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INTEGRAL MENGER CURVATURE AND RECTIFIABILITY

OF n-DIMENSIONAL BOREL SETS IN EUCLIDEAN N-SPACE

MARTIN MEURER

Abstract. In this paper we show that an n-dimensional Borel set in Euclidean
N-space with finite integral Menger curvature is n-rectifiable, meaning that it
can be covered by countably many images of Lipschitz continuous functions up
to a null set in the sense of Hausdorff measure. This generalises Léger’s rectifia-

bility result for one-dimensional sets to arbitrary dimension and co-dimension.
In addition, we characterise possible integrands and discuss examples known
from the literature.

Intermediate results of independent interest include upper bounds of dif-
ferent versions of P. Jones’s β-numbers in terms of integral Menger curvature
without assuming lower Ahlfors regularity, in contrast to the results of Lerman
and Whitehouse [Constr. Approx. 30 (2009), 325–360].

1. Introduction

For three points x, y, z ∈ RN , we denote by c(x, y, z) the inverse of the radius of
the circumcircle determined by these three points. This expression is called Menger
curvature of x, y, z. For a Borel set E ⊂ RN , we define by

M2(E) :=

∫
E

∫
E

∫
E

c2(x, y, z) dH1(x)dH1(y)dH1(z)

the total Menger curvature of E, where H1 denotes the one-dimensional Hausdorff
measure. In 1999, J.C. Léger proved the following theorem.

Theorem ([19]). If E ⊂ RN is some Borel set with 0 < H1(E) < ∞ and M2(E) <
∞, then E is 1-rectifiable; i.e., there exists a countable family of Lipschitz functions
fi : R → RN such that H1(E \

⋃
i fi(R)) = 0.

This result is an important step in the proof of Vitushkin’s conjecture (for more
details see [6, 36]), which states that a compact set with finite one-dimensional
Hausdorff measure is removable for bounded analytic functions if and only if it is
purely 1-unrectifiable, which means that every 1-rectifiable subset of this set has
Hausdorff measure zero. A higher dimensional analogue of Vitushkin’s conjecture
is proven in [25] but without using a higher dimensional version of Léger’s theorem,
since in the higher dimensional setting there seems to be no connection between
the n-dimensional Riesz transform and curvature (cf. introduction of [25]).
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There exist several generalisations of Léger’s result. Hahlomaa proved in [12–14]
that if X is a metric space and M2(X) < ∞,1 then X is 1-rectifiable. Another
version of this theorem dealing with sets of fractional Hausdorff dimension equal or
less than 1

2 is given by Lin and Mattila in [22].
In the present work, we generalise the result of Léger to arbitrary dimension and

co-dimension, i.e., for n-dimensional subsets of RN where n ∈ N satisfies n < N .
In the case n = N every E ⊂ RN is n-rectifiable. On the one hand, it is quite clear
which conclusion we want to obtain, namely that the set E is n-rectifiable, which
means that there exists a countable family of Lipschitz functions fi : Rn → RN

such that Hn(E \
⋃

i fi(R
n)) = 0. On the other hand, it is by no means clear how to

define integral Menger curvature for n-dimensional sets. Léger himself suggested an
expression that turns out to be improper2 for our proof, which is strongly inspired
by Léger’s own strategy (cf. section 3.2). We characterise possible integrands for
our result in Definition 3.1, but for now let us start with an explicit example:

K(x0, . . . , xn+1) =
Hn+1(Δ(x0, . . . , xn+1))∏

0≤i<j≤n+1 d(xi, xj)
,

where the numerator denotes the (n + 1)-dimensional volume of the simplex
(Δ(x0, . . . , xn+1)) spanned by the vertices x0, . . . , xn+1, and d(xi, xj) is the dis-
tance between xi and xj . Using the law of sines, we obtain for n = 1:

K(x0, x1, x2) =
H2(Δ(x0, x1, x2))

d(x0, x1)d(x0, x2)d(x1, x2)
=

1

4
c(x0, x1, x2).

Hence, K can be regarded as a generalisation of the original Menger curvature for
higher dimensions. We set

MK2(E) :=

∫
E

· · ·
∫
E

K2(x0, . . . , xn+1) dHn(x0) . . .dHn(xn+1).(1.1)

Now we can state our main theorem for this specific integrand (see Theorem 3.5
for the general version).

Theorem 1.1. If E ⊂ RN is some Borel set with MK2(E) < ∞, then E is n-
rectifiable.

Let us briefly review a couple of results for the higher dimensional case. There
exist well-known equivalent characterisations of n-rectifiability, for example, in
terms of approximating tangent planes [23, Thm. 15.19], orthogonal projections
[23, Thm. 18.1, Besicovitch-Federer projection theorem], and in terms of densities
[23, Thm. 17.6 and Thm. 17.8 (Preiss’s theorem)]. Recently Tolsa and Azzam
proved in [35] and [2] a characterisation of n-rectifiability using the so-called β-
numbers3 defined for k > 1, x ∈ RN , t > 0, p ≥ 1 by

βp;k;μ(x, t) := inf
P∈P(N,n)

(
1

tn

∫
B(x,kt)

(
d(y, P )

t

)p

dμ(y)

) 1
p

,

1Karl Menger [24] realized that c(x, y, z) can be expressed purely in terms of mutual distances
between the points; see [14] for the explicit expression.

2Hence, we agree with a remark made by Lerman andWhitehouse at the end of the introduction
of [20].

3Introduced by P. W. Jones in [15] and [16].
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where P(N,n) denotes the set of all n-dimensional planes in RN , d(y, P ) is the
distance of y to the n-dimensional plane P and μ is a Borel measure on RN . They
showed in particular that an Hn-measurable set E ⊂ RN with Hn(E) < ∞ is
n-rectifiable if and only if∫ 1

0

β2;1;Hn|E (x, r)
2dr

r
< ∞ for Hn-a.e. x ∈ E.(1.2)

This result is remarkable in relation to our result since the β-numbers and even
an expression similar to (1.2) play an important role in our proof. Nevertheless at
the moment, we do not see how Tolsa’s result could be used to shorten our proof
of Theorem 1.1. There are further characterisations of rectifiability by Tolsa and
Toro in [38] and [37].

Now we present some of our own intermediate results that finally lead to the
proof of Theorem 1.1, but that might also be of independent interest. There is
a connection between those β-numbers and integral Menger curvature (1.1). In
section 4.2, we prove the following theorem (see Theorem 4.6 for a more general
version).

Theorem 1.2. Let μ be some arbitrary Borel measure on RN with compact support
such that there is a constant C ≥ 1 with μ(B) ≤ C(diamB)n for all balls B ⊂ RN ,
where diamB denotes the diameter of the ball B. Let B(x, t) be a fixed ball with
μ(B(x, t)) ≥ λtn for some λ > 0 and let k > 2. Then there exist some constants
k1 > 1 and C ≥ 1 such that

β2;k(x, t)
2 ≤ C

tn

∫
B(x,k1t)

· · ·
∫
B(x,k1t)

χD(x0, . . . , xn)

×K2(x0, . . . , xn+1) dμ(x0) . . .dμ(xn+1),

where χD denotes the characteristic function of the set

D = {(x0, . . . , xn+1) ∈ B(x, k1t)
n+2|d(xi, xj) ≥

t

k1
, i �= j}.

A measure μ is said to be n-dimensional Ahlfors regular if and only if there exists
some constant C ≥ 1 so that 1

C (diamB)n ≤ μ(B) ≤ C(diamB)n for all balls B
with centre on the support of μ. We mention that we do not have to assume for
this theorem that the measure μ is n-dimensional Ahlfors regular. We only need
the upper bound on μ(B) for each ball B and the condition μ(B(x, t)) ≥ λtn for
one specific ball B(x, t).

Lerman and Whitehouse obtain a comparable result in [20, Thm. 1.1]. The
main differences are that, on the one hand, they have to use an n-dimensional
Ahlfors regular measure, but, on the other hand, they work in a real separable
Hilbert space of possibly infinite dimension instead of RN . The higher dimensional
Menger curvatures they used (see [20, introduction and section 6]) are examples of
integrands that also fit in our more general setting.4 This means that all of our
results are valid if one uses their integrands instead of the initial K presented as an
example above.

4A characterisation of all possible integrands for our result can be found at the beginning of
section 3.1. In section 3.2, we discuss one of the integrands of Lerman and Whitehouse.
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In addition to rectifiability, there is the notion of uniform rectifiability, which
implies rectifiability. A set is uniformly rectifiable if it is Ahlfors regular5 and if
it fulfils a second condition in terms of β-numbers (cf. [5, Thm. 1.57, (1.59)]).
In [20] and [21], Lerman and Whitehouse give an alternative characterisation of
uniform rectifiability by proving that for an Ahlfors regular set this β-number term
is comparable to a term expressed with integral Menger curvature. One of the two
inequalities needed is given in [20, Thm. 1.3] and is similar to our following theorem,
which is a consequence of Theorem 1.2 in connection with Fubini’s theorem (see
Theorem 4.7 for a more general version). We emphasise again that in our case the
measure μ does not have to be Ahlfors regular.

Theorem 1.3. Let μ, λ and k be as in the previous theorem. There exists a constant
C ≥ 1 such that∫ ∫ ∞

0

β2;k(x, t)
2χ{μ(B(x,t))≥λtn}

dt

t
dμ(x) ≤ CMK2(μ).

In the last few years, several papers have appeared that work with integral
Menger curvatures. Some deal with (one-dimensional) space curves and get higher
regularity (C1,α) of the arc length parametrisation if the integral Menger curvature
is finite, e.g. [29, 30]. Others handle higher dimensional objects [17, 18, 32], occa-
sionally using versions of integral Menger curvatures similar to ours.6 Remarkable
are the results of Blatt and Kolasinski [3,4]. They proved among other things that
for p > n(n+ 1) and some compact n-dimensional C1 manifold Σ,∫

Σ

· · ·
∫
Σ

(
Hn+1(Δ(x0, . . . , xn+1))

diam(Δ(x0, . . . , xn+1))n+2

)p

dHn(x0), . . . , dHn(xn+1) < ∞

is equivalent to having a local representation of σ as the graph of a function be-

longing to the Sobolev Slobodeckij space W 2−n(n+1)
p ,p. Finally, we mention that

in [31, 33] Menger curvature energies are recently used as knot energies in geomet-
ric knot theory to avoid some of the drawbacks of self-repulsive potentials like the
Möbius energy [10, 26].

Organisation of this work. In section 3, we give the precise formulation of our
main result and discuss some examples of integrands known from several papers
working with integral Menger curvatures. In section 4, we present some results for
a Borel measure including the general versions of Theorems 1.2 and 1.3, namely
Theorems 4.6 and 4.7. The following sections 5 to 8 give the proof of our main
result. We remark that all statements in sections 6, 7 and 8, except section 7.1,
depend on the construction given in section 6.

2. Preliminaries

2.1. Basic notation and linear algebra facts. Let n,m,N ∈ N with 1 ≤ n < N
and 1 ≤ m < N . If E ⊂ RN is some subset of RN , we write E for its closure
and E̊ for its interior. We set d(x, y) := |x − y| where x, y ∈ RN and | · | is
the usual Euclidean norm. Furthermore, for x ∈ RN and E1, E2 ⊂ RN , we set
d(x,E2) = infy∈E2

d(x, y), d(E1, E2) = infz∈E1
d(z, E2) and #E means the number

5A set E is n-dimensional Ahlfors regular if and only if the restricted Hausdorff measure HnLE
is n-dimensional Ahlfors regular.

6Our main result does not work with their integrands, but most of the partial results are valid;
cf. section 3.2.
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of elements of E. By B(x, r) we denote the closed ball in RN with centre x and
radius r, and we define by ωn the n-dimensional volume of the n-dimensional unit
ball. Let G(N,m) be the Grassmannian, the space of all m-dimensional linear
subspaces of RN and P(N,m) the set of all m-dimensional affine subspaces of RN .
For P ∈ P(N,m), we define πP as the orthogonal projection on P . If P ∈ P(N,m),
we have that P −πP (0) ∈ G(N,m); hence P −πP (0) is the linear subspace parallel
to P . Furthermore, we set π⊥

P := π⊥
P−πP (0) := π(P−πP (0))⊥ where π(P−πP (0))⊥ is

the orthogonal projection on the orthogonal complement of P − πP (0).
Furthermore, for A ⊂ RN and x ∈ RN , we set A + x := {y ∈ Rn|y − x ∈ A}.

By span(A), we denote the linear subspace of RN spanned by the elements of
A. If A = {o1, . . . , om} or A = A1 ∪ A2, we may write span(o1, . . . , om), resp.
span(A1, A2), instead of span(A).

Remark 2.1. Let b, a, ai ∈ RN , αi ∈ R for i = 1, . . . , l, l ∈ N, with b =

a +
∑l

i=1 αi(ai − a) and P ∈ P(N,m). Then we have πP (b) = πP (a) +∑l
i=1 αi

[
πP (ai)− πP (a)

]
and d(b, P ) ≤ d(a, P ) +

∑l
i=1 |αi| (d(ai, P ) + d(a, P )).

P2

P1

πP2
(a1)

πP1∩P2
(a1)

a1
πP2

(a2)
πP1∩P2

(a1)

a2

P1 ∩ P2

Figure 1. Illustration of Lemma 2.2:
|a1−πP2

(a1)|
|a1−πP1∩P2

(a1)| =
|a2−πP2

(a2)|
|a2−πP1∩P2

(a2)|

Lemma 2.2. Let P1, P2∈P(N,m) with dimP1=dimP2=m<N and dim(P1∩P2)

= m − 1. For a1, a2 ∈ P1 \ P2, we have
|a1−πP2

(a1)|
|a1−πP1∩P2

(a1)| =
|a2−πP2

(a2)|
|a2−πP1∩P2

(a2)| (see

Figure 1).

Proof. Translate the whole setting so that P1, P2 are linear subspaces. Then express

a1 by an orthonormal base of P1 and compute that
|a1−πP2

(a1)|
|a1−πP1∩P2

(a1)| is independent

of a1. �

2.2. Simplices.

Definition 2.3. Let xi ∈ RN for i = 0, 1, . . . ,m. We define Δ(x0, . . . , xm) =
Δ({x0, . . . , xm}) as the convex hull of the set {x0, . . . , xm} and call it simplex or
m-simplex if m is the Hausdorff dimension of Δ(x0, . . . , xm). If the vertices of
T = Δ(x0, . . . , xm) are in some set G ⊂ RN , i.e., x0, . . . , xm ∈ G, we simply write
T = Δ(x0, . . . , xm) ∈ G. Note, however, that this new notation T ∈ G does not
mean T ⊂ G unless G is convex.

With aff(E) we denote the smallest affine subspace of RN that contains the set
E ⊂ RN . If E = {x0}, we set aff(E) = {x0}.
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Definition 2.4. Let T = Δ(x0, . . . , xm) ∈ RN . For i, j ∈ {0, 1, . . . ,m} we set

fciT = fcxi
T = Δ({x0, . . . , xm} \ {xi}),

fci,jT = fcxi,xj
T = Δ({x0, . . . , xm} \ {xi, xj}),

hiT = hxi
T = d

(
xi, aff({x0, . . . , xm} \ {xi})

)
.

Definition 2.5. Let T = Δ(x0, . . . , xm) be an m-simplex in RN . If hiT ≥ σ for
all i = 0, 1, . . . ,m, we call T an (m,σ)-simplex.

Definition 2.6. Let T = Δ(x0, . . . , xm) be an m-simplex in RN . By Hm(T ) we
denote the volume of T and we define the normalized volume v(T ) := m! Hm(T )
which is the volume of the parallelotope spanned by the simplex T (cf. [28]). We
also have a characterisation of v(T ) by the Gram determinant

v(T ) =
√
Gram(x1 − x0, . . . , xm − x0),

where the Gram determinant of vectors v1, . . . , vm ∈ RN is defined by

Gram(v1, . . . , vm) := det
(
(v1, . . . , vm)T (v1, . . . , vm)

)
.

Lemma 2.7. Let T = Δ(x0, . . . , xm) be an m-simplex. We have hiT
hifcjT

=
hjT

hjfciT
.

Proof. We have hi(T )
hi(fcjT ) =

v(T )
hi(fcjT ) v(fciT ) =

hj(T ) v(fcjT )

hi(fcjT ) hj(fciT ) v(fci,jT ) =
hj(T ) v(fcjT )

hj(fciT ) v(fcjT )

=
hj(T )

hj(fciT ) . �

Lemma 2.8. Let 0 < h < H, 1 ≤ m ≤ N + 1 and y0, xi ∈ RN , i = 0, 1, . . . ,m.
If Tx = Δ(x0, . . . , xm) is an (m,H)-simplex and d(y0, x0) ≤ h, then Ty =
Δ(y0, x1, . . . , xm) is an (m,H − h)-simplex.

Proof. We have h0Ty ≥ h0Tx−d(x0, y0) ≥ H−h. Now, we show that h1Ty ≥ H−h.
If m = 1, we have h1Ty = d(y0, x1) = h0Ty. So we can assume that m ≥ 2 for the
rest of this proof. We set z0 := πaff(fc1Ty)(x0), Tz := Δ(z0, x1, . . . , xm) and start
with some intermediate results:

I. Due to h0Ty ≥ H − h > 0, Ty is an m-simplex.
II. We have d(x0, z0) = d(x0, aff(fc1Ty)) ≤ d(x0, y0) ≤ h.
III. We have z0 = x2 + r0(y0 − x2) +

∑m
j=3 rj(xj − x2) for some ri ∈ R, i =

0, 3, . . . ,m because z0 ∈ aff(fc1Ty).
IV. With III, Remark 2.1 and because of πaff(fc0Tx)(xi) = xi for i = 2, . . . ,m we

get

h0Tz = |z0 − πaff(fc0Tx)(z0)| = |r0y0 − r0πaff(fc0Tx)(y0)| = r0h0(Ty)

and analogously h0(fc1Tz) = r0h0(fc1Ty).
V. It holds that πaff(fc0,1Tx)(z0) = πaff(fc0,1Tx)(x0), and hence we obtain

h0(fc1Tz) = d(πaff(fc1Ty)(x0), πaff(fc0,1Tx)(z0))

= d(πaff(fc1Ty)(x0), πaff(fc1Ty)(πaff(fc0,1Tx)(z0)))

≤ d(x0, πaff(fc0,1Tx)(z0)) = h0(fc1Tx).

Now, with Lemma 2.7 (i = 1, j = 0, T = Ty), IV and V we deduce that

h1Ty ≥ h0Tz
h1(fc0Tx)

h0(fc1Tx)
≥ (h0Tx − d(x0, z0))

h1(fc0Tx)

h0(fc1Tx)
.
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If h1(fc0Tx)
h0(fc1Tx)

≥ 1 this gives us directly h1Ty ≥ H − h. In the other case, use Lemma

2.7 and II to obtain h1Ty > h1Tx − d(x0, z0) ≥ H − h. Since, for i = 2, . . . ,m, the
points xi fulfil the same requirements as x1, we are able to prove hiTy ≥ H − h for
all i = 1, . . . ,m in the same way. So, Ty is an (m,H − h)-simplex. �

Lemma 2.9. Let C > 0, 1 ≤ m ≤ N and let G ⊂ RN be a finite set so that for all
(m + 1)-simplices S = Δ(x0, . . . , xm+1) ∈ G, there exists some i ∈ {0, . . . ,m + 1}
so that fci(S) is no (m,C)-simplex.

Then there exists some m-simplex Tz = Δ(z0, . . . , zm) ∈ G so that for all a ∈ G,
there exists some i ∈ {0, . . . ,m} with d(a, aff(fci(Tz))) < 2C.

Proof. Since G is finite, we are able to choose Tz = Δ(z0, . . . , zm) ∈ G so that

v(Tz) = max
w0,...,wm∈G

v(Δ(w0, . . . , wm)).(2.3)

We can assume that Tz is an (m, 2C)-simplex; otherwise there would exist some
i ∈ {0, . . . ,m} with hi(Tz) < 2C, and so for all a ∈ G with (2.3) we would obtain
d(a, aff(fci(Tz))) < 2C.

Now, choose an arbitrary y0 ∈ G. Set S := Δ(y0, z0, . . . , zm). The properties
of G imply that one face of S is no (m,C)-simplex. Without loss of generality we
assume that Ty := fcz0(S) is not an (m,C)-simplex (but an m-simplex). So there
exists some i ∈ {0, . . . ,m} with hi(Ty) < C. If i = 0, we are done. So let i �= 0.
We set h := πaff(fciTy)(zi) and get πaff(fc0,iTy)(h) = πaff(fciTy)[πaff(fc0,iTy)(zi)]. This

implies

d(h, aff(fc0,iTy)) = d(πaff(fciTy)(zi), πaff(fciTy)[πaff(fc0,iTy)(zi)]) ≤ hi(fc0Ty).(2.4)

Now, we use Lemma 2.2, with a1 = y0, a2 = h ∈ P1 := aff(fci(Ty)), P2 :=
aff(fci(Tz)), P1 ∩ P2 = aff(fc0,i(Ty)) and (2.4) to obtain

h0(fciTy) ≤ hi(fc0Ty)
d(zi, aff(fci(Tz)))

d(zi, aff(fci(Tz)))− d(zi, h)
.

Now use (2.3) to get d(y0, aff(fci(Tz))) ≤ d(zi, aff(fci(Tz))) and deduce with
d(zi, aff(fci(Tz))) = hiTz ≥ 2C and d(zi, h) = hi(Ty) < C that h0(fciTy) <
2hi(fc0Ty). Finally, with Lemma 2.7, we have d(y0, aff(fc0(Tz))) = h0(Ty) =

hi(Ty)
h0(fciTy)
hi(fc0Ty)

< 2C. �

Lemma 2.10. Let H > 0 and 1 ≤ m ≤ N , and let D ⊂ RN be a bounded
set. Assume that every simplex S = Δ(y0, . . . , ym) ∈ D is not an (m,H)-simplex.
Then there exists some l ∈ N ∪ {0}, l ≤ m − 1 and x0, . . . , xl ∈ D so that D ⊂
UH(aff(x0, . . . , xl)) = {x ∈ RN |d(x, aff(x0, . . . , xl)) ≤ H}.

Proof. We assume #D ≥ 2; otherwise the statement is trivial. Let l ∈ {0, . . . ,m−1}
be the largest value such that there exists an (l, H)-simplex in D. If l = 0, we have
D ⊂ UH(aff(x0)) = B(x0, H) for an arbitrary x0 ∈ D.

Now suppose l ≥ 1. Since D is bounded, there exists x0, . . . , xl ∈ D̄ such that
the volume K := v(�(x0, . . . , xl)) is maximal. For some arbitrary xl+1 ∈ D̄ the
definition of l and Lemma 2.8 imply that �(x0, . . . , xl) is not an (l+1, H)-simplex.

Hence there exists some l̃ ∈ {0, . . . , l+1} so that hl̃(T ) < H. Furthermore we have
v(fcl̃(T )) ≤ K and v(fcl+1(T )) = K, which implies hl+1(T ) ≤ H. It follows that

D ⊂ UH(aff(x0, . . . , xl)) because xl+1 ∈ D was arbitrarily chosen. �
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Lemma 2.11. Let 1 ≤ m ≤ N − 1, let B be a closed ball in RN and let F ⊂ B
be an Hm-measurable set with Hm(F ) = ∞. There exist a small constant 0 < σ =
σ(F,B) ≤ diamB

2 and some (m + 1, (m + 3)σ)-simplex T = Δ(x0, . . . , xm+1) ∈ B
with Hm(B(x0, σ) ∩ F ) = ∞ and Hm(B(xi, σ) ∩ F ) > 0 for all i ∈ {1, . . . ,m+ 1}.

Proof. We set μ := Hm L F . Since μ(B) = ∞ there exists some x0 ∈ B with
μ(B(x0, h)) = ∞ for all h > 0.

There exists some c1 > 0 with μ(B \ B̊(x0, c1)) > 0. With Lemma A.3, there

exists some x1 ∈ B \ B̊(x0, c1) with μ(B(x1, h)) > 0 for all h > 0 and the simplex
T1 fulfils h1(T1) = d(x0, x1) ≥ c1.

Now we assume that we already have cl > 0 and a simplex Tl = Δ(x0, . . . , xl) ∈
RN with hl(Tl)≥cl and μ(B(xi, h))>0 for all i∈{0, . . . , l} and h > 0 where l≤m.

So there exists some 0 < cl+1 < cl
2 with μ

((
F ∩B

(
x0,

cl
2

))
\ Ůcl+1

(aff(x0, . . . , xl))
)

> 0 and, with Lemma A.3, there exists some xl+1 ∈ F ⊂ B so that Tl+1 :=
Δ(x0, . . . , xl+1) fulfils hl+1(Tl+1) ≥ cl+1 and μ(B(xl+1, h)) > 0 for all h > 0.

Since hi(Ti) ≥ Ci > 0 for all i ∈ {1, . . . ,m+ 1} we obtain v(T ) > 0, and hence
there exists some constant c > 0 so that T := Tm+1 is an (m+ 1, c)-simplex.

To conclude the proof set σ := c
m+3 . �

2.3. Angles between affine subspaces.

Definition 2.12. For G1, G2 ∈ G(N,m), we define �(G1, G2) := ‖πG1
− πG2

‖,
where the right-hand side is the operator norm of the linear map πG1

− πG2
. For

P1, P2 ∈ P(N,m), we define �(P1, P2) := �(P1 − πP1
(0), P2 − πP2

(0)).

Lemma 2.13. Let P1, P2 ∈ P(N,m) with �(P1, P2) < 1 and x, y ∈ P1. We have

d(x, y) ≤ d(πP2
(x),πP2

(y))

1−�(P1,P2)
and d(π⊥

P2
(x), π⊥

P2
(y)) ≤ �(P1,P2)

1−�(P1,P2)
d(πP2

(x), πP2
(y)).

Proof. First assume that P1, P2 ∈ G(N,m). With z := x−y
|x−y| ∈ P1 and π⊥

P2
(z) +

πP2
(z) = z = πP1

(z) we get |π⊥
P2
(x)− π⊥

P2
(y)| = |x− y||π⊥

P2
(z) + πP2

(z)− πP2
(z)| ≤

|x− y|�(P1, P2), This implies d(x, y) ≤ d(πP2
(x), πP2

(y))+ d(x, y)�(P1, P2). These
two estimates give the assertion in the case P1, P2 ∈ G(N,m). Now choose t1 ∈ P1,
t2 ∈ P2 and apply this result to P1 − t1, P2 − t2 ∈ G(N,m). �

Corollary 2.14. Let P ∈ P(N,m), Q ∈ G(N,m) and �(P,Q) < 1. There exists
some affine map a : Q → Q⊥ with G(a) = P , where G(a) is the graph of the map

a, and a is Lipschitz continuous with Lipschitz constant �(P,Q)
1−�(P,Q) .

Proof. Set a(y) = π⊥
P2
(π−1

P2

∣∣
P1
(y)) and use Lemma 2.13. �

Corollary 2.15. Let G1, G2 ∈ G(N,m) and let o1, . . . , om be an orthonormal basis
of G1. If d(oi, G2) ≤ σ̃ ≤ σ̃1 := 10−1(10m+1)−1, then �(G1, G2) ≤ 4m(10m+1)σ̃.

Proof. For i = 1, . . . ,m, set hi := πP2
(oi) and use Lemma 2.3 from [34]. �

For x, y ∈ RN , we set 〈x, y〉 to be the usual scalar product in RN .

Lemma 2.16. Let C, Ĉ ≥ 1 and t > 0, and let S = Δ(y0, . . . , ym) be an (m, t
C )-

simplex with S ⊂ B(x, Ĉt), x ∈ RN . There exist an orthonormal basis (o1, . . . , om)
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of span(y1 − y0, . . . , ym − y0) and γl,r ∈ R so that for all 1 ≤ l ≤ m and 1 ≤ r ≤ l
we have

ol :=

l∑
r=1

γl,r(yr − y0) and |γl,r| ≤ (2lCĈ)l
C

t
≤ (2mCĈ)m

C

t
.

Proof. We set zi := yi − y0 for all i = 0, . . . ,m, and R := Δ(z0, . . . , zm) = S − y0.
We obtain for all i ∈ {1, . . . ,m} (S is an (m, t

C )-simplex)

d(zi, aff(z0, . . . , zi−1)) ≥ hi(R) = hi(S) ≥ t
C .(2.5)

Due to hi(R) ≥ t
C > 0, we have that (z1, . . . , zm) are linearly independent. So

with the Gram-Schmidt process we are able to define some orthonormal basis of
the m-dimensional linear subspace span(z1, . . . , zm),

o1 := γ1,1z1, ol+1 := γl+1,l+1zl+1 − γl+1,l+1

l∑
i=1

〈zl+1, oi〉oi,

where γ1,1 := 1
|z1| and γl+1,l+1 := 1

d(zl+1,aff(z0,...,zl))
. Furthermore we define recur-

sively

γl+1,r := −
l∑

i=r

γl+1,l+1〈zl+1, oi〉γi,r

for r ∈ {1, . . . , l}. Now we prove by induction that γl,r fulfil the desired properties.

We have o1 = γ1,1(y1 − y0) and (2.5) implies |γ1,1| ≤ C
t . Now let 1 ≤ l ≤ m. We

assume that, for all i ∈ {1, . . . , l}, j ∈ {1, . . . , i}, we have oi =
∑i

r=1 γi,rzr and

|γi,j | ≤ (2lCĈ)l Ct . We obtain

ol+1 = γl+1,l+1zl+1 −
l∑

i=1

i∑
r=1

γl+1,l+1〈zl+1, oi〉γi,rzr =

l+1∑
r=1

γl+1,rzr.

If r = l + 1, (2.5) implies |γl+1,r| ≤ C
t , and if 1 ≤ r ≤ l, we get with |zl+1| ≤ 2Ĉt

that

|γl+1,r|
(2.5)

≤
l∑

i=r

C

t
|zl+1|(2lCĈ)l

C

t
< (2(l+ 1)CĈ)l+1C

t
.

�

Lemma 2.17. Let C, Ĉ ≥ 1, t > 0, 0 < σ ≤
(
10(10m + 1)mC(2mCĈ)m

)−1

,

and P1, P2 ∈ P(N,m), and let S = Δ(y0, . . . , ym) ⊂ P1 be an (m, t
C )-simplex with

S ⊂ B(x, Ĉt), x ∈ RN and d(yi, P2) ≤ tσ for all i ∈ {0, . . . ,m}. It follows that

�(P1, P2) ≤ 4m(10m + 1)
(
2mC(2mCĈ)m

)
σ.

Proof. Use Lemma 2.16 to get some orthonormal basis of span(y1 − y0, . . . , ym − y0)
and γl,r ∈ R. We set ŷ0 := πP2

(y0) and we obtain for 1 ≤ l ≤ m,

d(ol, P2 − ŷ0) ≤
l∑

r=1

|γl,r|(d(yr, P2) + d(y0, P2)) ≤ 2mC(2mCĈ)mσ.

Setting σ̃ = 2mC(2mCĈ)mσ ≤ 1
10(10m+1) the assertion follows with Corollary 2.15

(G1 = P1 − y0, G2 = P2 − ŷ0). �
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Lemma 2.18. Let σ > 0, t ≥ 0, P1, P2 ∈ P(N,m) with �(P1, P2) ≤ σ and
assume that there exist p1 ∈ P1, p2 ∈ P2 with d(p1, p2) ≤ tσ. Then d(w,P2) ≤
σ(d(w, p1) + t) holds for every w ∈ P1.

Proof. For w ∈ P1, set w̃ := w − p1 ∈ P1 − p1. We obtain

d(w,P2) ≤ |w̃|| w̃
|w̃| − πP2−p2

( w̃
|w̃| )|+ d(p1, p2) ≤ |w̃|�(P1 − p1, P2 − p2) + tσ. �

3. Integral Menger curvature and rectifiability

3.1. Main result. Let n,N ∈ N with 1 ≤ n < N . We start with some definitions.

Definition 3.1 (Proper integrand). Let K :
(
RN

)n+2 → [0,∞) and p > 1. We say
that Kp is a proper integrand if it fulfils the following four conditions:

• K is (Hn)
n+2

-measurable, where (Hn)
n+2

denotes the n+2-times product
measure of Hn.

• There exist some constants c = c(n,K, p) ≥ 1 and l = l(n,K, p) ≥ 1 so
that, for all t > 0, C ≥ 1, x ∈ RN and all (n, t

C )-simplices Δ(x0, . . . , xn) ⊂
B(x,Ct), we have(

d(w, aff(x0, . . . , xn))

t

)p

≤ cCltn(n+1)Kp(x0, . . . , xn, w)

for all w ∈ B(x,Ct).
• For all t > 0, we have tn(n+1)Kp(tx0, . . . , txn+1) = Kp(x0, . . . , xn+1).
• For every b ∈ RN , we have K(x0 + b, . . . , xn+1 + b) = K(x0, . . . , xn+1).

Remark 3.2. If instead of the first condition we have that K is (μ)n+2-measurable
for some Borel measure μ on RN , we call K μ-proper.

Definition 3.3. (i) We call a Borel set E ⊂ RN purely n-unrectifiable if for every
Lipschitz continuous function γ : Rn → RN , we have Hn(E ∩ γ(Rn)) = 0.

(ii) A Borel set E ⊂ RN is n-rectifiable if there exists some countable family of
Lipschitz continuous functions γi : Rn → RN so that Hn(E \

⋃∞
i=1 γi(R

n)) = 0.

Definition 3.4 (Integral Menger curvature). Let E ⊂ RN be a Borel set and μ be
a Borel measure on RN . We define the integral Menger curvature of E and μ with
integrand Kp by MKp(E) := MKp(HN

∣∣
E
) and

MKp(μ) :=

∫
· · ·

∫
Kp(x0, . . . , xn+1) dμ(x0) . . .dμ(xn+1).

Now we can state our main result.

Theorem 3.5. Let E ⊂ RN be a Borel set with MK2(E) < ∞, where K2 is some
proper integrand. Then E is n-rectifiable.

3.2. Examples of proper integrands. We start with flat simplices.

Definition 3.6. We define the (Hn)n+2-measurable set

X0 :=
{
(x0, . . . , xn+1) ∈ (RN )n+2

∣∣Gram(x1 − x0, . . . , xn+1 − x0) = 0
}

(the Gram determinant is defined in Definition 2.6), which is the set of all simplices
with n+ 2 vertices in RN which span at most an n-dimensional affine subspace.

The following lemma is helpful to prove that a given integrand fulfils the second
condition of a proper integrand.
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Lemma 3.7. Let t > 0, C ≥ 1, x ∈ RN , and w ∈ B(x,Ct), and let S =
Δ(x0, . . . , xn) ⊂ B(x,Ct) be some (n, t

C )-simplex. Setting Sw = Δ(x0, . . . , xn, w),
A(Sw) as the surface area of the simplex Sw and choosing i, j ∈ {0, . . . , n} with
j �= i we have the following statements:

• t
C ≤ d(xi, xj) ≤ diam(Sw) ≤ 2Ct,

• d(xi, w) ≤ 2Ct,

• tn

Cnn! ≤ Hn(S) ≤ (2C)n

n! tn,

• Hn(S) ≤ A(Sw) ≤ [(n+ 1)2C2 + 1]Hn(S),

• d(w, aff(x0, . . . , xn)) = nHn+1(Sw)
Hn(S) .

Proof. Since S is an (n, t
C )-simplex, we have

t

C
≤ hi(S) ≤ d(xi, xj) ≤ diam(Sw) = max

l,m∈{0,...,n}
{d(xl, xm), d(xl, w)} ≤ 2Ct,

(3.1)

and because of xi, w ∈ B(x,Ct), we get d(xi, w) ≤ 2Ct. Now, we conclude that

Hn(S) = 1
n!

∏n−1
l=0 d(xl, aff(xl+1, . . . , xn)), which implies

tn

Cnn!

(3.1)

≤ 1

n!

n−1∏
l=0

hl(S) ≤ Hn(S) ≤ 1

n!

n−1∏
l=0

d(xl, xn)
(3.1)

≤ (2C)n

n!
tn.

Using hw(fci(Sw)) ≤ d(w, xj) ≤ 2Ct, we obtain

Hn(fci(Sw)) =
1

n
hw(fci(Sw))Hn−1(fci,w(Sw))

(3.1)

≤ 1

n
2C2

hi(S)Hn−1(fci(S)) = 2C2Hn(S),

so that with A(Sw) =
∑n

i=0 Hn(fciSw) +Hn(fcwSw) and fcw(Sw) = S, we get

Hn(S) ≤ A(Sw) ≤ [(n+ 1)2C2 + 1]Hn(S).

Finally, using that S = fcw(Sw), we deduce that

d(w, aff(x0, . . . , xn)) = hw(Sw) =
hw(Sw) · Hn(fcw(Sw))

Hn(S)
=

nHn+1(Sw)

Hn(S)
. �

Now we can state some examples of proper integrands. Use the previous lemma
to verify the second condition. We define all following examples to be 0 on X0 and
will only give an explicit definition on (RN )n+2 \X0. We mention that our main
result is only valid for all integrands which are proper for integrability exponent
p = 2.

Proper integrands with exponent 2. We start with the one used in the introduction
of this work. Let x0, . . . , xn+1 ∈ (RN )n+2 \X0 and set

K1(x0, . . . , xn+1) :=
Hn+1(Δ(x0, . . . , xn+1))

Π0≤i<j≤n+1d(xi, xj)
;

then K2
1 is proper. The next proper integrand is used by Lerman and Whitehouse

in [20, 21]:

K2
2(x0, . . . , xn+1) :=

1

n+ 2
· Voln+1(Δ(x0, . . . , xn+1))

2

diam(Δ(x0, . . . , xn+1))n(n+1)

n+1∑
i=0

1∏n+1
j=0
j �=i

|xj − xi|2
,
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where Voln+1 is (n + 1)! times the volume of the simplex Δ(x0, . . . , xn+1), which
is equal to the volume of the parallelotope spanned by this simplex; cf. Definition
2.6. The following proper integrand, K2

3, is mentioned among others in [20, section
6]:

K3(x0, . . . , xn+1) :=
Hn+1(Δ(x0, . . . , xn+1))

diamΔ(x0, . . . , xn+1)
(n+1)(n+2)

2

.

Proper integrands with exponents different from 2. Now we present some integrands
for integral Menger curvature used in several papers, where the scaling behaviour
implies that our main result cannot be applied. Nevertheless, most of our partial
results are valid also for these integrands. The first integrand we consider was
introduced for n = 2, N = 3 in [32],

K4(x0, . . . , xn+1) :=
V (T )

A(T )(diamT )2
,

where V (T ) is the volume of the simplex T = Δ(x0, . . . , xn+1) and A(T ) is the
surface area of T . Kp

4 is a proper integrand with p = n(n+ 1). The next one, Kp
5,

is a proper integrand with p = n(n+ 1) and is used, for example, in [4, 18]:

K5(x0, . . . , xn+1) :=
Hn+1(Δ(x0, . . . , xn+1))

diam(Δ(x0, . . . , xn+1))n+2
.

Finally, Léger suggested the following integrand in [19] for a higher dimensional
analogue of his theorem. Unfortunately, we cannot confirm his suggestion. This
one, Kp

6, is a proper integrand with p = (n+ 1) where

K6(x0, . . . , xn+1) :=
d(xn+1, aff(x0, . . . , xn))

d(xn+1, x0) . . . d(xn+1, xn)
.

Hence our main result does not apply for n �= 1. For n = 1 up to a factor of 2, this
integrand gives the inverse of the circumcircle of the three points x0, x1, x2.

4. β-numbers

In this section, let C0 ≥ 10 and let μ be a Borel measure on RN with compact
support F that is upper Ahlfors regular, i.e.,

(B) for every ball B we have μ(B) ≤ C0(diamB)n.

If B = B(x, r) is some ball in RN with centre x and radius r and t ∈ (0,∞), then we
set tB := B(x, tr). Distinguish this notation from the case tΥ = {tz|z ∈ Υ} where
Υ ⊂ RN is some arbitrary set. Furthermore, in this and the following sections, we
assume that every ball is closed. We need this to apply Vitali’s and Besicovitch’s
covering theorems. By C, we denote a generic constant with a fixed value which
may change from line to line.

4.1. Measure quotient.

Definition 4.1 (Measure quotient). For a ball B = B(x, t) with centre x ∈ RN ,
radius t > 0 and a μ-measurable set Υ ⊂ RN , we define the measure quotient

δ(B ∩Υ) = δμ(B ∩Υ) :=
μ(B(x, t) ∩Υ)

tn
.

In most instances, we will use the special case Υ = RN and write δ(B) instead of
δ(B ∩ RN ).
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This measure quotient compares the amount of the support F contained in a
ball with the size of this ball. The following lemma states that if we have a lower
control on the measure quotient of some ball, then we can find a not too flat simplex
contained in this ball, where at each vertex we have a small ball with a lower control
on its quotient measure.

Lemma 4.2. Let 0 < λ ≤ 2n and let N0 = N0(N) be the constant from Besi-
covitch’s covering theorem [7, 1.5.2, Thm. 2] depending only on the dimension N .

There exist constants C1 := 4·120nnn+1N0C0

λ > 3 and C2 :=
2n+2N0C

n
1

λ > 1 so that
for a given ball B(x, t) and some μ-measureable set Υ with δ(B(x, t)∩Υ) ≥ λ, there
exists some T = Δ(x0, . . . , xn+1) ∈ F ∩B(x, t)∩Υ so that fci(T ) is an (n, 10n t

C1
)-

simplex and μ
(
B

(
xi,

t
C1

)
∩B(x, t) ∩Υ

)
≥ tn

C2
for all i ∈ {0, . . . , n+ 1}.

Proof. Let B(x, t) be the ball with δ(B(x, t) ∩ Υ) ≥ λ and F := {B(y, t
C1

)|y ∈
F ∩ B(x, t) ∩ Υ}. With Besicovitch’s covering theorem [7, 1.5.2, Thm. 2] we get
N0 = N0(n) families Bm ⊂ F , m = 1, . . . , N0, of disjoint balls so that F ∩B(x, t)∩
Υ ⊂

⋃N0

m=1
˙⋃

B∈Bm
B. We have

λ ≤ 1

tn
μ

(
N0⋃
m=1

⋃
B∈Bm

(B ∩B(x, t) ∩Υ)

)
≤ 1

tn

N0∑
m=1

∑
B∈Bm

μ(B ∩B(x, t) ∩Υ),

and hence there exists a family Bm with

∑
B∈Bm

μ(B ∩B(x, t) ∩Υ) ≥ λtn

N0
.(4.1)

We assume that for every S = Δ(y0, . . . , yn+1) ∈ F ∩ B(x, t) ∩ Υ, there exists
some i ∈ {0, . . . , n + 1} so that either fci(S) is not a (n, 10n t

C1
)-simplex or

μ(B(yi,
t
C1

)∩B(x, t)∩Υ)< tn

C2
. We define G :=

{
B ∈ Bm

∣∣∣μ(B ∩B(x, t) ∩Υ)≥ tn

C2

}
and mention that G is a finite set since Lemma A.1 implies that #Bm ≤ (2C1)

n.
With Lemma 2.9 (where we set G as the set of centres of balls in G and C =
10n t

C1
), we know that there exists some Tz = Δ(z0, . . . , zn) so that for every ball

B(y, t
C1

) ∈ G, there exists some i ∈ {0, . . . , n} so that d(y, aff(fci(Tz))) ≤ 20n t
C1

.

We define for i ∈ {0, . . . , n}:

Ti := aff(fci(Tz)) ∩B(πaff(fci(Tz))(x), 2t),

Si :=
{
y ∈ Rn|d(y, aff(fci(Tz))) ≤ 30nt

C1
, πaff(fci(Tz))(y) ∈ Ti

}
,

and we know that B ∈ G implies B ⊂ Si for some i ∈ {0, . . . , n}. With Lemma
A.2 applied to B(x, r) = Ti, s =

4
C1

t < 2t = r and m = n− 1, there exists a family

E of disjoint closed balls with diamB = 8
C1

t for all B ∈ E , Ti ⊂
⋃

B∈E 5B and

#E ≤ Cn−1
1 . Let y ∈ Si. We have d(y, aff(fci(Tz))) ≤ 30n

C1
t and πaff(fci(Tz))(y) ∈ Ti.

So, there exists some B = B(z, 4
C1

t) ∈ E with πaff(fci(T ))(y) ∈ 5B, and we have

d(y, z) ≤ 30n
C1

t + 5 4
C1

t < 60n
C1

t. This proves Si ⊂
⋃

B∈E 15nB. We therefrom derive
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with (B) (see page 1196)

μ(Si) ≤
∑
B∈E

μ (15nB)
(B)

≤
∑
B∈E

C0 (15n diamB)
n

≤ #EC0
(120n)ntn

Cn
1

≤ (120n)nC0
tn

C1
.

(4.2)

We define for i ∈ {1, . . . , n},

G0 := {B ∈ G|B ⊂ S0} and Gi :=
{
B ∈ G|B ⊂ Si and B /∈

⋃i−1
j=0Gi

}
as a partition of G (compare the remark after the definition of Si). Now we have∑

B∈G
μ(B ∩B(x, t) ∩Υ) ≤

n∑
i=0

μ(Si)
(4.2)

≤ n(120n)nC0
tn

C1
.

Moreover, we have∑
B∈Bm\G

μ(B ∩B(x, t) ∩Υ) <
∑

B∈Bm\G

tn

C2

#Bm≤(2C1)
n

≤ (2C1)
n tn

C2
.

All in all, we get with (4.1) and the definition of C1 and C2:

λ ≤ N0
1

tn

(
2ntn

Cn
1

C2
+ 120nnn+1tnC0

1

C1

)
= N0

(
2n

Cn
1

C2
+ 120nnn+1C0

1

C1

)
≤ λ

2
,

thus in contradiction to λ > 0. This completes the proof of Lemma 4.2. �

In most instances, we will use a weaker version of Lemma 4.2:

Corollary 4.3. Let 0 < λ ≤ 2n. There exist constants C1 = C1(N,n,C0, λ) >
3 and C2 = C2(N,n,C0, λ) > 1 so that for a given ball B(x, t) and some μ-
measurable set Υ with δ(B(x, t) ∩ Υ) ≥ λ, there exists some (n, 10n t

C1
)-simplex

T = Δ(x0, . . . , xn) ∈ F ∩B(x, t)∩Υ so that μ
(
B

(
xi,

t
C1

)
∩B(x, t) ∩Υ

)
≥ tn

C2
for

all i ∈ {0, . . . , n}.

4.2. β-numbers and integral Menger curvature.

Definition 4.4 (β-numbers). Let k > 1 be some fixed constant, let x ∈ RN , t > 0,
B = B(x, t), and p ≥ 1, let P(N,n) be the set of all n-dimensional planes in RN ,
and let P ∈ P(N,n). We define

βP
p;k(B) = βP

p;k(x, t) = βP
p;k;μ(x, t) :=

(
1

tn

∫
B(x,kt)

(
d(y, P )

t

)p

dμ(y)

) 1
p

,

βp;k(B) = βp;k(x, t) = βp;k;μ(x, t) := inf
P∈P(N,n)

βP
p;k(x, t).

The β-numbers measure how well the support of the measure μ can be ap-
proximated by some plane. A small β-number of some ball implies either a good
approximation of the support by some plane or a low measure quotient δ (cf. Def-
inition 4.1). Hence, since we are interested in good approximations by planes, we
will use the β-numbers mainly for balls where we have some lower control on the
measure quotient.
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Definition 4.5 (Local version of MKp). For κ > 1, x ∈ RN , t > 0, p > 0, we
define

MKp;κ(x, t) :=

∫
· · ·

∫
Oκ(x,t)

Kp(x0, . . . , xn+1)dμ(x0) . . .dμ(xn+1),

where Kp is a μ-proper integrand (cf. Definition 3.1) and

Oκ(x, t)

:=

{
(x0, . . . , xn+1) ∈ (B(x, κt))n+2

∣∣∣d(a, b) ≥ t

κ
, ∀ a, b ∈ {x0, . . . , xn+1}, a �= b

}
.

Theorem 4.6. Let Kp be a symmetric μ-proper integrand and let 0 < λ < 2n,
k > 2, k0 ≥ 1. There exist constants k1 = k1(N,n,C0, k, k0, λ) > 1 and C =
C(N,n,K, p, C0, k, k0, λ) ≥ 1 such that if x ∈ RN and t > 0 with δ(B(x, t)) ≥ λ for
every y ∈ B(x, k0t), we have

βp;k(y, t)
p ≤ C

MKp;k1
(x, t)

tn
≤ C

MKp;k1+k0
(y, t)

tn
.

Proof. With Lemma 4.2 for Υ = RN , there exists some T = Δ(x0, . . . , xn+1) ∈ F ∩
B(x, t) so that fci(T ) is an (n, 10n t

C1
)-simplex and μ

(
B

(
xi,

t
C1

)
∩B(x, t)

)
≥ tn

C2

for all i ∈ {0, . . . , n+1} where C1, C2 are the constants from Lemma 4.2 depending
on the present constant λ > 0, the constant C0 determined in (B) on page 1196, as

well as N and n. We set Bi := B
(
xi,

t
C1

)
, k1 := max(C1, (2 + k+ k0)) > 1 and go

on with some intermediate results.
I. Let zi ∈ Bi for all i ∈ {0, . . . , n + 1}, w ∈ B(x, (k + k0)t) \

⋃n+1
l=0
l �=j

2Bl or

w ∈ 2Bj for some fixed j ∈ {0, . . . , n+1}. Since fci(T ) is an (n, 10n t
C1

)-simplex we

obtain (z0, . . . , ẑj , . . . , zn+1, w) ∈ Ok1
(x, t), where (z0, . . . , ẑj , . . . , zn+1, w) denotes

the (n+ 2)-tuple (z0, . . . , zj−1, zj+1, . . . , zn+1, w).
II. Let zi ∈ Bi = B(xi,

t
C1

) for all i ∈ {0, . . . , n+ 1}. Then Lemma 2.8 implies

that fci(Δ(z0, . . . , zn+1)) is an
(
n, (9n− 1) t

C1

)
-simplex for all i ∈ {0, . . . , n+ 1}.

III. Let zi ∈ Bi = B(xi,
t
C1

) for all i ∈ {0, . . . , n + 1}, w∈B(x, (k + k0)t).

Since Kp is a μ-proper integrand with II there exists some constant C̃ =
C̃(N,n,K, p, C0, k, k0, λ) so that for all j ∈ {0, . . . , n+ 1}, we have(

d(w, aff(z0, . . . , ẑj , . . . , zn+1))

t

)p

≤ C̃tn(n+1)Kp(z0, . . . , ẑj , . . . , zn+1, w).

IV. There exist some constant C = C(N,n,K, p, C0, k, k0, λ) and zi ∈ F ∩Bi ∩
B(x, t), i ∈ {0, . . . , n+ 1}, so that for all l ∈ {0, . . . , n+ 1}, we have
(4.3)∫

χ{(z0,...,ẑl,...,zn+1,w)∈Ok1
(x,t)}Kp(z0, . . . , ẑl, . . . , zn+1, w)dμ(w) ≤ C

MKp;k1
(x, t)

t(n+1)n

and with Pn+1 := aff(z0, . . . , zn), we have

(4.4)

(
d(zn+1, Pn+1)

t

)p

≤ C
MKp;k1

(x, t)

tn
.
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Proof of I–IV. For E ⊂ RN with #E = m + 1, E = {e0, . . . , em}, 0 ≤ m ≤ n, we
set

R(E) :=

∫
Fn−m+1

χ{(e0,...,em,wm+1,...,wn+1)∈Ok1
(x,t)}

Kp(e0, . . . , em, wm+1, . . . , wn+1)dμ(wm+1) . . .dμ(wn+1).

The integrand K is symmetric; hence the value R(E) is well-defined because it does
not depend on the numbering of the elements of E. In the following part, we use
the convention that {0, . . . ,−1} = ∅ and {z0, . . . , z−1} = ∅. At first, we show by
an inductive construction that, for all m ∈ N with 0 ≤ m ≤ n+ 1, there holds:

For all j ∈ {0, . . . ,m} and i ∈ {j, . . . , n+ 1}, there exist constants C(j) > 1 and

sets Zj
i ⊂ F ∩Bi ∩B(x, t). For all l ∈ {0, . . . ,m− 1}, there exist zl ∈ Zl

l with

μ(Zj
i ) >

tn

2j+1C2
.(4.5)

For all u ∈ {0, . . . ,m}, for all E ⊂ {z0, . . . , zu−1} and z ∈ Zu
r , where r ∈ {u, . . . ,

n+ 1}, we have

R(E ∪ {z}) ≤ C(u)MKp;k1
(x, t)

t(#E+1)n
.(4.6)

We start with m = j = 0 and choose the constant C(0) := 2C2, set Υi :=
F ∩Bi ∩B(x, t) and define for every i ∈ {0, . . . , n+ 1},

Z0
i :=

{
z ∈ Υi

∣∣∣R({z}) ≤ C(0)MKp;k1
(x, t)

tn

}
.(4.7)

We have μ(Z0
i ) ≥ μ(Υi)− μ(Υi \ Z0

i ) >
tn

2C2
because μ(Υi)

(ii)

≥ tn

C2
, and with (4.7),

Chebyshev’s inequality and
∫
R({z})dμ(z) = MKp;k1

(x, t) we obtain μ(Υi \Z0
i ) <

tn

C(0) . If u = 0, E ⊂ {z0, . . . , z−1} = ∅ and z ∈ Z0
r , where r ∈ {0, . . . , n + 1}, the

definition (4.7) implies (4.6) in this case.
Now we let m ∈ {0, . . . , n} and we assume that for all j ∈ {0, . . . ,m} and

i ∈ {j, . . . , n + 1}, there exist constants C(j) > 1 and sets Zj
i ⊂ F ∩ Bi ∩ B(x, t).

For all l ∈ {0, . . . ,m− 1} there exist zl ∈ Zl
l with

μ(Zj
i ) >

tn

2j+1C2
.(4.8)

For all u ∈ {0, . . . ,m}, for all E ⊂ {z0, . . . , zu−1} and z ∈ Zu
r where r ∈ {u, . . . ,

n+ 1}, we have

R(E ∪ {z}) ≤ C(u)MKp;k1
(x, t)

t(#E+1)n
.(4.9)

Next we start with the inductive step. From the induction hypothesis, we already
have the constants C(j) and the sets Zj

i for j ∈ {0, . . . ,m} and i ∈ {j, . . . , n+1} as
well as zl ∈ Zl

l for l ∈ {0, . . . ,m − 1}. Since μ(Zm
m ) > 0, we can choose zm ∈ Zm

m .

We define C(m+1) := 22m+2C(m)C2 and, for i ∈ {m+ 1, . . . , n+ 1}, we define

Zm+1
i :=

⋂
E⊂{z0,...,zm}

zm∈E

{
z ∈ Zm

i

∣∣∣R(E ∪ {z}) ≤ C(m+1)MKp;k1
(x, t)

t(#E+1)n

}
︸ ︷︷ ︸

=:Dm
i,E

.(4.10)
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We have μ(Zm+1
i ) ≥ μ(Zm

i ) − μ
(
Zm
i \ Zm+1

i

)
≥ tn

2m+2C2
for all i ∈ {m + 1, . . . ,

n+1}, because if E ⊂ {z0, . . . , zm} with zm ∈ E, we get, using (4.10), Chebyshev’s
inequality,

∫
R(E ∪ {z})dμ(z) = R((E \ {zm}) ∪ {zm}) and (4.9) that

μ
(
Zm
i \Dm

i,E

)
<

(
C(m+1)MKp;k1

(x, t)

t(#E+1)n

)−1

R((E \ {zm}) ∪ {zm}) = C(m)

C(m+1)
tn,

which implies

μ(Zm
i \ Zm+1

i ) ≤
∑

E⊂{z0,...,zm}
zm∈E

μ
(
Zm
i \Dm

i,E

)
<

1

2m+2C2
tn.

Now let u ∈ {0, . . . ,m+1}, E ⊂ {z0, . . . , zu−1} and z ∈ Zu
r where r ∈ {u, . . . , n+1}.

We have to show that (4.6) is valid. Due to the induction hypothesis and z ∈
Zm+1
r ⊂ Zv

r for all v ∈ {0, . . . ,m+1}, we only have to consider the case u = m+1
and zm ∈ E. Then the inequality follows from (4.10). End of induction.

Now we construct zn+1. We set Pn+1 := aff(z0, . . . , zn), Ĉ
(n+1) := C̃ C(n)2n+3C2,

where C̃ is the constant from III, and define

(4.11) Ẑn+1
n+1 :=

{
z ∈ Zn+1

n+1

∣∣∣ (d(z, Pn+1)

t

)p

≤ Ĉ(n+1)MKp;k1
(x, t)

tn

}
.

Next we show that μ
(
Ẑn+1
n+1

)
≥ tn

2n+3C2
> 0. Let u ∈ Zn+1

n+1 \ Ẑn+1
n+1 ⊂ Bn+1 ⊂

B(x, (k + k0)t). With III applied on w = u and j = n+ 1, we get(
d(u, Pn+1)

t

)p

≤ C̃tn(n+1)Kp(z0, . . . , zn, u).(4.12)

Now we get with (4.11), Chebyshev’s inequality and (4.12) that

μ
(
Zn+1
n+1 \ Ẑn+1

n+1

)
≤

(
Ĉ(n+1)MKp;k1

(x, t)

tn

)−1

C̃tn(n+1)

×
∫
Zn+1

n+1\Ẑ
n+1
n+1

Kp(z0, . . . , zn, u)dμ(u).

By using I we see that the integral on the RHS is equal to R({z0, . . . , zn−1}∪{zn}).
Hence with (4.5) and (4.6) we obtain

μ(Ẑn+1
n+1 ) ≥ μ(Zn+1

n+1 )− μ(Zn+1
n+1 \ Ẑn+1

n+1 ) > 0,

and we are able to choose zn+1 ∈ Ẑn+1
n+1 ⊂ Zn+1

n+1 . Let l ∈ {0, . . . , n + 1} and
E = {z0, . . . , zn+1} \ {zl}. Set z := zn if l = n+ 1 or z := zn+1 otherwise. Now set

E
′
:= E \ {z} and use (4.6) to obtain R(E) = R(E

′ ∪ {z}) ≤ C(n+1)MKp;k1
(x,t)

t(n+1)n .
All in all, there exists some constant C = C(N,n,K, p, C0, k, k0, λ) such that∫

χ{(z0,...,ẑl,...,zn+1,w)∈Ok1
(x,t)}Kp(z0, . . . , ẑl, . . . , zn+1, w)dμ(w)

= R(E) ≤ C
MKp;k1

(x, t)

t(n+1)n

for all l ∈ {0, . . . , n+ 1}. This ends the proof of IV. �
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With IV, there exist some zi ∈ F ∩ Bi ∩ B(x, t), i ∈ {0, . . . , n + 1}, fulfilling
(4.3) and (4.4). Let w ∈ (F ∩B (x, (k + k0)t)) \

⋃n
j=0 2Bj . Hence we get with III

(Pn+1 = aff(z0, . . . , zn)), I and (4.3)∫
B(x,(k+k0)t)\

⋃n
j=0 2Bj

(
d(w,Pn+1)

t

)p

dμ(w)

< C(N,n,K, p, C0, k, k0, λ)MKp;k1
(x, t).

(4.13)

Now we prove this estimate on the ball 2Bj , where j ∈ {0, . . . , n}. We define
the plain Pj := aff({z0, . . . , zn+1} \ {zj}) and get analogously with III, I and (4.3)∫

2Bj

(
d(w,Pj)

t

)p

dμ(w) < C(N,n,K, p, C0, k, k0, λ)MKp;k1
(x, t).(4.14)

Now we have an estimate on the ball 2Bj but with plane Pj instead of Pn+1. If
zn+1 ∈ Pn+1, we have Pn+1 = Pj for all j ∈ {0, . . . , n+1}, and hence we get estimate
(4.14) for Pn+1. From now on, we assume that zn+1 /∈ Pn+1. Let w ∈ 2Bj , set
w′ := πPj

(w), w′′ := πPn+1
(w′) and deduce by inserting the point w′ with triangle

inequality

d(w,Pn+1)
p ≤ d(w,w′′)p ≤ 2p−1 (d(w,Pj)

p + d(w′, Pn+1)
p) .(4.15)

If d(w′, Pn+1) > 0, i.e., w′ /∈ Pn+1, we gain with Lemma 2.2 (P1 = Pj , P2 = Pn+1,
a1 = w′, a2 = zn+1) where Pj,n+1 := Pj ∩ Pn+1:

d(w′, Pn+1) = d(zn+1, Pn+1)
d(w′, Pj,n+1)

d(zn+1, Pj,n+1)
.(4.16)

With l ∈ {0, . . . , n}, l �= j (k1 is defined on page 1199), we get

d(w′, Pj,n+1) ≤ d
(
w,Pj,n+1

)
≤ d(w, x) + d(x, xl) + d(xl, zl) ≤ k1t.

With II we get that fcj(Δ(z0, . . . , zn+1)) is an (n, (9n−1) t
C1

)-simplex and we obtain(
d(w′, Pn+1)

t

)p (4.16)

≤
(
d(zn+1, Pn+1)

t

k1tC1

(9n− 1)t

)p (4.4)

≤ C
MKp;k1

(x, t)

tn
(4.17)

where C = C(N,n,K, p, C0, k, k0, λ). If d(w
′, Pn+1) = 0, this inequality is trivially

true.

Finally, applying (4.14), (4.15), (4.17) and μ(2Bj)
(B)

≤ C0(diam(2Bj))
n ≤

C0

(
4t
C1

)n

((B) from page 1196), we obtain∫
2Bj

(
d(w,Pn+1)

t

)p

dμ(w) ≤ C (N,n,K, p, C0, k, k0, λ)MKp;k1
(x, t).

Given that B(y, kt) ⊂ B(x, (k + k0)t), it follows with (4.13) that

βp;k(y, t)
p ≤ 1

tn

∫
B(x,(k+k0)t)

(
d(w,Pn+1)

t

)p

dμ(w)

≤ C(N,n,K, p, C0, k, k0, λ)
MKp;k1

(x, t)

tn
.

To obtain the main result of this theorem, the only thing left to show is Ok1
(x, t) ⊂

Ok1+k0
(y, t). Let (z0, . . . , zn+1) ∈ Ok1

(x, t). It follows that z0, . . . , zn+1 ∈ B(x, k1t)
⊂ B(y, (k0 + k1)t) and d(zi, zj) ≥ t

k1
≥ t

k1+k0
with i �= j and i, j = 0, . . . , n. Thus

(z0, . . . , zn+1) ∈ Ok1+k0
(y, t). �



INTEGRAL MENGER CURVATURE AND RECTIFIABILITY 1203

Theorem 4.7. Let 0 < λ < 2n, k > 2, and k0 ≥ 1, and let Kp be some μ-
proper symmetric integrand (see Definition 3.1). There exists a constant C =
C(N,n,K, p, C0, k, k0, λ) such that∫ ∫ ∞

0

βp;k(x, t)
pχ{δ̃k0

(B(x,t))≥λ}
dt

t
dμ(x) ≤ CMKp(μ),

where δ̃k0
(B(x, t)) := supy∈B(x,k0t) δ(B(y, t)).

Proof. At first, we prove some intermediate results.
I. Let x ∈ F , t > 0 and δ̃k0

(B(x, t)) ≥ λ. There exists some z ∈ B(x, k0t) with
δ(B(z, t)) ≥ λ

2 . Now with Theorem 4.6 there exist some constants k1 and C so that

with k2 := k1 + k0, we obtain βp;k(x, t)
p ≤ C

MKp;k2
(x,t)

tn .
II. Let (x, t) ∈ Dκ(u0, . . . , un+1) := {(y, s) ∈ F × (0,∞)|(u0, . . . , un+1) ∈

Oκ(y, s)} where u0, . . . , un+1 ∈ F . We have (u0, . . . , un+1) ∈ Oκ(x, t) and so
d(u0,u1)

2κ ≤ t ≤ κd(u0, u1) as well as x ∈ B(u0, κt).
III. With Fubini’s theorem [7, 1.4, Thm. 1] and condition (B) from page 1196

we get∫
F

∫ ∞

0

χDk2
(u0,...,un+1)(x, t)

1

tn
dt

t
dμ(x)

II
≤

∫ k2d(u0,u1)

d(u0,u1)
2k2

1

tn

∫
B(u0,k2t)

1 dμ(x)
dt

t

(B)
= C.

Now we deduce with Fubini’s theorem [7, 1.4, Thm. 1] that∫
F

∫ ∞

0

βp;k(x, t)
pχ{δ̃k0

(B(x,t))≥λ}
dt

t
dμ(x)

I
≤ C

∫
F

∫ ∞

0

∫
· · ·

∫
Ok2

(x,t)

Kp(u0, . . . , un+1)

tn
dμ(u0) . . .dμ(un+1)

dt

t
dμ(x)

III
≤ CMKp(μ).

�
Corollary 4.8. Let 0 < λ < 2n, k > 2, and k0 ≥ 1, and let Kp be some
symmetric μ-proper integrand (see Definition 3.1). There exists a constant C =
C(N,n,K, p, C0, k, k0, λ) such that∫ ∫ ∞

0

β1;k(x, t)
pχ{δ̃k0

(B(x,t))≥λ}
dt

t
dμ(x) ≤ CMKp(μ).

Proof. This is a direct consequence of the previous theorem and Hölder’s inequality.
�

4.3. β-numbers, approximating planes and angles. The next lemma states
that if two balls are close to each other and if each part of the support of μ contained
in those balls is well approximated by some plane, then these planes have a small
angle.

Lemma 4.9. Let x, y ∈ F , c ≥ 1, ξ ≥ 1 and tx, ty > 0 with c−1ty ≤ tx ≤ cty.
Furthermore, let k ≥ 4c and 0 < λ < 2n with δ(B(x, tx)) ≥ λ, δ(B(y, ty)) ≥ λ

and d(x, y) ≤ k
2c tx. Then there exist some constants C3 = C3(N,n,C0, λ, ξ, c) > 1

and ε0 = ε0(N,n,C0, λ, ξ, c) > 0 so that for all ε < ε0 and all planes P1, P2 ∈
P(N,n) with βP1

1;k(x, tx) ≤ ξε and βP2

1;k(y, ty) ≤ ξε we get: For all w ∈ P1, we have

d(w,P2) ≤ C3ε(tx + d(w, x)), for all w ∈ P2, we have d(w,P1) ≤ C3ε(tx + d(w, x))
and we have �(P1, P2) ≤ C3ε.
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Proof. Due to δ(B(x, tx)) ≥ λ and Corollary 4.3, there exist some constants C1 > 3
and C2 depending on N,n,C0, λ, and some simplex T = Δ(x0, . . . , xn) ∈ F ∩
B(x, tx) so that T is an (n, 10n tx

C1
)-simplex and μ(B(xi,

tx
C1

) ∩ B(x, tx)) ≥ tnx
C2

for

all i ∈ {0, . . . , n}. For Bi := B(xi,
tx
C1

) and i ∈ {0, . . . , n}, we have μ(Bi) ≥
μ(Bi ∩ B(x, tx)) ≥ tnx

C2
≥ tny

cnC2
. Since Bi ∩ B(x, tx) �= ∅ and k ≥ 4c ≥ 4 we obtain

Bi ⊂ B(x, ktx) and Bi ⊂ B(y, kty). Now we see for i ∈ {0, . . . , n},
1

μ(Bi)

∫
Bi

d(z, P1) + d(z, P2)dμ(z) = C2txβ
P1

1;k(x, tx) + cnC2tyβ
P2

1;k(y, ty)

≤ 2cn+1C2xitxε.

With Chebyshev’s inequality, there exists zi ∈ Bi so that

d(zi, Pj) ≤ d(zi, P1) + d(zi, P2) ≤ 2cn+1C2ξtxε(4.18)

for i ∈ {0, . . . , n} and j = 1, 2. We set yi := πP1
(zi) and with

ε < ε0 :=
1

2cn+1C2ξ
min

{
1
C1

,
(
10(10n + 1)C1

6

(
2C1

3

)n)−1
}

we deduce that

d(yi, xi) ≤ d(yi, zi) + d(zi, xi) ≤ d(zi, P1) +
tx
C1

≤ 2cn+1C2ξ tx ε+ tx
C1

≤ 2 tx
C1

,

so, with Lemma 2.8, S := Δ(y0, . . . , yn) is an (n, 6n tx
C1

)-simplex and S ⊂
B(x, 2txC1

+ tx) ⊂ B(x, 2tx). Furthermore, with (4.18) we have d(yi, P2) ≤ d(yi, zi)+

d(zi, P2) ≤ 2cn+1C2ξtxε. Now, with Lemma 2.17 (C = C1

6n , Ĉ = 2, t = tx,

σ = 2cn+1C2ξε, m = n) we obtain

�(P1, P2) ≤ 4n(10n + 1)2
C1

6

(
2
C1

3

)n

2cn+1C2ξε = C(N,n,C0, λ, ξ, c)ε.

Moreover, we have d(y0, πP2
(z0)) ≤ d(z0, P1) + d(z0, P2)

(4.18)

≤ 2cn+1C2ξtxε, so
finally, with Lemma 2.18 (σ = Cε, t = tx, p1 = y0, p2 = πP2

(z0)), we get for w ∈ P1

that d(w,P2) ≤ C(d(w, y0) + tx)ε ≤ C(d(w, x) + tx)ε and for w ∈ P2 we obtain
d(w,P1) ≤ C(d(w, πP2

(z0))+tx) ≤ C(d(w, x)+tx)ε, where C = C(N,n,C0, λ, ξ, c).
�

The next lemma describes the distance from a plane to a ball if the plane ap-
proximates the support of μ contained in the ball.

Lemma 4.10. Let σ > 0, x ∈ RN , t > 0 and λ > 0 with δ(B(x, t)) ≥ λ. If P ∈
P(N,n) with βP

1;k(x, t) ≤ σ, there exists some y ∈ B(x, t)∩F so that d(y, P ) ≤ t
λσ.

If additionally σ ≤ λ, we have B(x, 2t) ∩ P �= ∅.

Proof. With the requirements, we get μ(B(x, t)) ≥ tnλ, and so

1

μ(B(x, t))

∫
B(x,t)

d(z, P )dμ(z) ≤ t

λ

1

tn

∫
B(x,kt)

d(z, P )

t
dμ(z) =

t

λ
βP
1;k(x, t) ≤

t

λ
σ.

With Chebyshev’s inequality, we get some y ∈ B(x, t) ∩ F with d(y, P ) ≤ t
λσ. If

σ ≤ λ, it follows that B(x, 2t) ∩ P �= ∅. �
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5. Proof of the main result

At the end of this section (page 1207), we will give a proof of our main result
Theorem 3.5 under the assumption that the forthcoming Theorem 5.4 is correct.
We start with a few lemmas helpful for this proof.

5.1. Reduction to a symmetric integrand.

Lemma 5.1. Let Kp be some proper integrand (see Definition 3.1). There ex-

ists some proper integrand K̃p, which is symmetric in all components and fulfils
MKp(E) = MK̃p(E) for all Borel sets E.

Proof. We set K̃p(x0, . . . , xn+1) := 1
#Sn+2

∑
φ∈Sn+2

Kp(φ(x0, . . . , xn+1)), where

Sn+2 is the symmetric group of all permutations of n + 2 symbols. Due to Kp ≤
#Sn+2 K̃p, the integrand K̃p fulfils the conditions of a proper integrand. Now
Fubini’s theorem [7, 1.4, Thm. 1] implies MK̃p(E) = MKp(E). �

5.2. Reduction to finite, compact and more regular sets with small cur-
vature.

Lemma 5.2. Let E be a Borel set with MKp(E) < ∞, where Kp is some proper
integrand. Then we have Hn(E ∩B) < ∞ for every ball B.

Proof. Let B be some ball and set F := E ∩B. We prove the contraposition so we
assume that Hn(F ) = ∞. With Lemma 2.11, there exists some constant C > 0 and
some (n+1, (n+3)C)-simplex T = Δ(x0, . . . , xn+1) ∈ B with Hn(B(x0, C)∩F ) =
∞ and Hn(B(xi, C) ∩ F ) > 0 for all i ∈ {1, . . . , n + 1}. With Lemma 2.8, we
conclude that S = Δ(y0, . . . , yn+1) is an (n + 1, C)-simplex for all yi ∈ B(xi, C),

i ∈ {0, . . . , n + 1}. For t = C
√

diamB
2C + 1 and C̄ =

√
diamB

2C + 1, we get S ∈
B(x, tC̄), where x is the centre of the ball B and S is an (n+1, t

C̄
)-simplex. Hence

we are in the right setting for using the second condition of a proper integrand. We
obtain

MKp(E) ≥
∫
B(xn+1,C)∩F

· · ·
∫
B(x0,C)∩F

Kp(y0, . . . , yn+1)dHn(y0) . . .dHn(yn+1)

= ∞. �

Lemma 5.3. In this lemma, the integrand K of MKp only needs to be an (Hn)n+2-
integrable function. Let p > 0, n < N and E ⊂ RN be a Borel set with 0 < Hn(E) <
∞ and MKp(E) < ∞. For all ζ > 0, there exists some compact E∗ ⊂ E with

(i) Hn(E∗) > (diamE∗)nωn

22n+1 ,
(ii) ∀x ∈ E∗, ∀t > 0, Hn(E∗ ∩B(x, t)) ≤ 2ωnt

n,
(iii) MKp(E∗) ≤ ζ (diamE∗)n,

where ωn = Hn(B(0, 1)) is the n-dimensional volume of the n-dimensional unit
ball.

Proof. Due to 0 < Hn(E) < ∞ and [7, 2.3, Thm. 2], for Hn-almost all x ∈ E we
have

(5.1)
1

2n
≤ lim sup

t→0+

Hn(E ∩B(x, t))

ωntn
≤ 1.
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For l ∈ N, we define the Hn-measurable set

Em :=

{
x ∈ E

∣∣∣ ∀t ∈ (
0,

1

m

)
,Hn(E ∩B(x, t)) ≤ 2ωnt

n

}
.(5.2)

Due to El ⊂ El+1, [7, 1.1.1, Thm. 1(iii)] and (5.1) we get that

lim
l→∞

Hn(El) = Hn (
⋃∞

l=1El) = Hn(E).

Hence there exists some m ∈ N with Hn(Em) ≥ 1
2Hn(E) and MKp(Em) ≤

MKp(E) < ∞. Define for τ > 0,

I(τ ) :=
∫
A(τ)

Kp(x0, . . . , xn+1)dHn(x0) . . .dHn(xn+1),(5.3)

where A(τ ) :=
{
(x0, . . . , xn+1) ∈ En+2

m

∣∣∣d(x0, xi) < τ for all i ∈ {1, . . . , n+ 1}
}
.

Using (5.2) we obtain (Hn)
n+2

(A(τ )) → 0 for τ → 0. With MKp(Em) < ∞,
we conclude that limτ→0 I(τ ) = 0, and so we are able to pick some 0 < τ0 ≤ 1

2m
with

I(2τ0) ≤
ζHn(Em)

2ωn · 2n+3
.(5.4)

We set

V :=

{
B(x, τ )

∣∣∣x ∈ Em, 0 < τ < τ0,Hn(Em ∩B(x, τ )) ≥ τnωn

2n+1

}
.

Since 0 < Hn(Em) < ∞, we get (5.1) with Em instead of E [7, 2.3, Thm. 2].
This implies inf

{
τ
∣∣B(x, τ ) ∈ V

}
= 0 for Hn-almost every x ∈ Em. According

to [8, 1.3], V is a Vitali class. For every countable, disjoint subfamily {Bi}i of

V , we have
∑

i∈N
(diamBi)

n ≤ 22n+1

ωn
Hn(Em) < ∞. Applying Vitali’s Covering

Theorem [8, 1.3, Thm. 1.10], we get a countable subfamily of V with disjoint balls
Bi = B(xi, τi) fulfilling Hn

(
Em \

⋃
i∈N

Bi

)
= 0. Therefore, using (5.2), we have

Hn(Em) ≤
∑

i∈N
Hn(Em ∩Bi) ≤

∑
i∈N

2ωnτ
n
i , so that

(5.5)
∑
i∈N

τni ≥ Hn(Em)

2ωn
.

Furthermore, with (Bi ∩Em)n+2 ⊂ A(2τ0) ∩Bn+2
i , we obtain∑

i∈N

MKp(Bi ∩ Em)
(5.3)

≤ I(2τ0)
(5.4)

≤ ζHn(Em)

2ωn · 2n+3
.(5.6)

We define

Ib :=
{
i ∈ N

∣∣∣MKp(B(xi, τi) ∩ Em) ≥ ζ
τn
i

2n+2

}
,

and so ∑
i∈Ib

MKp(B(xi, τi) ∩ Em) ≥ ζ

∑
i∈Ib

τni
2n+2

.

We have
∑

i∈Ib
τni ≤ Hn(Em)

4ωn
, since assuming the converse would imply∑

i∈N

MKp(B(xi, τi) ∩ Em)
(5.6)
< ζ

∑
i∈Ib

τni
2n+2

≤
∑
i∈Ib

MKp(B(xi, τi) ∩Em).
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Using (5.5), we obtain Ib �= N. Now we choose some i ∈ N \ Ib, and the regularity
of the Hausdorff measure [8, 1.2, Thm. 1.6] implies the existence of some compact
set E∗ ⊂ B(xi, τi) ∩Em with

(i) Hn(E∗) > 1
2Hn(B(xi, τi) ∩ Em) ≥ τn

i ωn

2n+1 ≥ (diamE∗)nωn

22n+1 .
(ii) ∀x ∈ E∗, ∀t > 0, we haveHn(E∗∩B(x, t)) ≤ Hn(B(xi, τi)∩Em∩B(x, t)) ≤

2ωnt
n, since if t < 1

m (5.2) implies Hn(E ∩ B(x, t)) ≤ 2ωnt
n, and if

τi <
1
m < t (5.2) implies Hn(B(xi, τi) ∩Em) ≤ 2ωnt

n.

(iii) MKp(E∗) ≤ ζ
τn
i

2n+2 ≤ ζ(diamE∗)n since i /∈ Ib and for some ball B

with E∗ ⊂ B and diamB = 2diamE∗ we have
τn
i

2n+2

(i)

≤ Hn(E∗∩B)
2ωn

(ii)

≤
(diamE∗)n. �

Next, we present the crucial theorem of this work.

Theorem 5.4. Let K :
(
RN

)n+2 → [0,∞). There exists some k > 2 such that for

every C0 ≥ 10, there exists some η = η(N,n,K, C0, k) ∈ (0, ωn2
−(2n+2)] so that if

μ is a Borel measure on RN with compact support F such that K2 is a symmetric
μ-proper integrand (cf. Definition 3.1) and μ fulfils

(A) μ(B(0, 5)) ≥ 1, μ(RN \B(0, 5)) = 0,
(B) μ(B) ≤ C0 (diamB)n for every ball B,
(C) MK2(μ) ≤ η,

(D) βP0

1;k;μ(0, 5) ≤ η for some plane P0 ∈ P(N,n) with 0 ∈ P0,

then there exists some Lipschitz function A : P0 → P⊥
0 ⊂ RN so that the graph

G(A) ⊂ RN fulfils μ(G(A)) ≥ 99
100μ(R

N ). (P⊥
0 := {x ∈ RN |x · v = 0 for all v ∈ P0}

denotes the orthogonal complement of P0.)

First we show that, under the assumption that the previous theorem is correct,
we can prove Theorem 3.5. The remaining proof of Theorem 5.4 is then given in the
following sections 6, 7 and 8. We will use the notation sE := {x ∈ RN |s−1x ∈ E}
for s > 0 and some set E ⊂ RN . Distinguish this notation from sB(x, t) = B(x, st),
where the centre stays unaffected and only the radius is scaled.

Proof of Theorem 3.5. Let K2 be some proper integrand (see Definition 3.1), let
E ⊂ RN be some Borel set with MK2(E) < ∞ and let C0 = 22n+2. Furthermore,
let k > 2 and 0 < η ≤ ωn2

−(2n+2) be the constants given by Theorem 5.4. Using
Lemma 5.1, we can assume that K is symmetric.

We start with a countable covering of RN with balls Bi so that RN ⊂
⋃

i∈N
Bi.

We will show that for all i ∈ N the sets E ∩Bi are n-rectifiable, which implies that
E is n-rectifiable.

Let i ∈ N withHn(E∩Bi) > 0. With Lemma 5.2, we conclude thatHn(E∩Bi) <
∞. Then, using [9, Thm. 3.3.13], we can decompose E ∩ Bi = Ei

r ∪̇ Ei
u into two

disjoint subsets, where Ei
r is n-rectifiable and Ei

u is purely n-unrectifiable.
Now we assume that E ∩Bi is not n-rectifiable, so Hn(Ei

u) > 0. The set Ei
u is a

Borel set and fulfils 0 < Hn(Ei
u) ≤ HN (E ∩Bi) < ∞ and MK2(Ei

u) ≤ MK2(E) <

∞. Now we apply Lemma 5.3 with ζ = η 1
ĈC̃

where the constants Ĉ and C̃ are

given in this passage and we get some compact set E∗ ⊂ Ei
u which fulfils condition

(i), (ii) and (iii) from Lemma 5.3. We set a := (diamE∗)−1 and μ̃ = Hn L aE∗.

Let B̃ be a ball with aE∗ ⊂ B̃ and diam B̃ = 2. Using (i), we get δμ̃(B̃) ≥
ωn

22n+1 . So, Theorem 4.6 (p = 2, x = y =̂ centre of B̃, t = 1, λ = ωn

23n+1 , k0 = 1)
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implies β2;k;μ̃(B̃)2 < ĈMK2(μ̃) ≤ η2, for some constant Ĉ = Ĉ(N,n,K, C0, k) ≥ 1.

Using Hölder’s inequality there exists some n-dimensional plane P̃0 ∈ P(N,n) with

βP̃0

1;k;μ̃(B̃) ≤ η. Now we define a measure μ by μ(·) := 22n+1

ωn
μ̃( · + πP̃0

(b)), where

b is the centre of B̃. This is also a Borel measure with compact support, and
Lemma 4.10 (σ = η, B(x, t) = B̃, λ = ωn

22n+1 ) implies that the support fulfils
F := aE∗ − πP̃0

(b) ⊂ B(0, 2). This measure fulfils condition (D) from Theorem

5.4 (P0 = P̃0 − πP̃0
(b)), and (i) implies condition (A). To get condition (B) for

some arbitrary ball, cover it by some ball with centre on F , double the diameter
and apply (ii). Use MK2(μ) = C̃(n)an MK2(E∗) and (iii) to obtain (C). Finally
we mention that K2 is μ-proper, since μ is an adapted version of Hn. Hence we
can apply Theorem 5.4 and after some scaling and translation we obtain some
Lipschitz function which covers a part of positive Hausdorff measure of Ei

u which
is in contrast to Ei

u being purely n-unrectifiable. Hence E ∩Bi is n-rectifiable. �

6. Construction of the Lipschitz graph

6.1. Partition of the support of the measure μ. Now we start with the proof

of Theorem 5.4. Let K :
(
RN

)n+2 → [0,∞) and let C0 ≥ 10 be some fixed constant.
There is one step in the proof which only works for integrability exponent p = 2.
(p = 2 is used in Lemma 8.11 so that the results of Theorem 7.3 and Theorem
7.17 fit together.) Since most of the proof can be given with fewer constraints to
p, we start with p ∈ (1,∞) and restrict to p = 2 only if needed. Furthermore, let
k > 2, 0 < η ≤ ωn2

−(2n+2), P0 ∈ P(N,n) with 0 ∈ P0 and μ be a Borel measure on
RN with compact support F such that Kp is a symmetric μ-proper integrand (cf.
Definition 3.1) and

(A) μ(B(0, 5)) ≥ 1, μ(RN \B(0, 5)) = 0,
(B) μ(B) ≤ C0 (diamB)n for every ball B,
(C) MKp(μ) ≤ η,

(D) βP0

1;k;μ(0, 5) ≤ η.

In this section, we will prove that if k is large and η is small enough, we can
construct some function A : P0 → P⊥

0 which covers some part of the support F
of μ. For this purpose, we will give a partition of the support of μ in four parts,
supp(μ) = Z∪̇F1∪̇F2∪̇F3, and construct the function A so that the graph of A
covers Z, i.e., Z ⊂ G(A).

The following sections 7 and 8 will give a proof of μ(F1 ∪ F2 ∪ F3) ≤ 1
100 ; hence

with (A) we will obtain μ(G(A)) ≥ 99
100μ(R

N ), which is the statement of Theorem
5.4.

From now on, we will only work with the fixed measure μ, so we can simplify
the expressions by setting β1;k := β1;k;μ and δ(·) := δμ(·). Furthermore, we fix the
constant

δ := min

{
10−10

600nN0
,

2

50n

}
,(6.1)

where N0 = N0(N) is the constant from Besicovitch’s Covering Theorem [7, 1.5.2,
Thm. 2].
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Definition 6.1. Let α, ε > 0. We define the set

Sε,α
total :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(x, t) ∈ F × (0, 50)

(i) δ(B(x, t)) ≥ 1
2δ,

(ii) β1;k(x, t) < 2ε,
(iii) ∃ P(x,t) ∈ P(N,n)

s.t.

⎧⎪⎨⎪⎩
β
P(x,t)

1;k (x, t) ≤ 2ε

and

�(P(x,t), P0) ≤ α

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Having in mind that the definition of Sε,α
total depends on the choice of ε and α, we

will normally skip these and write Stotal instead. In the same manner, we will
handle the following definitions of H,h and S. For x ∈ F we define

H(x) :=
{
t∈(0, 50)

∣∣∣∃ y∈F, ∃ τ with
t

4
≤ τ ≤ t

3
, d(x, y) <

τ

3
and (y, τ ) /∈ Stotal

}
,

h(x) := sup(H(x) ∪ {0}) and S := {(x, t) ∈ Stotal | t ≥ h(x)} .
Sometimes, we identify a ball B = B(x, t) with the tuple (x, t) and write to simplify
matters B ∈ S instead of (x, t) ∈ S. In the same manner we use the notation
β1;k(B).

Lemma 6.2. Let α, ε > 0. If η ≤ 2ε, we have that Stotal �= ∅ and

(i) F × [40, 50) ⊂ {(x, t) ∈ F × (0, 50)|t ≥ h(x)} = S.
(ii) If (x, t) ∈ S and t ≤ t′ < 50, we have (x, t′) ∈ S.

Proof. (i) If x ∈ F ⊂ B(0, 5) and 10 ≤ t < 50, we have F ⊂ B(x, t). Using (A),
(D) and P(x,t) := P0 we get (x, t) ∈ Stotal, which implies that F × [10, 50) ⊂ Stotal.

Now if x ∈ F and t ∈ [40, 50) we deduce for arbitrary y ∈ F and τ ∈ [ t4 ,
t
3 ] that

(y, τ ) ∈ Stotal, which implies that H(x) ⊂ (0, 40), h(x) ≤ 40 and hence the first
inclusion. For the equality it is enough to prove that the central set is contained
in S. Let x ∈ F and t ∈ (0, 50) with h(x) ≤ t < 50. Assume that (x, t) /∈ S. Due
to h(x) ≤ t, we obtain (x, t) /∈ Stotal, which implies that t < 10. Hence with y = x
and τ = t we get 3t ∈ H(x). This implies h(x) ≥ 3t > t and hence a contradiction
to t ≥ h(x). So, we obtain (x, t) ∈ S.

(ii) We have x ∈ F and h(x) ≤ t ≤ t′ < 50, so with (i) we conclude that
(x, t′) ∈ S. �

Remember that the function h depends on the set Stotal, which depends on the
choice of ε and α. Hence the sets defined in the following definition depend on α
and ε as well.

Definition 6.3 (Partition of F ). Let α, ε > 0. We define

Z := {x ∈ F | h(x) = 0} ,

F1 :=

⎧⎪⎨⎪⎩x ∈ F \ Z
∃y ∈ F, ∃τ ∈

[
h(x)
5 , h(x)2

]
, with d(x, y) ≤ τ

2

and
δ(B(y, τ )) ≤ δ

⎫⎪⎬⎪⎭ ,

F2 :=

⎧⎪⎨⎪⎩x ∈ F \ (Z ∪ F1)
∃y ∈ F, ∃τ ∈

[
h(x)
5 , h(x)

2

]
, with d(x, y) ≤ τ

2

and
β1;k(y, τ ) ≥ ε

⎫⎪⎬⎪⎭ ,
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F3 :=

⎧⎪⎨⎪⎩x ∈ F \ (Z ∪ F1 ∪ F2)
∃y ∈ F, ∃τ ∈

[
h(x)
5 , h(x)

2

]
, with d(x, y) ≤ τ

2

and for all planes P ∈ P(N,n) with
βP
1;k(y, τ ) ≤ ε we have �(P, P0) ≥ 3

4α

⎫⎪⎬⎪⎭ .

In this section, we prove that Z is rectifiable by constructing a function A such
that the graph of A will cover Z. This is done by inverting the orthogonal projection
π|Z : Z → P0. After that, to complete the proof, it remains to show that Z
constitutes the major part of F . Right now, we can prove that μ(F2) ≤ 10−6

(cf. section 8.3: F2 is small) where the control of the other sets needs some more
preparations.

Lemma 6.4. Let α, ε > 0. Definition 6.3 gives a partition of F , i.e., F =
Z ∪̇ F1 ∪̇ F2 ∪̇ F3.

Proof. From the definition we see that the sets are disjoint. We show F \ Z ⊂
F1 ∪ F2 ∪ F3. Let x ∈ F \ Z, so we have h(x) > 0. There exist some sequences
(yl)l∈N ∈ FN, (tl)l∈N and (τl)l∈N so that for all l ∈ N, we have 0 < tl ≤ h(x),

tl → h(x), tl
4 ≤ τl ≤ tl

3 , d(x, yl) <
τl
3 and (yl, τl) /∈ Stotal. Due to τl ≤ tl

3 ≤ h(x)
3 ≤

50
3 , we have for every l ∈ N either δ(B(yl, τl)) =

μ(B(yl,τl))
τn
l

< 1
2δ or δ(B(yl, τl)) ≥

1
2δ and β1;k(yl, τl) ≥ 2ε or δ(B(yl, τl)) ≥ 1

2δ and β1;k(yl, τl) < 2ε, and for every

plane P ∈ P(N,n) with βP
1;k(yl, τl) ≤ 2ε, we have �(P, P0) > α.

Choose l so large that 4h(x)
5 ≤ tl. We obtain h(x)

5 ≤ tl
4 ≤ τl ≤ tl

3 ≤ h(x)
2 .

Furthermore, we have yl ∈ F and d(x, yl) ≤ τl
3 < τl

2 . Since (yl, τl) fulfils one of
these three cases, it follows that x ∈ F1 ∪ F2 ∪ F3. �

The following lemma is for later use (cf. Lemma 8.10 and Lemma 8.11).

Lemma 6.5. Let α > 0. There exists some constant ε̄ = ε̄(N,n,C0, α) so that
if η < 2ε̄ and k ≥ 2000, there holds for all ε ∈ [η2 , ε̄): If x ∈ F3 and h(x) ≤ t ≤
min{100h(x), 49}, we get �(P(x,t), P0) >

1
2α, where P(x,t) is the plane granted since

(x, t) ∈ Stotal (cf. Definition 6.1).

Proof. Let α > 0 and k ≥ 400. We set ε̄ := min{ε0, ε′0, α(5C3)
−1}, where ε0, ε′0, C3

and C ′
3 depend only on N,n and C0 will be chosen during this proof. Furthermore,

let η ≤ 2ε < 2ε̄.

Since x ∈ F3 and x /∈ (F1 ∩ F2), there exists some y ∈ F , τ ∈
[
h(x)
5 , h(x)

2

]
and

P̄ ∈ P(N,n) with d(x, y) ≤ τ
2 , β

P̄
1;k(y, τ ) ≤ ε and �(P̄ , P0) ≥ 3

4α. Furthermore

h(x) ≤ t implies (x, t) ∈ S ⊂ Stotal and hence δ(B(x, t)) ≥ 1
2δ and β

P(x,t)

1;k (x, t) ≤ 2ε.

Now with Lemma 4.9 (c = 500, ξ = 2, tx = t, ty = τ , λ = δ
2 ), there exist some

constants C3 = C3(N,n,C0) > 1 and ε0 = ε0(N,n,C0) > 0 so that �(P̄ , P(x,t)) ≤
C3ε. Due to �(P̄ , P0) ≥ 3

4α and ε < α
4C3

this gives �(P(x,t), P0) >
1
2α. �

6.2. The distance to a well approximable ball. We recall that the set S de-
pends on the choice of α and ε. Hence the functions d and D defined in the next
definition depend on α and ε as well. We introduce π := πP0

: RN → P0, the
orthogonal projection on P0.

Definition 6.6 (The functions d and D). Let α, ε > 0. If η ≤ 2ε, we get with
Lemma 6.2(i) that S �= ∅. We define d : RN → [0,∞) and D : P0 → [0,∞) with

d(x) := inf
(X,t)∈S

(d(X, x) + t), D(y) := inf
x∈π−1(y)

d(x).
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Let us call a ball B(X, t) with (X, t) ∈ S a good ball. Then the function d
measures the distance from the given point x to the nearest good ball, using the
furthermost point in the ball. This implies that a ball B(x, d(x)) always contains
some good ball. The function D does something similar. Consider the projection
of all good balls to the plane P0. Then D measures the distance to the nearest
projected good ball in the same sense as above (cf. the next lemma).

Lemma 6.7. Let α, ε > 0. If η ≤ 2ε and y ∈ P0 we have

D(y) = inf
(X,t)∈S

(d(π(X), y) + t).

Proof. Due to d(X, x) ≥ d(π(X), π(x)) we have D(y) ≥ inf(X,t)∈S(d(π(X), y) + t).
Assume that liml→∞(d(π(Xl), y)+tl) > inf(X,t)∈S(d(π(X), y)+t) for some sequence
(Xl, tl) ∈ S. Now there exists some l ∈ N so that

D(y) > d
(
π(Xl) +Xl − π(Xl), y +Xl − π(Xl)

)
+ tl

≥ inf
x∈π−1(y)

d(Xl, x) + tl ≥ D(y),

which is a contradiction. �
Lemma 6.8. The functions d and D are Lipschitz functions with Lipschitz con-
stant 1.

Proof. Let x, y ∈ RN . We get with the triangle inequality d(x) ≤ d(y) + d(x, y)
and d(y) ≤ d(x) + d(x, y). This implies |d(x)− d(y)| ≤ d(x, y). Using the previous
lemma, we can use the same argument for the function D. �
Lemma 6.9. We have

{
x ∈ RN

∣∣d(x) < 1
}
⊂ B(0, 6) and d(x) ≤ 60 for all x ∈

B(0, 5).

Proof. Let x ∈ RN with inf(X,t)∈S(d(X, x) + t) = d(x) < 1. Hence there exists
some X ∈ F ⊂ B(0, 5) with d(0, x) ≤ d(0, X)+d(X, x) < 6. If x ∈ B(0, 5), we have
d(x) ≤ 10 + 50. �
Lemma 6.10. Let α, ε > 0. If η ≤ 2ε, we have d(x) ≤ h(x) for all x ∈ F and

Z = {x ∈ F |d(x) = 0} , π(Z) = {y ∈ P0 | D(y) = 0}.
Furthermore, both sets Z and π(Z) are closed. We recall that π denotes the orthog-
onal projection on the plane P0.

Proof. Let x ∈ F . With Lemma 6.2(i), we have (x, h(x)) ∈ S and hence d(x) ≤
h(x). This implies Z ⊂ {x ∈ F |d(x) = 0}.

Now let x ∈ F with h(x) > 0. We prove d(x) > 0. There exist some sequences
tl → h(x) and some sequence (Xi, si) ∈ S with d(Xi, x) + si → d(x). If on the one
hand there exists some subsequence withXi → x we obtain for another subsequence
si ≥ h(Xi) ≥ ti > 0 for sufficiently large i and hence d(x) > 0. If on the other hand
d(Xi, x) has a positive lower bond, we conclude that d(x) ≥ liml→∞ d(Xl, x) > 0.

Now we prove the second equality. If y ∈ π(Z), there exists some x0 ∈ Z with
π(x0) = y and d(x0) = 0. Now we get 0 ≤ D(y) ≤ d(x0) = 0.

If y ∈ P0 with D(y) = 0, since d is continuous, we get with Lemma 6.9 that
there exists some a ∈ π−1(y) with d(a) = 0. This implies a ∈ F and hence a ∈ Z.
Thus y ∈ π(Z).

According to Lemma 6.8, d and D are continuous, and hence these sets are
closed. �
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Lemma 6.11. Let 0 < α ≤ 1
4 . There exists some ε̄ = ε̄(N,n,C0) so that if η < 2ε̄

and k ≥ 4 for all ε ∈ [η2 , ε̄), there holds: For all x, y ∈ F we have

d(x, y) ≤ 6(d(x) + d(y)) + 2d(π(x), π(y)),

d(π⊥(x), π⊥(y)) ≤ 6(d(x) + d(y)) + 2αd(π(x), π(y)).

Proof. Let 0 < α < 1
4 and k ≥ 4. During this proof, there occur several smallness

conditions on ε. The minimum of those will give us the constant ε̄. Let η ≤ 2ε < 2ε̄.
The first estimate is an immediate consequence of the second estimate. So we

focus on this one. Due to F ⊂ B(0, 5) the LHS is always less than 10. Hence we can
assume that d(x)+d(y) < 2. We choose some arbitrary rx ∈ (d(x), d(x)+1) ⊂ (0, 3).
There exists some (X, t) ∈ S with d(x) ≤ d(X, x) + t < rx. According to Lemma
6.2(ii), it follows that (X, rx) ∈ S. Analogously, for all ry ∈ (d(y), d(y) + 1), we
can choose some Y ∈ F with d(Y, y) < ry and (Y, ry) ∈ S. Now it is enough to
prove d(π⊥(x), π⊥(y)) ≤ 6(rx+ry)+2αd(π(x), π(y)) since rx ≥ d(x) and ry ≥ d(y)
were arbitrarily chosen. We can assume that d(X,Y ) > 2(rx + ry) since otherwise
d(x, y) ≤ d(x,X) + d(X,Y ) + d(Y, y) immediately implies the desired estimate.

We define B1 := B(X, 12d(X,Y )) and B2 := B(Y, 1
2d(X,Y )). With Lemma 6.2(i)

we obtain B1, B2 ∈ S. Let P1 and P2 be the associated planes to B1 and B2 (see
Definition 6.1). With Lemma 4.9 (x = X, y = Y , c = 1, ξ = 2, tx = ty = 1

2d(X,Y ),

λ = 1
2δ) there exist some constants C3 = C3(N,n,C0) > 1 and ε0 = ε0(N,n,C0) >

0 so that if ε < ε0 for w ∈ P1, we obtain

d(w,P2) ≤ C3(N,n,C0, δ)ε
(
1
2d(X,Y ) + d(w,X)

)
.(6.2)

Let B′
1 := B(X, 12ε

1
2n d(X,Y ) + rx) and B′

2 := B(Y, 1
2ε

1
2n d(X,Y ) + ry). Lemma

6.2(i) implies that these balls are in S. Now we conclude using δ(B′
i) ≥ δ

2 , B
′
i ⊂ kBi,

and βPi

1;k(Bi) ≤ 2ε for i ∈ {1, 2} that

1

μ(B′
i)

∫
B′

i

d(X ′, Pi)

d(X,Y )
dμ(X ′) ≤ 1

δε
1
2

1(
1
2d(X,Y )

)n ∫
kBi

d(X ′, Pi)
1
2d(X,Y )

dμ(X ′) ≤ 2

δ
ε

1
2 .

With Chebyshev’s inequality, we deduce that there exist some X ′ ∈ B′
1 and some

Y ′ ∈ B′
2 so that d(X ′, P1) ≤ 2

δ ε
1
2 d(X,Y ) and d(Y ′, P2) ≤ 2

δ ε
1
2 d(X,Y ).

Now let X ′
1 := πP1

(X ′) be the orthogonal projection of X ′ on P1, Y
′
2 := πP2

(Y ′)
the orthogonal projection of Y ′ on P2, and X ′

12 := πP2
(X ′

1) the orthogonal projec-
tion of X ′

1 on P2. If ε is small enough, we have with � ∈ {π, π⊥}:

d(�(X), �(X ′)) ≤ d(X,X ′) ≤ 1
2ε

1
2n d(X,Y ) + rx,

d(�(Y ), �(Y ′)) ≤ d(Y, Y ′) ≤ 1
2ε

1
2n d(X,Y ) + ry,

d(�(X ′), �(X ′
1)) ≤ d(X ′, X ′

1) = d(X ′, P1) ≤
2

δ
ε

1
2 d(X,Y ),

d(�(Y ′), �(Y ′
2)) ≤ d(Y ′, Y ′

2) = d(Y ′, P2) ≤
2

δ
ε

1
2 d(X,Y ),

d(�(X ′
1), �(X

′
12)) ≤ d(X ′

1, X
′
12) = d(X ′

1, P2)
(6.2)
< 2C3εd(X,Y ).
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According to Definition 6.1, we have �(P2, P0) ≤ α and we get with Lemma 2.13
(X ′

12, Y
′
2 ∈ P2) using α ≤ 1

4 :

d(X ′
12, Y

′
2) ≤

1

1− α
d(π(X ′

12), π(Y
′
2)) ≤ 2d(π(X ′

12), π(Y
′
2)),(6.3)

d(π⊥(X ′
12), π

⊥(Y ′
2)) ≤

α

1− α
d(π(X ′

12), π(Y
′
2)) ≤

4

3
αd(π(X ′

12), π(Y
′
2)).(6.4)

Inserting the intermediate points X ′, X ′
1, X ′

12, Y ′
2 , Y ′ using triangle inequality

twice and using the previous inequalities, there exists some constant C so that

d(X,Y ) ≤ C 1
δ ε

1
2n d(X,Y ) + rx + ry + 2d(π(X ′

12), π(Y
′
2))

≤ C 1
δ ε

1
2n d(X,Y ) + 3(rx + ry) + 2d(π(X), π(Y )),

and hence if ε fulfils C 1
δ ε

1
2n ≤ 1

2 , we get

d(X,Y ) ≤ 6(rx + ry) + 4d(π(X), π(Y )).(6.5)

As for d(X,Y ), we estimate d
(
π⊥(X), π⊥(Y )

)
by repeated use of the triangle in-

equality and (6.4). With (6.5), we deduce that

d
(
π⊥(X), π⊥(Y )

)
≤ C 1

δ ε
1
2n d(X,Y ) + 3(rx + ry) +

4
3αd(π(X), π(Y ))

(6.5)

≤ C 1
δ ε

1
2n [6(rx + ry) + 4d(π(X), π(Y ))] + 3(rx + ry) +

4
3αd(π(X), π(Y ))

≤ 4(rx + ry) + 2αd(π(X), π(Y )).

This implies using d(π⊥(x), π⊥(X)) ≤ d(x,X) ≤ rx and d(π⊥(Y ), π⊥(y)) ≤ d(Y, y)
≤ ry that

d(π⊥(x), π⊥(y)) ≤ 5(rx + ry) + 2αd(π(X), π(Y ))

≤ 6(rx + ry) + 2αd(π(x), π(y)). �

6.3. A Whitney-type decomposition of P0 \ π(Z). In this part, we show that
P0 \ π(Z) can be decomposed as a union of disjoint cubes Ri, where the diameter
of Ri is proportional to D(x) for all x ∈ Ri. This result is a variant of the Whitney
decomposition for open sets in Rn; cf. [11, Appendix J].

Definition 6.12 (Dyadic primitive cells).
1. We set D to be the set of all dyadic primitive cells on P0. We recall that the

plane P0 is an n-dimensional linear subspace of RN .
2. Let r ∈ (0,∞) and Q be some cube in RN . By rQ, we denote the cube with

the same centre and orientation as Q but r-times the diameter.

We mention that the function D depends on the choice of α and ε because D
depends on the set S ⊂ Sε,α

total. Hence the family of cubes given by the following
lemma depends on the choice of α and ε as well.

Lemma 6.13. Let α, ε > 0. If η ≤ 2ε, then there exists a countable family of cubes
{Ri}i∈I ⊂ D such that

(i) 10 diamRi ≤ D(x) ≤ 50 diamRi for all x ∈ 10Ri,
(ii) P0 \ π(Z) =

⋃
i∈I Ri =

⋃
i∈I 2Ri and cubes Ri have disjoint interior,
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(iii) for every i, j ∈ I with 10Ri ∩ 10Rj �= ∅, we have 1
5 diamRj ≤ diamRi ≤

5 diamRj ,
(iv) for every i ∈ I, there are at most 180n cells Rj with 10Ri ∩ 10Rj �= ∅.

Proof. For z ∈ P0, D(z) > 0, we define Qz ∈ D as the largest dyadic primitive
cell that contains z and fulfils diamQz ≤ 1

20 infu∈Qz
D(u). For such a given z the

cell Qz exists because the function D is continuous and D(z) > 0. Hence if we
choose a small enough dyadic primitive cell Q that contains z, we get diamQ ≤
1
20 infu∈Q D(u). Due to the dyadic structure, there can only be one largest dyadic
primitive cell that contains z and fulfils the upper condition. We choose Ri ∈ D
such that {Ri|i ∈ I} = {Qz ∈ D|z ∈ P0, D(z) > 0} and Ri = Rj is equivalent to
i = j.

(i) Let x ∈ 10Ri and u ∈ Ri. We get 20 diamRi ≤ D(u) < D(x) + 10 diamRi,
and hence 10 diamRi ≤ D(x). Let Ji ∈ D be the smallest cell in D with Ri � Ji and
choose u ∈ Ji so that D(u) < 20 diam Ji = 40diamRi. This is possible because
otherwise Ri is not maximal relating to diamRi ≤ 1

20 infv∈Ri
D(v). We obtain

D(x) ≤ D(u) + d(u, x) < 50 diamRi.
(ii) If the interior of some cells Ri and Rj were not disjoint, because of the dyadic

structure, one cell would be contained in the other. But then one of those would
not be the maximal cell. Hence the Ri’s have disjoint interior. For all x ∈ 2Ri, we
obtain using (i) and Lemma 6.10 that x /∈ π(Z). Now let x ∈ P0 \ π(Z). With
Lemma 6.10, we get D(x) > 0. So there exists the cube Qx ∈ D with x ∈ Qx and
hence x ∈

⋃
i∈I Ri.

(iii) If 10Ri ∩ 10Rj �= ∅ we can apply (i) for some x ∈ 10Ri ∩ 10Rj and obtain
the assertion.

(iv) Let i ∈ I and Rj with 10Ri ∩ 10Rj �= ∅. We conclude with (iii) that
d(Ri, Rj) ≤ 30 diamRi and so Rj ⊂ (1+30+5)Ri. Furthermore, we have diamRj ≥
1
5 diamRi. Since the cells Rj are disjoint, there exist at most Hn(36Ri)

Hn(Rj)
≤ (180)n

cells Rj with 10Ri ∩ 10Rj �= ∅. �
Now we set U12 := B(0, 12) ∩ P0 and I12 := {i ∈ I|Ri ∩ U12 �= ∅}.

Lemma 6.14. Let α, ε > 0. If η ≤ 2ε, for every i ∈ I12, there exists some ball Bi =
B(Xi, ti) with (Xi, ti) ∈ S, diamRi ≤ diamBi ≤ 200 diamRi and d(π(Bi), Ri) ≤
100 diamRi.

Proof. Let i ∈ I12 and x ∈ Ri. Use Lemma 6.7, Lemma 6.10 and Lemma 6.13(i),
(ii) to get some (X, t) ∈ S with d(π(X), x) + t ≤ 2D(x) ≤ 100 diamRi. Choose
Bi := B(Xi, ti) := B(X, r) with r = max{t, diamRi

2 } ≤ 100 diamRi. Now we have
d(π(Bi), Ri) ≤ 100 diamRi and diamRi ≤ diamBi ≤ 200 diamRi. We can show
that r < 50, and hence with Lemma 6.2(ii), we get (X, r) ∈ S. �
6.4. Construction of the function A. We recall that π := πP0

: RN → P0 is the
orthogonal projection on P0 and introduce π⊥ := π⊥

P0
: RN → P⊥

0 , the orthogonal

projection on P⊥
0 , where P⊥

0 := {x ∈ RN |x · v = 0 for all v ∈ P0} is the orthogonal
complement of P0. To define the function A, we want to invert the projection π|Z
on Z.

Lemma 6.15. Let 0 < α ≤ 1
4 . There exists some ε̄ = ε̄(N,n,C0) so that if η < 2ε̄

and k ≥ 4 for all ε ∈ [η2 , ε̄), the orthogonal projection π|Z : Z → P0 is injective.

Proof. The assertion follows directly from Lemma 6.10 and Lemma 6.11. �
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Since π|Z : Z → P0 is injective, we are able to define the desired Lipschitz
function A on π(Z) by

A(a) := π⊥ (
π|−1

Z (a)
)

where a ∈ π(Z).

Lemma 6.16. Under the conditions of the previous lemma, the map A
∣∣
π(Z)

is

2α-Lipschitz.

Proof. Due to Lemma 6.15 for a, b ∈ π(Z), there exist distinct X,Y ∈ Z with
π(X) = a and π(Y ) = b. We have A(a) = π⊥(X), A(b) = π⊥(Y ) and Lemma
6.10 implies that d(X) = d(Y ) = 0. So, with Lemma 6.11, we get d(A(a), A(b)) ≤
2αd(a, b). �

Now we have a Lipschitz function A defined on π(Z). By using Kirszbraun’s
theorem [9, Thm. 2.10.43], we would obtain a Lipschitz extension of A defined on
P0 with the same Lipschitz constant 2α, where the graph of the extension covers
Z. But until now, we do not know that Z is a major part of F . We cannot even be
sure that Z is not a null set. So we do not use Kirszbraun’s theorem here, but we
will extend A by an explicit construction. This will help us to show that the other
parts of F , in particular F1, F2, F3, are quite small.

Definition 6.17. Let α, ε > 0. If η ≤ 2ε, for all i ∈ I12, we set Pi := P(Xi,ti),
where P(Xi,ti) is the n-dimensional plane, which is, in the sense of Definition 6.1,
associated to the ball B(Xi, ti) = Bi given by Lemma 6.14.

Lemma 6.18. Let 0 < α ≤ 1
2 and ε > 0. If η ≤ 2ε, then for all i ∈ I12, there exists

some affine map Ai : P0 → P⊥
0 with graph G(Ai) = Pi and Ai is 2α-Lipschitz.

Proof. Use �(Pi, P0) ≤ α ≤ 1
2 (cf. definition of Stotal) and apply Corollary 2.14. �

In the following, we use differentiable functions defined on subsets of P0. For the
definition of the derivative see section A.2 on page 1247.

Lemma 6.19. Let α, ε > 0. If η ≤ 2ε, then there exists some partition of unity
φi ∈ C∞(U12,R), i ∈ I12, with 0 ≤ φi ≤ 1 on U12, φi ≡ 0 on the exterior of 3Ri and∑

i∈I0
φi(a) = 1 for all a ∈ U12. Furthermore there exists some constant C = C(n)

with |∂ωφi(a)| ≤ C(n)
(diamRi)|ω| where ω is some multi-index with 1 ≤ |ω| ≤ 2.

Proof. For every i ∈ I12, we choose some function φ̃i ∈ C∞(P0,R) with 0 ≤ φ̃i ≤
1, φ̃i ≡ 1 on 2Ri, φ̃i ≡ 0 on the exterior of 3Ri, |∂ωφ̃i| ≤ C

diamRi
for all multi-indices

ω with |ω| = 1 and |∂κφ̃i| ≤ C
(diamRi)2

for all multi-indices κ with |κ| = 2. Now

on V :=
⋃

i∈I12
2Ri, we can define the partition of unity φi(a) :=

φ̃i(a)∑
j∈I12

φ̃j(a)
. For

all a ∈ V , there exists some i ∈ I12 with a ∈ 2Ri and hence
∑

j∈I12
φ̃j(a) ≥ 1.

Moreover, due to Lemma 6.13(iv), there are only finitely many j ∈ I12 such that

φ̃j(a) �= 0. Due to the control we have on the derivatives of φ̃i, we obtain with
Lemma 6.13(iv) the desired estimates of the derivatives of φi. �

Definition 6.20 (Definition of A on U12). Let α, ε > 0. If η ≤ 2ε and k ≥ 4, we
extend the function A : π(Z) → P⊥

0 ⊂ RN , a �→ π⊥ (
π|−1

Z (a)
)
(see page 1215) to
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the whole set U12 by setting for a ∈ U12,

A(a) :=

⎧⎪⎪⎨⎪⎪⎩
π⊥ (

π|−1
Z (a)

)
, a ∈ π(Z),∑

i∈I12

φi(a)Ai(a), a ∈ U12 ∩
⋃

i∈I12
2Ri.

With Z ⊂ F ⊂ B(0, 5), we get π(Z) ⊂ U12 and, with Lemma 6.13(ii), we obtain⋃
i∈I12

2Ri ∩ π(Z) = ∅; hence we have defined A on the whole set

U12 = (U12 ∩
⋃

i∈I12

2Ri) ∪̇ π(Z).

6.5. A is Lipschitz continuous. In this section, we show that A is Lipschitz
continuous. We start with some useful estimates.

Lemma 6.21. Let 0 < α ≤ 1
4 . There exists some k̄ ≥ 4 and some ε̄ = ε̄(N,n,C0)

so that if k ≥ k̄ and η < 2ε̄ for all ε ∈ [η2 , ε̄), there exist some constants C > 1 and

C̄ = C̄(N,n,C0) > 1 so that for all i, j ∈ I12 with i �= j and 10Ri ∩ 10Rj �= ∅, we
get

(i) d(Bi, Bj) ≤ C diamRj,
(ii) d(Ai(q), Aj(q)) ≤ C̄εdiamRj for all q ∈ 100Rj,
(iii) the Lipschitz constant of the map (Ai −Aj) : P0 → P⊥

0 fulfils LipAi−Aj
≤

C̄ε,
(iv) d(A(u), Aj(u)) ≤ C̄εdiamRj for all u ∈ 2Rj ∩ U12.

Proof. Let 0 < α ≤ 1
4 . We set ε̄ = min

{
δ
2 , ε̄

′, ε0
}
, where δ = δ(N,n) is defined on

page 1208, ε̄′ is the upper bound for ε given by Lemma 6.11 and ε0 is the constant
from Lemma 4.9. Let η < 2ε̄ and choose ε such that η ≤ 2ε < 2ε̄.

(i) Let Bi = B(Xi, ti) and Bj = B(Xj , tj). Lemma 6.13 and Lemma 6.14 imply
d(π(Xi), π(Xj)) ≤ C diamRj , and, using (Xl, tl) ∈ S we have d(Xl) ≤ 500 diamRj

for l ∈ {i, j}. Now Lemma 6.11 implies the assertion.
(ii) At first, we show for q ∈ 100Rj that d(Ai(q) + q,Xi) ≤ C diamRj . Since

(Xi, ti) ∈ S ⊂ Stotal, ε ≤ δ
4 , and using Lemma 4.10 (σ = 2ε, x = Xi, t = ti,

λ = 1
2δ, P = Pi) we get B(Xi, 2ti) ∩ Pi �= ∅. Thus there exists some a ∈ P0

with Ai(a) + a ∈ B(Xi, 2ti) ∩ Pi and a ∈ π(2Bi). Since Ai is 2α-Lipschitz and
α < 1

2 , using Lemmas 6.13 and 6.14 we obtain by inserting Ai(a) + a with triangle
inequality

d(Ai(q) + q,Xi) ≤ |Ai(q)−Ai(a)|+ d(q, a) + diamBi ≤ C diamRj .(6.6)

With Lemmas 6.13 and 6.14, there exists some constant C > 2 so that 1
C tj ≤ ti ≤

Ctj . Moreover, we have (Xi, ti), (Xj, tj) ∈ S ⊂ Stotal. With k ≥ k̄ := 2C2 ≥ 4C,

Lemma 4.9 (x = Xj , y = Xi, c = C, ξ = 2, tx = tj , ty = ti, λ = δ
2 ) implies that

there exist some ε0 > 0 and some constant C3 = C3(N,n,C0) > 1 so that, for
ε < ε̄ ≤ ε0 with the already shown (i), (6.6) and Lemma 6.14, we get

d(Ai(q) + q, Pj) ≤ C3ε (tj + d(Ai(q) + q,Xj)) ≤ CεdiamRj .(6.7)
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Furthermore, there exists some o ∈ P0 so that Aj(o) + o = πPj
(Ai(q) + q). Now

we have d(Aj(o) + o,Aj(q) + q) ≤ 2d(o, q) ≤ 2d(Ai(q) + q, Aj(o) + o) since A is
2α-Lipschitz, and hence with Lemma 6.13 and Lemma 6.14 we obtain for some
C = C(N,n,C0):

d(Ai(q)+ q, Aj(q)+ q) ≤ d(Ai(q)+ q, Pj)+ d(Aj(o)+ o,Aj(q)+ q)
(6.7)

≤ CεdiamRj .

(iii) Without loss of generality, we assume that diamRi ≤ diamRj . We have
B(y, 2 diamRi) ∩ P0 ⊂ 20Ri ∩ 20Rj for some y ∈ 10Ri ∩ 10Rj �= ∅. We choose
arbitrary a, b ∈ B(y, 2 diamRi) ∩ P0 with d(a, b) ≥ diamRi. Now, with (ii), we get

|(Ai −Aj)(a)− (Ai −Aj)(b)| ≤ CεdiamRi ≤ C(N,n,C0)εd(a, b).

Since Ai −Aj is an affine map, this implies LipAi−Aj
≤ C(N,n,C0)ε.

(iv) We get the estimate using Definition 6.20,
∑

l∈I12
φl(u) = 1, Lemma 6.13(iv)

and (ii) of the current lemma. �

Lemma 6.22. Let 0 < α ≤ 1
4 . There exist some k̄ ≥ 4 and some ε̄ = ε̄(N,n,C0, α)

< α so that if k ≥ k̄ and η < 2ε̄ for all ε ∈ [η2 , ε̄), the function A is Lipschitz
continuous on 2Rj ∩ U12 for all j ∈ I12 with Lipschitz constant 3α.

Proof. Let 0 < α ≤ 1
4 . We set ε̄ := min

{
ε̄′, α

C̃

}
, where ε̄′ is the upper bound for ε

given by Lemma 6.21 and C̃(N,n,C0) is some constant presented at the end of this
proof. Let η < 2ε̄ and choose ε > 0 such that η ≤ 2ε < 2ε̄. Let a, b ∈ 2Rj ∩ U12.
We obtain

|A(a)−A(b)| ≤
∑
i∈I12

φi(a)|Ai(a)−Ai(b)|+
∑
i∈I12

|φi(a)− φi(b)||Ai(b)−Aj(b)|.

If φi(a)−φi(b) �= 0, we get 3Ri∩2Rj �= ∅ and so we can apply Lemma 6.13(iii), (iv)
and Lemma 6.21(ii). Since ε < ε̄ ≤ α

C̃
, we obtain with Lemma 6.18 and Lemma

6.19 that A is 3α Lipschitz. �

Lemma 6.23. Under the conditions of the previous lemma for a, b ∈ U12 \ π(Z)
with [a, b] ⊂ U12 \ π(Z), we have that d(A(a), A(b)) ≤ 3αd(a, b).

Proof. Lemma 6.13(ii) implies that for all v ∈ [a, b], there exists some j ∈ I12
with v ∈ Rj , and, with Lemma 6.13(i), we get D(v) > 0. Assume that the set

Ĩ12 := {i ∈ I12|Ri ∩ [a, b] �= ∅} is infinite. The cubes Ri have disjoint interior, so

there exists some sequence (Ril)l∈N, il ∈ Ĩ12, with diamRil → 0. Hence there exists
some sequence (vl)l∈N with vl ∈ Ril ∩ [a, b], and, with Lemma 6.13(i), we obtain
D(vl) ≤ 50 diamRil → 0. Let v ∈ [a, b] be an accumulation point of (vl)l∈N. Since
D is continuous (Lemma 6.8), we deduce that D(v) = 0, which is according to
Lemma 6.10 equivalent to v ∈ π(Z). This is in contradiction to [a, b] ⊂ P0 \ π(Z),

and so the set Ĩ12 has to be finite. With Lemma 6.22 and [a, b] ⊂
⋃

i∈Ĩ12
Ri, we get

d(A(a), A(b)) ≤ 3αd(a, b). �

Now we show that A is Lipschitz continuous on U12 with some large Lipschitz
constant. After that, using the continuity of A, we are able to prove that A is
Lipschitz continuous with Lipschitz constant 3α.

Lemma 6.24. Let 0 < α ≤ 1
4 . There exists some k̄ ≥ 4 and some ε̄ = ε̄(N,n,C0, α)

< α so that if k ≥ k̄ and η < 2ε̄ for all ε ∈ [η2 , ε̄), A is Lipschitz continuous on U12.
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Proof. Let 0 < α ≤ 1
4 , let k ≥ k̄ ≥ 4, where k̄ is the constant from Lemma 6.22,

and let ε̄ = ε̄(N,n,C0, α) ≤ δ
4 be so small that we can apply Lemmas 6.11, 6.16,

6.21 and 6.23. Furthermore, let ε > 0 such that η ≤ 2ε < 2ε̄. Let a, b ∈ U12

with a ∈ π(Z) and b ∈ 2Rj for some j ∈ I12. We estimate d(A(a), A(b)) ≤
d(A(a)+ a,Xj)+ d(Xj , A(b)+ b) where Xj is the centre of the ball Bj = B(Xj , tj)
(see Lemma 6.14).

At first, we consider d(A(a) + a,Xj). Since A(a) + a ∈ Z, Lemma 6.10 implies
d(A(a) + a) = 0. Moreover, with Lemma 6.14 and (Xj , tj) ∈ S, we deduce that
d(Xj) ≤ 100 diamRj and

d(π(A(a) + a), π(Xj)) ≤ d(a, b) + d(b, π(Xj)) ≤ d(a, b) + C diamRj .

Using those estimates, Lemma 6.11 implies d(A(a)+a,Xj) ≤ 2d(a, b)+C diamRj .
Now we consider d(Xj , A(b)+b). We have (Xj , tj) ∈ S ⊂ Stotal, and hence, with

Lemma 4.10 using ε < ε̄ ≤ δ
4 , there exists some y ∈ B(Xj , 2tj)∩Pj , where Pj is the

associated plane to Bj (see Definition 6.17). Since �(Pj , P0) ≤ α ≤ 1
4 , we deduce

from Lemma 2.13, Lemma 6.14 and Lemma 6.21(iv) that

d(Xj , A(b) + b) ≤ d(Xj , y) + d(y,Aj(b) + b) + d(Aj(b) + b, A(b) + b)

≤ C(diamRj + d(a, b)).

With Lemma 6.13, Lemma 6.10 and using that D is 1-Lipschitz (Lemma 6.8) we
obtain diamRj ≤ D(b) −D(a) ≤ d(a, b) and hence d(A(a), A(b)) ≤ Cd(a, b). Due
to Lemma 6.16 and Lemma 6.23 it remains to handle the case were a, b /∈ π(Z)
and [a, b] ∩ π(Z) �= ∅. This follows immediately from the just proven case and the
triangle inequality. �
Lemma 6.25. Under the conditions of Lemma 6.24 for some a ∈ π(Z), i ∈ I12
and b ∈ 2Rj, we get d(A(a), A(b)) ≤ 3αd(a, b).

Proof. We set c := infx∈[a,b]∩π(Z) d(x, b). Due to Lemma 6.10, there exists some
v ∈ [a, b] ∩ π(Z) with d(v, b) = c. Furthermore, there exists some sequence (vl)l ⊂
[v, b] with vl → v where l → ∞. With Lemma 6.13, we deduce that ([v, b] \
{v}) ⊂

⋃
j∈I12

2Rj . For every l ∈ N we obtain with Lemma 6.23 d(A(v), A(b)) ≤
d(A(v), A(vl)) + 3αd(v, b), and, since A is continuous (Lemma 6.24) we conclude
with l → ∞ that d(A(v), A(b)) ≤ 3αd(v, b). The assertion follows since we already
know that A is 2α-Lipschitz on π(Z). �
Lemma 6.26. Under the conditions of Lemma 6.24 we have d(A(a), A(b)) ≤
3αd(a, b) for a, b ∈

⋃
j∈I12

2Rj ∩ U12.

Proof. This is an immediate consequence of Lemma 6.22, Lemma 6.23 and Lemma
6.25. �
Lemma 6.27. Under the conditions of Lemma 6.24, the function A is Lipschitz
continuous on U12 with Lipschitz constant 3α.

Proof. This follows directly from the previous lemma and Lemma 6.16. �
The following estimate is for later use.

Lemma 6.28. Let 0 < α ≤ 1
4 . There exists some k̄ ≥ 4 and some ε̄ = ε̄(N,n,C0)

so that if k ≥ k̄ and η < 2ε̄ for all ε ∈ [η2 , ε̄), there exists some constant C =
C(N,n,C0) so that for all j ∈ I12, a ∈ 2Rj and all multi-indices κ with |κ| = 2 we

have ∂κA(a)| ≤ Cε
diamRj

.
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Proof. Choose k̄ and ε̄ as in Lemma 6.21. Let κ be some multi-index with |κ| = 2.
For i ∈ I12, the function Ai is an affine map, and hence for some suitable l1, l2 ∈
{1, . . . , n} we have

∂κA = ∂κ
( ∑
i∈I12

φiAi

)
=

∑
i∈I12

(∂κφi)Ai +
∑
i∈I12

(∂l1φi∂l2Ai + ∂l2φi∂l1Ai) .(6.8)

Let j ∈ I12 and a ∈ 2Rj . Lemma 6.13 implies that there exist at most 180n cells Ri

so that ∂κφi(a) �= 0 or ∂ωφi(a) �= 0, where ω is a multi-index with |ω| = 1. So only
finite sums occur in the following estimates. We have

∑
i∈I12

∂ωφi = ∂ω
∑

i∈I12
φi =

∂ω 1 = 0 so that we get

|∂κA|
(6.8)

≤
∑
i∈I12

|∂κφi| |Ai −Aj |+
∑
i∈I12

|∂l1φi| |∂l2(Ai −Aj)|

+
∑
i∈I12

|∂l2φi| |∂l1(Ai −Aj)|.

To estimate these sums, we only have to consider the case when a is in the support
of φi for some i ∈ I12. This implies 3Ri ∩ 2Rj �= ∅. Now use Lemma 6.21(ii), (iii),
Lemma 6.19, and Lemma 6.13(iii), (iv) to obtain the assertion. �

7. γ-functions

In this section, we introduce the γ-function of some function g : P0 → P⊥
0 . This

function measures how well g can be approximated in some ball by some affine
function. The main results of this section are Theorem 7.3 and Theorem 7.17. We
will use these statements in section 8.4 to prove that μ(F3) is small.

Definition 7.1. Let U ⊂ P0, q ∈ U and t > 0 so that B(q, t) ∩ P0 ⊂ U . Further-
more, let A = A(P0, P

⊥
0 ) be the set of all affine functions a : P0 → P⊥

0 and let
g : U → P⊥

0 be some function. We define

γg(q, t) := inf
a∈A

1

tn

∫
B(q,t)∩P0

d(g(u), a(u))

t
dHn(u).

Lemma 7.2. Let U ⊂ P0, q ∈ U and t > 0 so that B(q, t)∩P0 ⊂ U . Furthermore,
let g : U → P⊥

0 be a Lipschitz continuous function such that the Lipschitz constant

fulfils 60n(10n + 1)
(
8nωn−1

ωn

)n+1

≤ Lip−1
g , where ωn denotes the n-dimensional

volume of the n-dimensional unit ball. Then we have

γg(q, t) ≤ 3 γ̃g(q, t) := 3 inf
P∈P(N,n)

1

tn

∫
B(q,t)∩P0

d(u+ g(u), P )

t
dHn(u),

where P(N,n) is the set of all n-dimensional affine planes in RN .

Proof. Let g be a Lipschitz continuous function with an appropriate Lipschitz
constant. By using a : u → g(q) ∈ A as a constant map and by using that
g is 1-Lipschitz, we deduce that γg(q, t) ≤ Lipg ωn. It follows, since for every
a ∈ A the graph G(a) of a is in P(N,n), that γ̃g(q, t) ≤ γg(q, t) ≤ Lipg ωn. Let
0 < ξ < Lipg ωn and choose some P ∈ P(N,n) so that

1

tn

∫
B(q,t)∩P0

d(u+ g(u), P )

t
dHn(u) ≤ γ̃g(q, t) + ξ ≤ 2Lipg ωn.(7.1)
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We set D1 :=
{
v ∈ B(q, t) ∩ P0|d(v + g(v), P ) ≤ 4Lipg t

}
, D2 := (B(q, t)∩P0)\D1

and obtain using Chebyshev’s inequality and (7.1)

Hn(D1) ≥ ωnt
n −Hn(D2) ≥

ωn

2
tn.(7.2)

Assume that every simplex �(u0, . . . , un) ∈ D1 is not an (n,H)-simplex, where
H = ωn

4ωn−1
t. With Lemma 2.10 (m = n, D = D1), there exists some plane

P̂ ∈ P(N,n− 1) such that D1 ⊂ UH(P̂ ) ∩B(q, t) ∩ P0. We get

Hn(D1) ≤ Hn(UH(P̂ ) ∩B(q, t) ∩ P0) ≤ 2Hωn−1t
n−1 =

ωn

2
tn.

This is in contradiction to (7.2), so there exists some (n,H)-simplex�(u0, . . . , un) ∈
D1. We set P̂0 := P0 + g(u0), yi := ui + g(u0) ∈ P̂0 for all i ∈ {0, . . . , n} and

S := Δ(y0, . . . , yn) ⊂ P̂0 ∩B(q + g(u0), t). We recall that P is the plane satisfying
(7.1). We obtain for all i ∈ {0, . . . , n},

d(yi, P ) ≤ d(ui + g(u0), ui + g(ui)) + d(ui + g(ui), P )

≤ Lipg d(u0, ui) + 4Lipg t ≤ 6Lipg t.

With Lemma 2.17, C = 4ωn−1

ωn
> 1,7 Ĉ = 1, m = n, σ = 6Lipg, P1 = P̂0, P2 = P

and x = q+g(u0), we get �(P0, P ) = �(P̂0, P ) < 1
2 , and, with Corollary 2.14, there

exists some affine map ā : P0 → P⊥
0 with graph G(ā) = P . Now we obtain with

Lemma 2.13 (P1 = P , P2 = P0), u, v ∈ P0 and �(P0, P ) < 1
2 that

d(v + ā(v), u+ ā(u)) ≤ 2d(πP0
(v + ā(v)), πP0

(u+ g(u))).(7.3)

This yields for u ∈ B(q, t)∩P0 and some suitable v ∈ P0 with v+ā(v) = πP (u+g(u)):

d(g(u), ā(u)) ≤ d(u+ g(u), P ) + d(πP (u+ g(u)), u+ ā(u))

(7.3)

≤ d(u+ g(u), P ) + 2d(πP0
(v + ā(v)), πP0

(u+ g(u)))

= 3d(u+ g(u), P ).

Finally, using ā ∈ A and the last estimate, we get γg(q, t)
(7.1)

≤ 3(γ̃g(q, t) + ξ), and
0 < ξ < αωn was arbitrarily chosen. �

7.1. γ-functions and affine approximation of Lipschitz functions. In this
and the following subsections, we use the notation Ul := B(0, l) ∩ P0 for l ∈
{6, 8, 10}.

Theorem 7.3. Let 1 < p < ∞ and let g : P0 → P⊥
0 be a Lipschitz continuous

function with Lipschitz constant Lipg and compact support. For all θ > 0, there

exist some set Hθ ⊂ U6 and some constants C = C(n, p) and Ĉ = Ĉ(n,N) with

Hn(U6 \Hθ) ≤
C

θp(n+1) Lippg

∫
U10

(∫ 2

0

γg(x, t)
2dt

t

) p
2

dHn(x)

7As the volume of the unit sphere is strictly monotonously decreasing when the dimension
n ≥ 5 increases, we get

ωn−1

ωn
> 1 for all n ≥ 6. With the factor 4 we have that 4

ωn−1

ωn
> 1 for all

n ∈ N.
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so that, for all y ∈ P0, there exists some affine map ay : P0 → P⊥
0 so that if r ≤ θ

and B(y, r) ∩Hθ �= ∅, we have

‖g − ay‖L∞(B(y,r)∩P0,P⊥
0 ) ≤ Ĉrθ Lipg,

where ‖ · ‖L∞(E) denotes the essential supremum on E ⊂ P0 with respect to the
Hn-measure.

To prove this theorem, we need the following lemma. If ν is some map, we use
the notation νt(x) :=

1
tn ν

(
x
t

)
.

Lemma 7.4. There exists some radial function ν ∈ C∞
0 (P0,R) with

(1) supp(ν) ⊂ B(0, 1) ∩ P0 and ν̂(0) = 0,
(2) for all x ∈ P0 \ {0} and i ∈ {1, . . . , n}, we have∫ ∞

0

|ν̂(tx)|2 dt
t

= 1 and 0 <

∫ ∞

0

|(̂∂iν)t(x)|2
dt

t
< ∞,(7.4)

(3) for all i ∈ {1, . . . , n}, the function ∂iν has mean value zero and, for all
a ∈ A(P0, P

⊥
0 ) (affine functions), the function aν has mean value zero as

well.

Proof. Let ν1 : P0 → R be some nonharmonic (Δν1 �= 0), radial C∞ function with
support in B(0, 1) ∩ P0. We set ν2 := Δν1 ∈ C∞(P0) ∩ C∞

0 (B(0, 1) ∩ P0) and
0 < c1 :=

∫∞
0

|ν̂2(te)|2 dt
t , where e is some normed vector in P0. Since ν1 is radial,

ν2 is radial as well. We have |ν̂2(te)| = 4π2t2|ν̂1(te)| and hence

0 < c1 =

∫ ∞

0

|ν̂2(te)|2
dt

t
= 16π4

∫ ∞

0

t3|ν̂1(te)|2dt < ∞

because ν1 is in the Schwarz space and therefore ν̂1 as well [11, 2.2.15, 2.2.11 (11)].

The previous equality also implies ν̂2(0) = 0. Now we set ν :=
√

1
c1
ν2, which is a

radial C∞
0 (P0,R) function that fulfils (1). We have for all x ∈ P0\{0} (use substitu-

tion with t = r 1
|x| and the fact that ν̂ is radial),

∫∞
0

|ν̂(tx)|2 dt
t =

∫∞
0

|ν̂(re)|2 dr
r = 1.

In a similar way, we deduce for i ∈ {1, . . . , n} (using |(φ−1(tx))κ| ≤ |φ−1(tx)| = |tx|
where κ is some multi-index with |κ| = 1) that∫ ∞

0

|(̂∂iν)t(x)|2
dt

t
≤ |2πi|2

∫ ∞

0

|tx|2 |ν̂(tx)|2 dt

t

= 4π2

∫ ∞

0

r

∣∣∣∣ν̂ (
r
x

|x|

)∣∣∣∣2 dr < ∞,

where we use that the Fourier transform of a Schwartz function is a Schwartz
function as well [11, 2.2.15]. The left-hand side of the previous inequality cannot
be zero, because this would imply that ∂iν(x) = 0 for all x ∈ P0, which is in
contradiction to 0 �= ν ∈ C∞

0 (P0,R). Hence ν fulfils (2). Using partial integration
and Δa = 0 for all a ∈ A(P0, P

⊥
0 ) implies that ∂iν and aν have mean value zero. �

For some function f : P0 → P⊥
0 and x ∈ P0, we define the convolution of νt and

f by

(νt ∗ f)(x) :=
∫
P0

νt(x− y)f(y)dHn(y).
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Lemma 7.5 (Calderón’s identity). Let ν be the function given by Lemma 7.4 and

let u ∈ P0 \ {0} and f ∈ L2(P0, P
⊥
0 ) or let f ∈ S

′
(P0) be a tempered distribution

and u ∈ S (P0) (Schwartz space) with u(0) = 0. Then we have

f(u) =

∫ ∞

0

(νt ∗ νt ∗ f)(u)
dt

t
.(7.5)

Léger calls this identity “Calderón’s formula” [19, p. 862, §5. Calderón’s formula
and the size of F3]. Grafakos presents a similar version called “Calderón reproducing
formula” [11, p. 371, Exercise 5.2.2].

Proof. At first, let f ∈ L2(P0, P
⊥
0 ) and u ∈ P0 \ {0}. We have (̂νt)(u) = ν̂(tu) and,

with Fubini’s theorem, we obtain(∫ ∞

0

(νt ∗ νt ∗ f)(u)
dt

t

)̂
=

∫ ∞

0

(̂νt)(u)(̂νt)(u)f̂(u)
dt

t

(7.4)
= f̂(u).

The Fourier inversion holds on L2(P0, P
⊥
0 ) [11, 2.2.4. The Fourier transform on

L1 + L2], which gives the statement. We use the same idea to get this result for
tempered distributions. �

Proof of Theorem 7.3. Let g ∈ C0,1
0 (P0, P

⊥
0 ) and let ν be the function given by

Lemma 7.4. We define

g1(u) :=

∫ ∞

2

(νt ∗ νt ∗ g)(u)
dt

t
+

∫ 2

0

(νt ∗ (χP0\U10
· (νt ∗ g)))(u)

dt

t
,

g2(u) :=

∫ 2

0

(νt ∗ (χU10
· (νt ∗ g)))(u)

dt

t
,

and the previous lemma implies that g = g1 + g2. We recall the notation Ul =
B(0, l) ∩ P0 for l ∈ {6, 8, 10} and continue the proof of Theorem 7.3 with several
lemmas.

Lemma 7.6. g1 ∈ C∞(U8) and there exists some constant C = C(ν) so that for
all multi-indices κ with |κ| ≤ 2 we have ‖∂κg1‖L∞(U8,P⊥

0 ) ≤ C Lipg.

g2 is Lipschitz continuous on U8 with Lipschitz constant C(ν) Lipg.

Proof. For x ∈ P0 we set

g11(x) :=

∫ ∞

2

(νt ∗ νt ∗ g)(x)
dt

t
, g12(x) :=

∫ 2

0

(νt ∗ (χP0\U10
· (νt ∗ g)))(x)

dt

t

so that g1 = g11 + g12 and we set ϕ(x) :=
∫∞
2

(νt ∗ νt)(x)dtt . At first, we show some
intermediate results:

I. g12(x) = 0 for all x ∈ U8, due to the support of νt and χP0\U10
· (νt ∗ g).

II. For every multi-index κ, there exists some constant C = C(n, ν, κ) such that
|∂κϕ| ≤ C, where ∂κϕ(y) :=

∫∞
2

∂κ(νt ∗ νt)(y)
dt
t . This is given by ∂κ(νt(y)) =

1
t|κ| (∂

κν)t(y), and |∂κ(νt ∗ νt)(y)| ≤ ‖ν‖L∞(P0,R)‖∂κν‖L∞(P0,R)
ωn

tn+|κ| .
III. For every multi-index κ, the function ∂κϕ has bounded support in B(0, 4)∩

P0.

Proof of I–III. Let 0 < t ≤ 2 and x ∈ P0 \B(0, 4). We have (νt ∗ νt)(x) = 0, which

implies that
∫ 2

0
(νt ∗ νt)(x)dtt = 0. Now we consider ϕ as a tempered distribution.
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The convolution with δ0, the Dirac mass at the origin, is an identity; hence we get
with Calderón’s identity (Lemma 7.5) for all η ∈ S (P0) with η(0) = 0:

ϕ(η) = ϕ(η)− δ0(η) =

(∫ ∞

2

(νt ∗ νt)
dt

t

)
(η)−

(∫ ∞

0

(νt ∗ νt)
dt

t

)
(η)

= −
(∫ 2

0

(νt ∗ νt)
dt

t

)
(η).

Since this holds for arbitrary η ∈ S (P0) with supp(η) ⊂ P0 \B(0, 4), we conclude
that for such η we have∫

P0

ϕ(x)η(x)dHn(x) = −
∫
P0

∫ 2

0

(νt ∗ νt)(x)
dt

t
η(x)dHn(x) = 0

and hence supp(ϕ) ⊂ B(0, 4) ∩ P0. For the same kind of η, we get, using Fubini’s
theorem and partial integration,∫

P0

∂κϕ(x)η(x)dHn(x) = (−1)|κ|
∫ ∞

2

∫
P0

(νt ∗ νt)(x)∂κη(x)dHn(x)
dt

t
= 0

since ∂κη ∈ S (P0) with supp(∂κη) ⊂ P0 \B(0, 4). �

IV. ϕ ∈ C∞
0 (P0).

Proof of IV. With II and III we conclude for every multi-index κ that ∂κϕ ∈
L1(P0,R). With Fubini’s theorem and partial integration, we see that ∂κϕ is the
weak derivative of ϕ; hence we have ϕ ∈ W l,1(P0) for every l ∈ N. The Sobolev
imbedding theorem [1, Thm. 4.12] gives us ϕ ∈ C∞(P0) and, with III, we obtain
ϕ ∈ C∞

0 (P0). �

Now we have for all x ∈ U8 with Fubini’s theorem [7, 1.4, Thm. 1] g11(x) =

(ϕ ∗ g)(x). We know that ϕ ∈ C∞
0 (P0) and g ∈ C0,1

0 (P0, P
⊥
0 ). Hence we have

g11 ∈ C∞
0 (P0), g ∈ W 1,∞(P0) and for i, j ∈ {1, . . . , n} we have ∂ig11 = ϕ ∗ ∂ig and

∂i∂jg11 = ∂iϕ ∗ ∂jg. With the Minkowski inequality [11, Thm. 1.2.10] and IV, we
obtain for i, j ∈ {1, . . . , n}:

‖∂ig1‖L∞(U8,R)
I
= ‖∂ig11‖L∞(U8,R) ≤ ‖∂ig‖L∞(U8,R)‖ϕ‖L1(P0) ≤ C(ν) Lipg,

‖∂i∂jg1‖L∞(U8,R)
I
= ‖∂i∂jg11‖L∞(U8,R) ≤ ‖∂ig‖L∞(U8,R)‖∂jϕ‖L1(P0) ≤ C(ν) Lipg .

Now it is easy to see that g2 is C Lipg-Lipschitz on U8 because we have g2 = g− g1
and g as well as g1 are C Lipg-Lipschitz on U8. �

Remark 7.7. Under the assumption that∫
U10

(∫ 2

0

γg(x, t)
2dt

t

) p
2

dHn(x) < ∞,(7.6)

the next lemmas will prove that g2 ∈ W 1,p
0 (P0, P

⊥
0 ). We show for this purpose in

Lemma 7.10 that ∂ig2(x) :=
∫ 2

0
∂i(νt ∗ (χU10

(νt ∗ g)))(x)dtt is in Lp(P0, P
⊥
0 ). Using

Fubini’s theorem [7, 1.4, Thm. 1] and partial integration it turns out that ∂ig2
fulfils the condition of a weak derivative.

Lemma 7.8. We have supp(g2) ⊂ B(0, 12) ∩ P0 and supp(∂ig2) ⊂ B(0, 12) ∩ P0

for all 1 ≤ i ≤ n.



1224 MARTIN MEURER

Proof. If 0 < t < 2 and x ∈ P0, we have supp(νt(x − ·)) ⊂ B(x, 2) ∩ P0 and
supp(χU10

(νt∗g)) ⊂ B(0, 10)∩P0. This implies supp(νt∗(χU10
(νt∗g))) ⊂ B(0, 12)∩

P0, and hence we obtain supp(g2) ⊂ B(0, 12) and supp(∂ig2) ⊂ B(0, 12) ∩ P0. �

Lemma 7.9. Let x ∈ U10 and 0 < t < 2. We have
∣∣∣ (νt∗g)(x)

t

∣∣∣ ≤ ‖ν‖L∞(P0,R)γg(x, t).

Proof. If a : P0 → P⊥
0 is an affine function, we get using Lemma 7.4(3) that

(νt ∗ a)(x) = 0 and hence, with Lemma 7.4(1),∣∣∣∣ (νt ∗ g)(x)t

∣∣∣∣ = ∣∣∣∣ (νt ∗ (g − a))(x)

t

∣∣∣∣
≤ ‖ν‖L∞(P0,R)

1

tn

∫
P0∩B(x,t)

∣∣∣∣g(y)− a(y)

t

∣∣∣∣ dHn(y).

Since a was an arbitrary affine function, this implies the assertion. �
We have p ∈ (1,∞) and, for the proof of Theorem 7.3, we can assume (7.6).

Lemma 7.10. We have g2 ∈ W 1,p
0 (P0, P

⊥
0 ) and there exists some constant C =

C(n, p, ν) so that for all i ∈ {1, . . . , n},

‖∂ig2‖pLp(P0,P⊥
0 )

≤ C

∫
U10

(∫ 2

0

γg(x, t)
2dt

t

) p
2

dHn(x),

where ∂ig2(x) =
∫ 2

0
∂i(νt ∗ (χU10

(νt ∗ g)))(x)dtt .
Proof. We recall that ∂ig2 is the weak derivative of g2 (cf. Remark 7.7). Due to
[1, Cor. 6.31, An equivalent norm for Wm,p

0 (Ω)] and Lemma 7.8, we only have to

consider ‖∂ig2‖Lp(P0) for all i ∈ {0, . . . , n} to get g2 ∈ W 1,p
0 (P0, P

⊥
0 ). For x ∈ P0,

we have ∂iνt(x) = ∂it
−nν

(
x
t

)
= t−1(∂iν)t(x) and hence

∂ig2(x) =

∫ 2

0

∂i(νt ∗ (χU10
(νt ∗ g)))(x)

dt

t
=

∫ 2

0

(
(∂iν)t ∗

(
χU10

(νt ∗ g
t

)))
(x)

dt

t
.

Using duality (cf. [1, The normed dual of Lp(Ω)]) it suffices to consider the follow-

ing. Let 1
p + 1

p′ = 1 and f ∈ Lp′
(P0) with ‖f‖Lp′ (P0)

= 1. We get with Fubini’s

theorem [7, 1.4, Thm. 1] and Hölder’s inequality∣∣∣∣∫
P0

f(x) ∂ig2(x) dHn(x)

∣∣∣∣
≤

∫
P0

∫ 2

0

|((∂iν)t ∗ f)(y)|
∣∣∣(χU10

(νt ∗ g
t

))
(y)

∣∣∣ dt

t
dHn(y)

≤
∫
P0

(∫ 2

0

|((∂iν)t ∗ f)(y)|2
dt

t

) 1
2
(∫ 2

0

∣∣∣(χU10

(νt ∗ g
t

))
(y)

∣∣∣2 dt

t

) 1
2

dHn(y)

≤
∥∥∥∥∥
(∫ ∞

0

|(∂iν)t ∗ f |2
dt

t

) 1
2

∥∥∥∥∥
Lp′ (P0)

×
(∫

P0

(∫ 2

0

∣∣∣(χU10

(νt ∗ g
t

))
(y)

∣∣∣2 dt

t

) p
2

dHn(y)

) 1
p

.

There exists some constant C = C(n, ν) with |∂iν(x)|+ |∇∂iν(x)| ≤ C(1+ |x|)−n−1

because ν is a Schwartz function. Together with Lemma 7.4, all the requirements of
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Lemma A.8 with φ = ∂iν and q = p′ are fulfilled, which implies, since ‖f‖Lp(P0) = 1,
that the first factor of the RHS of the last estimate is some constant C(n, p, ν)
independent of f . All in all, we obtain

‖∂ig2‖Lp(P0) ≤ C(n, p, ν)

(∫
P0

(∫ 2

0

∣∣∣(χU10

(νt ∗ g
t

))
(y)

∣∣∣2 dt

t

) p
2

dHn(y)

) 1
p

,

and with Lemma 7.9 the assertion holds. �

Definition 7.11. Let B be a ball with centre in P0 and let f : P0 → P⊥
0 be some

map. We define the average of f on B and some maximal function for x ∈ P0:

Avg
B

(f) :=
1

(diamB)n

∫
B∩P0

fdHn,

N(f)(x) := sup
t∈(0,∞),y∈P0
with d(y,x)≤t

{
1

2t
Avg
B(y,t)

(
|f − Avg

B(y,t)

(f)|
)}

.

Moreover we define the oscillation of f on B by

oscB(f) := sup
x∈B∩P0

|f(x)−Avg
B

(f)|.

Lemma 7.12. We have ‖N(g2)‖Lp(P0,R) ≤ C‖Dg2‖Lp(P0,P⊥
0 ), where C = C(n, p).

Proof. We recall that g2 ∈ W 1,p
0 (P0, P

⊥
0 ) (cf. Lemma 7.9) and conclude with

Poincaré’s inequality that AvgB(|g2 − AvgB(g2)|) = C(n) diamB AvgB(|Dg2|)
(if f is a matrix, we denote by |f | a matrix norm), and hence we get for x ∈ P0,

N(g2)(x) ≤ C(n) sup
t∈(0,∞),y∈P0
with d(y,x)≤t

Avg
B(y,t)

(|Dg2|) = C(n)M(Dg2)(x),

where M(Dg2) is the uncentred Hardy-Littlewood maximal function. Now, using
[11, Thm. 2.1.6], we get the assertion. �

Definition 7.13. Let θ > 0. We define Hθ :=
{
x ∈ U6|N(g2)(x) ≤ θn+1 Lipg

}
.

Lemma 7.14. Let θ > 0. There exists some constant C = C(n, p, ν) so that

Hn(U6 \Hθ) ≤
C

θp(n+1) Lippg

∫
U10

(∫ 2

0

γg(x, t)
2dt

t

) p
2

dHn(x).

Proof. With Lemma 7.12, Lemma 7.10 and

‖Dg2‖pLp(P0,P⊥
0 )

≤ np−1
n∑

i=1

‖∂ig2‖pLp(P0,P⊥
0 )

,

there exists some constant C = C(n, p, ν) with

‖N(g2)‖pLp(P0,P⊥
0 )

≤ Csumn
i=1‖∂ig2‖

p

Lp(P0,P⊥
0 )

≤ C

∫
U10

(∫ 2

0

γg(x, t)
2dt

t

) p
2

dHn(x).

Hence, using Chebyshev’s inequality, we get the assertion. �
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Lemma 7.15. Let B be a ball with centre in P0. If (B ∩ P0) ⊂ U8, then there
exists some constant C = C(N,n, ν) with

oscB(g2) ≤ C diamB

(
1

diamB
Avg
B

(
|g2 −Avg

B
(g2)|

)) 1
n+1

Lip
n

n+1
g .

Proof. Let (B∩P0) ⊂ U8 and λ := oscB(g2). The function g2 is Lipschitz continuous
on U8 with Lipg2 = C(ν) Lipg (see Lemma 7.6) and B ∩ P0 is closed. Hence there
exists some y ∈ B ∩ P0 with λ = |g2(y) − AvgB g2|, and we get for x ∈ B with
d(x, y) ≤ λ

2Lipg2

using triangle inequality |g2(x)−Avg
B

(g2)| ≥ λ
2 . Furthermore, using

that g2 is continuous on U8 for all l ∈ {1, . . . , N}, there exists some zl ∈ B ∩ P0,
with gl2(zl) = Avg

B
(gl2) (where gl2(zl) ∈ R means the l-th component of g2(zl) ∈

RN ). With gl2(y) − Avg
B

(gl2) ≤ Lipg2 d(y, zl) for all l ∈ {1, . . . , N} we get λ2 ≤

N
(
Lipg2 diamB

)2
, which implies λ√

N Lipg2

≤ diamB. Since y ∈ B, there exists

some ball B̂ ⊂ B∩B
(
y, λ

2 Lipg2

)
with diam B̂ ≥ λ

2
√
N Lipg2

, and hence with |g2(x)−

AvgB(g2)| ≥ λ
2 we obtain (diamB)nAvg

B
|g2(x) − Avg

B
(g2)| ≥ ωn

(
λ

4
√
N Lipg2

)n λ
2 .

Using Lipg2 = C(ν) Lipg, this implies the assertion. �

Lemma 7.16. Let θ > 0 and y ∈ P0. There exists some constant C = C(N,n, ν)
and some affine map ay : P0 → P⊥

0 so that if r ≤ θ and B(y, r) ∩Hθ �= ∅, we have
‖g − ay‖L∞(B(y,r)∩P0,P⊥

0 ) ≤ CrθLipg.

Proof. Let y ∈ P0. If θ ≥ 1, we can choose ay(y
′) := g(y) as a constant and

get the desired result directly from the Lipschitz condition. Now let 0 < θ < 1
and y′ ∈ B(y, r) ∩ P0. We set ay(y

′) := g(y) + Dg1(y)φ
−1(y′ − y). We have

d(y′, U6) ≤ d(y′, Hθ) ≤ d(y′, y)+ d(y,Hθ) ≤ 2. So we get y′, y ∈ U8. Using Taylor’s
theorem and Lemma 7.6 we obtain

|g1(y′)− [g1(y) +Dg1(y)φ
−1(y′ − y)]| ≤

∑
|κ|=2

‖∂κg1‖L∞(U8)|y′ − y|2

≤ C(n, ν) Lipg r
2.

Since r ≤ θ < 1, B(y, r) ∩ Hθ �= ∅ and Hθ ⊂ U6, we obtain B(y, r) ∩ P0 ⊂ U8,
and we can apply Lemma 7.15. Together with the definition of Hθ this leads to
oscB(y,r) g2 + Lipg r

2 ≤ C(N,n, ν)rθLipg. Now by using g = g1 + g2 and |g2(y′)−
g2(y)| ≤ 2 oscB(y,r) g2 we get for every y′ ∈ B(y, r) ∩ P0 that

|g(y′)− [g(y) +Dg1(y)φ
−1(y′ − y)]| ≤ C(N,n, ν)rθLipg .

�

Lemma 7.14 and Lemma 7.16 complete the proof of Theorem 7.3. �

7.2. The γ-function of A and integral Menger curvature. In this section, we
prove the following Theorem 7.17. It states that we get a similar control on the
γ-functions applied to our function A as we get in Corollary 4.8 on the β-numbers.

For α, ε > 0, η ≤ 2ε and k ≥ 4, we defined A on U12 (cf. Definition 6.20). Since
in this section we only apply the γ-functions to A, we set γ(q, t) := γA(q, t) and we
recall the notation U10 := B(0, 10) ∩ P0.
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Theorem 7.17. There exist some k̃ ≥ 4 and some α̃ = α̃(n) > 0 so that, for all α

with 0 < α ≤ α̃, there exists some ε̃ = ε̃(N,n,C0, α) so that, if k ≥ k̃ and η ≤ ε̃p,

we have for all ε ∈ [η
1
p , ε̃] that there exists some constant C = C(N,n,K, p, C0, k)

so that ∫
U10

∫ 2

0

γ(q, t)p
dt

t
dHn(q) ≤ Cεp + CMKp(μ) ≤ Cεp.

Proof. Let k̄ ≥ 4 be the maximum of all thresholds for k given in section 6 and let
α̃ = α̃(n) ≤ 1

4 be the upper bound for the Lipschitz constant given by Lemma 7.2.

We set k̃ := max{k̄, C̃+1, Ĉ} where the constants C̃ and Ĉ are fixed constants which
will be set during this section.8 Let 0 ≤ α ≤ α̃. Let ε̄ = ε(N,n,C0, α) ≤ α be the
minimum of all thresholds for ε given in section 6. We set ε̃ := min{ε̄, (2C ′C1)

−1} <

1,9 and assume that k ≥ k̃ and η ≤ ε̃p. Now let ε > 0 with η ≤ εp ≤ ε̃p. For the
rest of this section, we fix the parameters k, η, α, ε and mention that they meet all
requirements of the lemmas in section 6.

We start the proof of Theorem 7.17 with several lemmas. First, we prove

Lemma 7.18. There exists some constant C = C(N,n, p, C0) so that

∑
i∈I12

∫
Ri∩U10

∫ diam Ri
2

0

γ(q, t)p
dt

t
dHn(q) ≤ Cεp.

Proof. Let i ∈ I12, q ∈ Ri, 0 < t < diamRi

2 and u ∈ B(q, t) ∩ P0 ⊂ 2Ri. The

function A is in C∞(2Ri, P
⊥
0 ) (see the definition of A on page 1215). Taylor’s

theorem implies infa∈A d(A(u), a(u)) ≤ t2 C(N,n,C0)ε
diamRi

since the infimum over all
affine functions cancels out the linear part and the second order derivatives of the
remainder can be estimated using Lemma 6.28. Now we have

γ(q, t) ≤ ωn

t
sup

u∈B(q,t)∩P0

inf
a∈A

d(A(u), a(u)) ≤ t
C(N,n,C0)ε

diamRi
.

Hence, Lemma 6.13(ii) implies the statement. �

The previous lemma implies that, due to Lemma 6.13(ii), it remains to handle
the two terms in the following sum to prove Theorem 7.17. If q1 ∈ Ri, we get with

Lemma 6.13 that D(q1)
100 ≤ diamRi

2 and if q2 ∈ π(Z), we obtain with Lemma 6.10
D(q2) = 0. Hence we conclude using Lemma 6.13(ii) that∑

i∈I12

∫
Ri∩U10

∫ 2

diam Ri
2

γ(q, t)p
dt

t
dHn(q) +

∫
π(Z)∩U10

∫ 2

0

γ(q, t)p
dt

t
dHn(q)

=

∫
U10

∫ 2

D(q)
100

γ(q, t)p
dt

t
dHn(q).(7.7)

In the following, we prove some estimate for γ(q, t) where q ∈ U10 and D(q)
100 <

t < 2. To get this estimate, we need the next lemma.

8C̃ is given in Lemma 7.20; Ĉ is given in Lemma 7.24.V.
9C′, C1 are given in Lemma 7.23.
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Lemma 7.19. For all q ∈ U10 and for all t with D(q)
100 < t < 2, there exist some

X̃ = X̃(q) ∈ F and some T = T (t) > 0 with

(X̃, T ) ∈ S, d(π(X̃), q) ≤ T and 20t ≤ T ≤ 200t.(7.8)

Proof. We have D(q) = inf(X,s)∈S(d(π(X), q) + s), and hence there exists some

(X̃, s̃) ∈ S with d(π(X̃), q) + s̃ ≤ D(q) + 100t ≤ 200t. We set T := min{40, 200t}
which fulfils 20t ≤ T ≤ 200t as t < 2. Using Lemma 6.2(i), (ii) and 200t ≥ s̃, we

obtain (X̃, T ) ∈ S.

With d(π(X̃), q) ≤ d(π(X̃), 0) + d(0, q) ≤ 5 + 10 we get d(π(X̃), q) ≤ T . �

Now let q, t, X̃ and T be as in Lemma 7.19. Furthermore, letX ∈ B(X̃, 200t)∩F .

We choose some n-dimensional plane called P̂ = P̂ (q, t,X) with

βP̂
1;k(X, t) ≤ 2β1;k(X, t)(7.9)

and define

I(q, t) :=
{
i ∈ I12

∣∣Ri ∩B(q, t) �= ∅
}
.

With Lemma 6.13, we have (B(q, t) ∩ P0) ⊂ U12 ⊂ π(Z) ∪
⋃

i∈I12
Ri. We set

K0 :=

∫
B(q,t)∩π(Z)

d(u+A(u), P̂ )

tn+1
dHn(u),

Ki :=

∫
B(q,t)∩Ri

d(u+A(u), P̂ )

tn+1
dHn(u)

and get with Lemma 7.2 that

γ(q, t) ≤ 3 K0 + 3
∑

i∈I(q,t)
Ki.(7.10)

First, we consider K0.

Lemma 7.20. There exists some constant C̃ > 1 so that∫
B(q,t)∩π(Z)

d(u+A(u), P̂ )dHn(u) ≤
∫
B(X,C̃t)∩Z

d(x, P̂ )dHn(x).

Proof. Let g : π(Z) → Z, u �→ u + A(u). This function is bijective, continuous
(A is 2α-Lipschitz on π(Z)) and g−1 = π|Z is Lipschitz continuous with Lipschitz

constant 1. With f(x) = d(x, P̂ ) and s = n, we apply [27, Lem. A.1] and get∫
B(q,t)∩π(Z)

d(u+A(u), P̂ )dHn(u) ≤
∫
g(B(q,t)∩π(Z))

d(x, P̂ )dHn(x).

Now it remains to show that there exists some constant C so that g(B(q, t)∩π(Z)) ⊂
B(X,Ct)∩Z. Let x ∈ g(B(q, t)∩ π(Z)). This implies x ∈ Z and so, using Lemma

6.10, we get d(x) = 0. With (7.8), we conclude that d(X̃) ≤ d(X̃, X̃) + T ≤ 200t,

and we obtain with (7.8) d(π(x), π(X̃)) ≤ 201t. So, with Lemma 6.11, we have

d(x, X̃) ≤ 1602t. We deduce with C̃ = 1802 that d(x,X) ≤ d(x, X̃)+d(X̃,X) ≤ C̃t

and so g(B(q, t) ∩ π(Z)) ⊂ B(X, C̃t) ∩ Z. �

Lemma 7.21. There exists some constant C = C(N,n,C0) > 1 so that∫
B(X,C̃t)∩Z

d(x, P̂ )dHn(x) ≤ C

∫
B(X,(C̃+1)t)

d(x, P̂ )dμ(x).
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Proof. First, we prove for an arbitrary ball B with centre in Z,

Hn(Z ∩B) ≤ C(N,n,C0)μ(B).(7.11)

With [7, Dfn. 2.1], we get Hn(Z ∩ B) = limτ→0 Hn
τ (Z ∩ B). Let 0 < τ0 <

min
{

diamB
2 , 50

}
. We define F := {B(x, s)|x ∈ Z ∩B, s ≤ τ0}. With Besicovitch’s

covering theorem [7, 1.5.2, Thm. 2], there exist N0 = N0(N) countable families
Fj ⊂ F , j = 1, . . . , N0, of disjoint balls where the union of all those balls covers

Z ∩ B. For every ball B̃ = B(x, s) ∈ Fj , we have x ∈ Z and hence, using the
definition of Z (see page 1209), we deduce that h(x) = 0. With h(x) = 0 < s < 50

and Lemma 6.2(i), we get (x, s) ∈ S ⊂ Stotal and so
(

diam B̃
2

)n

≤ 2μ(B̃)
δ . The centre

ofB is also in Z, and hence, analogously, we conclude that
(
diamB

2

)n ≤ 2μ(B)
δ . With

(B) from page 1208, we get μ(2B) ≤ 4nC0
2
δμ(B). Since x ∈ B and s ≤ τ0 < diamB

2 ,

we obtain B̃ = B(x, s) ⊂ 2B. Now, by definition of Hn
τ0 [7, Dfn. 2.1] and because

δ = δ(N,n) (see (6.1)), we deduce that

Hn
τ0(Z ∩B) ≤ 2

N0∑
j=1

∑
B̃∈Fj

ωn
μ(B̃)

δ
≤ 2

ωn

δ

N0∑
j=1

μ(2B) ≤ C(N,n,C0)μ(B).

So, with τ0 → 0, the inequality (7.11) is proven.

Let C̃ be the constant from Lemma 7.20. For an arbitrary 0 < σ ≤ t, we define

Gσ :=
{
B(x, s)

∣∣∣x ∈ Z ∩B(X, C̃t), s ≤ σ
}
.

With Besicovitch’s covering theorem [7, 1.5.2, Thm. 2], there exist N0 = N0(N)
families Gσ,j ⊂ Gσ of disjoint balls, where j = 1, . . . , N0, and those balls cover

Z ∩B(X, C̃t). We denote by pB the centre of the ball B and conclude that∫
Z∩B(X,C̃t)

d(x, P̂ )dHn(x) ≤
N0∑
j=1

∑
B∈Gσ,j

∫
Z∩B

σ + d(pB, P̂ )dHn(x)

(7.11)

≤ C(N,n,C0)

N0∑
j=1

∑
B∈Gσ,j

∫
B

(
σ + d(pB, P̂ )

)
dμ(x)

≤ C(N,n,C0)

(
μ(B(X, (C̃ + 1)t))2σ +

∫
B(X,(C̃+1)t)

d(x, P̂ )dμ(x)

)
.

With σ → 0, the assertion holds. �

With Lemma 7.20 and Lemma 7.21, we get for K0 using that k ≥ k̃ ≥ C̃ + 1,
where k̃ is defined on page 1227,

K0 ≤ C(N,n,C0) β
P̂
1;k(X, t)

(7.9)

≤ C(N,n,C0) β1;k(X, t).(7.12)

To estimate Ki, we need the following lemma.

Lemma 7.22. There exists some constant C4 = C4(N,n,C0) > 1 so that, for all
i ∈ I12 and u ∈ Ri, we have d(πPi

(u+ A(u)), Bi) ≤ C4 diamRi. We recall that Pi

is the n-dimensional plane, which is, in the sense of Definition 6.1, associated to
the ball B(Xi, ti) = Bi given by Lemma 6.14 (cf. Definition 6.17).
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Proof. For every i ∈ I12 ⊂ I, we have with Lemma 6.14 that Bi = B(Xi, ti) and
(Xi, ti) ∈ S ⊂ Stotal. Hence we can use Lemma 4.10 (σ = 2ε, x = Xi, t = ti, λ = δ

2 ,
P = Pi) to get some y ∈ 2Bi ∩ Pi, where Pi = P(Xi,ti). We obtain with Lemma

2.13 (P1 = Pj , P2 = P0), α ≤ α̃ < 1
2 (α̃ is defined on page 1227) and Lemma 6.14:

d(u+Ai(u), y) ≤
1

1− α
d(u, π(y)) < 2[d(u, π(Xi)) + d(π(Xi), π(y))] ≤ C diamRi.

Moreover, with Lemma 6.21(iv) and ε ≤ ε̃ ≤ 1 (ε̃ is defined on page 1227), we get

d(πPi
(u+A(u)), u+Ai(u)) ≤ d(u+A(u), u+Ai(u)) ≤ C diamRi

for some C = C(N,n,C0). Using these estimates, u+ Ai(u) = πPi
(u+Ai(u)) and

triangle inequality, we obtain the assertion. �

Now, with Lemma 7.22 and Ki from (7.10), we obtain for i ∈ I(q, t) ⊂ I12:

Ki ≤ 1

tn

∫
B(q,t)∩Ri

d(u+A(u), Pi)

t
dHn(u)

+
1

tn
sup

{
d(πPi

(v +A(v)), P̂ )

t

∣∣∣v ∈ B(q, t) ∩Ri

}
Hn(B(q, t) ∩Ri)

L. 7.22
≤ 1

tn

∫
B(q,t)∩Ri

d(u+A(u), Pi)

t
dHn(u)

+ ωn

(
diamRi

t

)n

sup

{
d(w, P̂ )

t

∣∣∣w ∈ Pi, d(w,Bi) ≤ C4 diamRi

}
.(7.13)

Since Pi is the graph of Ai, we get for any u ∈ B(q, t) ∩ Ri with Lemma 6.21(iv)
that there exists some C̄ = C̄(N,n,C0) with

d(u+A(u), Pi) ≤ d(u+A(u), u+Ai(u)) = d(A(u), Ai(u)) ≤ C̄εdiamRi,

and so, using Lemma A.4,

1

tn

∫
B(q,t)∩Ri

d(u+A(u), Pi)

t
dHn(u) ≤ ε C(N,n,C0)

(
diamRi

t

)n+1

.(7.14)

Lemma 7.23. There exists some constant C = C(N,n,C0) so that for all i ∈
I(q, t),

sup

{
d(w, P̂ )

t

∣∣∣ w ∈ Pi,

d(w,Bi) ≤ C4 diamRi

}

≤ C

t

[
εdiamRi +

(
1

(diamRi)n

∫
2Bi

d(z, P̂ )
1
3 dμ(z)

)3
]
.

Proof. Let i ∈ I(q, t). Due to the construction of Bi = B(Xi, ti) (see Lemma
6.14), we have (Xi, ti) ∈ S ⊂ Stotal and so δ(Xi, ti) ≥ δ

2 . With Corollary 4.3

(λ = δ
2 , B(x, t) = B(Xi, ti), Υ = RN ), there exist constants C1 = C1(N,n,C0) > 3,

C2 = C2(N,n,C0) > 1 and some (n, 10n ti
C1

)-simplex T = Δ(x0, . . . , xn) ∈ F ∩ Bi

with

μ
(
B

(
xκ,

ti
C1

)
∩Bi

)
≥ tni

C2
and B

(
xκ,

ti
C1

)
⊂ 2Bi ⊂ kBi = B(Xi, kti),(7.15)
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for all κ = 0, . . . , n, and we used that C1 > 3 and k ≥ k̃ ≥ 2 (k̃ is defined on page

1227). We set C ′ := 400C2, B̃κ := B
(
xκ,

ti
C1

)
and define for all κ = 0, . . . , n,

Zκ :=
{
z ∈ B̃κ ∩ F

∣∣d(z, Pi) ≤ C ′εdiamRi

}
.(7.16)

We have (Xi, ti) ∈ Stotal and hence βPi

1;k(Xi, ti) ≤ 2ε. Using this and Lemma 6.14,
we obtain with Chebyshev’s inequality

μ(B̃κ \ Zκ) <
tn+1
i

C ′εdiamRi
βPi

1;k(Xi, ti) ≤
tn+1
i 100

C ′εti
2ε =

tni
2C2

.

Using Lemma 6.14 again, we get

μ(Zκ) ≥ μ(B̃κ)− μ(B̃κ \ Zκ)
(7.15)

≥ tni
C2

− tni
2C2

=
tni
2C2

≥ diamRn
i

2n+1C2
> 0.

(7.17)

For all κ ∈ {0, . . . , n}, let zκ ∈ Zκ ⊂ B̃κ and set yκ := πPi
(zκ). Since ε ≤ ε̃ ≤ 1

2C′C1

(ε̃ was chosen on page 1227), we deduce that

d(yκ, xκ) ≤ d(yκ, zκ) + d(zκ, xκ) ≤ d(zκ, Pi) +
ti
C1

(7.16)

≤ C ′εdiamRi +
ti
C1

≤ 2
ti
C1

.

Due to Lemma 2.8, the simplex S = Δ(y0, . . . , yn) is an (n, 6n ti
C1

)-simplex, and,

using the triangle inequality, we obtain S ⊂ 2Bi. Now, with Lemma 2.16 (C = C1

6n ,

Ĉ = 2, t = ti, m = n, x = Xi) there exists some orthonormal basis (o1, . . . , on) of

Pi−y0 and there exist γl,r ∈ R with ol =
∑l

r=1 γl,r(yr−y0) and |γl,r| ≤
(
2C1

3

)n C1

6nti
for all 1 ≤ l ≤ n and 1 ≤ r ≤ l.

Now let w ∈ Pi with d(w,Bi) ≤ C4 diamRi. We obtain

w − y0 =

n∑
κ=1

〈w − y0, oκ〉oκ =

n∑
κ=1

〈w − y0, oκ〉
κ∑

r=1

γκ,r(yr − y0),(7.18)

and so, with Remark 2.1 (b = w, P = P̂ ) and |w − y0| ≤ d(w,Bi) + diamBi +
d(Bi, y0) ≤ Cti, we get

d(w, P̂ )
(7.18)

≤ nCCn+1
1

n∑
r=1

(
d(yr, zr) + d(zr, P̂ )

)
(7.16)

≤ n2CCn+1
1 C ′εdiamRi + nCCn+1

1

n∑
r=0

d(zr, P̂ ).(7.19)

The previous results are valid for arbitrary zκ ∈ Zκ; hence we get

d(w, P̂ )− n2CCn+1
1 C

′
εdiamRi

(7.19)

≤

⎛⎝ 1∏n
r=0 μ(Zr)

∫
Z0

· · ·
∫
Zn

(
nCCn+1

1

n∑
r=0

d(zr, P̂ )

) 1
3

dμ(zn) . . .dμ(z0)

⎞⎠3

≤ nCCn+1
1

(
n∑

r=0

1

μ(Zr)

∫
Zr

d(zr, P̂ )
1
3 dμ(zr)

)3

(7.17)(7.15)

≤ nCCn+1
1

(
2n+1C2

diamRn
i

∫
2Bi

d(z, P̂ )
1
3 dμ(z)

)3

,
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where we used that the sets Zr are disjoint. Since w ∈ Pi was arbitrarily chosen
with d(w,Bi) ≤ C4 diamRi, we get the statement. �

Lemma 7.24. There exists some constant C = C(n,C0) so that∑
i∈I(q,t)

(
diamRi

t

)n
1

t

(
1

(diamRi)n

∫
2Bi

d(z, P̂ )
1
3dμ(z)

)3

≤ Cβ1;k(X, t).

Proof. Let i ∈ I(q, t) (I(q, t) is defined on page 1228) and x ∈ 2Bi. We define

J(i) :=
{
j ∈ I(q, t)

∣∣diamBj ≤ diamBi, 2Bi ∩ 2Bj �= ∅
}

and
Ξi(x) :=

∑
j∈J(i)

χ2Bj
(x).

First, we prove some intermediate results:
I. For all i ∈ I(q, t), we have

∫
2Bi

Ξi(x)dμ(x) ≤ C(n,C0)(diamRi)
n. This

implies that Ξi(x) < ∞ for μ-almost all x ∈ 2Bi.

Proof of I. Let i ∈ I(q, t) and j ∈ J(i). With Lemma 6.14 applied to j and the
definition of J(i), we deduce that diamRj ≤ 200 diamRi. Using Lemma 6.14 and
j ∈ J(i), we get d(Ri, Rj) ≤ C diamRi. This implies for some large enough constant

C > 1 that Rj ⊂ CRi. Since the cubes R̊j are disjoint (see Lemma 6.13(ii)), we
get with Lemma A.4:∑

j∈J(i)

(diamRj)
n =

∑
j∈J(i)

(
√
n)nHn(Rj) ≤ (

√
n)nHn

(
CRi

)
= C(n)(diamRi)

n.

In the following, we apply Fatou’s lemma [7, 1.3, Thm. 1] to interchange the in-
tegration with the summation. With (B) from page 1208 and Lemma 6.14, we
obtain ∫

2Bi

Ξi(x)dμ(x) ≤
∑

j∈J(i)

μ(2Bj)
(B)

≤ C(n,C0)
∑

j∈J(i)

(diamRj)
n

≤ C(n,C0)(diamRi)
n. �

II. Let x∈RN and m∈N. There exists some C=C(n)>1 with
∑

i∈I(q,t)
Ξi(x)=m

χ2Bi
(x)

≤ C.

Proof of II. Let l, o ∈ I(q, t) with x ∈ 2Bl∩2Bo and Ξl(x) = m = Ξo(x). Without
loss of generality, we have diamBl ≤ diamBo.

Assume that diamBl < diamBo. We define J(l, x) :=
{
ι ∈ J(l)

∣∣x ∈ 2Bι

}
. Let

j ∈ J(l, x). By definition of J(l), we get diamBj ≤ diamBl < diamBo and x ∈
2Bj . Since x ∈ 2Bo, it follows that 2Bo∩2Bj �= ∅ and, because diamBj < diamBo,
we get j ∈ J(o, x). Furthermore, we have o ∈ J(o, x), but o /∈ J(l, x) because by
our assumption we have diamBl < diamBo. So we get J(l, x) � J(o, x). Now we
obtain a contradiction:

m = Ξl(x) =
∑

j∈J(l)

χ2Bj
(x) =

∑
j∈J(l,x)

χ2Bj
(x) <

∑
j∈J(o,x)

χ2Bj
(x) = Ξo(x) = m.

Hence there exists some λ = λ(x,m) ∈ (0,∞) so that, for l ∈ I(q, t) with x ∈ 2Bl

and Ξl(x) = m, we have diamBl = λ, and, we obtain with Lemma 6.14 that λ ≤
200 diamRl ≤ 200λ and d(Rl, π(Bl)) ≤ 100λ. Using d(Rl, π(x)) ≤ d(Rl, π(Bl)) +
2 diamBl ≤ 102λ, we get Rl ⊂ B(π(x), 103λ) ∩ P0. With Lemma A.4, we have



INTEGRAL MENGER CURVATURE AND RECTIFIABILITY 1233

Hn(Rl) ≥ (
√
n)−n( 1

200λ)
n, and according to Lemma 6.13(ii) the cubes Rl have

disjoint interior. This implies that there exists some constant C(n) so that there
are at most C(n) indices l ∈ I(q, t) with Ξl(x) = m and x ∈ 2Bl. This implies the
assertion. �

III. We have i ∈ J(i) and so Ξi(x) �= 0 for all x ∈ 2Bi. Hence, with x ∈ RN , the
term

χ2Bi
(x)Ξi(x)

−2 :=

{
Ξi(x)

−2 if x ∈ 2Bi,

0 otherwise

is well-defined. Now there exists some constant C(n) so that, for all x ∈ RN , we
get ∑

i∈I(q,t)
χ

2Bi
(x)Ξi(x)

−2 =

∞∑
m=1

∑
i∈I(q,t)
Ξi(x)=m

χ
2Bi

(x)
1

m2

II
≤ C(n).

IV. Let i ∈ I(q, t). Since i ∈ J(i), we have Ξi(x) �= 0 for x ∈ 2Bi. We obtain
with Hölder’s inequality⎡⎣ 1

(diamRi)n

∫
2Bi

d(z, P̂ )
1
3Ξi(z)

−2
3 Ξi(z)

2
3 dμ(z)

⎤⎦3

I
≤ C(n,C0)

1

(diamRi)n

∫
2Bi

d(z, P̂ )Ξi(z)
−2dμ(z).

V. We have
1

tn+1

∫
⋃

i∈I(q,t) 2Bi

d(z, P̂ )dμ(z) ≤ 2β1;k(X, t),

where X ∈ B(X̃(q), 200t) (cf. page 1228).

Proof of III–V. At first, we prove that there exists some constant Ĉ > 1 so that
for i ∈ I(q, t) we have 2Bi ⊂ B(X, Ĉt). Let i ∈ I(q, t). By definition of I(q, t) (see
page 1228), we obtain Ri ∩ B(q, t) �= ∅. Let ũ ∈ Ri ∩ B(q, t). Since D(q)

100 < t (see
page 1228), we get, using the triangle inequality, D(ũ) ≤ D(q) + d(q, ũ) < 101t. It
follows with Lemma 6.13(i) that

diamRi ≤ 1
10D(ũ) < 11t.(7.20)

With Lemma 6.14 and (7.8), we get (X ∈ B(X̃, 200t); see page 1228)

d(π(Bi), π(X)) ≤ d(π(Bi), ũ) + d(ũ, q) + d(q, π(X̃)) + d(π(X̃), π(X))

(7.8)

≤ d(π(Bi), Ri) + diamRi + t+ 200t+ d(X̃,X)
(7.20)

≤ Ct.(7.21)

Now let x ∈ 2Bi = B(Xi, 2ti). Since (Xi, ti) ∈ S, using Lemma 6.14 and (7.20),

we get d(x) < 4400t. Due to X ∈ B(X̃, 200t) ∩ F and (7.8), we deduce that
d(X) ≤ 400t. With Lemma 6.14 and estimates (7.20) and (7.21), we obtain with

triangle inequality d(π(x), π(X)) ≤ Ct. Now there exists some constant Ĉ > 1 so

that we get with Lemma 6.11 d(x,X) ≤ Ĉt. All in all we have proven that, for all

i ∈ I(q, t), we have 2Bi ⊂ B(X, Ĉt). Since k ≥ k̃ ≥ Ĉ (see page 1227), we get the
assertion with condition (7.9) from page 1228. �
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Now, Lemma 7.24 can be proven by applying IV, III, and V and using the
monotone convergence theorem [7, 1.3, Thm. 2] to interchange the summation and
the integration. �

Now we can give some estimate for γ(q, t), where q ∈ U10 and
D(q)
100 < t < 2. Using

the inequalities (7.10), (7.12), (7.13), (7.14), Lemma 7.23 and Lemma 7.24, we get

using T ≤ 200t (cf. Lemma 7.19) for every X ∈ B(X̃, T ) ∩ F ⊂ B(X̃, 200t) ∩ F :

γ(q, t) ≤ C(N,n,C0) β1;k(X, t) + C(N,n,C0) ε
∑

i∈I(q,t)

(
diamRi

t

)n+1

.

With Lemma 7.19, we get (X̃, T ) ∈ S ⊂ Stotal and 20t ≤ T ≤ 200t. Using this, the
previous estimate, the definition of δ = δ(n) on page 1208 and (B) from page 1208,
we get

γ(q, t)p ≤ 2

δTn

∫
B(X̃,T )

γ(q, t)pdμ(X)

≤ C
1

tn

∫
B(X̃,200t)

β1;k(X, t)pdμ(X) + Cεp

⎛⎝ ∑
i∈I(q,t)

(
diamRi

t

)n+1
⎞⎠p

,

where C = C(N,n, p, C0). We recall that for every q ∈ U10 there exists some

X̃ = X̃(q) (cf. Lemma 7.19) such that the previous inequality is valid. This implies∫
U10

∫ 2

D(q)
100

γ(q, t)p
dt

t
dHn(q) ≤ C(N,n, p, C0) a+ C(N,n, p, C0) ε

p b,(7.22)

where

a :=

∫
U10

∫ 2

D(q)
100

1

tn

∫
B(X̃(q),200t)

β1;k(X, t)pdμ(X)
dt

t
dHn(q),

b :=

∫
U10

∫ 2

D(q)
100

⎛⎝ ∑
i∈I(q,t)

(
diamRi

t

)n+1
⎞⎠p

dt

t
dHn(q).

To estimate a and b, we need the following lemma.

Lemma 7.25. Let q ∈ U10,
D(q)
100 ≤ t ≤ 2 and X ∈ B(X̃(q), 200t) ∩ F , where

X̃(q) is given by Lemma 7.19. Then d(π(X), q) ≤ 400t and there exists some λ̃ =

λ̃(N,n,C0)>0 so that, with k0=401, we have δ̃k0
(B(X, t))=supy∈B(X,k0t)

μ(B(y,t))
tn

≥ λ̃, where δ̃k0
(B(X, t)) was defined on page 1196. Furthermore, there holds for all

i ∈ I(q, t) that
d(q, Ri) ≤ t, diamRi < 11t,(7.23)

and there exists some constant C = C(n) with∑
i∈I(q,t)

(
diamRi

t

)n+1

≤ C,
∑
i∈I12

(diamRi)
n ≤ C.(7.24)

Proof. Let q ∈ U10,
D(q)
100 ≤ t ≤ 2 andX ∈ B(X̃(q), 200t)∩F . We have d(X, X̃(q)) ≤

200t and, with (7.8), we get d(π(X̃(q)), q) ≤ 200t. This implies d(π(X), q) ≤ 400t

by using triangle inequality. With (7.8), we obtain (X̃(q), T ) ∈ S ⊂ Stotal and, by
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definition of Stotal, we conclude that δ(B(X̃(q), T )) ≥ δ
2 . We have B(X̃(q), T ) ⊂

B(X, 400t) and hence with (7.8) we get δ(B(X, 400t)) ≥ δ
2·20n . Applying Corol-

lary 4.3(ii) with λ = δ
2·20n on B(X, 400t), we get constants C1 = C1(N,n,C0),

C2 = C2(N,n,C0) and in particular one ball B(x, s) with s = 400t
C1

and

μ(B(x, s) ∩B(X, 400t)) ≥ (400t)n

C2
.(7.25)

We have δ ≤ 2
50n (cf. (6.1)), and Lemma 4.2 gives us C1 > 400. This yields s < t.

From (7.25), we get B(x, s) ∩ B(X, 400t) �= ∅, which implies d(x,X) < 401t, and

with (7.25) we get supy∈B(X,401t) δ(B(y, t)) ≥ 400n

C2
=: λ̃. Let i ∈ I(q, t). Due to

the definition of I(q, t) (see page 1228), we have d(q, Ri) ≤ t and we can choose
some ũ ∈ Ri ∩ B(q, t). With Lemma 6.13(i), we obtain 10 diamRi ≤ (D(q) +
d(q, ũ)) < 11t. The intervals Ri have disjoint interior (see Lemma 6.13(ii)) and,
from Ri ∩ B(q, t) �= ∅ for all i ∈ I(q, t), we get Ri ⊂ B(q, 12t). With Lemma A.4,
this implies ∑

i∈I(q,t)

(
diamRi

t

)n+1
(7.23)
<

11

tn

∑
i∈I(q,t)

(diamRi)
n

=
11

tn

∑
i∈I(q,t)

(
√
n)nHn(Ri) = C(n).

Now let i ∈ I12. We have Ri ∩ B(0, 12) �= ∅. If (Y, r) ∈ S ⊂ Stotal, we get
Y ∈ F ⊂ B(0, 5) (cf. (A) on page 1208) and hence we obtain d(π(Y ), 0) ≤ 5 as well
as r ≤ 50. With ṽ ∈ Ri ∩B(0, 12) and Lemma 6.13(i), we get

diamRi ≤
1

10
D(ṽ) =

1

10
inf

(Y,r)∈S
(d(π(Y ), ṽ) + r) ≤ 1

10
(5 + 12 + 50) < 7.

Hence, for all i ∈ I12, we have Ri ⊂ B(0, 19), and the cubes Ri have disjoint interior
(cf. Lemma 6.13(ii)). With Lemma A.4, we deduce that

∑
i∈I12

(diamRi)
n =

C(n). �

To control the terms a and b we will use Fubini’s theorem [7, 1.4, Thm. 1] in the

following abbreviated by (F). Now, using Lemma 7.25 and Corollary 4.8 (λ = λ̃,
k0 = 401), we conclude that

a
(F)

≤
∫
F

∫ 2

0

1

tn

∫
U10

χ{d(π(X),q)≤400t}dHn(q) χ{δ̃k0
(B(X,t))≥λ̃}β1;k(X, t)p

dt

t
dμ(X)

≤ C(N,n,K, p, C0, k) MKp(μ).

Now we consider the integral b. We use Fatou’s lemma [7, 1.3, Thm. 1] to inter-
change the summation with the integration:

b
(7.24)(7.23)

≤ C

∫
U10

∫ 2

D(q)
100

∑
i∈I12

χ{
t>

diamRi
11 ,d(q,Ri)≤t

}
(
diamRi

t

)n+1
dt

t
dHn(q)

(F )

≤ C
∑
i∈I12

(diamRi)
n+1

∫ ∞

diam Ri
11

∫
U10

χ{d(q,Ri)≤t}dHn(q)
dt

tn+2

(7.24)

≤ C(n, p).
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Due to Lemma 6.13(ii) the proof of Theorem 7.17 is completed by applying Lemma

7.18, (7.7) and (C) from page 1208 because MKp(μ)
(C)

≤ η < εp (see pages 1208 and
1227). �

8. Z is not too small

Our aim is to prove Theorem 5.4. In Definition 6.3, we defined a partition of the
support F of our measure μ in four parts, namely Z, F1, F2, F3. Then, in section
6.4, we constructed some function A, the graph Γ of which covers the set Z. To
get our main result, we need to know that we covered a major part of F . In this
last part of the proof of Theorem 5.4, we show that the μ-measure of F1, F2, F3 is
quite small. In particular, we deduce that μ(F1 ∪ F2 ∪ F3) ≤ 1

100 . As stated at the
beginning of section 6.1, this completes the proof of Theorem 5.4.

8.1. Most of F is close to the graph of A. With K := 2 (104 · 10 · 6 + 214), we
define the set G by

{x ∈ F \ Z | ∀i ∈ I12 with π(x) ∈ 3Ri, we have x /∈ KBi}
∪ {x ∈ F \ Z | π(x) ∈ π(Z)} .

At first, we show that the μ-measure of G is small.

Lemma 8.1. Let 0 < α ≤ 1
280 . There exist some ε̃ = ε̃(N,n,C0, α) so that, if

η < 2ε̃ and k ≥ 4, there exists some constant C = C(N,n,K, p, C0) so that, for all
ε ∈ [η2 , ε̃), we have

μ(G) ≤ CMKp(μ)
(C)

≤ Cη,

where the condition (C) was given on page 1208.

Proof. Let 0 < α ≤ 1
280 and ε̃ := min{ε̄, α

C̄
} where ε̄ is given by Lemma 6.11 and

C̄ = C̄(N,n,C0) is a fixed constant defined in this proof on page 1237. Furthermore
let η < 2ε̃, k ≥ 4 and η ≤ 2ε < 2ε̃.

Let x ∈ G. If x ∈ G \ π−1(π(Z)) ⊂ F ⊂ B(0, 5), with Lemma 6.13(ii), there
exists some i ∈ I12 with π(x) ∈ Ri ⊂ 2Ri. Let Xi be the centre of Bi (cf. Lemma
6.14). We set

X(x) :=

{
Xi if x ∈ G \ π−1(π(Z)),

π(x) +A(π(x)) if x ∈ G ∩ π−1(π(Z)).

Claim 1. For all x ∈ G and X = X(x) defined as above, we have

d(x,X) < 7d(x), d(π(x), π(X)) ≤ d(x)
10 , d(x)

2 ≤ d(X, x),
(
X, d(x)10

)
∈ S.(8.1)

Proof of Claim 1.
1. Case: x ∈ G \ π−1(π(Z)). Due to the definition of G and π(x) ∈ 2Ri ⊂ 3Ri,

we have x /∈ KBi. By adding some q ∈ Ri with the triangle inequality and using
Lemma 6.14 we get d(π(x), π(Xi)) ≤ 104 diamBi. With Lemma 6.14, we know(
Xi,

diamBi

2

)
∈ S and hence we get d(Xi) < diamBi. Using x /∈ KBi and Lemma

6.11, we get K · diamBi

2 < d(x,Xi) < 6d(x)+214 diamBi, which yields by definition

of K (cf. the beginning of this subsection) 104 diamBi <
d(x)
10 . From the previous

two estimates, we get d(x,Xi) < 7d(x); i.e., the first inequality holds in this case.

Furthermore, we have the second one since d(π(x), π(Xi)) ≤ 104 diamBi < d(x)
10 .
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We have
(
Xi,

diamBi

2

)
∈ S, so we get d(x) ≤ d(Xi, x) +

diamBi

2 < d(Xi, x) +
d(x)
2 ,

and hence the third inequality holds in this case. Due to Lemma 6.9, we have
diamBi

2 < d(x)
10 < 60

10 < 50, so that with Lemma 6.2(ii) we deduce that
(
X, d(x)10

)
∈ S.

2. Case: x ∈ G ∩ π−1(π(Z)). We have π(x) ∈ π(Z) and hence X = π(x) +
A(π(x)) ∈ Z (cf. Definition 6.20). By definition of Z and Lemma 6.2(i), we obtain

(X, σ) ∈ S for all σ ∈ (0, 50) and hence d(x)
2 ≤ d(X, x) + σ, which establishes

the third estimate. Moreover, we have d(π(X), π(x)) = d(π(x), π(x)) = 0. Using
Lemma 6.10, we obtain d(X) = 0 and hence we get with Lemma 6.11 d(x,X) ≤
6d(x). Furthermore, we have with Lemma 6.9 that d(x)

10 ≤ 6 < 50 so that by

definition of Z, we get
(
X, d(x)10

)
∈ S. Claim 1 is proved.

Let Px := P(
X,

d(x)
10

) be the plane associated to B(X, d(x)10 ) (cf. Definition 6.1).

We define

Υ :=
{
u ∈ B

(
X, d(x)10

) ∣∣∣d(u, Px) ≤ 8
δ
d(x)
10 ε

}
.(8.2)

Due to Definition 6.1 we have βPx

1;k

(
X, d(x)10

)
≤ 2ε and hence we get using Cheby-

shev’s inequality

μ
(
B

(
X, d(x)10

)
\Υ

)
≤ δ

8ε

(
d(x)
10

)n

βPx

1;k

(
X, d(x)10

)
≤ δ

4

(
d(x)
10

)n

.

Since Υ ⊂ B
(
X, d(x)10

)
and δ

(
B
(
X, d(x)10

))
≥ 1

2δ (cf. Definition 6.1 of Stotal), we

obtain

μ
(
B

(
X, d(x)10

)
∩Υ

)
≥ μ

(
B

(
X, d(x)10

))
− μ

(
B

(
X, d(x)10

)
\Υ

)
≥ δ

4

(
d(x)
10

)n

.

With Corollary 4.3 (λ = δ
4 , t =

d(x)
10 ), there exist constants C1 = C1(N,n,C0), C2 =

C2(N,n,C0) and an
(
n, 10n d(x)

10C1

)
-simplex T = Δ(x0, . . . , xn) ∈ F∩B

(
X, d(x)10

)
∩Υ

so that for all j ∈ {0, . . . , n},

μ
(
B

(
xj ,

d(x)
10C1

)
∩B

(
X, d(x)10

)
∩Υ

)
≥

(
d(x)
10

)n
1
C2

.(8.3)

Let yj ∈ B
(
xj ,

d(x)
10C1

)
∩ Υ for all j ∈ {0, . . . , n}. By applying Lemma 2.8 (n + 1)

times, we find that Δ(y0, . . . , yn) is an
(
n, 8n d(x)

10C1

)
-simplex.

Claim 2. For all x ∈ G, we have d(x, aff(y0, . . . , yn)) ≥ d(x)
4 .

Proof of Claim 2. Let Py := aff(y0, . . . , yn) be the plane through y0, . . . , yn. Ap-

plying Lemma 2.17 (C = C1

8n , Ĉ = 1, t = d(x)
10 , σ = 8

δ ε, P1 = Py, P2 = Px,
S = Δ(y0, . . . , yn), x = X, m = n) yields �(Py, Px) ≤ α, where we use that
ε ≤ ε̃ ≤ α

C̄
and C̄ is given by Lemma 2.17 . So, with Definition 6.1, we obtain

�(Py, P0) ≤ 2α. Let P̂y ∈ P(N,n) be the n-dimensional plane parallel to Py with

X ∈ P̂y, and P̂0 ∈ P(N,n) be the plane parallel to P0 with X ∈ P̂0. We have
α ≤ 1

280 , and hence

d(πP̂y
(x), πP̂0

(x)) = |πP̂y−X(x−X)−πP̂0−X(x−X)| ≤ d(x,X) �(P̂y, P̂0)
(8.1)
< d(x)

20 .

Furthermore, with (8.1), we get d(πP̂0
(x), X) = d(π(x), π(X)) ≤ d(x)

10 . Using the

triangle inequality, the previous two estimates imply d(πP̂y
(x), X) ≤ d(x)

20 + d(x)
10 .
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Since y0 ∈ Υ ⊂ B(X, d(x)10 ) we have d(Py, P̂y) = d(X,Py) ≤ d(X, y0) ≤ d(x)
10 , and

hence

d(x)
2

(8.1)

≤ d(x, Py) + d(Py, P̂y) + d(πP̂y
(x), X) ≤ d(x, Py) +

d(x)
4 ,

and we gain d(x, Py) ≥ d(x)
4 . Claim 2 is proved.

With (8.1) and d(yj , X) ≤ d(yj , xj)+d(xj , X) ≤ d(x)
10C1

+ d(x)
10 , we obtain y0, . . . yn,

x ∈ B(X, 7d(x)), which is a subset of B(X, C1

8n
d(x)
10 ), where we used the explicit

characterisation of C1 given in Lemma 4.2. Due to the second property of a μ-
proper integrand (see Definition 3.1), there exists some C̃ = C̃(N,n,K, p, C0) ≥ 1
so that we get with Claim 2

Kp(y0, . . . , yn, x) ≥ C̃−1

(
d(x)

10

)−n(n+1)
(
d(x, aff(y0, . . . , yn))

d(x)
10

)p

> C̃−1

(
d(x)

10

)−n(n+1)

.

This estimate holds for all yi ∈ B
(
xi,

d(x)
10C1

)
∩ Υ. By restricting the integration to

the balls B
(
xi,

d(x)
10C1

)
and using the previous estimate as well as estimate (8.3), we

get ∫
· · ·

∫
Kp(y0, . . . , yn, x)dμ(y0) . . .dμ(yn) ≥ C̃−1C

−(n+1)
2 .

We have proven the previous inequality for all x ∈ G, so finally we deduce with (C)
from page 1208 that there exists some constant C = C(N,n,K, p, C0) so that

μ(G) ≤ C̃C
(n+1)
2

∫
G

∫
· · ·

∫
Kp(y0, . . . , yn, x)dμ(y0) . . .dμ(yn)dμ(x)

(C)

≤ Cη. �

Lemma 8.2. Let α, ε > 0. If η ≤ 2ε, we have (20K)−1d(x) ≤ D(π(x)) ≤ d(x) for
all x ∈ F \G, where K is the constant defined on page 1236 at the beginning of this
subsection.

Proof. Let x ∈ F \ G. We have D(π(x)) = infy∈π−1(π(x)) d(y) ≤ d(x). If x ∈ Z,
Lemma 6.10 implies d(x) = 0, so the statement is trivial. Now we assume x /∈ Z.
Since x /∈ G ∪Z, by definition of G, there exists some i ∈ I12 with π(x) ∈ 3Ri and
x ∈ KBi. We have Bi = B(Xi, ti) where (Xi, ti) ∈ S (see Lemma 6.14) and K > 1
(see page 1236), so we obtain d(x) ≤ d(Xi, x)+ ti < K diamBi. Now, with Lemma
6.13(i) and 6.14, we deduce that D(π(x)) ≥ 1

20K d(x). �

Lemma 8.3. Let 0 < α ≤ 1
4 . There exists some ε̄ = ε̄(N,n,C0) and some k̃ ≥ 4

so that, if η < 2ε̄ and k ≥ k̃, for all ε ∈ [η2 , ε̄) we have that the following is true.

There exists some constant C = C(n) so that, for all x ∈ F with t ≥ d(x)
10 , we have∫

B(x,t)\G
d
(
u, π(u) +A(π(u))

)
dμ(u) ≤ Cεtn+1.

Proof. Let 0 < α ≤ 1
4 . We choose some ε with η ≤ 2ε < 2ε̄ and some k ≥ k̃ :=

max{k̄, C̃}, where ε̄ and k̄ are given by Lemma 6.21 and C̃ is a fixed constant
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introduced in step VI of this proof. Let x ∈ F and t ≥ d(x)
10 . We define

I(x, t) :=
{
i ∈ I12|(3Ri × P⊥

0 ) ∩B(x, t) ∩ (F \G) �= ∅
}

where 3Ri × P⊥
0 := {x ∈ RN |π(x) ∈ 3Ri}. At first, we prove some intermediate

results:
I. Due to the definition of G we have

(B(x, t) ∩ F ) \ (G ∪ Z) ⊂
⋃

i∈I(x,t)

(3Ri × P⊥
0 ) ∩KBi.

II. Let u ∈ 3Ri × P⊥
0 . Using Lemma 6.13(iv) implies that

∑
j∈I12

φj(π(u)) is a
finite sum.

III. Let i ∈ I(x, t) and j ∈ I12. We define φi,j to be 0 if 3Ri and 3Rj are
disjoint and 1 if they are not disjoint. We have φj(π(u)) ≤ 1 = φi,j for all u ∈
(3Ri × P⊥

0 ) ∩KBi, since if φj(π(u)) �= 0 the definition of φj (see page 1215) gives
us π(u) ∈ 3Rj and because π(u) ∈ 3Ri, we deduce that 3Ri ∩ 3Rj �= ∅.

IV. If φi,j �= 0, we can apply Lemma 6.13(iii) and Lemma 6.21(i). Hence, using
Lemma 6.14, the size of Bi as well as the distance of Bi to Bj are comparable to the

size of Bj . Consequently, there exists some constant C̃ so that KBi ⊂ C̃Bj ⊂ kBj .
V. If u ∈ kBj , we have |π⊥(u)−Aj(π(u))| < 2d(u, Pj). We recall that Pj is the

graph of the affine map Aj (cf. Definition 6.17 and Lemma 6.18).

Proof of I–V. We set P̂0 := P0+Aj(π(u)) and v := π(u)+Aj(π(u)) = πP̂0
(u). We

get

|πPj
(u)− v| = |πPj−v(u− v)− πP̂0−v(u− v)| ≤ |u− v| �(Pj , P0).

Using this and �(Pj , P0) ≤ α < 1
2 (cf. Definition 6.17) we obtain |u − v| <

d(u, Pj) +
1
2 |u− v| and hence |π⊥(u)−Aj(π(u))| = |u− v| < 2d(u, Pj). �

If u ∈ Z, the definition of A (see page 1215) yields d(u, π(u) + A(π(u))) = 0.
Using Lemma 6.19 and Definition 6.20, we get∫

B(x,t)\G
d(u, π(u) + A(π(u)))dμ(u)

≤
∫
B(x,t)\(G∪Z)

∑
j∈I12

φj(π(u))
∣∣π⊥(u)−Aj(π(u))

∣∣dμ(u).
Using I to V we obtain∫
B(x,t)\G

d(u, π(u)+A(π(u)))dμ(u) ≤ 2
∑

i∈I(x,t)

∑
j∈I12

φi,jt
n+1
j

1

tnj

∫
kBj

d (u, Pj)

tj
dμ(u).

Now we get the statement by using the following five results.

VI. Lemma 6.21 and the definition of Stotal imply β
Pj

1;k(Bj) ≤ 2ε.

VII. Let i ∈ I(x, t) and j ∈ I12. If φi,j �= 0, we conclude that 3Ri ∩ 3Rj �= ∅.
Hence, with Lemma 6.13(iii) and Lemma 6.14, we deduce that 2tj = diamBj ≤
1000 diamRi.

VIII. For i ∈ I(x, t), we have with Lemma 6.13(iv) that
∑

j∈I12
φi,j ≤ (180)n.

IX. For i ∈ I(x, t), there exists some y ∈ B(x, t) ∩ (F \G) with π(y) ∈ 3Ri. We

obtain with Lemma 6.13, Lemma 8.2 and our assumption t ≥ d(x)
10 that 10 diamRi ≤

d(x) + d(x, y) ≤ 11t.
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X. Let i ∈ I(x, t). With IX we obtain diamRi < 2t and, because (3Ri × P⊥
0 ) ∩

B(x, t) �= ∅, we get Ri ⊂ B(π(x), t+ diam3Ri) ∩ P0 ⊂ B(π(x), 7t)∩ P0. Moreover,
with Lemma 6.13(ii), the primitive cells Ri have disjoint interior and hence we get
with Lemma A.4 (we recall that ωn denotes the volume of the n-dimensional unit
sphere) ∑

i∈I(x,t)

(diamRi)
n ≤

√
n
nHn(B(π(x), 7t) ∩ P0) =

√
n
n
ωn(7t)

n.
�

Definition 8.4. We define F̃ :=
{
x ∈ F \G | d(x, π(x) +A(π(x))) ≤ ε

1
2 d(x)

}
.

Theorem 8.5. Let 0 < α ≤ 1
4 . There exist some ε̂ = ε̂(N,n,C0) ≤ 1

4 and some k̃ ≥
4 so that if η < 2ε̂ and k ≥ k̃, there exists some constant C5 = C5(N,n,K, p, C0)

so that, for all ε ∈ [η2 , ε̂), we have μ(F \ F̃ ) ≤ C5ε
1
2 .

Proof. Let 0 < α ≤ 1
4 . We choose some ε with η ≤ 2ε < 2ε̂ := min{2ε̃, 2ε̄, 12} and

some k ≥ k̃ where ε̃ is given by Lemma 8.1 and ε̄ and k̃ are given by Lemma 8.3.
At first, we prove some intermediate results:
I. We have Z ⊂ F̃ because for x ∈ Z the definition of A on Z (see Definition

6.20) implies that d(x, π(x) +A(π(x))) = d(x, x) = 0.

II. If x ∈ F \ (F̃ ∪ G), we conclude with I that x /∈ Z and, with Lemma

6.10, we deduce that d(x) �= 0. So G =
{
B

(
x, d(x)

10

) ∣∣∣x ∈ F \ (F̃ ∪G)
}

is a set

of nondegenerate balls. For x ∈ F ⊂ B(0, 5), we have d(x) ≤ 60 (see Lemma
6.9) so that we can apply Besicovitch’s covering theorem [7, 1.5.2, Thm. 2] to
G and get N0 = N0(N) families Bm ⊂ G,m = 1, . . . , N0, of disjoint balls with

F \ (F̃ ∪G) ⊂
⋃N0

m=1

⋃
B∈Bm

B.

III. Since d is 1-Lipschitz (Lemma 6.8), for all u ∈ B
(
x, d(x)

10

)
, d(x) − d(u) ≤

d(x, u) ≤ d(x)
10 and hence 1

d(u) ≤
10
9

1
d(x) <

2
d(x) .

IV. Let 1 ≤ m ≤ N0 and let Bx = B(x, d(x)10 ) and By = B(y, d(y)
10 ) be two balls

in Bm. Then we either have

a) π
(

1
40KBx

)
∩ π

(
1

40KBy

)
= ∅ or

b) if 2d(x) ≥ d(y), then By ⊂ 200Bx and diamBy > (40K)−1 diamBx,

where K is the constant from page 1236.

Proof of I–IV. Let π
(

1
40KBx

)
∩π

(
1

40KBy

)
�= ∅ and 2d(x) ≥ d(y). We deduce with

Lemma 6.11 d(x, y) < 19d(x), which implies By ⊂ B
(
x, 19d(x) + d(y)

10

)
= 200Bx.

With Lemma 8.2, we get d(x)
20K ≤ D(π(y)) + d(π(x), π(y)) < d(y) + d(x)

40K , and hence

d(y) > (40K)−1d(x). All in all, we have proven that either case a) or case b) is
true. �

V. There exists some constant C = C(n) so that
∑

B∈Bm
(diamB)n ≤ C for all

1 ≤ m ≤ N0.

Proof of V. Let 1 ≤ m ≤ N0. We recursively construct for every m some sequence
of numbers, some sequence of balls and some sequence of sets. At first, we define
the initial elements. Let d1m := supB∈Bm

diamB. We have d1m < ∞ because, for
all x ∈ F ⊂ B(0, 5), we have with Lemma 6.9 that d(x) ≤ 60. Now we choose
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B1
m ∈ Bm with diamB1

m ≥ d1
m

2 and define

B1
m :=

{
B ∈ Bm

∣∣∣π (
1

40KB1
m

)
∩ π

(
1

40KB
)
�= ∅

}
.

We continue these sequences recursively. We set di+1
m = supB′∈Bm\

⋃i
j=1 Bj

m
diamB′,

choose Bi+1
m ∈ Bm \

⋃i
j=1 Bj

m with diamBi+1
m ≥ di+1

m

2 and define

Bi+1
m :=

{
B ∈ Bm \

i⋃
j=1

Bj
m

∣∣∣π (
1

40KBi+1
m

)
∩ π

(
1

40KB
)
�= ∅

}
.

If there exists some l ∈ N so that eventually Bm \
⋃l

j=1 Bj
m = ∅, we set Bi

m := ∅ for

all i ≥ l and interrupt the sequences (dim) and (Bi
m). We have the following results:

(i) For all l ∈ N and Bl
m = B

(
xl
m,

d(xl
m)

10

)
, we have with Lemma 6.9 and xl

m ∈
F ⊂ B(0, 5) that

d(xl
m)

10 ≤ 6. Hence we get Bl
m ⊂ B(0, 11).

(ii) For all 1 ≤ m ≤ N0, we have
⋃∞

i=1 Bi
m = Bm.

Proof of (i) and (ii). If there exist only finitely many dlm, the construction implies
Bm ⊂

⋃∞
j=1 Bj

m.

Now we assume that there exist infinitely many dlm. Since Bm is a family of disjoint
balls, the set {Bl

m|l ∈ N} is also a family of disjoint balls. Due to (i), all of those balls
are contained in B(0, 11). If there exists some c > 0 with diamBl

m > c for all l ∈ N,
there cannot be infinitely many such balls. Hence we deduce that diamBl

m → 0 if
l → ∞. Let B ∈ Bm. If B /∈

⋃∞
i=1 Bi

m, we obtain 2 diamBl
m ≥ dlm ≥ diamB for all

l ∈ N where we used the definition of dlm. This is in contradiction to diamBl
m → 0.

So we get B ∈
⋃∞

i=1 Bi
m. All in all, we have proven

⋃∞
i=1 Bi

m ⊃ Bm. The inverse
inclusion follows by definition of Bi

m. �

(iii) Let 1 ≤ m ≤ N0, l ∈ N and By = B
(
y, d(y)

10

)
∈ Bl

m, Bl
m = B

(
xl
m,

d(xl
m)

10

)
∈

Bl
m. We have π

(
1

40KBl
m

)
∩ π

(
1

40KBy

)
�= ∅ and 2d(xl

m) = 10 diamBl
m ≥ 10

dl
m

2 ≥
10

diamBy

2 = d(y). Hence IV impliesBy ⊂ 200Bl
m and diamBy > (40K)−1 diamBl

m.

The balls in Bl
m are disjoint, so, with Lemma A.1 (s =

diamBl
m

80K , r = 200
diamBl

m

2 ),

we deduce that #Bl
m ≤ (200 · 80K)N .

(iv) { 1
40KBl

m}l∈N is a family of disjoint balls, and with (i) we get π
(

1
40KBl

m

)
⊂

π(B(0, 11)) for all l ∈ N. Hence we obtain

∞∑
l=1

(
diam π

(
1

40KBl
m

))n ≤ 2n

ωn
Hn (π (B(0, 11))) = 22n.

Now we are able to prove V by using (ii), (iii) and (iv):

∑
B∈Bm

(diamB)n ≤
∞∑
l=1

∑
B∈Bl

m

(
dlm

)n
= C(n)

∞∑
l=1

(
diamπ

(
1

40KBl
m

))n ≤ C(n). �

Finally, we can finish the proof of Theorem 8.5. Let pB denote the centre of
some ball B. Using the definition of F̃ and Lemma 8.3, there exists some constant
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C = C(n) so that we obtain

ε
1
2μ(F \ (F̃ ∪G)) <

∫
F\(F̃∪G)

d(u, π(u) +A(π(u)))

d(u)
dμ(u)

II
≤

N0∑
m=1

∑
B∈Bm

∫
B\(F̃∪G)

d(u, π(u) +A(π(u)))

d(u)
dμ(u)

III
<

N0∑
m=1

∑
B∈Bm

2

d(pB)
Cε

(
diamB

2

)n+1
V
≤ C(N,n)ε.

This leads to μ(F \ (F̃ ∪G)) ≤ C(N,n)ε
1
2 . With η < 2ε ≤ ε

1
2 and Lemma 8.1 the

assertion holds. �

8.2. F1 is small. Now we are able to estimate μ(F1). We recall that η and k are
fixed constants (cf. the first lines of section 6.1) and that F1 depends on the choice
of α, ε > 0 (cf. Definition 6.3).

Theorem 8.6. Let 0 < α ≤ 1
4 . There exist some ε∗ = ε∗(N,n,C0) and some k̃ ≥ 4

so that if η < 2ε∗ and k ≥ k̃, for all ε ∈ [η2 , ε
∗), we have μ(F1) < 10−6.

Proof. Let 0 < α ≤ 1
4 and let ε̂, C5 and k̃ be the constants given by Theorem 8.5.

We set ε∗ := min
{
ε̂, 10−14

C2
5

}
and choose some k ≥ k̃ and some ε ∈ [η2 , ε

∗). First, we

prove some intermediate results:

I. Let G =
{
B
(
x, h(x)10

)∣∣∣x ∈ F1 ∩ F̃
}
. This is a set of nondegenerate balls because

Z∩F1 = ∅ and, by definition of h(·) (see page 1208), we get h(x) ≤ 50 for all x ∈ F .
With Besicovitch’s covering theorem [7, 1.5.2, Thm. 2], there exist N0 = N0(N)
families Bm ⊂ G, m = 1, . . . , N0, containing countably many disjoint balls with

F1 ∩ F̃ ⊂
⋃N0

m=1

⋃
B∈Bm

B.

II. Let 1 ≤ m ≤ N0 and B = B
(
x, h(x)10

)
where x ∈ F1∩ F̃ . Due to the definition

of F1, there exist some y ∈ F and some τ ∈ [h(x)5 , h(x)2 ] with d(x, y) ≤ τ
2 and

δ(B(y, τ )) ≤ δ. For any z ∈ B, we get d(z, y) ≤ h(x)
10 + τ

2 ≤ τ . Hence we obtain
B ⊂ B(y, τ ) and conclude that μ(B) ≤ δτn < 3nδ(diamB)n.

III. For all 1 ≤ m ≤ N0, we have
∑

B∈Bm
(diamB)n ≤ 192n.

Proof of I–III. We define the function Ã : U12 → RN , u �→ u+ A(u), where U12 =

B(0, 12)∩P0. Ã is Lipschitz continuous with Lipschitz constant less than 2 because
A is defined on U12 (see page 1216), 3α-Lipschitz continuous (see Lemma 6.27)

and α ≤ 1
4 . Let B = B

(
x, h(x)10

)
∈ Bm. We have F ⊂ B(0, 5) (see (A) on

page 1208), and so π(F ) ⊂ P0 ∩ B(0, 5) because π is the orthogonal projection on

P0 and 0 ∈ P0. With the definition of F̃ , Lemma 6.10 and ε
1
2 < 1

20 , we obtain

d(x, x0) <
h(x)
20 where x0 := Ã(π(x)). Let z ∈ π

(
B

(
x0,

h(x)
40

))
⊂ U12. Using the

triangle inequality with the point Ã(π(x0)) = x0 and where Ã is 2-Lipschitz, we get

d(Ã(z), x) ≤ h(x)
10 . This implies Ã(π(B(x0,

h(x)
40 ))) ⊂ B∩Ã(U12), and hence we gain
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P0

x
h(x)
10

x0 = Ã(π(x))

π(x)

Ã(U0)

︸ ︷︷ ︸
U12

︸ ︷︷ ︸
π(B(x,h(x)

10 )∩Ã(U12))

}
≤ h(x)

20

}h(x)
40

Figure 2. π
(
B

(
x0,

h(x)
40

))
⊂ π

(
B

(
x, h(x)10

)
∩ Ã(U12)

)

π
(
B

(
x0,

h(x)
40

))
⊂ π

(
B ∩ Ã(U12)

)
(see Figure 2). Now we have with [7, 2.4.1,

Thm. 1]

ωn

8n
(diamB)n = ωn

(
h(x)
40

)n

= Hn
(
π
(
B

(
x0,

h(x)
40

)))
≤ Hn(B ∩ Ã(U12)).(8.4)

The balls in Bm are disjoint, so we conclude using [7, 2.4.1, Thm. 1] for the last
estimate∑

B∈Bm

(diamB)n
(8.4)

≤ 8n

ωn

∑
B∈Bm

Hn(B ∩ Ã(U12)) ≤
8n

ωn
Hn(Ã(U12)) ≤ 192n.

�

Now we have μ(F1∩ F̃ )
I
≤

∑N0

m=1

∑
B∈Bm

μ(B)
II, III

≤ δN0 ·576n. Since δ ≤ 10−10

600nN0

(see (6.1)) and ε
1
2 < 10−7

C5
, we deduce together with Theorem 8.5 that μ(F1) <

10−6. �

8.3. F2 is small. We recall that 0 < η ≤ 2−(n+1) and k ≥ 1 are fixed constants
(cf. the first lines of section 6.1) and that F2 depends on the choice of α, ε > 0
(cf. Definition 6.3).

Theorem 8.7. Let α, ε > 0. There exists some constant C = C(N,n,K, p, C0, k)

so that if η ≤ εp

C 10−6, we have μ(F2) ≤ 10−6.

Proof. Let x ∈ F2 and t ∈ (h(x), 2h(x)). It follows that x /∈ F1 ∪Z, and hence, for

all y ∈ F and for all τ ∈
[
h(x)
5 , h(x)

2

]
with d(x, y) ≤ τ

2 , we obtain δ(B(y, τ )) > δ.

So, in particular, we get δ
(
B
(
x, h(x)

2

))
> δ for x = y and τ = h(x)

2 . If k0 = 1,

this implies δ̃k0
(B(x, t)) ≥ δ(B(x, t)) > δ

4n , where we used h(x)
2 < t < 2h(x). Let

(y, τ ) be as in the definition of F2. Then we have d(x, y) + τ < 2τ ≤ h(x) < t

and hence B(y, τ ) ⊂ B(x, t). We conclude that β1;k(x, t) ≥
(
τ
t

)n+1
β1;k(y, τ ) ≥

ε
10n+1 . Now, with Corollary 4.8 (λ = δ

4n , k0 = 1), there exists some constant
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C = C(N,n,K, p, C0, k) so that

MKp(μ) ≥ 1

C

∫
F2

∫ 2h(x)

h(x)

β1;k(x, t)
pχ{δ̃k0

(B(x,t))≥ δ
4n }

dt

t
dμ(x)

≥ 1

C

∫
F2

∫ 2h(x)

h(x)

( ε

10n+1

)p dt

t
dμ(x) ≥ 1

C

( ε

10n+1

)p

μ(F2) ln(2).

Finally, using the previous inequality, condition (C) from page 1208 and η ≤
ln(2)

10p(n+1)C
εp10−6, we get the assertion. �

8.4. F3 is small. We mention for review that F̃ is defined on page 1240 and set

˜̃F :=

{
x ∈ F̃

∣∣∣ μ(F̃ ∩B(x, t)) ≥ 99

100
μ(F ∩B(x, t)) for all t ∈ (0, 2)

}
.

Lemma 8.8. Let 0 < α ≤ 1
4 . There exists some ε̂ = ε̂(N,n,C0) ≤ 1

4 and some

k̃ ≥ 4 so that if η < 2ε̂ and k ≥ k̃, there exists some constant C = C(N,n,K, p, C0)

so that, for all ε ∈ [η2 , ε̂), we have μ(F \ ˜̃F ) ≤ Cε
1
2 .

Proof. Let 0 < α ≤ 1
4 and choose ε̂, k̃ to be the constants given by Theorem 8.5 and

let k ≥ k̃, η ≤ 2ε < 2ε̂. Due to Theorem 8.5, we only have to consider μ(F̃ \ ˜̃F ).

For all x ∈ F̃ \ ˜̃F using the definition of F̃ , there exists some tx ∈ (0, 2) with

μ(F̃ ∩B(x, tx)) ≤ 99μ((F \ F̃ )∩B(x, tx)). Hence F̃ \ ˜̃F is covered by balls B(x, tx)

with centre in F̃ \ ˜̃F . So with Besicovitch’s covering theorem [7, 1.5.2, Thm. 2]
there exist N0 = N0(N) families Bm, m = 1, . . . , N0, of disjoint balls B(x, tx) so
that

μ(F̃ \ ˜̃F ) ≤
N0∑
m=1

∑
B∈Bm

μ(F̃ ∩B) ≤ 99

N0∑
m=1

∑
B∈Bm

μ((F \ F̃ ) ∩B) ≤ 99N0 μ(F \ F̃ ),

and with Theorem 8.5 the assertion holds. �

Lemma 8.9. Let θ, α > 0. There exist some constant C = C(N,n,C0, θ) > 1 and
some constant ε0 = ε0(N,n,C0, θ) > 0 so that if η < 2ε0 and k ≥ 4, we have for
all ε ∈ [η2 , ε0) that the following is true. If (x, t) ∈ S and 100t ≥ θ, then we have
�(P(x,t), P0) ≤ Cε.

Proof. Let θ, α > 0, k ≥ 4 and η < 2ε < 2ε0 where the constant ε0 is given by
Lemma 4.9. Let t ≥ θ

100 and (x, t) ∈ S. We get with (A) and (D) (see page

1208) βP0

1;k(x, t) ≤
(
500
θ

)n+1
2ε. Furthermore, we have with Definition 6.1 that

β
P(x,t)

1;k (x, t) ≤ 2ε and with (x, t) ∈ S ⊂ Stotal we obtain δ(B(x, t)) ≥ δ
2 . Now, with

Lemma 4.9 (y = x, c = 1, ξ = 2
(
500
θ

)n+1
, tx = ty = t, λ = δ

2 ), there exists some
constant C3 = C3(N,n,C0, θ) so that �(P(x,t), P0) ≤ C3ε. �

Lemma 8.10. Let θ, α > 0. If k ≥ 400, there exists some constant ε∗ =
ε∗(N,n,C0, α, θ) so that if η < 2ε∗, we have for all ε ∈ [η2 , ε

∗) that for all x ∈ F3

we have h(x) < θ
100 .

Proof. Let θ, α > 0 and k ≥ 400. We set ε∗ := min{ε̄, ε0, α
2C } where ε̄ is given by

Lemma 6.5 and ε0 as well as C are given by Lemma 8.9. Let η ≤ 2ε < 2ε∗ and
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x ∈ F3. With Lemma 6.2(i), we have (x, h(x)) ∈ S and, with Lemma 6.5, we get
�(P(x,h(x)), P0) >

1
2α. Hence we obtain h(x) < θ

100 with Lemma 8.9. �

Lemma 8.11. Let p = 2. There exist some k̂ ≥ 400, some α̃ = α̃(n) > 0 and

some θ̂ = θ̂(N,n,C0) ∈ (0, 1) so that for all α ∈ (0, α̃] and θ ∈ (0, θ̂] there exists

some ε̂ = ε̂(N,n,C0, α, θ) so that if k ≥ k̂ and η < ε̂2, we have for all ε ∈ [
√
η, ε̂)

that there exist some set Hθ ⊂ U6 and some constant C = C(N,n,K, C0, k) with

Hn(U6 \Hθ) < C
(

ε
θn+1α

)2
and, for all x ∈ F3 ∩ ˜̃F , we have d(π(x), Hθ) > h(x).

Proof. Let k̃ and α̃(n) be the thresholds given by Theorem 7.17 and let Ĉ =

Ĉ(N,n) be the constant given by Theorem 7.3. Moreover, let C1 = C1(N,n,C0)
and C2 = C2(N,n,C0) be the constants given by Corollary 4.3 applied with

λ = δ
4 , and let δ = δ(N,n) be the value fixed on page 1208. We set θ̂ :=

1
400

[
18n(10n + 1)

(
C1

4

)n+1
Ĉ
]−1

and choose θ ∈ (0, θ̂]. Let α ∈ (0, α̃], and let

ε̄1 = ε̄(N,n,C0, α), ε̄2 = ε̄(N,n,C0, α), ε̃ = ε̃(N,n,C0, α), ε0 = ε0(N,n,C0, θ),
and ε∗ = ε∗(N,n,C0, α, θ) be the thresholds given by Lemmas 6.5, 6.24, Theorem
7.17, Lemma 8.9 and Lemma 8.10 respectively. Finally, let C be the constant from
Lemma 8.9. We set

ε̂ := min

⎧⎨⎩ε̄1, ε̄2, ε̃, ε0, ε
∗, (Ĉθα)2,

α

400

[
4n(10n + 1)

(
C1

4

)n+1

2C2

]−1

,
α

100C

⎫⎬⎭
and assume that k ≥ k̂ := max{k̃, 400} and η ≤ ε̂2. Now let ε > 0 with η ≤ ε2 < ε̂2.

Until now, we defined the map A only on U12 = B(0, 12) ∩ P0 (see page 1216).
Furthermore, we have shown that A is Lipschitz continuous with Lipschitz constant
3α (see Lemma 6.27). With Lemma A.5, an application of Kirszbraun’s theorem,

there exists an extension Ã : P0 → RN of A with compact support, the same
Lipschitz constant 3α and A = Ã on U12. If one wants to omit Zorn’s lemma,
used for the proof of Lemma A.5, one can get the same result with a slightly larger
Lipschitz constant (see the remark after Lemma A.5 for details). We denote this
extension of A also by A.

Using Theorem 7.3 with g = A, p = 2 and Theorem 7.17, there exist some
set Hθ ⊂ U6 and some constant C = C(N,n,K, C0, k) with Hn(U6 \ Hθ) ≤

C(n)
θ2(n+1) Lip2

A
Cε2. Furthermore, we get for all y ∈ P0 some affine map ay : P0 → P⊥

0

so that if r ≤ θ and B(y, r)∩Hθ �= ∅, we have ‖A−ay‖L∞(B(y,r)∩P0,P⊥
0 ) ≤ Ĉrθ LipA.

We recall that LipA = 3α (cf. Lemma 6.27). For x ∈ F3 ∩ ˜̃F ⊂ F3 ∩ F̃ , we have

with the previous lemma that h(x) < θ
100 . Let t ∈ [h(x), θ

100 ]. If x
′ ∈ B(x, 2t) ∩ F̃ ,

we obtain with Lemma 6.10 and the definition of F̃ : d(x′, π(x′) + A(π(x′))) ≤
ε

1
2 (d(x) + d(x, x′)) ≤ 3ε

1
2 t. Let Pπ(x) denote the n-dimensional plane, which is the

graph of the affine map aπ(x). Now we assume, contrary to the statement of this
lemma, that d(π(x), Hθ) ≤ h(x). This implies π(B(x, 2t)) ∩ Hθ �= ∅, and so we

have d(π(x′) + A(π(x′)), Pπ(x)) ≤ ‖A − aπ(x)‖L∞(B(π(x),2t)∩P0,P⊥
0 ) ≤ 6Ĉθαt for all

x′ ∈ B(x, 2t) ∩ F̃ . We combine those estimates and obtain, using 3ε
1
2 ≤ 3Ĉθα,

d(x′, Pπ(x)) ≤ d(x′, π(x′) +A(π(x′))) + d(π(x′) +A(π(x′)), Pπ(x)) ≤ 9Ĉθαt.(8.5)
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Since h(x) ≤ t, we get (x, t) ∈ S ⊂ Stotal with Lemma 6.2(i) so that we have

δ(B(x, t)) ≥ δ
2 . If x ∈ ˜̃F , this estimate and the definition of ˜̃F imply δ(F̃∩B(x, t)) >

1
4δ.

Now we apply Corollary 4.3 (Υ = F̃ , λ = δ
4 ), and so there exist constants

C1(N,n,C0), C2(N,n,C0) and an (n, 10n t
C1

)-simplex T = Δ(x0, . . . , xn) ∈ F ∩
B(x, t) ∩ F̃ so that μ(B̃i) ≥ tn

C2
for all i ∈ {0, . . . , n} where B̃i := B

(
xi,

t
C1

)
∩

B(x, t) ∩ F̃ . With (x, t) ∈ S ⊂ Stotal, we get for all i ∈ {0, . . . , n},
1

μ(B̃i)

∫
B̃i

d(z, P(x,t))dμ(z) ≤ C2tβ
P(x,t)

1;k (x, t) ≤ 2C2tε.

This implies for all i ∈ {0, . . . , n} the existence of yi ∈ B̃i with d(yi, P(x,t)) ≤ 2C2tε.

With Lemma 2.8, we deduce that S := Δ(y0, . . . , yn) ⊂ B(x, t) is an (n, 8n t
C1

)-

simplex. Next, we apply Lemma 2.17 (m = n, C = C1

8n , Ĉ = 1, σ = 2C2ε) and get

�(P(x,t), Py0,...,yn
) ≤ α

400 . We have yi ∈ B̃i ⊂ B(x, 2t) ∩ F̃ , and hence we get with

(8.5) and Lemma 2.17 (C = C1

8n , Ĉ = 1, σ = 9Ĉθα) �(Py0,...,yn
, Pπ(x)) ≤ α

400 . We
combine those two angle estimates and conclude that �(P(x,t), Pπ(x)) ≤ α

200 , which

is true for all x ∈ F3 ∩ ˜̃F with d(π(x), Hθ) ≤ h(x) and all t ∈ [h(x), θ
100 ]. Now we

use this result for t = h(x) and for t = θ
100 and obtain �(P(x,h(x)), P(x, θ

100 )
) ≤ α

100 .

Together with Lemma 8.9 we get �(P(x,h(x)), P0) ≤ α
50 . This is in contradiction

to Lemma 6.5; hence our assumption that d(π(x), Hθ) ≤ h(x) is invalid for all

x ∈ F3 ∩ ˜̃F . �

Theorem 8.12. Let p = 2. There exist some constants ¯̄k ≥ 4, 0 < ¯̄α = ¯̄α(n) < 1
6

and 0 < ¯̄θ = ¯̄θ(N,n,C0) so that, for all α ∈ (0, ¯̄α] and all θ ∈ (0, ¯̄θ], there exists

some 0 < ¯̄ε = ¯̄ε(N,n,C0, α, θ) <
1
8 so that if k ≥ ¯̄k and η < ¯̄ε2, we obtain for all

ε ∈ [
√
η, ¯̄ε):

μ(F3) ≤ 10−6.

Proof. Let ¯̄k be the maximum and ¯̄α < 1
6 be the minimum of all thresholds for

k and α given by Lemmas 6.27, 8.8, 8.10 and 8.11. Furthermore, we set ¯̄θ := θ̂,

where θ̂ = θ̂(N,n,C0) is given by Lemma 8.11. Let 0 < α ≤ ¯̄α and 0 < θ ≤ ¯̄θ.
We define ¯̄ε = ¯̄ε(N,n,C0, α, θ) as the minimum of 1

16 , a small constant depending
on N,n,K, C0, α, θ given by the last lines of this proof, and of all upper bounds

for ε stated in Lemmas 6.27, 8.8, 8.10 and 8.11. Let k ≥ ¯̄k and η ≤ ε2 < ¯̄ε2. We

have μ(F3) ≤ μ(F3 ∩ ˜̃F ) + μ(F3 \ ˜̃F ). With Lemma 8.8 (p = 2), there exists some

constant C = C(N,n,K, C0) so that μ(F3 \ ˜̃F ) ≤ μ(F \ ˜̃F ) ≤ Cε
1
2 . Hence we only

have to consider μ(F3 ∩ ˜̃F ). We set G :=
{
B(x, 2h(x))|x ∈ (F3 ∩ ˜̃F )

}
. This is a set

of nondegenerate balls because x ∈ F3 ⊂ F \ Z. Furthermore, we have h(x) ≤ 50
for all x ∈ F (see the definition of h on page 1208). With Besicovitch’s covering
theorem [7, 1.5.2, Thm. 2] there exist N0 families Bl ⊂ G, l = 1, . . . , N0, of disjoint
balls such that we conclude with property (B) from page 1208 that

μ(F3 ∩ ˜̃F ) ≤
N0∑
l=1

∑
B∈Bl

μ(B ∩ ˜̃F )
(B)

≤ C0

N0∑
l=1

∑
B∈Bl

(diamB)n.
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Let 1 ≤ l ≤ N0 and let B1 = B(x1, 2h(x1)), B2 = B(x2, 2h(x2)) ∈ Bl with B1 �= B2.
Since the balls in Bl are disjoint, we deduce 2h(x1) + 2h(x2) ≤ d(x1, x2) and,

because of the definition of F̃ and Lemma 6.10, we get d(xi, π(xi) + A(π(xi))) ≤
ε

1
2 d(xi) ≤ ε

1
2h(xi) for i = 1, 2. Since ε

1
2 < 1

4 , α < 1
6 and A is 3α Lipschitz

continuous, the former two estimates imply h(x1) + h(x2) < d(π(x1), π(x2)). Thus

π( 12B1) and π( 12B2) are disjoint. We have xi ∈
(
˜̃F ∩ F3

)
⊂ F ⊂ B(0, 5) for

i = 1, 2. With Lemma 8.10, we conclude that h(xi) ≤ θ
100 < 1

2 . This implies

π( 12Bi) ⊂ U6. Using Lemma 8.11, there exists some set Hθ ⊂ U6 and some constant

C = C(N,n,K, C0, k) with Hn(U6 \Hθ) < C
(

ε
θn+1α

)2
so that d(π(x), Hθ) > h(x)

for all x ∈ F3 ∩ ˜̃F , in particular for x = xi. We conclude that π( 12Bi) ∩ Hθ = ∅,
and hence ∑

B∈Bl

(diamB)n = 4n
∑
B∈Bl

(
1
2 diamπ

(
1
2B

))n
= 4n

∑
B∈Bl

1

ωn
Hn

(
π
(
1
2B

))
≤ 4n

ωn
Hn(U6 \Hθ).

Now we obtain

μ(F3 ∩ ˜̃F ) ≤ C0N0
4n

ωn
Hn(U6 \Hθ) ≤ C

( ε

θn+1α

)2

,

and we have already shown that μ(F3 \ ˜̃F ) ≤ Cε
1
2 . Using ε < ¯̄ε, we finally get

μ(F3) < 10−6. �

Appendix A

A.1. Measure theoretical statements. The following lemmas are stated with-
out proof.

Lemma A.1. Let E be a set of disjoint balls (open or closed) in RN with radius
equal or larger than s ∈ (0,∞) and B ⊂ B(x, r) for all B ∈ E . Then E is a finite

set with #E ≤
(
r
s

)N
.

Lemma A.2. Let s > 0 and B(x, r) be an open or closed ball in Rm with s < r.
There exists some family E of disjoint closed balls with diamB = 2s for all B ∈ E ,
B(x, r) ⊂

⋃
B∈E 5B and #E ≤

(
2r
s

)m
.

Lemma A.3. Let A ⊂ RN be a closed set with ν(A) > 0, where ν is some outer
measure on Rn. There exists some x ∈ A so that ν(B(x, h)) > 0 for all h > 0.

Lemma A.4. Let R be an n-dimensional cube in RN . Then (diamR)
n

=
(
√
n)nHn(R).

Lemma A.5. Let K ⊂ Rm be a bounded set and let f : K → RN be a Lipschitz
function. Then f has a Lipschitz extension g : Rm → RN with compact support
and the same Lipschitz constant.

A.2. Differentiation and Fourier transform on a linear subspace. Let P0 ∈
G(N,n) be an n-dimensional linear subspace of RN and let f : P0 → R be some
function, where R ∈ {R,RN}. In this section, we explain what we mean by differ-
entiating this function. Furthermore, we define the Fourier transform of f and give
some basic properties. Let φ : Rn → P0 be a fixed isometric isomorphism. We set
f̃ : Rn → R, f̃(x) = f(φ(x)) = (f ◦ φ)(x).
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Definition A.6. Let l ∈ N ∪ {0}. We say f ∈ Cl(P0, R) iff f̃ ∈ Cl(Rn, R)
(l-times continuously differentiable). If l ≥ 1 for all i ∈ {1, . . . , n}, we set ∂if :=

Dif̃ ◦ φ−1 = Di(f ◦ φ) ◦ φ−1, Δf :=
∑n

j=1 ∂j∂jf , Df := (∂1f, . . . , ∂nf), and if

κ = (κ1, κ2, . . . , κn) is a multi-index, we set ∂κf := ∂κ1
1 ∂κ2

2 . . . ∂κn
n f and |κ| =

κ1 + · · ·+ κn.

Now we define the Fourier transform for some function f ∈ S (P0), where S (P0)
is the Schwartz space of rapidly decreasing functions f : P0 → C; cf. [11, 2.2.1.
The class of Schwartz functions]. We will get the same results as for some function
f ∈ S (Rn).

Definition A.7 (Fourier transform). Let y ∈ P0 and f ∈ S (P0). We set

f̂(y) := (̂f ◦ φ)(φ−1(y)) =

∫
Rn

f(φ(z))e−2πiφ−1(y)·zdLn(z).

If f : P0 → CN with fi ∈ S (P0), i.e., every component of f is a Schwartz function,
then we write f ∈ S (P0,CN ). We define the Fourier transform of some function

f ∈ S (P0,CN ) by f̂ := (f̂1, . . . , f̂N ), and if f, g ∈ S (P0) we define the convolution
of f and g by (g ∗ f)(w) =

∫
P0

g(w − v)f(v)dHn(v).

A.3. Littlewood-Paley theorem.

Lemma A.8 (Continuous version of the Littlewood-Paley theorem). Let φ be an
integrable C1(Rn;R) function with mean value zero fulfilling |φ(x)| + |∇φ(x)| ≤
C(1 + |x|)−n−1 and 0 <

∫∞
0

|(̂φt)(x)|2 dt
t < ∞, where φt(x) =

1
tnφ(

x
t ). For all q ∈

(1,∞), there exists some constant C = C(n, q, φ) such that, for all f ∈ Lq(Rn;RN ),
we have ∥∥∥∥∥

(∫ ∞

0

|φt ∗ f |2
dt

t

) 1
2

∥∥∥∥∥
Lq(Rn;R)

≤ C‖f‖Lq(Rn;RN ).

Proof. The proof is analogous to the proof of the Littlewood-Paley theorem [11,
Thm. 5.1.2]. �
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