequence of points {ξ̃i} which also satisfies (2.1) and (2.2) in the definition of simple
blow - up points . We have (modulo a subsequence)

(2.27) | ξ̃i − ξi| = o (λi) (λi as in (1.11) ) .

The proofs of the above statements, which require only standard techniques, can
be found in §A.2 in the e -Appendix.

2g. Non - degenerate conditions and o (λi) restriction on flexibility. Non -
vanishing derivatives at the blow - up point tend to post restriction on the blow - up
flexibility. One good example can be found in [8] , which we highlight here , using
the setting of the present article. Via Taylor’s expansion,

(2.28) ( c̃nK) (y) = n (n − 2) + [−P� (y)] + R �+1 (y) for y ∈ Bo (ρ) .

Here we use multi-index α = (α1 , · · · , αn) and

(2.29) P� (y) =
∑
|α|=�

[
D (�)

α (− c̃nK)

∣∣∣∣
y=0

· y
α

α !

]
,

(2.30) R �+1 (y) = O

(
max

Bo( ρo+ε′)
| �(�+1) K| × | y| �+1

)
.

(The negative sign is introduced for later matching; see (3.7).) One can verify that

(2.31)
| R�+1 (y)|

| y|� → 0 and
‖ � R�+1 (y)‖

| y|�−1
→ 0 as | y| → 0 .
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A more demanding condition is the lower bound

(2.32)

C−1 | y| �− 1 ≤

√(
∂P� (y)

∂y|1

) 2

+ · · · +

(
∂P� (y)

∂y|n

)2 (
≤ C | y| �− 1

)
for y ∈ Bo (ρ) ; cf. the example below . From (2.32), we have
(2.33)
0 < c (ε) ≤ ‖ �K (y)‖ ≤ C for ε ≤ | y| ≤ ρ , where ρ is small enough .

The following is a direct application of Lemma 3.6 in [8] after checking (1.2), (1.6),
and (3.2), and the conditions stated at the beginning of §3 in [8] (in particular,
αi ≤ n − 2 , p. 127 in [8]) , also verifying the conditions stated in Lemma 3.4 and
Lemma 3.6 in [8], and taking pi ≡ n+2

n− 2 .

Proposition 2.34. Granted the general conditions in (1.6) , (1.25) and (1.26),
suppose that 0 is a simple blow - up point for {vi} . Assume also (2.28) and (2.32)
for 2 ≤ � ≤ n − 2 . If

(2.35)

∫
Rn

�P� (y + X ) [A1 (y)]
2n

n − 2 dy �= �0 for all X ∈ R
n \ {0} ,

then, modulo a subsequence , we have | ξ i| = o (λi ) . (Recall that A1 = A1 , 0 is
given in (1.4), ξi fulfills (1.10), λi is given in (1.11), and P� in (2.29).)

2g.1. Examples on K with local expansions fulfilling the conditions
Δh�

o P� ≡ 0 , (2.32) and (2.35). Recall that h� is defined as the largest integer
that is less than or equal to �/2 . Consider n and � ≥ 2 , both even numbers , and

(2.36) (c̃n K) (y) = n (n − 2) +
[ (

y�|1 − y�|2

)
+ · · · +

(
y�|n − 1

− y�|n

) ]
for y ∈ Bo (ρo) . Using Hölder’s inequality, one can verify (2.32) . Moreover,

(y|1 + X1)
�− 1 = y�−1

1 + C(� − 1 , 2) · y�− 1− 2
1 X 2

1

+ · · ·+C(� − 1 , �− 2) · y�−1− 2
1 X �− 2

1

+X1 ·
[
C(� − 1 , 2) · y�−1− 1

1

+ · · · +C(� − 1 , �− 3) · y21 · X �− 4
1 + X �− 2

1

]
.

Here X = (X1 , · · · Xn) , and

C(j , k) =
j !

(j − k) ! k !
(j ≥ k)

is the binomial coefficient. Note that all the powers in X1 inside the brackets are
even numbers. As ∫

Rn

y2j+1
|1 [A1 (y)]

2n
n− 2 dy = 0 ,

we have ∫
Rn

(y|1 + X1)
�− 1 [A1 (y)]

2n
n − 2 dy = 0 ⇐⇒ X1 = 0 .

It follows that (2.35) is fulfilled with the form in (2.36) . In addition, observe that

Δh�
o

[ (
y�|1 − y�|2

)
+ · · · +

(
y�|n − 1

− y�|n

) ]
= 0 (� being even) .



SIMPLE BLOW-UPS OF THE SCALAR CURVATURE EQUATION ON Sn 1133

One can generalize equality (2.36) by introducing positive multipliers onto each
(y�|2j−1

− y�|2j ) .

3. Difference between the normalization V i and A 1

After shifting from ξmi
to ξi as described in §2f , for the sake of simplicity, we

continue to use the notation

(3.1) Vi (Y) :=
vi ( ξi + λi Y)

Mi
for Y ∈ R

n.

Here

(3.2) Mi := vi (ξi) and λi = M
− 2

n − 2

i , ξi is given in (1.10) ;

cf. (2.17) and §2f . As A1 = A1 , 0 satisfies the equation

(3.3) Δo A1 + n (n − 2)A
n+2
n − 2

1 = 0 in R
n,

together with equation (2.18) , which holds after the changes ξmi
→ ξi and λmi

→
λi , it can be seen that

(3.4) Δo (V i − A1) (Y)

= n (n − 2)
{
[A1 (Y)]

n+2
n − 2 − [V i (Y)]

n+2
n − 2

}

+ [n (n − 2) − c̃n K(λi Y + ξ i) ] [A1 (Y)]
n+2
n − 2

+ [n (n − 2) − c̃n K(λi Y + ξ i) ]
{
[V i (Y)]

n+2
n − 2 − [A1 (Y)]

n+2
n − 2

}
for Y ∈ R

n .

3a. Linear approximation to

(
A

n+2
n − 2

1 − V
n+2
n− 2

i

)
in case of simple blow - up.

It follows from Proposition 2.24 that (see §A.10 in the e -Appendix for details)

(3.5) [A1 (Y)]
n+2
n− 2 − [V1 (Y)]

n+2
n − 2 =

(
n+ 2

n − 2

)
[A1 (Y)]

4
n − 2 · [A1 (Y) − V i (Y)]

+ O (1) [A1 (Y) − V i (Y)] 2 · [A1 (Y)]
4

n− 2−1

for | Y| ≤ ρo λ
−1
i .

3b. Taylor expansion of ( c̃nK) above 0. Since we know that �K(0) = 0 ,
and by (1.6), (c̃n K) (0) = n (n − 2) , we assume that all the derivatives of K
vanish at 0 up to (and equal to) order � − 1 . Here � ≥ 2 is an integer. Using
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multi - index α = (α1 , · · · , αn) and the Taylor expansion of (c̃nK) , we obtain

(3.6) n (n − 2) − c̃n K(λi Y + ξ i) =
∑
|α|=�

D(�)
α (− c̃nK)

∣∣∣∣
0

· (λi Y + ξ i)
α

α !

+ O (1)

[
max

|λi Y + ξi| ≤ ρ+
o

‖ �(�+1) K‖
]
· |λi Y + ξ i| �+1

= λ�
i ·P� (Y) +

�∑
k=1

O
(
| ξi| k · (λi| Y| ) �− k

)
+ R 3 (Y)

for λi · | Y| ≤ ρo , i � 1 . In the above ρ+o is slightly bigger than ρo . Moreover ,

(3.7) P� (Y) =
∑

|α |=�

[
D (� )

α (− c̃nK)

∣∣∣∣
0

· Y
α

α !

]
,

(3.8) R 3 (Y) = O

(
max

|λi Y + ξi| ≤ ρ+
o

‖ �(�+1) K‖ ·|λi Y + ξ i| �+1

)
.

3c. The mixed term. Consider the last term in (3.4). Using Taylor expansion
as in (3.6) and the inequality

(3.9) a > b > 0 and p ≥ 1 =⇒ ap − bp ≤ 1

p
· (a − b) · a p− 1 ,

we obtain

(3.10) [n (n − 2) − c̃nK(λi Y + ξ i) ]
{
[V i (Y)]

n+2
n − 2 − [A1 (Y)]

n+2
n− 2

}

= O

(
max

|λi Y + ξi| ≤ ρ+
o )

‖ �(�) K ‖ · |λi Y + ξ i| �
)

×
[
O (1) | V i − V | ×max

{
[V i (Y)]

4
n− 2 , [A1 (Y)]

4
n− 2

} ]

for | Y| ≤ λ−1
i ρo .

3d. Isolating the key terms and the remainder. It follows from (3.4), (3.5),
(3.6) and (3.10) that
(3.11)

Δo [V i − A1 ] (Y)+n (n+2)A
4

n − 2

1 [ V i − A1 ] (Y) = λ�
i ·P� (Y) · A

n+2
n − 2

1 + RM (Y)

for | Y| ≤ λ−1
i ρo

(
Y =

y − ξi
λi

)
.
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Here (refer to §6b and §6c )
(3.12) RM = RM1 + RM 1 + RM3 + RM 4 ,

RM 1 (Y) “ = ”

�∑
k=1

O
(
| ξi| k · (λi | Y|) �− k

)
,

RM 2 (Y) “ = ” O

(
max

|λi y+ ξi| ≤ ρ+
o

‖ �(�+1) K‖ × |λi Y + ξ i| �+1

)
,

RM 3 (Y) “ = ” O (1)
{
[A1 (Y)]

4
n − 2−1 · [V i (Y)−A1 (Y)] 2

}
,

RM 4 (Y) “ = ” O

(
max

|λi Y + ξi| ≤ ρ+
o

‖ �(�) K ‖ × |λi Y + ξ i| �
)

×
[
O (1) | V i (Y) − A1 (Y)| ×max

{
[V i (Y)]

4
n− 2 , [A1 (Y)]

4
n− 2

} ]
for | Y| ≤ λ−1

i ρo . (We use “ = ” to tell us that the right - hand side is the order
of the term.)

4. Cancellation of the O (λ�
i) term in (3.11)

We first ignore the order λ�
i in equation (3.11) and consider the linear inhomo-

geneous equation

(4.1) Δo Π + n (n+ 2)A
4

n − 2

1 ·Π = P� ·A
n+2
n− 2

1 in R
n

(with unknown Π ) . Here P� is a homogeneous polynomial defined on R
n of

degree � ≥ 1 , and A1 = A1 , 0 =
(

1
1+| Y|2

)n− 2
2

. As in [12], potential solutions Π

can be expressed in the following form:

(4.2) Π (Y) =
Γ (Y)

(1 +R 2)
n
2

for Y ∈ R
n (R = | Y| ) .

Putting (4.2) into (4.1), we obtain

(4.3) (1 +R 2) · [ Δo Γ ] − 2n [Y · �Γ ] + 2nΓ = P� in R
n .

Our goal is to find polynomial solutions Γ of equation (4.3) and to keep the degree
of Γ as close to � as possible (this is for the second order blow - up argument) and
to make explicit the dependence on P� . We first look at some selected examples.

Example 4.4. When P� ≡ 0 . We can take

(4.5) Γ1 (Y) :=
n∑

j=1

cj Y|j or Γ2 (Y) := R2 − 1 .

Here cj are any constants , and Y = (Y|1 , · · · , Y|n) ∈ Rn . Interestingly, up to
linear combinations of Γ1 and Γ2 , these are the only possible solutions when P� ≡ 0
and when we restrict Γ to be a polynomial of degree less than n ; cf. Theorem 4.16
and Proposition 4.21.
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Example 4.6. When � ≥ 2 and Δo P� = 0 . In this case we simply take
Γ3 = cP� :

(4.7) (1 +R 2)Δo Γ3 − 2n [ (Y · �Γ3) − Γ3] = − 2n (� − 1) (cP�) = P�

=⇒ c = − 1

2n (� − 1)
=⇒ Γ3 = − P�

2n (� − 1)
.

Example 4.8. When � = 1 . As the left - hand side of (4.3) is linear, we may
assume that P� (Y) = Y|1 . Consider

(4.9) Γ4 (Y) := aR 2 Y|1 + bR 4 Y|1 (maximum degree = 5) .

Direct calculation shows that when n = 4 , a = 1
2n+4 , and b = 2n−4

2n+4 · 1
4n+16 ,

then Γ4 is a solution of (4.3) with P� (Y) = Y|1 . The example demonstrates that,
in general, � = 1 makes it harder to solve equation (4.3) (cf. an existence result for
equation (1.1) obtained by Aubin in [1]).

4a. Solving (4.1) via the linear method ( � < n). As in [12] (p. 152) , we
introduce the collection (h� is the biggest integer less than or equal to �/2)

(4.10) F (P� ) :=
{
linear combinations of (R 2)j Δ (k)

o P� ,

0 ≤ j ≤ k , k = 0 , 1, · · · , h� } ,

where R = | Y| . Note that Δ
(k)
o P� ≡ 0 for k ≥ h� + 1 . Comparing to the

one introduced in [12], (4.10) has the index j limited more strictly from above .

Assuming that Δ
(j)
o P� �≡ 0 for 0 ≤ j ≤ h� , F (P� ) is a vector space with

dimension, in general, equal to 1
2 (h� + 1) (h� + 2) (= O (n2) when � is close to

n ; an exceptional case is when P� (Y) = R� , where � is an even number) . We list
some simple properties concerning the operator in (4.3) and F (P� ) . All these can
be checked readily (see §A.3 in the e -Appendix for a proof).

Lemma 4.11. P� ∈ F (P� ) . Moreover,

if � is odd and Δ(h�)
o P� �≡ 0 =⇒

∑
j

cj Y|j ∈ F (P� ) ;(4.12)

if � is even and Δ(h�)
o P� �= 0 =⇒ (R2 − 1) ∈ F (P� ) .(4.13)

Here at least one of the coefficients is cj �= 0 .

(4.14) The degree of each term in F (P� ) is at most � .

(4.15) (1 +R 2)Δo • − 2n(Y · �•) + 2n • : F (P� ) → F (P� ) is linear .

In principle, one can express the linear operator in (4.15) of Lemma 4.11 into
a matrix by using the basis of F (P�) as shown in (4.10) and determine whether
there is a solution or not. However, for genuine cases and when � is close to n , the
matrix is of the size (number of entries) on the order of O (n4) . In [12], the authors
observe that one can make use of the following Liouville - type theorem (shown in
[8] ; see also [3]) to demonstrate that a solution exists .

Theorem 4.16. Suppose ψ is a smooth solution of the equation

(4.17) (1 +R 2) · [ Δo ψ ] − 2n [Y · �ψ ] + 2nψ = 0 in R
n
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with

(4.18) lim
r→∞

ψ (Y)

Rn
= 0 (R = | Y| ) .

Then

(4.19) ψ (Y) = co (R2 − 1) +
n∑

j=1

cj Y|j for Y ∈ R
n .

Moreover,

(4.20) ψ (0) = 0 and � ψ (0) = 0 =⇒ φ ≡ 0 in R
n.

We now describe the linear method used in [12] to find a polynomial solution to

equation (4.3) . The following result begins to reveal that the condition Δ
(h�)
o P� ≡

0 is tightly knitted together with the refined estimate we seek.

Proposition 4.21. Assume that P� is a homogeneous polynomial of degree � ,
with 2 ≤ � < n . The linear operator which appears in (4.15) of Lemma 4.11

is a bijection if and only if Δ
(h�)
o P� ≡ 0 .

Proof. For the sufficient part, the proof goes on in an essential manner as in the
proof of Proposition 4.1 in [12], using Lemma 4.11 and Theorem 4.16 to show
that the linear operator is an injection, and hence a bijection. As for the necessary
part , it follows from (4.12) and (4.13) of Lemma 4.11 , and Example 4.4 (the kernel
contains a non - identically zero element in F (P�)) . �

4b. The reduction method. Concerning the solution we find via Proposition
4.21, besides being in F (P�) (in particular, we have property (4.14) in Lemma
4.11) , there is little we know about the solution itself. When we come to the
bubble estimates, it is natural to ask for the precise form of the solution Γ. In
this section we introduce a constructive method which allows us to determine each
coefficient in Γ . We present the precise result.

Lemma 4.22. Let P� be a homogeneous polynomial of degree � ≥ 2 (defined on
Rn ) . When n is even, assume also that � < n + 2 (no such condition when n is
odd ) . Define a polynomial G via

(4.23) G (Y) =

k≤ h� − 1∑
0≤ j ≤ k

Cj
k · (R2)j [ Δ(k)

o P� (Y) ] (R = | Y| ) ,

where the coefficients C j
k can be determined by using (4.48) . Then G satisfies

(4.24) (1 +R 2)Δo G − 2n (Y · �G) + 2nG = P� + [Δ(h�)
o P� ]

·
{
ah�

· (R2) h� + ah�−1 · (R2) h�−1 + · · · + a1 · (R2)1 + ao
}
.

Here the numbers ak can be found by using (4.45) .

The precise definitions of C j
k and ak are obtained on the way toward the proof

of Lemma 4.22. The key property is that they depend only on n , � , j and k , and
are formed by an algebraic iteration process, which we start to describe.
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4b.1. First step in the proof of Lemma 4.22 : the recurrent and reduction
to powers of (R2). Consider first the situation where

(4.25) Δ(k)
o P� �≡ 0 for 1 ≤ k ≤ h� − 1 .

As in Example 4.4, we take

(4.26) [C o
o · P� ] , where C o

o =
1

2n (1 − �)
,

and obtain
(4.27)
(1+R 2)Δo [C

o
o ·P� ] + 2n [1−(Y·� )] [C o

o ·P� ] = P� + C o
o ·
[
(R 2)Δo P� + Δo P�

]
.

That is, we obtain P� in the right - hand side, but “pay the price” by introducing
[ (R 2)Δo P� ] and [Δo P� ] . Observe that the degree of Δo P� is lowered to �− 2 ,
while the degree of [ (R2)Δo P� ] is still equal to � , but its structure appears
simpler in the sense that 2 of the degree is taken over by (R2) .

If � = 2 or 3 , we are done. Assume that � ≥ 4 . To proceed, we simplify the
notation and highlight the change in order and introduce

(4.28) R = (R 2) =⇒ Rj = (R 2)j , D = [Δo P� ] −→ Dk := [Δ(k)
o P� ] .

Using this notation, we have (cf. §A.3 in the e -Appendix)

(1 +R) ·Δo [R
j Dk]

(
= (1 +R2)Δo [ (R2)j ·Δ(k)

o P� ]
)(4.29)

= A� , j , k · (R j D k) + R j+1 D k+1 (degree = �+ 2 (j − k) on both terms)

+ A� , j , k · (R j−1 D k) + Rj D k+1

( ↑ degree = �+ 2 (j − k) − 2 on both terms) .

Here

A� , j , k = (2j ) · (2j + n− 2 + 2 � − 4k) .

We realize that the process produces one same term [Rj Dk] (times a constant),
one same order term, plus two lower order terms. We illustrate the procedure when
the linear operator (the right - hand side of (4.3)) acts on [Rj Dk ] via the following
diagram ( j ≥ 1 ):

(×A� , j , k → ) R j−1 Dk

↗
(×{A� , j , k − 2n [ �+ 2 (j − k)− 1 ] } ) ↪→ Rj Dk −→ Rj D k+1 (← × 1)

↓ (← × 1)

R j+1 D k+1

Degree of the term (≤ ) : �+ 2 (j − k) �+ 2 (j − k) − 2

Figure 4.30. The four terms, their degrees, and the multipliers.
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We represent schematically part of the reduction procedure in the diagram in
Figure 4.31, showing the terms produced (indicated by the arrows, including itself)
when the term is acted upon by the operator (1 +R) ·Δo .

P� −→ D −→ D2 · · · −→ [ Δ(h�)
o P� ]

↓ ↗ ↓ ↗

(1st) R D −→ RD2 −→ RD3 · · · −→ (R 2) [Δ(h�)
o P� ]

↓ ↗ ↓ ↗

(2nd) R 2 D2 −→ R 2 D3 −→ · · · −→ (R 2) 2 [ Δ(h�)
o P� ]

↓
... ↓ · · ·

Rh� − 1 Dh� − 1 → Rh�−1 Dh�
= (R2) h�−1 [ Δ(h�)

o P� ]

↓

(hth� ) Rh� Dh�

||

(R 2)h� [ Δ(h�)
o P� ]

Degree (≤ ) � � − 2 · · · 1 / 0

� is odd/even

Figure 4.31. Showing the cancellation order (top → down) on
the first column.

Back to the case when � = 4 . In the second step, we seek to eliminate the term

C o
o · [ (R 2)Δo P� ] = C o

o ·RD ,

which appears in (4.27) . From (4.29) and (4.27) we take

(4.32) C1
1 =

−C o
o

A� , 1 ,1 − 2n (�− 1)
=

−C o
o

2 (n − 2) (2 − �)
( here � ≥ 4) .

It follows that

(4.33) (1 +R 2)Δo { [C o
o · P� ] + [C 1

1 · (R2)Δo P� ] }

+ 2n [1− (Y · � )] { [C o
o · P� ] + [C 1

1 · (R2)Δo P� ] }

= P� + [C o
o +A � , 1 , 1 · C 1

1 ] · [ Δo P� ] + C 1
1 · [ (R2)2 Δ2

o P� + (R2)Δ2
o P� ] .

Inductively, we find (refer to (4.23)) that

(4.34) C j
j =

−Cj − 1
j − 1

A� , j , j − 2n (�− 1)
=

−Cj− 1
j− 1

(2j) [n − 2 + 2 (� − j) ] − 2n (�− 1)]
,
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where 1 ≤ j ≤ h� . This enables us to cancel the terms in the first column in
Figure 4.31, ending with the term

(4.35) C h� − 1
h� − 1 · [ (R2) h� Δ(h�)

o P� ] ,

which is present on the right - hand side of equation (4.24).
Next, we proceed to cancel the terms in the second column (Figure 4.31), starting

from top toward the bottom. Gradually we move right to the next column, always
proceeding from top to bottom. We summarize the cancellation in the following
two cases.

*Cancellation of terms in the top row in Figure 4.31 . From (4.33), and also
from Figure 4.31 , we have the term

[C o
o + C1

1 ·A�, 1 , 1 ] ·D
to be canceled. This is done by adding the term

− C o
o + C1

1 ·A�, 1 , 1

− 2n [ (� − 2)− 1])
·D =⇒ C o

1 = − C o
o + C1

1 ·A�, 1 , 1

− 2n [ (� − 2) − 1] )
.

With the help of the information depicted in Figure 4.30 and via induction, we have

(4.36) C o
k = −

C o
k− 1 + C1

k ·A�, 1 , k

− 2n [ (� − 2k)− 1]
for 1 ≤ k ≤ h� − 1 .

The numbers C1
2 , C1

3 , · · · , C1
h� − 1 are obtained below; see Remark 4.40. Note

that

� − 2k ≥ � − 2 (h� − 1) ≥ 2 =⇒ (� − 2k)− 1 �= 0 (recall (4.25)) .

This enables us to cancel the terms in the first row, ending with

C o
h� − 1 · Δ(h�)

o P� ,

which appears in the right - hand side of (4.24).
*Cancellation of the ‘inside’ terms . Finally, consider any ‘inside’ term Rj Dk .

We observe that k > j ( k = j appears in the first column only) .

Cj−1
k−1 R j−1 Dk−1 ( j ≥ 1)

(× 1 →) ↓

Cj
k− 1 R

j Dk− 1 (× 1) → Rj Dk

↗ (← ×A� , j+1 , k)

Cj+1
k R j+1 D k

Figure 4.37. The three terms which give rise to an inside term
(with multipliers).

Via induction and the discussion in (4.34) and (4.36), we may assume that the

coefficients C j − 1
k− 1 , C j

k− 1 and C j+1
k are determined. The term Rj Dk makes

its presence on the right - hand side given by

(4.38) [ Cj − 1
k− 1 + Cj

k− 1 + Cj+1
k ·A� , j+1 , k ] ·Rj Dk .
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To cancel it, we introduce the term

−
Cj − 1

k− 1 + Cj
k− 1 + Cj+1

k ·A� , j+1 , k

A� , j , k − 2n [ (� − 2k + 2j) − 1]
·Rj Dk

to the left - hand side ,

(4.39) · · · =⇒ Cj
k = −

Cj − 1
k− 1 + Cj

k− 1 + Cj+1
k ·A� , j+1 , k

A� , j , k − 2n [ �+ 2 (j − k) − 1]
.

Remark 4.40. Concerning the usage of C1
2 , C1

3 , · · · , C1
h� − 1 in (4.36), we remark

that, based on (4.39), in order to determine C1
2 , we need only Co

1 , C1
1 and C2

2 ,

which are known via (4.34) and (4.36) . Afterward, we can determine Cj − 1
j for

3 ≤ j ≤ h� (the other coefficient in the second column in Figure 4.31) . C2
3 ,

together with Co
2 and C1

2 , helps to determine C1
3 , and so on.

4b.2. Non - zero characters for (R 2) j Δ
(k)
o = (R 2) j Δ

(j +�)
o ( j ≥ 1 and

� ≥ 0 ). In order to finish the proof for Lemma 4.22, we are required to show that
the denominators in (4.34) and (4.39) are non - zero under the conditions on � as
stated in Lemma 4.22 . Note that

Degree { (R 2)j · [ Δ(j +�)
o P� ] } = � + 2 [ j − (j+ � ) ] = � − 2� ≤ � (� ≥ 0 ) .

Moreover, as the process stops when j+� = h� , we need only consider the situation
where j + � ≤ h� − 1 . It follows that

(4.41) k − j = � ≥ 0 and k = j + � ≤ h� − 1 =⇒ j ≤ h� − 1 ;

j ≥ 1 =⇒ � ≤ h� − 2 .

We investigate the characteristic equation , which is given by the denominator in
(4.39) (note that the denominator in (4.34) corresponds to k = j) :

(4.42) A � , j , k − 2n [ �+ 2 (j − k) − 1] = 0

⇐⇒ (2j) [ 2j + (n − 2) + 2 (� − 2k) ] − 2n [ � − 2 (k − j) − 1] = 0

⇐⇒ (2j) 2 − (2j)[ (n − 2) + 2 � − 4� ] + n (2� − 4 � − 2 ) = 0

⇐⇒ [ (2j) − n] · [ (2j) − ( 2 � − 4 � − 2) ] = 0

· · · ⇐⇒ j =
n

2
or j = (� − 1) − 2 � .

*When n is even. Here n/2 is an integer, and (4.41) requires us to post the
restriction

(4.43) j ≤ h� − 1 <
n

2
⇐⇒ h� − 1 <

n

2
⇐⇒ 2 · h� < n+ 2 .

That is, when � is even, we require

(4.44) � < n+ 2 .

Similarly, when � is odd, we need

2 · � − 1

2
< n+ 2 ⇐⇒ � < n+ 3 ⇐⇒ � < n+ 2 ,
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as n is even =⇒ n + 3 is odd, and � is also odd in this case. For the second root
in (4.42), since k ≤ h� − 1, we have

j+� <
�

2
=⇒ j+� ≤ �

2
− 1 =⇒ � ≤ �

2
− 2 (j ≥ 1) =⇒ j+2� ≤ �− 3 .

Thus the solution j = (� − 1) − 2� ⇐⇒ j+2� = � − 1 is too big to happen.
*When n is odd. In this case, n/2 is not an integer. We need only consider the

second root in (4.42). As we want the term (R 2) to be present , and (Δ
(j+�)
o P� )

is not yet reduced to first order, we have

j + � <
�− 1

2
=⇒ j + � ≤ �− 1

2
− 1 =⇒ � ≤ �− 1

2
− 2 (j ≥ 1)

=⇒ j + 2� ≤ � − 3 ⇐⇒ j < (� − 3) − 2 � .

Once again, the solution j = (� − 1) − 2� is too big. This completes the proof
that the denominators in (4.34) and (4.39) are non - zero under the conditions of
Lemma 4.22.

*The residue . As the ‘pure’ (R2) , (R2)2 , · · · , (R2) h� terms are obtained as
the by - products of the last cancellations in each column (see Figure 4.31), except
the last coefficient ao , all the others are a combination of the horizontal arrow and
the downward arrow (refer to Figure 4.31) . Hence (together with Figure 4.30 ; cf.
also (4.35) and (4.23)) we have

(4.45) ah�
= C h� − 1

h� − 1 , ah� − 1 =
[
C h� − 1

h� − 1 + C h� − 2
h� − 1

]
, · · · ,

a1 =
[
C 1

h� − 1 + C o
h� − 1

]
and ao = C o

h� − 1 .

The argument is completed under condition (4.25) . Finally, suppose that

(4.46) Δ(ko)
o P� ≡ 0 for an integer ko ∈ [ 1 , h� − 1 ] .

The process described in Figure 4.31 ends earlier. In this case

(4.47) G =
∑

0≤ j ≤ k≤ ko − 1

Cj
k · (R2)j [ Δ(k)

o P� ] ,

where the coefficients C j
k are the same as the above. Moreover, in this case (that

is, with (4.46)) G satisfies

(1 +R 2)Δo G − 2n (Y · �G) + 2nG = P� .

This completes the proof of Lemma 4.22 . �
We summarize the coefficient in the following:

↑ C o
o =

− 1

2n (� − 1)
, · · · , C j

j =
−Cj − 1

j − 1

A � , j , j − 2n (� − 1)
, · · · ,

(4.48) C o
1 = − C o

o + C 1
1 ·A � , 1 , 1

− 2n [ (� − 2) − 1]
, · · · , C o

k = −
C o

k− 1 + C1
k ·A � , 1 , k

− 2n [ (� − 2k) − 1]
, · · · ,

↓ C j
k = −

Cj − 1
k− 1 + Cj

k− 1 + Cj+1
k ·A� , j+1 , k

A� , j , k − 2n { [ �+ 2 (j − k)] − 1}
for 1 ≤ j < k ≤ h� − 1 .
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Proposition 4.49. Let P� be a homogeneous polynomial of degree � defined on
Rn. Assume that

(i) when � is even : 2 ≤ � < n + 2 and Δ
(h�)
o P� = 0 (Δ

(h�)
o P� is degree

zero ) ;

(ii) when � is odd : 2 ≤ � and Δ
(h�)
o P� ≡ 0 ( here Δ

(h�)
o P� is degree one ) .

Then equation (4.3) has a polynomial solution Go given by

(4.50) Go =
∑

0≤ j ≤ k≤ h� − 1

Cj
k · (R2)j [ Δ(k)

o P� ] .

The coefficients Cj
k are presented in (4.48) . In particular, the constant and the

linear terms are not present in the solution, and the degree of each term in G is at
most � .

Refer to §A.4 in the e -Appendix for the case when Δ
(h�)
o P� �≡ 0 .

5. Mezzo - scale effect of the global harmonic term

In this section we show that for estimates of vi with accuracy of order Oλi
(n − 2)

or better, the contribution from other blow - up points has to be taken into account.
We continue to assume the following:

(5.1) “the standard conditions (1.6) , (1.25) and (1.26), plus (2.16) , with the
notation in (1.10) and (1.11) ” .

5a. Rescaled harmonic part. From Proposition 2.24, we can find small positive
numbers co and c1 such that for i � 1 ,

C−1 · λ
n− 2

2
i ≤ vi (y) ≤ C λ

n − 2
2

i for i � 1 and co ≤ | y| ≤ c1 .

Together with the Harnack inequality (cf. Theorem 8.20 and Corollary 8.21 in [11] ,
p. 199), and the discussion in §2c.1 , a subsequence of

(5.2)
{
M−1

i · ui

}
=
{
λ
−n − 2

2
i · ui

}
(Mi is given in (3.2))

converges to a positive C 2 - function Hλ in Sn \ {βo, · · · , βk} . (The convergence
is uniform in every compact set in Sn \ {βo, · · · , βk} .) With the stereographic

projection Ṗ onto Rn, Hλ can be expressed (cf. (1.3) and (2.9)) as

Hλ (y) := [Hλ ◦ Ṗ−1(y)] ·
(

2

1 + | y| 2

)n− 2
2

,(5.3)

Hλ (y) =

k∑
j =0

A l

| y − Ŷ l|n− 2
(5.4)

for y ∈ Rn \ { Ŷ o = 0 , · · · , Ŷ k} . Here Ŷ j := P (βj) , 0 ≤ j ≤ k , and A j

are positive constants (a constant times A j which appears in (2.10)). From the
Proportionality Proposition 2.3, (5.3) and §2f , together with (1.10) and (1.11), we
obtain

[ vi (ξi)] · vi (y) = λ
−n− 2

2
i · vi (y) −→ 1

| y|n− 2
+ h (y) in C2

loc(Bo (ρ̄1) \ {0}) .
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Recall that we assume (without loss of generality) (c̃n K) (0) = n (n − 2) . Hence
we know that

(5.5) A o = 1 .

(5.6) Define Hλ≥1
(y) :=

k∑
j =1

A j

| y − Ŷj |n− 2
for y ∈ R

n\{ Ŷ 1 , · · · , Ŷ k} .

Note that Hλ≥1
(y) = Hλ (y) − | y|− (n− 2) is well - defined and smooth on a neigh-

borhood of 0 .

5b. Estimating | V i (Y) − A1 (Y) | on the mezzo - scale Co ≤ λi | Y| ≤ C1.
We start with the convergence occurring in (5.2) :
(5.7)

ui (x)

λ
n− 2

2
i

→ Hλ (x) for x ∈ Sn
∖⎡⎣ k⋃

j =0

Bβl
(ρ)

⎤
⎦ , ρ > 0 small but fixed

=⇒
∣∣∣∣∣ ui (x)

λ
n− 2

2
i

− Hλ (x)

∣∣∣∣∣ ≤ ε for all i � 1 and x ∈ Sn
∖⎡⎣ k⋃

j =0

Bβl
(ρ)

⎤
⎦

=⇒
∣∣∣∣∣ ui (x)

λ
n− 2

2

i

·
(

2

1 + | y| 2

) n− 2
2

− Hλ (x) ·
(

2

1 + | y| 2

) n− 2
2

∣∣∣∣∣ ≤ ε·
(

2

1 + | y| 2

) n− 2
2

for all i � 1 and x ∈ Sn
∖⎡⎣ N ∪

k⋃
j =0

Bβl
(ρ)

⎤
⎦ ; y = Ṗ (x)

=⇒
∣∣∣∣∣ vi (y)

λ
n− 2

2

i

− Hλ (y)

∣∣∣∣∣ ≤ C ε

(1 + r)n

for all i � 1 and y ∈ R
n
∖[ k⋃

l=0

BŶl
(ro)

]

=⇒
∣∣∣∣∣ vi (y)

λ
n− 2

2
i

− 1

| y|n− 2
− Hλ≥1

(y)

∣∣∣∣∣ ≤ C ε

(1 + r)n
(using (5.5) and (5.6))

· · · =⇒
∣∣∣∣∣ vi (y) − λ

n − 2
2

i

| y|n− 2
− [ Hλ≥1

(y) ] · λ
n − 2

2
i

∣∣∣∣∣ ≤ C ε · λ
n− 2

2

i

(1 + r)n

for all i � 1 and co ≤ | y| ≤ c1 . As usual , r = | y| . Note that we may take

(5.8) c1 ≤ 1

2
· min
1≤ j ≤ k

| Ŷj | .
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In (5.7), we replace y → ξi + λi Y . For i � 1 and co ≤ | ξi + λi Y| ≤ c1 :
(5.9)∣∣∣∣∣ vi (ξi+λi Y)− λ

n− 2
2

i

| ξi + λi Y|n− 2
− [ Hλ≥1

(ξi+λi Y) ]·λ
n− 2

2
i

∣∣∣∣∣ ≤ C ε · λ
n− 2

2

i

(1 + | ξi + λi Y| )n

=⇒
∣∣∣∣∣ vi (ξi + λi Y)

vi (ξi)
− λn− 2

i

| ξi + λi Y|n− 2
− [ Hλ≥1

(ξi + λi Y) ] · λn− 2
i

∣∣∣∣∣
≤ C ε · λn− 2

i

=⇒
∣∣∣∣∣ V i (Y) − 1

| [λ−1
i · ξi ] + Y|n− 2

− λn− 2
i · [ Hλ≥1

(ξi + λi Y) ]

∣∣∣∣∣
≤ C ε · λn− 2

i .

Next, we seek to show that the second term in the last inequality above is “close”
to A1 in the mezzo - range, under the condition that |λ−1

i · ξi | = O (1) . We first
note that

y = ξi + λi Y , where co ≤ | y| ≤ c1

=⇒ co ≤ | ξi + λi Y| ≤ c1 =⇒ co · λ−1
i ≤ | (λ−1

i · ξi ) + Y| ≤ c1 · λ−1
i

(assuming λ−1
i · | ξi| = O (1))

(5.10) · · · =⇒ [ co − o (1) ] · λ−1
i ≤ |Y| ≤ [ c1 + o (1) ] · λ−1

i ,

where o (1) → 0 as i → ∞ . Thus again, for i � 1 and co ≤ | ξi+λi Y | ≤ c1 ,
we continue with

(5.11)

∣∣∣∣∣ A1 (Y) − 1

| [λ−1
i · ξi ] + Y|n− 2

∣∣∣∣∣

=

∣∣∣∣∣
(

1

1 + | Y| 2

)n − 2
2

−
(

1

| Y| 2 + 2Y · [λ−1
i · ξi ] +O (1)

)n − 2
2

∣∣∣∣∣

≤ 2

n − 2
·
∣∣∣∣∣ 1

1 + | Y| 2 − 1

| Y| 2 + 2Y · [λ−1
i · ξi ] +O (1)

∣∣∣∣∣

× max

{(
1

1+| Y| 2

) n − 2
2 − 1

,

(
1

| Y| 2+2〈 Y , [λ−1
i · ξi] 〉+O (1)

) n − 2
2 − 1

}

≤ C ′ ·
∣∣∣∣∣ 2 〈 Y , [λ−1

i · ξi] 〉+O (1) − 1

[ 1 + | Y| 2] · [ | Y| 2 + 2 〈 Y , [λ−1
i · ξi] 〉+O (1)]

∣∣∣∣∣ ·
(

1

| Y| 2

) n − 2
2 − 1
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≤ C ′ ·
[

1

| Y| 4 +
O (1)

| Y| 4 +
| Y| · |λ−1

i · ξi |
| Y| 4

]
·
(

1

| Y| 2

) n − 2
2 − 1

≤ C ′ ·
[

1

| Y| 4 +
O (1)

| Y| 4 +
O (1)

| Y| 3

]
·
(

1

| Y| 2

) n − 2
2 − 1

≤ C ′ · O (1)

| Y| 3 ∗
(

1

| Y| 2

) n− 2
2 − 1

≤ C ′ · O (1)

| Y| ·
(

1

| Y| 2

) n − 2
2

≤ O (1) · λn− 1
i .

In the above, we apply the inequality

a > b > 0 and p ≥ 1 =⇒ ap − bp ≤ p−1 · (a − b) · a p− 1 .

Note that when j �= 0 , from (5.8) and (5.10), we have

A

| (ξi + λi Y) − Ŷj |n− 2
=

A

| (λi Y − Ŷj ) + ξi |n− 2
(5.12)

=
A

|λi Y − Ŷj |n− 2
× 1(

1 + ξi
|λi Y − Ŷj |

)n− 2

=
A

|λi Y − Ŷj |n− 2
· [ 1 +O (| ξi | ) ]

for [ co − o (1)] · λ−1
i ≤ |Y| ≤ [ c1 + o (1)] · λ−1

i . Thus if we install the terms

(5.13) H≥1 (Y) :=
∑
j≥1

A j

|λi Y − Ŷj |n− 2

( H≥1 (Y) is smooth and harmonic in Bo (c1 · λ−1
i )) and apply the triangle in-

equality, then (5.8), (5.11) and (5.12) furnish us with the following mezzo - scale
estimate.

Lemma 5.14. For n ≥ 3 , under the conditions and notation in (5.1) for {ui}
{vi} , λi and ξi , assume also that λ−1

i · | ξi| = O (1) . For any ε > 0 , we have

(5.15) | Vi (Y) − A1 (Y) − λn− 2
i ·H≥1 (Y) | ≤ C ε · λn− 2

i + O (1) · λn− 1
i

for all i � 1 and c̄1 · λ−1
i ≤ |Y| ≤ c̄2 · λ−1

i . Here c̄1 > 0 can be taken to
be any small (but fixed ) constant as long as c̄1 < c̄2 . (In (5.15) , the order in
the right - hand side is Oλi

(n − 2)).

6. Second order blow - up argument

and the proof of Main Theorem 1.14

In this section, we take up all the assumptions stated in Main Theorem 1.14. To
begin with, we observe the following.

Proposition 6.1. For n ≥ 4 , under the general conditions listed in (5.1) , we
also take the following conditions (i) – (iv) into account .

(i) 0 is a simple blow - up point for {vi} .
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(ii) K is given by (1.8) in Bo (ρo) , where 2 ≤ � < n− 2 .
(iii) The parameters λi and ξi corresponding to the simple blow - up point at

0 ( via (1.10) and (1.11) ) satisfy (1.12) , that is , | ξi| = o (λi) .
(iv) � is even .

Then Δ
(h�)
o P� (y) = 0 . (P� is found in (1.8) . When � is even, h� = �/2 ,

and Δ
(h�)
o P� is a number .) The same conclusion also holds when � = n − 2 with

an additional assumption that 0 is the only blow - up point ( � is still required to be
even ) .

The key to the proof is to combine the change of center formula (see (A.6.33)
in the e -Appendix) with the condition | ξi| = o (λi) . Other arguments actually
proceed in similar fashion as those found in [15] and [20] . For the benefit of the
reader, we present the estimates in §A.6.d in the e -Appendix.

Together with condition (1.19) in the Main Theorem, Proposition 4.49 and
Proposition 6.1 , we can secure a solution Πp of the equation

Δo Πp + n (n+ 2)A
4

n − 2

1 ·Πp = P� ·A
n+2
n− 2

1 in R
n .

Moreover ,

(6.2) Πp (Y) =
Γp(Y)

(1 +R 2)
n
2

for Y ∈ R
n , where R = | Y| .

Thanks to Proposition 4.49, the precise form of Γp is known once P� is given.
It follows from (3.11) that

(6.3) Δo (V i − A1 − λ �
i ·Πp ) + n (n+ 2)A

4
n − 2

1 (V i − A1 − λ �
i ·Πp ) = RM

in R
n , where the ‘remainder’ RM is given in (3.12) ; cf. (3.1) – (3.3) .

6a. Inclusion of the harmonic term via interpolation. Consider

(6.4) DΠ
i (Y) :=

[
V i (Y) − A1 (Y)− λ �

i ·Πp(Y) − λn− 2
i ·H≥1 (Y)

]
+ [λn− 2

i · ho ] ·
[
1 − R̃ (Y)

c λ−1
i

]

in the region | Y| ≤ c λ−1
i . Here c ≤ c1 is a positive constant to be fixed (cf.

(5.8)) , H≥1 is given in (5.13) , and

(6.5) ho := H≥1 (0) (that is , setting Y = 0 in (5.13)) .

In addition, R̃ ∈ C∞ (Rn) is a non - negative function which satisfies
(6.6)

R̃ (Y) = | Y| for | Y| ≥ 1 , R̃ (0) = 0 , �Y R̃ (0) = �0 , and |Δo R̃| ≤ C in R
n.

6a.1. Joint between bubble estimate and the global harmonic term. From
(1.4) , (1.6) and (2.17), we know that Vi (0) = A1 (0) = 1 for all i . Here, we group
together the terms in (6.4) which link to the harmonic function H≥1 and note that

λn− 2
i ·H≥ 1 (Y) + [λn− 2

i · ho ]·
(
1 − R̃ (Y)

c λ−1
i

)
= 0 if Y = 0 ,(6.7)

λn− 2
i ·H≥ 1 (Y) + [λn− 2

i · ho ]·
(
1 − R̃ (Y)

c λ−1
i

)
= λn− 2

i ·H≥ 1 (Y)
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if | Y| = c λ−1
i . That is, via R̃ , the bubble estimate and the global harmonic term

are joint. See the comments in §2d.1 , (2.14), (2.15), (2.22) and (2.23).

6b. Ingredients for the method to work. [12] provides the framework for
what we call the “second level blow - up argument ” (see also [8]) . It is an exquisite
method which goes to the root of the blow - up phenomenon. Here we summarize
the key steps and apply it to our situation.

6b.1. First order vanishing property. From (1.6), (3.1), (3.2), Proposition
4.49 (from there we know that Γp contains no constant term) , and (6.7), we obtain

(6.8) DΠ
i (0) = 0 for i � 1 .

Referring to (5.13) (observe the presence of λi in the right - hand side below),
(6.9)

∂

∂Y|1

[
A l

|λi Y − Ŷj |n− 2

] ∣∣∣∣∣
Y=0

= (n − 2)Al ·
λi Ŷj |1

| Ŷj |n
[ Ŷj = (Ŷj |1

, · · · , Ŷj |n
) ] .

From the definition of A1 = A1 , 0 (cf. (1.4)) , (1.6), (3.1), (3.2), Proposition 4.49
(from there we recognize that Γp contains no first order terms) , (6.5) , (6.6) and
(6.9), we obtain

(6.10) ‖ �Y DΠ
i (0) ‖ = 0 (λn− 1

i ) for i � 1 .

6b.2. The maximum in Bo (c λ
−1
i ). Because Δo [ H≥ 1 − ho ] = 0 , we have

(6.11) Δo DΠ
i + n (n+ 2)A

4
n − 2

1 · DΠ
i = R.H.S i in Bo (c λ

−1
i ) ,

where (by using (6.3) and (6.6)) ,

(6.12) R.H.S i := RM − λn− 2
i

{
ho

c λ−1
i

·Δo R̃ + n (n+ 2) · ho

c λ−1
i

·A
4

n − 2

1 · R̃

+ n (n+ 2)A
4

n− 2

1 · [ H≥1 − ho ]

}
.

From (2.26) in Proposition 2.24 , Proposition 4.49 and the expression for Πp (that
is, (6.2)) , we have

(6.13) � ≤ n − 2 =⇒ Λ i := max
| Y|≤ c λ−1

i

| DΠ
i (Y)| < ∞ for i � 1 .

We assert that

(6.14) Λi = oλi
(�) .

The assertion is equivalent to

(6.15) Λi = o (1)λ�
i ⇐⇒ λ�

i

Λi
=

1

o (1)
⇐⇒ λ�

i

Λi
→ ∞ .

Suppose that this is not the case. Then (modulo a subsequence)

(6.16)
λ�
i

Λi
≤ C for all i ≥ 1 ⇐⇒ 1

Λi
≤ C

λ�
i

for all i ≥ 1 .

In what follows, we seek to derive a contradiction to (6.16) .
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6b.3. Renormalization. Consider the function

(6.17) Wi :=
DΠ

i

Λi
defined in Bo

(
c λ−1

i

)
.

From (6.11), we have

(6.18) Δo Wi + n (n+ 2)A
4

n− 2

1 ·Wi = Λ−1
i ·R.H.S i in Bo ( c λ

−1
i ) .

6b.4. Order of magnitude of the remainder. The key properties we want to
show about R.H.S i are the following (under the condition in the Main Theorem):

(6.19) Given any Ro > 0 , Λ−1
i ·|R.H.S i | → 0 uniformly in Bo (Ro) .

(6.20)
|R.H.S i (Y)|

Λi
≤ C

(1 +R)4
+ O (λi) · χBo (1) for R ≤ c λ−1

i .

Here R = | Y| and χBo (1) is the characteristic function of the unit ball. These
are demonstrated in §6c .

6b.5. Vanishing on the whole. From (6.8), (6.9), (6.10), (6.16) and (6.17) , we
know that

(6.21) |Wi| ≤ 1 in Bo (c λ
−1
i ) ,

(6.22) Wi (0) = 0 for i � 1 , and �Wi (0) = O (λi) → �0 as i → ∞ .

It follows from (6.11), (6.18), (6.19), (6.21) and standard elliptic theory that (mod-
ulo a subsequence)

(6.23) Wi −→ W uniformly in every compact subset of R
n.

Here W is a C2 - function satisfying

(6.24) Δo W + n (n+ 2)A
4

n− 2

1 ·W = 0 in R
n.

In addition, from (6.22),

(6.25) W (0) = 0 and �W (0) = �0 .

Moreover, in §6b.7, we show that

(6.26) |W (Y)| → 0 when | Y| → ∞ .

A standard bootstrap argument shows that W is smooth in R
n . It follows from

the Liouville - type theorem for (6.24) (see Lemma 2.4 in [8]; cf. also [3] ) that

(6.27) W ≡ 0 in R
n =⇒ Wi → 0 uniformly in Bo (Ro) ⊂ R

n.

Here Ro can be any given positive number. On the other hand, by the definition
of Λi , there is a point

(6.28) Yμi
∈ Bo (c λ

−1
i ) such that Wi (Yμi

) = 1 .

We produce a contradiction to (6.27) by showing that we can find a positive number
Ro such that

(6.29) | Yμi
| ≤ Ro for all i � 1

(
⇐⇒ max

Bo (Ro)
Wi = 1

)
.
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6b.6. Smallness of |Wi | near the boundary ∂Bo ( c λ
−1
i ). Given (5.15) in

Lemma 5.14, we turn our attention to λ�
i ·Πp in (6.4) . Based on Proposition 4.49

and condition (6.2), we have

(6.30) the degree of the polynomial Γp in (6.2) is at most n − 2 .

It follows that

(6.31) | λ�
i ·Πp(Y)| = λ�

i ·
| Γp(Y)|

(1 +R 2)
n
2

≤ C ·λ
�
i (1 +R)n− 2

(1 +R)n
≤ C1 λ

�
i

(1 +R)2
≤ C2 λ

�+2
i

for R = | Y| ≥ (1 − δ) · c λ−1
i

(6.32) · · · =⇒ Λ−1
i · | λ�

i ·Π (Y)| = O (λ2
i ) (via (6.16))

for R ≥ (1 − δ) · c λ−1
i . Together with (6.4), (6.6), Lemma 5.14 and (6.31), we

have

(6.33) |Wi (Y)| = O (ε) +O (λ2
i ) for | Y| = c λ−1

i and i � 1.

Moreover, for (1 − δ) · [ c λ−1
i ] ≤ |Y| ≤ [ c λ−1

i ] , we have

(6.34) [λn− 2
i · ho ]·

∣∣∣∣ 1 − R̃ (Y)

c λ−1
i

∣∣∣∣ = [λn− 2
i · ho ]·

∣∣∣∣ 1 − |Y|
c λ−1

i

∣∣∣∣ ≤ [ δ ·ho]·λn− 2
i .

Thus if we choose δ > 0 to be small [ relative to the constant C in (6.16) and ho

only] , and combine (6.32) with (6.33), (6.34) and Lemma 5.14, we obtain
(6.35)

|Wi (Y)| ≤ 1

2
for (1 − δ) · [ c λ−1

i ] ≤ |Y| ≤ [ c λ−1
i ] and i � 1 .

6b.7. The decay to 0 – proof of (6.26). To demonstrate (6.26), we show that
for any positive number ε̃ (small and given), we can find a positive number Rε̃

and a natural number Iε̃ such that

(6.36) |Wi (Y)| ≤ ε̃ for all i ≥ Iε̃ and Rε̃ ≤ |Y| ≤ (1− δ)·[ c λ−1
i ] .

Here δ ∈ (0, 1) is fixed, and the integer Iε̃ depends on ε̃ only . In particular,
(1 − δ) · [ c λ−1

i ] → ∞ as i → ∞ . Once we have (6.36), together with the uniform
convergence of W to Wi on any given compact subset of Rn , we have

(6.37) |W (Y)| ≤ ε̃ for all | Y| ≥ Rε̃ =⇒ (6.26) .

To demonstrate the proof for (6.36), via (6. 33), we already know that |Wi| is
‘small’ along the boundary ∂Bo ( c λ

−1
i ) . The value in Bo ( c λ

−1
i ) is governed by

the equation describing Δo Wi (that is, (6.18)) , and the Green representation
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formula, which, in the present situation, is given by

Wi (Yout) =

∫
Bo( c λ

−1
i )

Gi (Y , Yout)
{
− n (n+ 2)[A1 (Y)]

4
n − 2 ·Wi (Y)

(6.38)

+ Λ−1
i ·R.H.S i (Y)

}
dY

+

∫
∂Bo( c λ

−1
i )

[n · �Y Gi(Y , Yout)]Wi (Y) dSY

for Yout ∈ Bo ( c λ
−1
i ) . Here Gi is the Green function for Δo in Bo ( c λ

−1
i ) with

the Dirichlet boundary condition. See, for example, [22]. Note that

Gi (Y , Y ′ ) ≈ − 1

(n − 2) ‖Sn− 1‖ · 1

| Y − Y ′|n− 2

when Y is close to Y ′ . The sign is the negative of the one used in [12] . Using
(1.4) and (6.21), we obtain

(6.39)

∣∣∣∣ [A1 (Y)]
4

n − 2 · Wi (Y)

∣∣∣∣ ≤
(

1

1 +R2

)2

≤ C

1 +R4
for Y ∈ R

n .

Consider points Yout so that

| Yout| ≤ (1 − δ) · [ c λ−1
i ] .

Via proportional property on the Green function (see §A.5 in the e -Appendix (cf.
also p. 157 in [12]) , we have
(6.40)

|Gi (Y , Yout)| ≤
[
C1 +

C2

δ n− 2

]
· 1

| y − Yout|n− 2
for Y ∈ Bo (c λ

−1
i ) \{Yout} ,

(6.41) | n · �Gi (Y , Yout)| ≤ C3

δ n
· λn− 1

i for Y ∈ ∂Bo (c λ
−1
i ) ,

where | Yout| ≤ (1 − δ) · [ c λ−1
i ] . Here C1 , C2 and C3 are positive constant

independent on i and δ . It follows from (6.33) and (6.41) that

(6.42)

∣∣∣∣
∫
∂Bo( c λ

−1
i )

[n · �Y Gi(Y , Yout) ]Wi (Y) dSY

∣∣∣∣
≤ C2 · ε

δ n
· λn− 1

i ·
∫
∂Bo( c λ

−1
i )

dSY

≤ C2 · ε
δ n

· λn− 1
i ·

[
‖Sn− 1‖ · (c λi)

n− 1
]

≤ C · ε
δn

.
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Here we consider that C is independent on i . Putting the information into (6.38) ,
together with (6.20) and (6.40), we obtain

(6.43)

|Wi (Yout) | ≤
[
C1 +

C2

δ n− 2

]
·
∫
Bo(c λ

−1
i )

(
1

| Y − Yout|n− 2
· 1

(1 + | Y |) 4

)
dy

+

∫
Bo (1)

O (λi) +
C · ε
δn

( from the harmonic term )

≤ Cδ ·
[

1

(1 + | Yout| )
+ O (λi) + O (ε)

]

for | Yout| ≤ (1 − δ) [ c λ−1
i ] . Refer to [8] for the estimation of the first integral in

(6.43) . Thus we can find Rε̃ > 0 and Iε̃ such that for all i ≥ Iε̃ , we have

(6.44) |Wi (Y)| ≤ ε̃ for Rε̃ ≤ |Y| ≤ (1 − δ) [ c λ−1
i ] .

6b.8. Further restriction on the location of the maximum – proof of
(6.29). In view of (6.35), we actually have

Yμi
∈ Bo

(
(1 − δ) [ c λ−1

i ]
)

(cf. (6.28)) .

Here δ > 0 is chosen close to 0 (as explained in §6b.6) . Arguing as in (6.43),
we arrive at a similar conclusion:

(6.45) 1 = | Wi (Yμi
)| ≤ C

[
1

1 + | Yμi
| + O (λi) + O (ε)

]
.

It follows that there is a fixed positive number Ro such that

| Yμi
| ≤ Ro for i � 1 .

Hence we establish (6.29) and obtain a contradiction to (6.27). Thus (6.16) must
be wrong. That is, (6.14) holds.

6c. Terms in the remainder R.H.S.i in (6.12). Here we verify (6.19) and
(6.20). Recall thatRM is decomposed into four components as expressed in (3.12) .

6c.1. First term. Under the condition | ξi| = oλi
(1) , we have

Λ− 1
i ·

[
| ξi| k · (λi | Y| )�− k

]
× [A1 (Y)]

n+2
n− 2 (1 ≤ k ≤ � ; | ξi| = o (1) · λi )

(6.46)

≤ λ− �
i · o (1) · λk

i · λ�− k
i ×R �− k ·

(
1

1 +R 2

)n+2
2

(using (6.16) ; R = | Y|)

≤ o (1) · (1 +R) �− k ·
(

1

1 +R

)n+2

≤ o (1)

(1 +R) 5
for R ≤ c λ−1

i

→ 0 uniformly in Bo (Ro) ( i � 1 ; � ≤ n− 2 , k ≥ 1) .
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6c.2. Second term.

Λ− 1
i ·

(
max

Bo(λi Y+ξ i)
‖ � (�+1) K ‖

)
· |λi Y + ξ i| �+1 × [A1 (Y)]

n+2
n − 2

(6.47)

≤ C λ− �
i

∣∣∣∣λi

(
Y +

ξi
λi

) ∣∣∣∣
�+1

× 1

(1 +R)n+2
≤ C λi · (1 +R) �+1 · 1

(1 +R)n+2

(via (6.16) ; | ξi| = o (λi) , � ≤ n)

≤ C λi

(1 +R) 3
≤ C1

(1 +R)4
for R ≤ c λ−1

i [ =⇒ λi (1 +R) ≤ C2 ] .

6c.3. Third term. Using a 2 = (a − b)2 + 2 b (a − b) + b 2 , we obtain

Λ−1
i ·A

4
n− 2−1

1 (V i − A1)
2 (take a = (V i − A1) , b = λ �

i ·Πp)

(6.48)

≤ A
4

n− 2−1

1 Λ−1
i { [ V i − A1 − λ �

i ·Πp ] 2 + 2 (λ �
i Πp )

· | V i − A1 − λ �
i Πp |+ (λ �

i ·Πp)
2}

≤
(

1

1 +R 2

) 6− n
2 {

| (V i − A1 − λ �
i ·Πp| · |Wi + Oλi

( (n − 2) − �)|

+ 2 |λ �
i ·Πp | · |Wi +Oλi

( (n − 2) − �)| + (Λ−1
i λ �

i ) · λ �
i · (Πp ) 2

}
(using (6.4) , (6.16) and (6.17))

≤ C

(1 +R) 6−n
·
{
| (V i (Y) − A1 (Y) − λ�

i ·Πp |

+ λ �
i |Πp(Y)| + λ�

i · |Πp(Y)| 2
}

(as |Wi +Oλi
( (n − 2) − �)|

≤ |Wi|+ |Oλi
( (n − 2) − � )| ≤ 1 + C when � ≤ (n − 2))

−→ 0 in Bo (Ro) uniformly (from (2.59) : | Vi − A1 | → 0 in Bo (Ro))

≤ C1

(1 +R) 6−n
·
{
| V i (Y) − A1 (Y)| + λ �

i |Πp(Y)| + λ�
i · |Πp(Y)| 2

}

≤ C2

(1 +R) 6−n
·
{

1

(1 +R)n− 2
+

λ�
i · (1 +R)�

(1 +R)n
+

λ�
i · (1 +R)2 �

(1 +R)2n

}

(via (3.7) and Proposition 4.49)

≤ C

(1 +R) 4
for R ≤ c λ−1

i ( =⇒ λi (1 +R) ≤ C2) .

Here � ≤ n − 2 .
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6c.4. Fourth term. From (3.12), we obtain

RM4 (Y)

(6.49)

= Λ− 1
i ·

{
O

(
max

|λi Y + ξi| ≤ ρo)
‖ �(�) K ‖ × |λi Y + ξ i| �

)}

×
[
O (1) | V i − A1 | ×max

{
V

4
n − 2

i , A
4

n − 2

1

}]

≤ C Λ−1
i · |λi Y + ξ i| � ·

[
A

4
n − 2

1 | V i − A1 |
]

(cf. (A.1.3))

for | Y| ≤ c · λ−1
i (using Propositions 2.3 and 2.24)]

≤ C1 Λ
−1
i λ �

i · ( 1 +R )�
[
A

4
n− 2

1 ·
(
| V i − A1 − λ �

i Πp |+ λ �
i |Πp |

)]

≤ C2 λ
�
i · ( 1 +R ) � × 1

(1 +R) 4
× |Wi + Oλi

((n − 2) − �)|

+ C3 (Λ
−1
i λ �

i ) · ( 1 +R )� · 1

(1 +R) 4
· λ

�
i (1 +R)�

(1 +R)n

≤ C4 λ
�
i · (1 +R)�

(1 +R)4
·
[
1 +

1

(1 +R)n− �

]
−→ 0 uniformly in Bo (Ro)

≤ C5

(1 +R) 4
for R = | Y| ≤ c λ−1

i (when � ≤ n − 2) .

6c.5. The inserted harmonic term. The last couple of terms to be considered
in Λ−1

i ·R.H.S.i (cf. (6.12), (6.19) and (6.20)) are

(6.50)
1

Λi
·
∣∣∣∣ λn− 2

i · ho

c λ−1
i

· ΔY R̃ (Y)

∣∣∣∣ ≤ C λi · χBo (1) (via (6.16) and � ≤ n − 2) ,

λn− 2
i

Λi
· n (n+ 2)

ho

c λ−1
i

· [A1 (Y)]
4

n − 2 · R̃ (Y)

(6.51)

≤ C λi · χBo (1) + C1 · λi ·
R

(1 +R)4
−→ 0 uniformly in Bo (Ro)

≤ C λi · χBo (1) + C2 ·
1

(1 +R)4
for R = | Y| ≤ c λ−1

i ,
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λn− 2
i

Λi
· n (n+ 2) [A1 (Y)]

4
n − 2 · |H≥1 (Y) − ho |

(6.52)

≤ C ·
(

1

1 +R2

)4

×
∑
j≥1

∣∣∣∣
[

1

|λi Y − Ŷj |n− 2
− 1

| Ŷj |n− 2

] ∣∣∣∣×A j

−→ 0 uniformly for Y ∈ Bo (Ro)

(recall (5.13) and (6.5) , and observe also that λi Y → 0 for | Y| ≤ Ro)

≤ C

(1 +R)4
for R ≤ c λ−1

i .

Thus we estimate each term in the remainder and confirm the right orders in (6.19)
and (6.20). Combining the above discussion, we obtain the following.

Theorem 6.53. Under the conditions in Main Theorem 1.14 , we have
(6.54)
| DΠ

i (Y)| = oλi
(�) for | Y| ≤ c λ−1

i and i � 1 (modulo a subsequence ) .

6d. Proof of Main Theorem 1.14 – zooming out to the original scale. As
in the transformation (2.17) (see also §2f ), we note that, from the definitions of
Vi , A1 , and (6.2) , estimate (6.54) in Theorem 6.53 leads to

(6.55)

∣∣∣∣ vi ( ξ i + λi Y)

vi (ξi)
−
(

1

1 + | Y| 2

)n − 2
2

− λ �
i · Γp (Y)

(1 + | Y| 2)n
2

− λn− 2
i ·H≥ 1 (Y) + λn− 2

i · ho ·
(
1 − R̃

c λ−1
i

) ∣∣∣∣ = o (λ�
i )

for | Y| ≤ c λ−1
i . Via the transformation y = λi Y + ξi and the definition Mi :=

vi (ξi) , (6.55) is rewritten as

(6.56)

∣∣∣∣ vi (y) − Mi ·
(

1

1 + λ−2
i | y − ξ i| 2

)n− 2
2

− Mi · λ �
i · Γp (λ−1

i (y − ξ i))

[ 1 + λ−2
i | y − ξ i| 2 ]

n
2

− Mi · λn− 2
i ·H≥1 (λ

−1
i (y − ξ i)) + Mi · λn− 2

i · ho ·
(
1 − R̃ (λ−1

i (y − ξ i))

c λ−1
i

) ∣∣∣∣∣
= Mi · o (λ�

i )

for | y| = |λi Y + ξ i| ≤ c − o (1) (i � 1) . Recall that Mi = λ
− n− 2

2
i (see

(1.10), (1.11), (2.17) and §2f) and also the form of H≥1 as expressed in (5.13) .
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Hence we come to the conclusion that

∣∣∣∣∣ vi (y) −
(

λi

λ 2
i + | y − ξ i| 2

)n − 2
2

−
[
λ �+1
i · Γp

(
y − ξi
λi

)]
·
(

λi

λ2
i + | y − ξ i| 2

)n
2

(6.57)

− λ
n − 2

2

i

⎡
⎣ ∑

j ≥ 1

(
A j

| (y − ξi) − Ŷ j |n− 2
− A j

| Ŷ j |n− 2

)
+ λi ·

ho · R̃ (Y)

c

⎤
⎦
∣∣∣∣∣

= oλi

(
� − n− 2

2

)
for | y | ≤ ρ2 (i � 1) .

Here ρ2 > 0 is a number slightly less than c . With (1.4) and

OH

(
λ

n − 2
2

i

)(6.58)

:= λ
n − 2

2
i

⎡
⎣ ∑

j ≥ 1

(
A j

| (y − ξi) − Ŷ j |n− 2
− A j

| Ŷ j |n− 2

)
+ λi ·

ho · R̃ (Y)

c

⎤
⎦ ,

we arrive at (1.20) . (As usual, Y = λ−1
i ( y − ξi) .)

An e -Appendix is available at : https://arxiv.org/pdf/1707.02401.pdf

(pp. 44–83) and from https://doi.org/10.1090/tran/6983 (Supplementary ap-
pendix).
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