INTEGRAL MENGER CURVATURE AND RECTIFIABILITY OF n-DIMENSIONAL BOREL SETS IN EUCLIDEAN N-SPACE

MARTIN MEURER

Abstract

In this paper we show that an n-dimensional Borel set in Euclidean N-space with finite integral Menger curvature is n-rectifiable, meaning that it can be covered by countably many images of Lipschitz continuous functions up to a null set in the sense of Hausdorff measure. This generalises Léger's rectifiability result for one-dimensional sets to arbitrary dimension and co-dimension. In addition, we characterise possible integrands and discuss examples known from the literature.

Intermediate results of independent interest include upper bounds of different versions of P. Jones's β-numbers in terms of integral Menger curvature without assuming lower Ahlfors regularity, in contrast to the results of Lerman and Whitehouse [Constr. Approx. 30 (2009), 325-360].

1. Introduction

For three points $x, y, z \in \mathbb{R}^{N}$, we denote by $c(x, y, z)$ the inverse of the radius of the circumcircle determined by these three points. This expression is called Menger curvature of x, y, z. For a Borel set $E \subset \mathbb{R}^{N}$, we define by

$$
\mathcal{M}_{2}(E):=\int_{E} \int_{E} \int_{E} c^{2}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \mathrm{d} \mathcal{H}^{1}(z)
$$

the total Menger curvature of E, where \mathcal{H}^{1} denotes the one-dimensional Hausdorff measure. In 1999, J.C. Léger proved the following theorem.

Theorem ([19]). If $E \subset \mathbb{R}^{N}$ is some Borel set with $0<\mathcal{H}^{1}(E)<\infty$ and $\mathcal{M}_{2}(E)<$ ∞, then E is 1 -rectifiable; i.e., there exists a countable family of Lipschitz functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $\mathcal{H}^{1}\left(E \backslash \bigcup_{i} f_{i}(\mathbb{R})\right)=0$.

This result is an important step in the proof of Vitushkin's conjecture (for more details see [6, 36]), which states that a compact set with finite one-dimensional Hausdorff measure is removable for bounded analytic functions if and only if it is purely 1 -unrectifiable, which means that every 1 -rectifiable subset of this set has Hausdorff measure zero. A higher dimensional analogue of Vitushkin's conjecture is proven in [25] but without using a higher dimensional version of Léger's theorem, since in the higher dimensional setting there seems to be no connection between the n-dimensional Riesz transform and curvature (cf. introduction of [25]).

[^0]There exist several generalisations of Léger's result. Hahlomaa proved in [12-14 that if X is a metric space and $\mathcal{M}_{2}(X)<\infty 1$ then X is 1-rectifiable. Another version of this theorem dealing with sets of fractional Hausdorff dimension equal or less than $\frac{1}{2}$ is given by Lin and Mattila in [22].

In the present work, we generalise the result of Léger to arbitrary dimension and co-dimension, i.e., for n-dimensional subsets of \mathbb{R}^{N} where $n \in \mathbb{N}$ satisfies $n<N$. In the case $n=N$ every $E \subset \mathbb{R}^{N}$ is n-rectifiable. On the one hand, it is quite clear which conclusion we want to obtain, namely that the set E is n-rectifiable, which means that there exists a countable family of Lipschitz functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ such that $\mathcal{H}^{n}\left(E \backslash \bigcup_{i} f_{i}\left(\mathbb{R}^{n}\right)\right)=0$. On the other hand, it is by no means clear how to define integral Menger curvature for n-dimensional sets. Léger himself suggested an expression that turns out to be imprope $\sqrt{2}^{2}$ for our proof, which is strongly inspired by Léger's own strategy (cf. section 3.2). We characterise possible integrands for our result in Definition 3.1 but for now let us start with an explicit example:

$$
\mathcal{K}\left(x_{0}, \ldots, x_{n+1}\right)=\frac{\mathcal{H}^{n+1}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)}{\prod_{0 \leq i<j \leq n+1} d\left(x_{i}, x_{j}\right)},
$$

where the numerator denotes the $(n+1)$-dimensional volume of the simplex $\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)$ spanned by the vertices x_{0}, \ldots, x_{n+1}, and $d\left(x_{i}, x_{j}\right)$ is the distance between x_{i} and x_{j}. Using the law of sines, we obtain for $n=1$:

$$
\mathcal{K}\left(x_{0}, x_{1}, x_{2}\right)=\frac{\mathcal{H}^{2}\left(\Delta\left(x_{0}, x_{1}, x_{2}\right)\right)}{d\left(x_{0}, x_{1}\right) d\left(x_{0}, x_{2}\right) d\left(x_{1}, x_{2}\right)}=\frac{1}{4} c\left(x_{0}, x_{1}, x_{2}\right) .
$$

Hence, \mathcal{K} can be regarded as a generalisation of the original Menger curvature for higher dimensions. We set

$$
\begin{equation*}
\mathcal{M}_{\mathcal{K}^{2}}(E):=\int_{E} \cdots \int_{E} \mathcal{K}^{2}\left(x_{0}, \ldots, x_{n+1}\right) \mathrm{d} \mathcal{H}^{n}\left(x_{0}\right) \ldots \mathrm{d} \mathcal{H}^{n}\left(x_{n+1}\right) . \tag{1.1}
\end{equation*}
$$

Now we can state our main theorem for this specific integrand (see Theorem 3.5 for the general version).
Theorem 1.1. If $E \subset \mathbb{R}^{N}$ is some Borel set with $\mathcal{M}_{\mathcal{K}^{2}}(E)<\infty$, then E is nrectifiable.

Let us briefly review a couple of results for the higher dimensional case. There exist well-known equivalent characterisations of n-rectifiability, for example, in terms of approximating tangent planes [23, Thm. 15.19], orthogonal projections [23, Thm. 18.1, Besicovitch-Federer projection theorem], and in terms of densities [23, Thm. 17.6 and Thm. 17.8 (Preiss's theorem)]. Recently Tolsa and Azzam proved in [35] and [2] a characterisation of n-rectifiability using the so-called β numbers defined for $k>1, x \in \mathbb{R}^{N}, t>0, p \geq 1$ by

$$
\beta_{p ; k ; \mu}(x, t):=\inf _{P \in \mathcal{P}(N, n)}\left(\frac{1}{t^{n}} \int_{B(x, k t)}\left(\frac{d(y, P)}{t}\right)^{p} \mathrm{~d} \mu(y)\right)^{\frac{1}{p}}
$$

[^1]where $\mathcal{P}(N, n)$ denotes the set of all n-dimensional planes in $\mathbb{R}^{N}, d(y, P)$ is the distance of y to the n-dimensional plane P and μ is a Borel measure on \mathbb{R}^{N}. They showed in particular that an \mathcal{H}^{n}-measurable set $E \subset \mathbb{R}^{N}$ with $\mathcal{H}^{n}(E)<\infty$ is n-rectifiable if and only if
\[

$$
\begin{equation*}
\int_{0}^{1} \beta_{2 ; 1 ;\left.\mathcal{H}^{n}\right|_{E}}(x, r)^{2} \frac{\mathrm{~d} r}{r}<\infty \quad \text { for } \mathcal{H}^{n} \text {-a.e. } x \in E . \tag{1.2}
\end{equation*}
$$

\]

This result is remarkable in relation to our result since the β-numbers and even an expression similar to (1.2) play an important role in our proof. Nevertheless at the moment, we do not see how Tolsa's result could be used to shorten our proof of Theorem 1.1. There are further characterisations of rectifiability by Tolsa and Toro in 38 and 37.

Now we present some of our own intermediate results that finally lead to the proof of Theorem 1.1, but that might also be of independent interest. There is a connection between those β-numbers and integral Menger curvature (1.1). In section 4.2, we prove the following theorem (see Theorem 4.6 for a more general version).

Theorem 1.2. Let μ be some arbitrary Borel measure on \mathbb{R}^{N} with compact support such that there is a constant $C \geq 1$ with $\mu(B) \leq C(\operatorname{diam} B)^{n}$ for all balls $B \subset \mathbb{R}^{N}$, where $\operatorname{diam} B$ denotes the diameter of the ball B. Let $B(x, t)$ be a fixed ball with $\mu(B(x, t)) \geq \lambda t^{n}$ for some $\lambda>0$ and let $k>2$. Then there exist some constants $k_{1}>1$ and $C \geq 1$ such that

$$
\begin{aligned}
\beta_{2 ; k}(x, t)^{2} \leq \frac{C}{t^{n}} \int_{B\left(x, k_{1} t\right)} \cdots \int_{B\left(x, k_{1} t\right)} & \chi_{D}\left(x_{0}, \ldots, x_{n}\right) \\
& \times \mathcal{K}^{2}\left(x_{0}, \ldots, x_{n+1}\right) \mathrm{d} \mu\left(x_{0}\right) \ldots \mathrm{d} \mu\left(x_{n+1}\right)
\end{aligned}
$$

where χ_{D} denotes the characteristic function of the set

$$
D=\left\{\left(x_{0}, \ldots, x_{n+1}\right) \in B\left(x, k_{1} t\right)^{n+2} \left\lvert\, d\left(x_{i}, x_{j}\right) \geq \frac{t}{k_{1}}\right., i \neq j\right\}
$$

A measure μ is said to be n-dimensional Ahlfors regular if and only if there exists some constant $C \geq 1$ so that $\frac{1}{C}(\operatorname{diam} B)^{n} \leq \mu(B) \leq C(\operatorname{diam} B)^{n}$ for all balls B with centre on the support of μ. We mention that we do not have to assume for this theorem that the measure μ is n-dimensional Ahlfors regular. We only need the upper bound on $\mu(B)$ for each ball B and the condition $\mu(B(x, t)) \geq \lambda t^{n}$ for one specific ball $B(x, t)$.

Lerman and Whitehouse obtain a comparable result in [20, Thm. 1.1]. The main differences are that, on the one hand, they have to use an n-dimensional Ahlfors regular measure, but, on the other hand, they work in a real separable Hilbert space of possibly infinite dimension instead of \mathbb{R}^{N}. The higher dimensional Menger curvatures they used (see [20, introduction and section 6]) are examples of integrands that also fit in our more general setting 4 This means that all of our results are valid if one uses their integrands instead of the initial \mathcal{K} presented as an example above.

[^2]In addition to rectifiability, there is the notion of uniform rectifiability, which implies rectifiability. A set is uniformly rectifiable if it is Ahlfors regulat ${ }^{5}$ and if it fulfils a second condition in terms of β-numbers (cf. [5, Thm. 1.57, (1.59)]). In [20] and [21, Lerman and Whitehouse give an alternative characterisation of uniform rectifiability by proving that for an Ahlfors regular set this β-number term is comparable to a term expressed with integral Menger curvature. One of the two inequalities needed is given in [20, Thm. 1.3] and is similar to our following theorem, which is a consequence of Theorem 1.2 in connection with Fubini's theorem (see Theorem 4.7 for a more general version). We emphasise again that in our case the measure μ does not have to be Ahlfors regular.
Theorem 1.3. Let μ, λ and k be as in the previous theorem. There exists a constant $C \geq 1$ such that

$$
\iint_{0}^{\infty} \beta_{2 ; k}(x, t)^{2} \chi_{\left\{\mu(B(x, t)) \geq \lambda t^{n}\right\}} \frac{\mathrm{d} t}{t} \mathrm{~d} \mu(x) \leq C \mathcal{M}_{\mathcal{K}^{2}}(\mu)
$$

In the last few years, several papers have appeared that work with integral Menger curvatures. Some deal with (one-dimensional) space curves and get higher regularity $\left(C^{1, \alpha}\right)$ of the arc length parametrisation if the integral Menger curvature is finite, e.g. [29, 30]. Others handle higher dimensional objects [17, 18, 32], occasionally using versions of integral Menger curvatures similar to ours ${ }^{6]}$ Remarkable are the results of Blatt and Kolasinski [3:4. They proved among other things that for $p>n(n+1)$ and some compact n-dimensional C^{1} manifold Σ,

$$
\int_{\Sigma} \cdots \int_{\Sigma}\left(\frac{\mathcal{H}^{n+1}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)}{\operatorname{diam}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)^{n+2}}\right)^{p} \mathrm{~d} \mathcal{H}^{n}\left(x_{0}\right), \ldots, \mathrm{d} \mathcal{H}^{n}\left(x_{n+1}\right)<\infty
$$

is equivalent to having a local representation of σ as the graph of a function belonging to the Sobolev Slobodeckij space $W^{2-\frac{n(n+1)}{p}, p}$. Finally, we mention that in [31,33] Menger curvature energies are recently used as knot energies in geometric knot theory to avoid some of the drawbacks of self-repulsive potentials like the Möbius energy [10, 26 .

Organisation of this work. In section 3, we give the precise formulation of our main result and discuss some examples of integrands known from several papers working with integral Menger curvatures. In section 4 we present some results for a Borel measure including the general versions of Theorems 1.2 and 1.3, namely Theorems 4.6 and 4.7. The following sections 5 to 8 give the proof of our main result. We remark that all statements in sections 6, 7 and 8, except section 7.1, depend on the construction given in section 6

2. Preliminaries

2.1. Basic notation and linear algebra facts. Let $n, m, N \in \mathbb{N}$ with $1 \leq n<N$ and $1 \leq m<N$. If $E \subset \mathbb{R}^{N}$ is some subset of \mathbb{R}^{N}, we write \bar{E} for its closure and E for its interior. We set $d(x, y):=|x-y|$ where $x, y \in \mathbb{R}^{N}$ and $|\cdot|$ is the usual Euclidean norm. Furthermore, for $x \in \mathbb{R}^{N}$ and $E_{1}, E_{2} \subset \mathbb{R}^{N}$, we set $d\left(x, E_{2}\right)=\inf _{y \in E_{2}} d(x, y), d\left(E_{1}, E_{2}\right)=\inf _{z \in E_{1}} d\left(z, E_{2}\right)$ and $\# E$ means the number

[^3]of elements of E. By $B(x, r)$ we denote the closed ball in \mathbb{R}^{N} with centre x and radius r, and we define by ω_{n} the n-dimensional volume of the n-dimensional unit ball. Let $G(N, m)$ be the Grassmannian, the space of all m-dimensional linear subspaces of \mathbb{R}^{N} and $\mathcal{P}(N, m)$ the set of all m-dimensional affine subspaces of \mathbb{R}^{N}. For $P \in \mathcal{P}(N, m)$, we define π_{P} as the orthogonal projection on P. If $P \in \mathcal{P}(N, m)$, we have that $P-\pi_{P}(0) \in G(N, m)$; hence $P-\pi_{P}(0)$ is the linear subspace parallel to P. Furthermore, we set $\pi_{P}^{\perp}:=\pi_{P-\pi_{P}(0)}^{\perp}:=\pi_{\left(P-\pi_{P}(0)\right)^{\perp}}$ where $\pi_{\left(P-\pi_{P}(0)\right)^{\perp}}$ is the orthogonal projection on the orthogonal complement of $P-\pi_{P}(0)$.

Furthermore, for $A \subset \mathbb{R}^{N}$ and $x \in \mathbb{R}^{N}$, we set $A+x:=\left\{y \in \mathbb{R}^{n} \mid y-x \in A\right\}$. By $\operatorname{span}(A)$, we denote the linear subspace of \mathbb{R}^{N} spanned by the elements of A. If $A=\left\{o_{1}, \ldots, o_{m}\right\}$ or $A=A_{1} \cup A_{2}$, we may write $\operatorname{span}\left(o_{1}, \ldots, o_{m}\right)$, resp. $\operatorname{span}\left(A_{1}, A_{2}\right)$, instead of $\operatorname{span}(A)$.

Remark 2.1. Let $b, a, a_{i} \in \mathbb{R}^{N}, \alpha_{i} \in \mathbb{R}$ for $i=1, \ldots, l, l \in \mathbb{N}$, with $b=$ $a+\sum_{i=1}^{l} \alpha_{i}\left(a_{i}-a\right)$ and $P \in \mathcal{P}(N, m)$. Then we have $\pi_{P}(b)=\pi_{P}(a)+$ $\sum_{i=1}^{l} \alpha_{i}\left[\pi_{P}\left(a_{i}\right)-\pi_{P}(a)\right]$ and $d(b, P) \leq d(a, P)+\sum_{i=1}^{l}\left|\alpha_{i}\right|\left(d\left(a_{i}, P\right)+d(a, P)\right)$.

Figure 1. Illustration of Lemma 2.2. $\frac{\left|a_{1}-\pi_{P_{2}}\left(a_{1}\right)\right|}{\left|a_{1}-\pi_{P_{1} \cap P_{2}}\left(a_{1}\right)\right|}=\frac{\left|a_{2}-\pi_{P_{2}}\left(a_{2}\right)\right|}{\left|a_{2}-\pi_{P_{1} \cap P_{2}}\left(a_{2}\right)\right|}$
Lemma 2.2. Let $P_{1}, P_{2} \in \mathcal{P}(N, m)$ with $\operatorname{dim} P_{1}=\operatorname{dim} P_{2}=m<N$ and $\operatorname{dim}\left(P_{1} \cap P_{2}\right)$ $=m-1$. For $a_{1}, a_{2} \in P_{1} \backslash P_{2}$, we have $\frac{\left|a_{1}-\pi_{P_{2}}\left(a_{1}\right)\right|}{\left|a_{1}-\pi_{P_{1} \cap P_{2}}\left(a_{1}\right)\right|}=\frac{\left|a_{2}-\pi_{P_{2}}\left(a_{2}\right)\right|}{\left|a_{2}-\pi_{P_{1} \cap P_{2}}\left(a_{2}\right)\right|}$ (see Figure (1).

Proof. Translate the whole setting so that P_{1}, P_{2} are linear subspaces. Then express a_{1} by an orthonormal base of P_{1} and compute that $\frac{\left|a_{1}-\pi_{P_{2}}\left(a_{1}\right)\right|}{\left|a_{1}-\pi_{P_{1} \cap P_{2}}\left(a_{1}\right)\right|}$ is independent of a_{1}.

2.2. Simplices.

Definition 2.3. Let $x_{i} \in \mathbb{R}^{N}$ for $i=0,1, \ldots, m$. We define $\Delta\left(x_{0}, \ldots, x_{m}\right)=$ $\Delta\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$ as the convex hull of the set $\left\{x_{0}, \ldots, x_{m}\right\}$ and call it simplex or m-simplex if m is the Hausdorff dimension of $\Delta\left(x_{0}, \ldots, x_{m}\right)$. If the vertices of $T=\Delta\left(x_{0}, \ldots, x_{m}\right)$ are in some set $G \subset \mathbb{R}^{N}$, i.e., $x_{0}, \ldots, x_{m} \in G$, we simply write $T=\Delta\left(x_{0}, \ldots, x_{m}\right) \in G$. Note, however, that this new notation $T \in G$ does not mean $T \subset G$ unless G is convex.

With $\operatorname{aff}(E)$ we denote the smallest affine subspace of \mathbb{R}^{N} that contains the set $E \subset \mathbb{R}^{N}$. If $E=\left\{x_{0}\right\}$, we set $\operatorname{aff}(E)=\left\{x_{0}\right\}$.

Definition 2.4. Let $T=\Delta\left(x_{0}, \ldots, x_{m}\right) \in \mathbb{R}^{N}$. For $i, j \in\{0,1, \ldots, m\}$ we set

$$
\begin{aligned}
\mathfrak{f}_{i} T=\mathfrak{f}_{x_{i}} T & =\Delta\left(\left\{x_{0}, \ldots, x_{m}\right\} \backslash\left\{x_{i}\right\}\right), \\
\mathfrak{f c}_{i, j} T=\mathfrak{f}_{x_{i}, x_{j}} T & =\Delta\left(\left\{x_{0}, \ldots, x_{m}\right\} \backslash\left\{x_{i}, x_{j}\right\}\right), \\
\mathfrak{h}_{i} T=\mathfrak{h}_{x_{i}} T & =d\left(x_{i}, \operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\} \backslash\left\{x_{i}\right\}\right)\right) .
\end{aligned}
$$

Definition 2.5. Let $T=\Delta\left(x_{0}, \ldots, x_{m}\right)$ be an m-simplex in \mathbb{R}^{N}. If $\mathfrak{h}_{i} T \geq \sigma$ for all $i=0,1, \ldots, m$, we call T an (m, σ)-simplex.

Definition 2.6. Let $T=\Delta\left(x_{0}, \ldots, x_{m}\right)$ be an m-simplex in \mathbb{R}^{N}. By $\mathcal{H}^{m}(T)$ we denote the volume of T and we define the normalized volume $\mathfrak{v}(T):=m!\mathcal{H}^{m}(T)$ which is the volume of the parallelotope spanned by the simplex T (cf. [28]). We also have a characterisation of $\mathfrak{v}(T)$ by the Gram determinant

$$
\mathfrak{v}(T)=\sqrt{\operatorname{Gram}\left(x_{1}-x_{0}, \ldots, x_{m}-x_{0}\right)},
$$

where the Gram determinant of vectors $v_{1}, \ldots, v_{m} \in \mathbb{R}^{N}$ is defined by

$$
\operatorname{Gram}\left(v_{1}, \ldots, v_{m}\right):=\operatorname{det}\left(\left(v_{1}, \ldots, v_{m}\right)^{T}\left(v_{1}, \ldots, v_{m}\right)\right) .
$$

Lemma 2.7. Let $T=\Delta\left(x_{0}, \ldots, x_{m}\right)$ be an m-simplex. We have $\frac{\mathfrak{h}_{i} T}{\mathfrak{h}_{i} \mathfrak{f}_{j} T}=\frac{\mathfrak{h}_{j} T}{\mathfrak{h}_{j} \mathfrak{f}_{i} T}$.
Proof. We have $\frac{\mathfrak{h}_{i}(T)}{\mathfrak{h}_{i}\left(\mathfrak{f}_{j} T\right)}=\frac{\mathfrak{v}(T)}{\mathfrak{h}_{i}\left(\mathfrak{f c}_{j} T\right) \mathfrak{v}\left(\mathfrak{f}_{i} T\right)}=\frac{\mathfrak{h}_{j}(T) \mathfrak{v}\left(\mathfrak{f}_{j} T\right)}{\mathfrak{h}_{i}\left(\mathfrak{f}_{j} T\right) \mathfrak{h}_{j}\left(\mathfrak{f}_{i} T\right) \mathfrak{v}\left(\mathfrak{f}_{i, j} T\right)}=\frac{\mathfrak{h}_{j}(T) \mathfrak{v}\left(\mathfrak{f}_{j} T\right)}{\mathfrak{h}_{j}\left(\mathfrak{f}_{i} T\right) \mathfrak{v}\left(\mathfrak{f}_{j} T\right)}$ $=\frac{\mathfrak{h}_{j}(T)}{\mathfrak{h}_{j}\left(\mathfrak{f}_{i} T\right)}$.
Lemma 2.8. Let $0<h<H, 1 \leq m \leq N+1$ and $y_{0}, x_{i} \in \mathbb{R}^{N}, i=0,1, \ldots, m$. If $T_{x}=\Delta\left(x_{0}, \ldots, x_{m}\right)$ is an (m, H)-simplex and $d\left(y_{0}, x_{0}\right) \leq h$, then $T_{y}=$ $\Delta\left(y_{0}, x_{1}, \ldots, x_{m}\right)$ is an $(m, H-h)$-simplex.
Proof. We have $\mathfrak{h}_{0} T_{y} \geq \mathfrak{h}_{0} T_{x}-d\left(x_{0}, y_{0}\right) \geq H-h$. Now, we show that $\mathfrak{h}_{1} T_{y} \geq H-h$. If $m=1$, we have $\mathfrak{h}_{1} T_{y}=d\left(y_{0}, x_{1}\right)=\mathfrak{h}_{0} T_{y}$. So we can assume that $m \geq 2$ for the rest of this proof. We set $z_{0}:=\pi_{\mathrm{aff}\left(\mathfrak{f}_{1} T_{y}\right)}\left(x_{0}\right), T_{z}:=\Delta\left(z_{0}, x_{1}, \ldots, x_{m}\right)$ and start with some intermediate results:
I. Due to $\mathfrak{h}_{0} T_{y} \geq H-h>0, T_{y}$ is an m-simplex.
II. We have $d\left(x_{0}, z_{0}\right)=d\left(x_{0}, \operatorname{aff}\left(\mathfrak{f}_{1} T_{y}\right)\right) \leq d\left(x_{0}, y_{0}\right) \leq h$.
III. We have $z_{0}=x_{2}+r_{0}\left(y_{0}-x_{2}\right)+\sum_{j=3}^{m} r_{j}\left(x_{j}-x_{2}\right)$ for some $r_{i} \in \mathbb{R}, i=$ $0,3, \ldots, m$ because $z_{0} \in \operatorname{aff}\left(\mathfrak{f}_{1} T_{y}\right)$.
IV. With III, Remark 2.1 and because of $\pi_{\mathrm{aff}\left(\mathfrak{f}_{0} T_{x}\right)}\left(x_{i}\right)=x_{i}$ for $i=2, \ldots, m$ we get

$$
\mathfrak{h}_{0} T_{z}=\left|z_{0}-\pi_{\mathrm{aff}\left(\mathfrak{f}_{0} T_{x}\right)}\left(z_{0}\right)\right|=\left|r_{0} y_{0}-r_{0} \pi_{\mathrm{aff}\left(\mathfrak{f}_{0} T_{x}\right)}\left(y_{0}\right)\right|=r_{0} \mathfrak{h}_{0}\left(T_{y}\right)
$$

and analogously $\mathfrak{h}_{0}\left(\mathfrak{f c}_{1} T_{z}\right)=r_{0} \mathfrak{h}_{0}\left(\mathfrak{f c}_{1} T_{y}\right)$.
V. It holds that $\pi_{\mathrm{aff}\left(\mathfrak{f}_{0,1} T_{x}\right)}\left(z_{0}\right)=\pi_{\mathrm{aff}\left(\mathfrak{f}_{0,1} T_{x}\right)}\left(x_{0}\right)$, and hence we obtain

$$
\begin{aligned}
& \left.\left.\mathfrak{h}_{0}\left(\mathfrak{f c}_{1} T_{z}\right)=d\left(\pi_{\text {aff(}} \mathfrak{f}_{1} T_{y}\right)\left(x_{0}\right), \pi_{\text {aff(fc }}^{0,1} T_{x}\right)\left(z_{0}\right)\right) \\
& =d\left(\pi_{\operatorname{aff}\left(\mathfrak{f}_{1} T_{y}\right)}\left(x_{0}\right), \pi_{\operatorname{aff}\left(\mathfrak{f}_{1} T_{y}\right)}\left(\pi_{\mathrm{aff}\left(\mathfrak{f}_{0,1} T_{x}\right)}\left(z_{0}\right)\right)\right) \\
& \leq d\left(x_{0}, \pi_{\mathrm{aff}\left(\mathfrak{f}_{0,1} T_{x}\right)}\left(z_{0}\right)\right)=\mathfrak{h}_{0}\left(\mathfrak{f}_{1} T_{x}\right) .
\end{aligned}
$$

Now, with Lemma $2.7\left(i=1, j=0, T=T_{y}\right)$, IV and V we deduce that

$$
\mathfrak{h}_{1} T_{y} \geq \mathfrak{h}_{0} T_{z} \frac{\mathfrak{h}_{1}\left(\mathfrak{f c}_{0} T_{x}\right)}{\mathfrak{h}_{0}\left(\mathfrak{f}_{1} T_{x}\right)} \geq\left(\mathfrak{h}_{0} T_{x}-d\left(x_{0}, z_{0}\right)\right) \frac{\mathfrak{h}_{1}\left(\mathfrak{f c}_{0} T_{x}\right)}{\mathfrak{h}_{0}\left(\mathfrak{f}_{1} T_{x}\right)} .
$$

If $\frac{\mathfrak{h}_{1}\left(\mathfrak{f}_{0} T_{x}\right)}{\mathfrak{h}_{0}\left(\mathfrak{f}_{1} T_{x}\right)} \geq 1$ this gives us directly $\mathfrak{h}_{1} T_{y} \geq H-h$. In the other case, use Lemma 2.7 and II to obtain $\mathfrak{h}_{1} T_{y}>\mathfrak{h}_{1} T_{x}-d\left(x_{0}, z_{0}\right) \geq H-h$. Since, for $i=2, \ldots, m$, the points x_{i} fulfil the same requirements as x_{1}, we are able to prove $\mathfrak{h}_{i} T_{y} \geq H-h$ for all $i=1, \ldots, m$ in the same way. So, T_{y} is an $(m, H-h)$-simplex.

Lemma 2.9. Let $C>0,1 \leq m \leq N$ and let $G \subset \mathbb{R}^{N}$ be a finite set so that for all $(m+1)$-simplices $S=\Delta\left(x_{0}, \ldots, x_{m+1}\right) \in G$, there exists some $i \in\{0, \ldots, m+1\}$ so that $\mathfrak{f}_{i}(S)$ is no (m, C)-simplex.

Then there exists some m-simplex $T_{z}=\Delta\left(z_{0}, \ldots, z_{m}\right) \in G$ so that for all $a \in G$, there exists some $i \in\{0, \ldots, m\}$ with $d\left(a, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right)<2 C$.

Proof. Since G is finite, we are able to choose $T_{z}=\Delta\left(z_{0}, \ldots, z_{m}\right) \in G$ so that

$$
\begin{equation*}
\mathfrak{v}\left(T_{z}\right)=\max _{w_{0}, \ldots, w_{m} \in G} \mathfrak{v}\left(\Delta\left(w_{0}, \ldots, w_{m}\right)\right) . \tag{2.3}
\end{equation*}
$$

We can assume that T_{z} is an $(m, 2 C)$-simplex; otherwise there would exist some $i \in\{0, \ldots, m\}$ with $\mathfrak{h}_{i}\left(T_{z}\right)<2 C$, and so for all $a \in G$ with (2.3) we would obtain $d\left(a, \operatorname{aff}\left(\mathfrak{f r}_{i}\left(T_{z}\right)\right)\right)<2 C$.

Now, choose an arbitrary $y_{0} \in G$. Set $S:=\Delta\left(y_{0}, z_{0}, \ldots, z_{m}\right)$. The properties of G imply that one face of S is no (m, C)-simplex. Without loss of generality we assume that $T_{y}:=\mathfrak{f c}_{z_{0}}(S)$ is not an (m, C)-simplex (but an m-simplex). So there exists some $i \in\{0, \ldots, m\}$ with $\mathfrak{h}_{i}\left(T_{y}\right)<C$. If $i=0$, we are done. So let $i \neq 0$. We set $h:=\pi_{\text {aff(}\left(\mathfrak{f}_{i} T_{y}\right)}\left(z_{i}\right)$ and get $\pi_{\mathrm{aff}\left(\mathfrak{f}_{0, i} T_{y}\right)}(h)=\pi_{\mathrm{aff}\left(\mathfrak{f}_{i} T_{y}\right)}\left[\pi_{\mathrm{aff}\left(\mathfrak{f}_{0, i} T_{y}\right)}\left(z_{i}\right)\right]$. This implies

$$
\begin{equation*}
d\left(h, \operatorname{aff}\left(\mathfrak{f}_{0, i} T_{y}\right)\right)=d\left(\pi_{\operatorname{aff}\left(\mathfrak{f}_{i} T_{y}\right)}\left(z_{i}\right), \pi_{\operatorname{aff}\left(\mathfrak{f}_{i} T_{y}\right)}\left[\pi_{\operatorname{aff}\left(\mathfrak{f}_{0, i} T_{y}\right)}\left(z_{i}\right)\right]\right) \leq \mathfrak{h}_{i}\left(\mathfrak{f}_{0} T_{y}\right) . \tag{2.4}
\end{equation*}
$$

Now, we use Lemma 2.2, with $a_{1}=y_{0}, a_{2}=h \in P_{1}:=\operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{y}\right)\right), P_{2}:=$ $\operatorname{aff}\left(\mathfrak{f c}_{i}\left(T_{z}\right)\right), P_{1} \cap P_{2}=\operatorname{aff}\left(\mathfrak{f}_{0, i}\left(T_{y}\right)\right)$ and (2.4) to obtain

$$
\mathfrak{h}_{0}\left(\mathfrak{f}_{i} T_{y}\right) \leq \mathfrak{h}_{i}\left(\mathfrak{f}_{0} T_{y}\right) \frac{d\left(z_{i}, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right)}{d\left(z_{i}, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right)-d\left(z_{i}, h\right)} .
$$

Now use (2.3) to get $d\left(y_{0}, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right) \leq d\left(z_{i}, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right)$ and deduce with $d\left(z_{i}, \operatorname{aff}\left(\mathfrak{f c}_{i}\left(T_{z}\right)\right)\right)=\mathfrak{h}_{i} T_{z} \geq 2 C$ and $d\left(z_{i}, h\right)=\mathfrak{h}_{i}\left(T_{y}\right)<C$ that $\mathfrak{h}_{0}\left(\mathfrak{f r}_{i} T_{y}\right)<$ $2 \mathfrak{h}_{i}\left(\mathfrak{f c}_{0} T_{y}\right)$. Finally, with Lemma [2.7, we have $d\left(y_{0}, \operatorname{aff}\left(\mathfrak{f}_{0}\left(T_{z}\right)\right)\right)=\mathfrak{h}_{0}\left(T_{y}\right)=$ $\mathfrak{h}_{i}\left(T_{y}\right) \frac{\mathfrak{h}_{0}\left(\mathfrak{f}_{i} T_{y}\right)}{\mathfrak{h}_{i}\left(\mathfrak{f}_{0} T_{y}\right)}<2 C$.

Lemma 2.10. Let $H>0$ and $1 \leq m \leq N$, and let $D \subset \mathbb{R}^{N}$ be a bounded set. Assume that every simplex $S=\Delta\left(y_{0}, \ldots, y_{m}\right) \in D$ is not an (m, H)-simplex. Then there exists some $l \in \mathbb{N} \cup\{0\}, l \leq m-1$ and $x_{0}, \ldots, x_{l} \in \bar{D}$ so that $\bar{D} \subset$ $U_{H}\left(\operatorname{aff}\left(x_{0}, \ldots, x_{l}\right)\right)=\left\{x \in \mathbb{R}^{N} \mid d\left(x, \operatorname{aff}\left(x_{0}, \ldots, x_{l}\right)\right) \leq H\right\}$.
Proof. We assume $\# D \geq 2$; otherwise the statement is trivial. Let $l \in\{0, \ldots, m-1\}$ be the largest value such that there exists an (l, H)-simplex in D. If $l=0$, we have $\bar{D} \subset U_{H}\left(\operatorname{aff}\left(x_{0}\right)\right)=B\left(x_{0}, H\right)$ for an arbitrary $x_{0} \in D$.

Now suppose $l \geq 1$. Since D is bounded, there exists $x_{0}, \ldots, x_{l} \in \bar{D}$ such that the volume $K:=\mathfrak{v}\left(\triangle\left(x_{0}, \ldots, x_{l}\right)\right)$ is maximal. For some arbitrary $x_{l+1} \in \bar{D}$ the definition of l and Lemma 2.8 imply that $\triangle\left(x_{0}, \ldots, x_{l}\right)$ is not an $(l+1, H)$-simplex. Hence there exists some $\tilde{l} \in\{0, \ldots, l+1\}$ so that $\mathfrak{h}_{\tilde{l}}(T)<H$. Furthermore we have $\mathfrak{v}\left(\mathfrak{f}_{\tilde{l}}(T)\right) \leq K$ and $\mathfrak{v}\left(\mathfrak{f}_{l+1}(T)\right)=K$, which implies $\mathfrak{h}_{l+1}(T) \leq H$. It follows that $\bar{D} \subset U_{H}\left(\operatorname{aff}\left(x_{0}, \ldots, x_{l}\right)\right)$ because $x_{l+1} \in \bar{D}$ was arbitrarily chosen.

Lemma 2.11. Let $1 \leq m \leq N-1$, let B be a closed ball in \mathbb{R}^{N} and let $F \subset B$ be an \mathcal{H}^{m}-measurable set with $\mathcal{H}^{m}(F)=\infty$. There exist a small constant $0<\sigma=$ $\sigma(F, B) \leq \frac{\text { diam } B}{2}$ and some $(m+1,(m+3) \sigma)$-simplex $T=\Delta\left(x_{0}, \ldots, x_{m+1}\right) \in B$ with $\mathcal{H}^{m}\left(B\left(x_{0}, \sigma\right) \cap F\right)=\infty$ and $\mathcal{H}^{m}\left(B\left(x_{i}, \sigma\right) \cap F\right)>0$ for all $i \in\{1, \ldots, m+1\}$.

Proof. We set $\mu:=\mathcal{H}^{m} \mathrm{~L} F$. Since $\mu(B)=\infty$ there exists some $x_{0} \in B$ with $\mu\left(B\left(x_{0}, h\right)\right)=\infty$ for all $h>0$.

There exists some $c_{1}>0$ with $\mu\left(B \backslash \dot{B}\left(x_{0}, c_{1}\right)\right)>0$. With Lemma A. 3 there exists some $x_{1} \in B \backslash \stackrel{\circ}{B}\left(x_{0}, c_{1}\right)$ with $\mu\left(B\left(x_{1}, h\right)\right)>0$ for all $h>0$ and the simplex T_{1} fulfils $\mathfrak{h}_{1}\left(T_{1}\right)=d\left(x_{0}, x_{1}\right) \geq c_{1}$.

Now we assume that we already have $c_{l}>0$ and a simplex $T_{l}=\Delta\left(x_{0}, \ldots, x_{l}\right) \in$ \mathbb{R}^{N} with $\mathfrak{h}_{l}\left(T_{l}\right) \geq c_{l}$ and $\mu\left(B\left(x_{i}, h\right)\right)>0$ for all $i \in\{0, \ldots, l\}$ and $h>0$ where $l \leq m$. So there exists some $0<c_{l+1}<\frac{c_{l}}{2}$ with $\mu\left(\left(F \cap B\left(x_{0}, \frac{c_{l}}{2}\right)\right) \backslash \stackrel{\circ}{U}_{c_{l+1}}\left(\operatorname{aff}\left(x_{0}, \ldots, x_{l}\right)\right)\right)$ >0 and, with Lemma A.3 there exists some $x_{l+1} \in F \subset B$ so that $T_{l+1}:=$ $\Delta\left(x_{0}, \ldots, x_{l+1}\right)$ fulfils $\mathfrak{h}_{l+1}\left(T_{l+1}\right) \geq c_{l+1}$ and $\mu\left(B\left(x_{l+1}, h\right)\right)>0$ for all $h>0$.

Since $\mathfrak{h}_{i}\left(T_{i}\right) \geq C_{i}>0$ for all $i \in\{1, \ldots, m+1\}$ we obtain $\mathfrak{v}(T)>0$, and hence there exists some constant $c>0$ so that $T:=T_{m+1}$ is an $(m+1, c)$-simplex.

To conclude the proof set $\sigma:=\frac{c}{m+3}$.

2.3. Angles between affine subspaces.

Definition 2.12. For $G_{1}, G_{2} \in G(N, m)$, we define $\varangle\left(G_{1}, G_{2}\right):=\left\|\pi_{G_{1}}-\pi_{G_{2}}\right\|$, where the right-hand side is the operator norm of the linear map $\pi_{G_{1}}-\pi_{G_{2}}$. For $P_{1}, P_{2} \in \mathcal{P}(N, m)$, we define $\varangle\left(P_{1}, P_{2}\right):=\varangle\left(P_{1}-\pi_{P_{1}}(0), P_{2}-\pi_{P_{2}}(0)\right)$.

Lemma 2.13. Let $P_{1}, P_{2} \in \mathcal{P}(N, m)$ with $\varangle\left(P_{1}, P_{2}\right)<1$ and $x, y \in P_{1}$. We have

$$
d(x, y) \leq \frac{d\left(\pi_{P_{2}}(x), \pi_{P_{2}}(y)\right)}{1-\varangle\left(P_{1}, P_{2}\right)} \quad \text { and } \quad d\left(\pi_{P_{2}}^{\perp}(x), \pi_{P_{2}}^{\perp}(y)\right) \leq \frac{\varangle\left(P_{1}, P_{2}\right)}{1-\varangle\left(P_{1}, P_{2}\right)} d\left(\pi_{P_{2}}(x), \pi_{P_{2}}(y)\right) .
$$

Proof. First assume that $P_{1}, P_{2} \in G(N, m)$. With $z:=\frac{x-y}{|x-y|} \in P_{1}$ and $\pi_{P_{2}}^{\perp}(z)+$ $\pi_{P_{2}}(z)=z=\pi_{P_{1}}(z)$ we get $\left|\pi_{P_{2}}^{\perp}(x)-\pi_{P_{2}}^{\perp}(y)\right|=|x-y|\left|\pi_{P_{2}}^{\perp}(z)+\pi_{P_{2}}(z)-\pi_{P_{2}}(z)\right| \leq$ $|x-y| \varangle\left(P_{1}, P_{2}\right)$, This implies $d(x, y) \leq d\left(\pi_{P_{2}}(x), \pi_{P_{2}}(y)\right)+d(x, y) \varangle\left(P_{1}, P_{2}\right)$. These two estimates give the assertion in the case $P_{1}, P_{2} \in G(N, m)$. Now choose $t_{1} \in P_{1}$, $t_{2} \in P_{2}$ and apply this result to $P_{1}-t_{1}, P_{2}-t_{2} \in G(N, m)$.

Corollary 2.14. Let $P \in \mathcal{P}(N, m), Q \in G(N, m)$ and $\varangle(P, Q)<1$. There exists some affine map $a: Q \rightarrow Q^{\perp}$ with $G(a)=P$, where $G(a)$ is the graph of the map a, and a is Lipschitz continuous with Lipschitz constant $\frac{\varangle(P, Q)}{1-\varangle(P, Q)}$.
Proof. Set $a(y)=\pi_{P_{2}}^{\perp}\left(\left.\pi_{P_{2}}^{-1}\right|_{P_{1}}(y)\right)$ and use Lemma 2.13,
Corollary 2.15. Let $G_{1}, G_{2} \in G(N, m)$ and let o_{1}, \ldots, o_{m} be an orthonormal basis of G_{1}. If $d\left(o_{i}, G_{2}\right) \leq \tilde{\sigma} \leq \tilde{\sigma}_{1}:=10^{-1}\left(10^{m}+1\right)^{-1}$, then $\varangle\left(G_{1}, G_{2}\right) \leq 4 m\left(10^{m}+1\right) \tilde{\sigma}$.

Proof. For $i=1, \ldots, m$, set $h_{i}:=\pi_{P_{2}}\left(o_{i}\right)$ and use Lemma 2.3 from 34.
For $x, y \in \mathbb{R}^{N}$, we set $\langle x, y\rangle$ to be the usual scalar product in \mathbb{R}^{N}.
Lemma 2.16. Let $C, \hat{C} \geq 1$ and $t>0$, and let $S=\Delta\left(y_{0}, \ldots, y_{m}\right)$ be an $\left(m, \frac{t}{C}\right)$ simplex with $S \subset B(x, \hat{C} t), x \in \mathbb{R}^{N}$. There exist an orthonormal basis $\left(o_{1}, \ldots, o_{m}\right)$
of $\operatorname{span}\left(y_{1}-y_{0}, \ldots, y_{m}-y_{0}\right)$ and $\gamma_{l, r} \in \mathbb{R}$ so that for all $1 \leq l \leq m$ and $1 \leq r \leq l$ we have

$$
o_{l}:=\sum_{r=1}^{l} \gamma_{l, r}\left(y_{r}-y_{0}\right) \quad \text { and } \quad\left|\gamma_{l, r}\right| \leq(2 l C \hat{C})^{l} \frac{C}{t} \leq(2 m C \hat{C})^{m} \frac{C}{t}
$$

Proof. We set $z_{i}:=y_{i}-y_{0}$ for all $i=0, \ldots, m$, and $R:=\Delta\left(z_{0}, \ldots, z_{m}\right)=S-y_{0}$. We obtain for all $i \in\{1, \ldots, m\}$ (S is an $\left(m, \frac{t}{C}\right)$-simplex)

$$
\begin{equation*}
d\left(z_{i}, \operatorname{aff}\left(z_{0}, \ldots, z_{i-1}\right)\right) \geq \mathfrak{h}_{i}(R)=\mathfrak{h}_{i}(S) \geq \frac{t}{C} \tag{2.5}
\end{equation*}
$$

Due to $\mathfrak{h}_{i}(R) \geq \frac{t}{C}>0$, we have that $\left(z_{1}, \ldots, z_{m}\right)$ are linearly independent. So with the Gram-Schmidt process we are able to define some orthonormal basis of the m-dimensional linear subspace $\operatorname{span}\left(z_{1}, \ldots, z_{m}\right)$,

$$
o_{1}:=\gamma_{1,1} z_{1}, \quad o_{l+1}:=\gamma_{l+1, l+1} z_{l+1}-\gamma_{l+1, l+1} \sum_{i=1}^{l}\left\langle z_{l+1}, o_{i}\right\rangle o_{i}
$$

where $\gamma_{1,1}:=\frac{1}{\left|z_{1}\right|}$ and $\gamma_{l+1, l+1}:=\frac{1}{d\left(z_{l+1}, \operatorname{aff}\left(z_{0}, \ldots, z_{l}\right)\right)}$. Furthermore we define recursively

$$
\gamma_{l+1, r}:=-\sum_{i=r}^{l} \gamma_{l+1, l+1}\left\langle z_{l+1}, o_{i}\right\rangle \gamma_{i, r}
$$

for $r \in\{1, \ldots, l\}$. Now we prove by induction that $\gamma_{l, r}$ fulfil the desired properties. We have $o_{1}=\gamma_{1,1}\left(y_{1}-y_{0}\right)$ and (2.5) implies $\left|\gamma_{1,1}\right| \leq \frac{C}{t}$. Now let $1 \leq l \leq m$. We assume that, for all $i \in\{1, \ldots, l\}, j \in\{1, \ldots, i\}$, we have $o_{i}=\sum_{r=1}^{i} \gamma_{i, r} z_{r}$ and $\left|\gamma_{i, j}\right| \leq(2 l C \hat{C})^{l} \frac{C}{t}$. We obtain

$$
o_{l+1}=\gamma_{l+1, l+1} z_{l+1}-\sum_{i=1}^{l} \sum_{r=1}^{i} \gamma_{l+1, l+1}\left\langle z_{l+1}, o_{i}\right\rangle \gamma_{i, r} z_{r}=\sum_{r=1}^{l+1} \gamma_{l+1, r} z_{r}
$$

If $r=l+1$, (2.5) implies $\left|\gamma_{l+1, r}\right| \leq \frac{C}{t}$, and if $1 \leq r \leq l$, we get with $\left|z_{l+1}\right| \leq 2 \hat{C} t$ that

$$
\left|\gamma_{l+1, r}\right| \stackrel{(2.5)}{\leq} \sum_{i=r}^{l} \frac{C}{t}\left|z_{l+1}\right|(2 l C \hat{C})^{l} \frac{C}{t}<(2(l+1) C \hat{C})^{l+1} \frac{C}{t}
$$

Lemma 2.17. Let $C, \hat{C} \geq 1, t>0,0<\sigma \leq\left(10\left(10^{m}+1\right) m C(2 m C \hat{C})^{m}\right)^{-1}$, and $P_{1}, P_{2} \in \mathcal{P}(N, m)$, and let $S=\Delta\left(y_{0}, \ldots, y_{m}\right) \subset P_{1}$ be an $\left(m, \frac{t}{C}\right)$-simplex with $S \subset B(x, \hat{C} t), x \in \mathbb{R}^{N}$ and $d\left(y_{i}, P_{2}\right) \leq t \sigma$ for all $i \in\{0, \ldots, m\}$. It follows that

$$
\varangle\left(P_{1}, P_{2}\right) \leq 4 m\left(10^{m}+1\right)\left(2 m C(2 m C \hat{C})^{m}\right) \sigma .
$$

Proof. Use Lemma 2.16 to get some orthonormal basis of $\operatorname{span}\left(y_{1}-y_{0}, \ldots, y_{m}-y_{0}\right)$ and $\gamma_{l, r} \in \mathbb{R}$. We set $\hat{y}_{0}:=\pi_{P_{2}}\left(y_{0}\right)$ and we obtain for $1 \leq l \leq m$,

$$
d\left(o_{l}, P_{2}-\hat{y}_{0}\right) \leq \sum_{r=1}^{l}\left|\gamma_{l, r}\right|\left(d\left(y_{r}, P_{2}\right)+d\left(y_{0}, P_{2}\right)\right) \leq 2 m C(2 m C \hat{C})^{m} \sigma
$$

Setting $\tilde{\sigma}=2 m C(2 m C \hat{C})^{m} \sigma \leq \frac{1}{10\left(10^{m}+1\right)}$ the assertion follows with Corollary 2.15 $\left(G_{1}=P_{1}-y_{0}, G_{2}=P_{2}-\hat{y}_{0}\right)$.

Lemma 2.18. Let $\sigma>0, t \geq 0, P_{1}, P_{2} \in \mathcal{P}(N, m)$ with $\varangle\left(P_{1}, P_{2}\right) \leq \sigma$ and assume that there exist $p_{1} \in P_{1}, p_{2} \in P_{2}$ with $d\left(p_{1}, p_{2}\right) \leq t \sigma$. Then $d\left(w, P_{2}\right) \leq$ $\sigma\left(d\left(w, p_{1}\right)+t\right)$ holds for every $w \in P_{1}$.
Proof. For $w \in P_{1}$, set $\tilde{w}:=w-p_{1} \in P_{1}-p_{1}$. We obtain

$$
d\left(w, P_{2}\right) \leq|\tilde{w}||\tilde{w}| \tilde{w}\left|-\pi_{P_{2}-p_{2}}\left(\frac{\tilde{w}}{|\tilde{w}|}\right)\right|+d\left(p_{1}, p_{2}\right) \leq|\tilde{w}| \varangle\left(P_{1}-p_{1}, P_{2}-p_{2}\right)+t \sigma .
$$

3. Integral Menger curvature and rectifiability

3.1. Main result. Let $n, N \in \mathbb{N}$ with $1 \leq n<N$. We start with some definitions.

Definition 3.1 (Proper integrand). Let $\mathcal{K}:\left(\mathbb{R}^{N}\right)^{n+2} \rightarrow[0, \infty)$ and $p>1$. We say that \mathcal{K}^{p} is a proper integrand if it fulfils the following four conditions:

- \mathcal{K} is $\left(\mathcal{H}^{n}\right)^{n+2}$-measurable, where $\left(\mathcal{H}^{n}\right)^{n+2}$ denotes the $n+2$-times product measure of \mathcal{H}^{n}.
- There exist some constants $c=c(n, \mathcal{K}, p) \geq 1$ and $l=l(n, \mathcal{K}, p) \geq 1$ so that, for all $t>0, C \geq 1, x \in \mathbb{R}^{N}$ and all $\left(n, \frac{t}{C}\right)$-simplices $\Delta\left(x_{0}, \ldots, x_{n}\right) \subset$ $B(x, C t)$, we have

$$
\left(\frac{d\left(w, \operatorname{aff}\left(x_{0}, \ldots, x_{n}\right)\right)}{t}\right)^{p} \leq c C^{l} t^{n(n+1)} \mathcal{K}^{p}\left(x_{0}, \ldots, x_{n}, w\right)
$$

for all $w \in B(x, C t)$.

- For all $t>0$, we have $t^{n(n+1)} \mathcal{K}^{p}\left(t x_{0}, \ldots, t x_{n+1}\right)=\mathcal{K}^{p}\left(x_{0}, \ldots, x_{n+1}\right)$.
- For every $b \in \mathbb{R}^{N}$, we have $\mathcal{K}\left(x_{0}+b, \ldots, x_{n+1}+b\right)=\mathcal{K}\left(x_{0}, \ldots, x_{n+1}\right)$.

Remark 3.2. If instead of the first condition we have that \mathcal{K} is $(\mu)^{n+2}$-measurable for some Borel measure μ on \mathbb{R}^{N}, we call $\mathcal{K} \mu$-proper.
Definition 3.3. (i) We call a Borel set $E \subset \mathbb{R}^{N}$ purely n-unrectifiable if for every Lipschitz continuous function $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$, we have $\mathcal{H}^{n}\left(E \cap \gamma\left(\mathbb{R}^{n}\right)\right)=0$.
(ii) A Borel set $E \subset \mathbb{R}^{N}$ is n-rectifiable if there exists some countable family of Lipschitz continuous functions $\gamma_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ so that $\mathcal{H}^{n}\left(E \backslash \bigcup_{i=1}^{\infty} \gamma_{i}\left(\mathbb{R}^{n}\right)\right)=0$.
Definition 3.4 (Integral Menger curvature). Let $E \subset \mathbb{R}^{N}$ be a Borel set and μ be a Borel measure on \mathbb{R}^{N}. We define the integral Menger curvature of E and μ with integrand \mathcal{K}^{p} by $\mathcal{M}_{\mathcal{K}^{p}}(E):=\mathcal{M}_{\mathcal{K}^{p}}\left(\left.\mathcal{H}^{N}\right|_{E}\right)$ and

$$
\mathcal{M}_{\mathcal{K}^{p}}(\mu):=\int \cdots \int \mathcal{K}^{p}\left(x_{0}, \ldots, x_{n+1}\right) \mathrm{d} \mu\left(x_{0}\right) \ldots \mathrm{d} \mu\left(x_{n+1}\right)
$$

Now we can state our main result.
Theorem 3.5. Let $E \subset \mathbb{R}^{N}$ be a Borel set with $\mathcal{M}_{\mathcal{K}^{2}}(E)<\infty$, where \mathcal{K}^{2} is some proper integrand. Then E is n-rectifiable.
3.2. Examples of proper integrands. We start with flat simplices.

Definition 3.6. We define the $\left(\mathcal{H}^{n}\right)^{n+2}$-measurable set

$$
X_{0}:=\left\{\left(x_{0}, \ldots, x_{n+1}\right) \in\left(\mathbb{R}^{N}\right)^{n+2} \mid \operatorname{Gram}\left(x_{1}-x_{0}, \ldots, x_{n+1}-x_{0}\right)=0\right\}
$$

(the Gram determinant is defined in Definition (2.6), which is the set of all simplices with $n+2$ vertices in \mathbb{R}^{N} which span at most an n-dimensional affine subspace.

The following lemma is helpful to prove that a given integrand fulfils the second condition of a proper integrand.

Lemma 3.7. Let $t>0, C \geq 1, x \in \mathbb{R}^{N}$, and $w \in B(x, C t)$, and let $S=$ $\Delta\left(x_{0}, \ldots, x_{n}\right) \subset B(x, C t)$ be some ($n, \frac{t}{C}$)-simplex. Setting $S_{w}=\Delta\left(x_{0}, \ldots, x_{n}, w\right)$, $A\left(S_{w}\right)$ as the surface area of the simplex S_{w} and choosing $i, j \in\{0, \ldots, n\}$ with $j \neq i$ we have the following statements:

- $\frac{t}{C} \leq d\left(x_{i}, x_{j}\right) \leq \operatorname{diam}\left(S_{w}\right) \leq 2 C t$,
- $d\left(x_{i}, w\right) \leq 2 C t$,
- $\frac{t^{n}}{C^{n} n!} \leq \mathcal{H}^{n}(S) \leq \frac{(2 C)^{n}}{n!} t^{n}$,
- $\mathcal{H}^{n}(S) \leq A\left(S_{w}\right) \leq\left[(n+1) 2 C^{2}+1\right] \mathcal{H}^{n}(S)$,
- $d\left(w, \operatorname{aff}\left(x_{0}, \ldots, x_{n}\right)\right)=n \frac{\mathcal{H}^{n+1}\left(S_{w}\right)}{\mathcal{H}^{n}(S)}$.

Proof. Since S is an ($n, \frac{t}{C}$)-simplex, we have

$$
\begin{equation*}
\frac{t}{C} \leq \mathfrak{h}_{i}(S) \leq d\left(x_{i}, x_{j}\right) \leq \operatorname{diam}\left(S_{w}\right)=\max _{l, m \in\{0, \ldots, n\}}\left\{d\left(x_{l}, x_{m}\right), d\left(x_{l}, w\right)\right\} \leq 2 C t, \tag{3.1}
\end{equation*}
$$

and because of $x_{i}, w \in B(x, C t)$, we get $d\left(x_{i}, w\right) \leq 2 C t$. Now, we conclude that $\mathcal{H}^{n}(S)=\frac{1}{n!} \prod_{l=0}^{n-1} d\left(x_{l}, \operatorname{aff}\left(x_{l+1}, \ldots, x_{n}\right)\right)$, which implies

$$
\frac{t^{n}}{C^{n} n!} \stackrel{\sqrt{3.1}}{\leq} \frac{1}{n!} \prod_{l=0}^{n-1} \mathfrak{h}_{l}(S) \leq \mathcal{H}^{n}(S) \leq \frac{1}{n!} \prod_{l=0}^{n-1} d\left(x_{l}, x_{n}\right) \stackrel{\sqrt{3.1 \mid}}{\leq} \frac{(2 C)^{n}}{n!} t^{n}
$$

Using $\mathfrak{h}_{w}\left(\mathfrak{f}_{i}\left(S_{w}\right)\right) \leq d\left(w, x_{j}\right) \leq 2 C t$, we obtain

$$
\begin{aligned}
\mathcal{H}^{n}\left(\mathfrak{f}_{i}\left(S_{w}\right)\right) & =\frac{1}{n} \mathfrak{h}_{w}\left(\mathfrak{f}_{i}\left(S_{w}\right)\right) \mathcal{H}^{n-1}\left(\mathfrak{f}_{i, w}\left(S_{w}\right)\right) \\
& \stackrel{\sqrt{3.1}}{\leq} \frac{1}{n} 2 C^{2} \mathfrak{h}_{i}(S) \mathcal{H}^{n-1}\left(\mathfrak{f}_{i}(S)\right)=2 C^{2} \mathcal{H}^{n}(S)
\end{aligned}
$$

so that with $A\left(S_{w}\right)=\sum_{i=0}^{n} \mathcal{H}^{n}\left(\mathfrak{f}_{i} S_{w}\right)+\mathcal{H}^{n}\left(\mathfrak{f}_{w} S_{w}\right)$ and $\mathfrak{f}_{w}\left(S_{w}\right)=S$, we get

$$
\mathcal{H}^{n}(S) \leq A\left(S_{w}\right) \leq\left[(n+1) 2 C^{2}+1\right] \mathcal{H}^{n}(S)
$$

Finally, using that $S=\mathfrak{f c}_{w}\left(S_{w}\right)$, we deduce that

$$
d\left(w, \operatorname{aff}\left(x_{0}, \ldots, x_{n}\right)\right)=\mathfrak{h}_{w}\left(S_{w}\right)=\frac{\mathfrak{h}_{w}\left(S_{w}\right) \cdot \mathcal{H}^{n}\left(\mathfrak{f}_{w}\left(S_{w}\right)\right)}{\mathcal{H}^{n}(S)}=\frac{n \mathcal{H}^{n+1}\left(S_{w}\right)}{\mathcal{H}^{n}(S)}
$$

Now we can state some examples of proper integrands. Use the previous lemma to verify the second condition. We define all following examples to be 0 on X_{0} and will only give an explicit definition on $\left(\mathbb{R}^{N}\right)^{n+2} \backslash X_{0}$. We mention that our main result is only valid for all integrands which are proper for integrability exponent $p=2$.

Proper integrands with exponent 2 . We start with the one used in the introduction of this work. Let $x_{0}, \ldots, x_{n+1} \in\left(\mathbb{R}^{N}\right)^{n+2} \backslash X_{0}$ and set

$$
\mathcal{K}_{1}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{\mathcal{H}^{n+1}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)}{\Pi_{0 \leq i<j \leq n+1} d\left(x_{i}, x_{j}\right)}
$$

then \mathcal{K}_{1}^{2} is proper. The next proper integrand is used by Lerman and Whitehouse in [20, 21:

$$
\mathcal{K}_{2}^{2}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{1}{n+2} \cdot \frac{\operatorname{Vol}_{n+1}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)^{2}}{\operatorname{diam}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)^{n(n+1)}} \sum_{\substack{i=0 \\ n+1} \frac{1}{\prod_{\substack{j=0 \\ j \neq i}}^{n+1}\left|x_{j}-x_{i}\right|^{2}}, ., ~, ~}^{\text {, }}
$$

where Vol_{n+1} is $(n+1)$! times the volume of the simplex $\Delta\left(x_{0}, \ldots, x_{n+1}\right)$, which is equal to the volume of the parallelotope spanned by this simplex; cf. Definition 2.6. The following proper integrand, \mathcal{K}_{3}^{2}, is mentioned among others in [20, section 6]:

$$
\mathcal{K}_{3}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{\mathcal{H}^{n+1}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)}{\operatorname{diam} \Delta\left(x_{0}, \ldots, x_{n+1}\right)^{\frac{(n+1)(n+2)}{2}}}
$$

Proper integrands with exponents different from 2. Now we present some integrands for integral Menger curvature used in several papers, where the scaling behaviour implies that our main result cannot be applied. Nevertheless, most of our partial results are valid also for these integrands. The first integrand we consider was introduced for $n=2, N=3$ in [32,

$$
\mathcal{K}_{4}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{V(T)}{A(T)(\operatorname{diam} T)^{2}}
$$

where $V(T)$ is the volume of the simplex $T=\Delta\left(x_{0}, \ldots, x_{n+1}\right)$ and $A(T)$ is the surface area of $T . \mathcal{K}_{4}^{p}$ is a proper integrand with $p=n(n+1)$. The next one, \mathcal{K}_{5}^{p}, is a proper integrand with $p=n(n+1)$ and is used, for example, in [4, 18]:

$$
\mathcal{K}_{5}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{\mathcal{H}^{n+1}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)}{\operatorname{diam}\left(\Delta\left(x_{0}, \ldots, x_{n+1}\right)\right)^{n+2}}
$$

Finally, Léger suggested the following integrand in [19] for a higher dimensional analogue of his theorem. Unfortunately, we cannot confirm his suggestion. This one, \mathcal{K}_{6}^{p}, is a proper integrand with $p=(n+1)$ where

$$
\mathcal{K}_{6}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{d\left(x_{n+1}, \operatorname{aff}\left(x_{0}, \ldots, x_{n}\right)\right)}{d\left(x_{n+1}, x_{0}\right) \ldots d\left(x_{n+1}, x_{n}\right)}
$$

Hence our main result does not apply for $n \neq 1$. For $n=1$ up to a factor of 2 , this integrand gives the inverse of the circumcircle of the three points x_{0}, x_{1}, x_{2}.

4. β-Numbers

In this section, let $C_{0} \geq 10$ and let μ be a Borel measure on \mathbb{R}^{N} with compact support F that is upper Ahlfors regular, i.e.,
(B) for every ball B we have $\mu(B) \leq C_{0}(\operatorname{diam} B)^{n}$.

If $B=B(x, r)$ is some ball in \mathbb{R}^{N} with centre x and radius r and $t \in(0, \infty)$, then we set $t B:=B(x, \operatorname{tr})$. Distinguish this notation from the case $t \Upsilon=\{t z \mid z \in \Upsilon\}$ where $\Upsilon \subset \mathbb{R}^{N}$ is some arbitrary set. Furthermore, in this and the following sections, we assume that every ball is closed. We need this to apply Vitali's and Besicovitch's covering theorems. By C, we denote a generic constant with a fixed value which may change from line to line.

4.1. Measure quotient.

Definition 4.1 (Measure quotient). For a ball $B=B(x, t)$ with centre $x \in \mathbb{R}^{N}$, radius $t>0$ and a μ-measurable set $\Upsilon \subset \mathbb{R}^{N}$, we define the measure quotient

$$
\delta(B \cap \Upsilon)=\delta_{\mu}(B \cap \Upsilon):=\frac{\mu(B(x, t) \cap \Upsilon)}{t^{n}}
$$

In most instances, we will use the special case $\Upsilon=\mathbb{R}^{N}$ and write $\delta(B)$ instead of $\delta\left(B \cap \mathbb{R}^{N}\right)$.

This measure quotient compares the amount of the support F contained in a ball with the size of this ball. The following lemma states that if we have a lower control on the measure quotient of some ball, then we can find a not too flat simplex contained in this ball, where at each vertex we have a small ball with a lower control on its quotient measure.

Lemma 4.2. Let $0<\lambda \leq 2^{n}$ and let $N_{0}=N_{0}(N)$ be the constant from Besicovitch's covering theorem [7, 1.5.2, Thm. 2] depending only on the dimension N. There exist constants $C_{1}:=\frac{4 \cdot 120^{n} n^{n+1} N_{0} C_{0}}{\lambda}>3$ and $C_{2}:=\frac{2^{n+2} N_{0} C_{1}^{n}}{\lambda}>1$ so that for a given ball $B(x, t)$ and some μ-measureable set Υ with $\delta(B(x, t) \cap \Upsilon) \geq \lambda$, there exists some $T=\Delta\left(x_{0}, \ldots, x_{n+1}\right) \in F \cap B(x, t) \cap \Upsilon$ so that $\mathfrak{f}_{i}(T)$ is an $\left(n, 10 n \frac{t}{C_{1}}\right)$ simplex and $\mu\left(B\left(x_{i}, \frac{t}{C_{1}}\right) \cap B(x, t) \cap \Upsilon\right) \geq \frac{t^{n}}{C_{2}}$ for all $i \in\{0, \ldots, n+1\}$.

Proof. Let $B(x, t)$ be the ball with $\delta(B(x, t) \cap \Upsilon) \geq \lambda$ and $\mathcal{F}:=\left\{\left.B\left(y, \frac{t}{C_{1}}\right) \right\rvert\, y \in\right.$ $F \cap B(x, t) \cap \Upsilon\}$. With Besicovitch's covering theorem [7, 1.5.2, Thm. 2] we get $N_{0}=N_{0}(n)$ families $\mathcal{B}_{m} \subset \mathcal{F}, m=1, \ldots, N_{0}$, of disjoint balls so that $F \cap B(x, t) \cap$ $\Upsilon \subset \bigcup_{m=1}^{N_{0}} \bigcup_{B \in \mathcal{B}_{m}} B$. We have

$$
\lambda \leq \frac{1}{t^{n}} \mu\left(\bigcup_{m=1}^{N_{0}} \bigcup_{B \in \mathcal{B}_{m}}(B \cap B(x, t) \cap \Upsilon)\right) \leq \frac{1}{t^{n}} \sum_{m=1}^{N_{0}} \sum_{B \in \mathcal{B}_{m}} \mu(B \cap B(x, t) \cap \Upsilon)
$$

and hence there exists a family \mathcal{B}_{m} with

$$
\begin{equation*}
\sum_{B \in \mathcal{B}_{m}} \mu(B \cap B(x, t) \cap \Upsilon) \geq \frac{\lambda t^{n}}{N_{0}} \tag{4.1}
\end{equation*}
$$

We assume that for every $S=\Delta\left(y_{0}, \ldots, y_{n+1}\right) \in F \cap B(x, t) \cap \Upsilon$, there exists some $i \in\{0, \ldots, n+1\}$ so that either $\mathfrak{f}_{i}(S)$ is not a ($\left.n, 10 n \frac{t}{C_{1}}\right)$-simplex or $\mu\left(B\left(y_{i}, \frac{t}{C_{1}}\right) \cap B(x, t) \cap \Upsilon\right)<\frac{t^{n}}{C_{2}}$. We define $\mathcal{G}:=\left\{B \in \mathcal{B}_{m} \left\lvert\, \mu(B \cap B(x, t) \cap \Upsilon) \geq \frac{t^{n}}{C_{2}}\right.\right\}$ and mention that \mathcal{G} is a finite set since Lemma A. 1 implies that $\# \mathcal{B}_{m} \leq\left(2 C_{1}\right)^{n}$. With Lemma 2.9 (where we set G as the set of centres of balls in \mathcal{G} and $C=$ $\left.10 n \frac{t}{C_{1}}\right)$, we know that there exists some $T_{z}=\Delta\left(z_{0}, \ldots, z_{n}\right)$ so that for every ball $B\left(y, \frac{t}{C_{1}}\right) \in \mathcal{G}$, there exists some $i \in\{0, \ldots, n\}$ so that $d\left(y, \operatorname{aff}\left(\mathfrak{f r}_{i}\left(T_{z}\right)\right)\right) \leq 20 n \frac{t}{C_{1}}$. We define for $i \in\{0, \ldots, n\}$:

$$
\begin{aligned}
T_{i} & :=\operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right) \cap B\left(\pi_{\operatorname{aff}^{\prime}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)}(x), 2 t\right), \\
\mathcal{S}_{i} & :=\left\{y \in \mathbb{R}^{n} \left\lvert\, d\left(y, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right) \leq \frac{30 n t}{C_{1}}\right., \pi_{\mathrm{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)}(y) \in T_{i}\right\},
\end{aligned}
$$

and we know that $B \in \mathcal{G}$ implies $B \subset S_{i}$ for some $i \in\{0, \ldots, n\}$. With Lemma A. 2 applied to $B(x, r)=T_{i}, s=\frac{4}{C_{1}} t<2 t=r$ and $m=n-1$, there exists a family \mathcal{E} of disjoint closed balls with $\operatorname{diam} B=\frac{8}{C_{1}} t$ for all $B \in \mathcal{E}, T_{i} \subset \bigcup_{B \in \mathcal{E}} 5 B$ and $\# \mathcal{E} \leq C_{1}^{n-1}$. Let $y \in S_{i}$. We have $d\left(y, \operatorname{aff}\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)\right) \leq \frac{30 n}{C_{1}} t$ and $\pi_{\text {aff }\left(\mathfrak{f}_{i}\left(T_{z}\right)\right)}(y) \in T_{i}$. So, there exists some $B=B\left(z, \frac{4}{C_{1}} t\right) \in \mathcal{E}$ with $\pi_{\operatorname{aff}^{\prime}\left(\mathfrak{f}_{i}(T)\right)}(y) \in 5 B$, and we have $d(y, z) \leq \frac{30 n}{C_{1}} t+5 \frac{4}{C_{1}} t<\frac{60 n}{C_{1}} t$. This proves $S_{i} \subset \bigcup_{B \in \mathcal{E}} 15 n B$. We therefrom derive
with (B) (see page 1196)

$$
\begin{align*}
\mu\left(S_{i}\right) & \leq \sum_{B \in \mathcal{E}} \mu(15 n B) \stackrel{(\mathrm{B})}{\leq} \sum_{B \in \mathcal{E}} C_{0}(15 n \operatorname{diam} B)^{n} \tag{4.2}\\
& \leq \# \mathcal{E} C_{0} \frac{(120 n)^{n} t^{n}}{C_{1}^{n}} \leq(120 n)^{n} C_{0} \frac{t^{n}}{C_{1}} .
\end{align*}
$$

We define for $i \in\{1, \ldots, n\}$,

$$
\mathcal{G}_{0}:=\left\{B \in \mathcal{G} \mid B \subset S_{0}\right\} \quad \text { and } \quad \mathcal{G}_{i}:=\left\{B \in \mathcal{G} \mid B \subset S_{i} \text { and } B \notin \bigcup_{j=0}^{i-1} \mathcal{G}_{i}\right\}
$$

as a partition of \mathcal{G} (compare the remark after the definition of \mathcal{S}_{i}). Now we have

$$
\sum_{B \in \mathcal{G}} \mu(B \cap B(x, t) \cap \Upsilon) \leq \sum_{i=0}^{n} \mu\left(S_{i}\right) \stackrel{(4.2)}{\leq} n(120 n)^{n} C_{0} \frac{t^{n}}{C_{1}}
$$

Moreover, we have

$$
\sum_{B \in \mathcal{B}_{m} \backslash \mathcal{G}} \mu(B \cap B(x, t) \cap \Upsilon)<\sum_{B \in \mathcal{B}_{m} \backslash \mathcal{G}} \frac{t^{n}}{C_{2}} \stackrel{\# \mathcal{B}_{m} \leq\left(2 C_{1}\right)^{n}}{\leq}\left(2 C_{1}\right)^{n} \frac{t^{n}}{C_{2}}
$$

All in all, we get with (4.1) and the definition of C_{1} and C_{2} :

$$
\lambda \leq N_{0} \frac{1}{t^{n}}\left(2^{n} t^{n} \frac{C_{1}^{n}}{C_{2}}+120^{n} n^{n+1} t^{n} C_{0} \frac{1}{C_{1}}\right)=N_{0}\left(2^{n} \frac{C_{1}^{n}}{C_{2}}+120^{n} n^{n+1} C_{0} \frac{1}{C_{1}}\right) \leq \frac{\lambda}{2}
$$

thus in contradiction to $\lambda>0$. This completes the proof of Lemma 4.2,
In most instances, we will use a weaker version of Lemma 4.2
Corollary 4.3. Let $0<\lambda \leq 2^{n}$. There exist constants $C_{1}=C_{1}\left(N, n, C_{0}, \lambda\right)>$ 3 and $C_{2}=C_{2}\left(N, n, C_{0}, \lambda\right)>1$ so that for a given ball $B(x, t)$ and some μ measurable set Υ with $\delta(B(x, t) \cap \Upsilon) \geq \lambda$, there exists some ($n, 10 n \frac{t}{C_{1}}$)-simplex $T=\Delta\left(x_{0}, \ldots, x_{n}\right) \in F \cap B(x, t) \cap \Upsilon$ so that $\mu\left(B\left(x_{i}, \frac{t}{C_{1}}\right) \cap B(x, t) \cap \Upsilon\right) \geq \frac{t^{n}}{C_{2}}$ for all $i \in\{0, \ldots, n\}$.

4.2. β-numbers and integral Menger curvature.

Definition 4.4 (β-numbers). Let $k>1$ be some fixed constant, let $x \in \mathbb{R}^{N}, t>0$, $B=B(x, t)$, and $p \geq 1$, let $\mathcal{P}(N, n)$ be the set of all n-dimensional planes in \mathbb{R}^{N}, and let $P \in \mathcal{P}(N, n)$. We define

$$
\begin{aligned}
& \beta_{p ; k}^{P}(B)=\beta_{p ; k}^{P}(x, t)=\beta_{p ; k ; \mu}^{P}(x, t):=\left(\frac{1}{t^{n}} \int_{B(x, k t)}\left(\frac{d(y, P)}{t}\right)^{p} \mathrm{~d} \mu(y)\right)^{\frac{1}{p}} \\
& \beta_{p ; k}(B)=\beta_{p ; k}(x, t)=\beta_{p ; k ; \mu}(x, t):=\inf _{P \in \mathcal{P}(N, n)} \beta_{p ; k}^{P}(x, t)
\end{aligned}
$$

The β-numbers measure how well the support of the measure μ can be approximated by some plane. A small β-number of some ball implies either a good approximation of the support by some plane or a low measure quotient δ (cf. Definition 4.1). Hence, since we are interested in good approximations by planes, we will use the β-numbers mainly for balls where we have some lower control on the measure quotient.

Definition 4.5 (Local version of $\mathcal{M}_{\mathcal{K}^{p}}$). For $\kappa>1, x \in \mathbb{R}^{N}, t>0, p>0$, we define

$$
\mathcal{M}_{\mathcal{K}^{p} ; \kappa}(x, t):=\int \cdots \int_{\mathcal{O}_{\kappa}(x, t)} \mathcal{K}^{p}\left(x_{0}, \ldots, x_{n+1}\right) \mathrm{d} \mu\left(x_{0}\right) \ldots \mathrm{d} \mu\left(x_{n+1}\right)
$$

where \mathcal{K}^{p} is a μ-proper integrand (cf. Definition 3.1) and

$$
\begin{aligned}
& \mathcal{O}_{\kappa}(x, t) \\
& \quad:=\left\{\left(x_{0}, \ldots, x_{n+1}\right) \in(B(x, \kappa t))^{n+2} \left\lvert\, d(a, b) \geq \frac{t}{\kappa}\right., \forall a, b \in\left\{x_{0}, \ldots, x_{n+1}\right\}, a \neq b\right\} .
\end{aligned}
$$

Theorem 4.6. Let \mathcal{K}^{p} be a symmetric μ-proper integrand and let $0<\lambda<2^{n}$, $k>2, k_{0} \geq 1$. There exist constants $k_{1}=k_{1}\left(N, n, C_{0}, k, k_{0}, \lambda\right)>1$ and $C=$ $C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right) \geq 1$ such that if $x \in \mathbb{R}^{N}$ and $t>0$ with $\delta(B(x, t)) \geq \lambda$ for every $y \in B\left(x, k_{0} t\right)$, we have

$$
\beta_{p ; k}(y, t)^{p} \leq C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}} \leq C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}+k_{0}}(y, t)}{t^{n}} .
$$

Proof. With Lemma 4.2 for $\Upsilon=\mathbb{R}^{N}$, there exists some $T=\Delta\left(x_{0}, \ldots, x_{n+1}\right) \in F \cap$ $B(x, t)$ so that $\mathfrak{f}_{i}(T)$ is an $\left(n, 10 n \frac{t}{C_{1}}\right)$-simplex and $\mu\left(B\left(x_{i}, \frac{t}{C_{1}}\right) \cap B(x, t)\right) \geq \frac{t^{n}}{C_{2}}$ for all $i \in\{0, \ldots, n+1\}$ where C_{1}, C_{2} are the constants from Lemma 4.2 depending on the present constant $\lambda>0$, the constant C_{0} determined in (B) on page 1196, as well as N and n. We set $B_{i}:=B\left(x_{i}, \frac{t}{C_{1}}\right), k_{1}:=\max \left(C_{1},\left(2+k+k_{0}\right)\right)>1$ and go on with some intermediate results.
I. Let $z_{i} \in B_{i}$ for all $i \in\{0, \ldots, n+1\}$, $w \in B\left(x,\left(k+k_{0}\right) t\right) \backslash \bigcup_{\substack{l=0 \\ l \neq j}}^{n+1} 2 B_{l}$ or $w \in 2 B_{j}$ for some fixed $j \in\{0, \ldots, n+1\}$. Since $\mathfrak{f r}_{i}(T)$ is an ($\left.n, 10 n \frac{t}{C_{1}}\right)$-simplex we obtain $\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n+1}, w\right) \in \mathcal{O}_{k_{1}}(x, t)$, where $\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n+1}, w\right)$ denotes the ($n+2$)-tuple $\left(z_{0}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n+1}, w\right)$.
II. Let $z_{i} \in B_{i}=B\left(x_{i}, \frac{t}{C_{1}}\right)$ for all $i \in\{0, \ldots, n+1\}$. Then Lemma 2.8 implies that $\mathfrak{f}_{i}\left(\Delta\left(z_{0}, \ldots, z_{n+1}\right)\right)$ is an $\left(n,(9 n-1) \frac{t}{C_{1}}\right)$-simplex for all $i \in\{0, \ldots, n+1\}$.
III. Let $z_{i} \in B_{i}=B\left(x_{i}, \frac{t}{C_{1}}\right)$ for all $i \in\{0, \ldots, n+1\}, w \in B\left(x,\left(k+k_{0}\right) t\right)$. Since \mathcal{K}^{p} is a μ-proper integrand with II there exists some constant $\tilde{C}=$ $\tilde{C}\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right)$ so that for all $j \in\{0, \ldots, n+1\}$, we have

$$
\left(\frac{d\left(w, \operatorname{aff}\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n+1}\right)\right)}{t}\right)^{p} \leq \tilde{C} t^{n(n+1)} \mathcal{K}^{p}\left(z_{0}, \ldots, \hat{z}_{j}, \ldots, z_{n+1}, w\right)
$$

IV. There exist some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right)$ and $z_{i} \in F \cap B_{i} \cap$ $B(x, t), i \in\{0, \ldots, n+1\}$, so that for all $l \in\{0, \ldots, n+1\}$, we have
$\int \chi_{\left\{\left(z_{0}, \ldots, \hat{z}_{l}, \ldots, z_{n+1}, w\right) \in \mathcal{O}_{k_{1}}(x, t)\right\}} \mathcal{K}^{p}\left(z_{0}, \ldots, \hat{z}_{l}, \ldots, z_{n+1}, w\right) \mathrm{d} \mu(w) \leq C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{(n+1) n}}$
and with $P_{n+1}:=\operatorname{aff}\left(z_{0}, \ldots, z_{n}\right)$, we have

$$
\begin{equation*}
\left(\frac{d\left(z_{n+1}, P_{n+1}\right)}{t}\right)^{p} \leq C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}} \tag{4.4}
\end{equation*}
$$

Proof of I-IV. For $E \subset \mathbb{R}^{N}$ with $\# E=m+1, E=\left\{e_{0}, \ldots, e_{m}\right\}, 0 \leq m \leq n$, we set

$$
\begin{aligned}
\mathcal{R}(E):=\int_{F^{n-m+1}} \chi_{\left\{\left(e_{0}, \ldots, e_{m}, w_{m+1}, \ldots, w_{n+1}\right) \in \mathcal{O}_{k_{1}}(x, t)\right\}} \\
\mathcal{K}^{p}\left(e_{0}, \ldots, e_{m}, w_{m+1}, \ldots, w_{n+1}\right) \mathrm{d} \mu\left(w_{m+1}\right) \ldots \mathrm{d} \mu\left(w_{n+1}\right)
\end{aligned}
$$

The integrand \mathcal{K} is symmetric; hence the value $\mathcal{R}(E)$ is well-defined because it does not depend on the numbering of the elements of E. In the following part, we use the convention that $\{0, \ldots,-1\}=\emptyset$ and $\left\{z_{0}, \ldots, z_{-1}\right\}=\emptyset$. At first, we show by an inductive construction that, for all $m \in \mathbb{N}$ with $0 \leq m \leq n+1$, there holds:

For all $j \in\{0, \ldots, m\}$ and $i \in\{j, \ldots, n+1\}$, there exist constants $C^{(j)}>1$ and sets $Z_{i}^{j} \subset F \cap B_{i} \cap B(x, t)$. For all $l \in\{0, \ldots, m-1\}$, there exist $z_{l} \in Z_{l}^{l}$ with

$$
\begin{equation*}
\mu\left(Z_{i}^{j}\right)>\frac{t^{n}}{2^{j+1} C_{2}} \tag{4.5}
\end{equation*}
$$

For all $u \in\{0, \ldots, m\}$, for all $E \subset\left\{z_{0}, \ldots, z_{u-1}\right\}$ and $z \in Z_{r}^{u}$, where $r \in\{u, \ldots$, $n+1\}$, we have

$$
\begin{equation*}
\mathcal{R}(E \cup\{z\}) \leq C^{(u)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{(\# E+1) n}} \tag{4.6}
\end{equation*}
$$

We start with $m=j=0$ and choose the constant $C^{(0)}:=2 C_{2}$, set $\Upsilon_{i}:=$ $F \cap B_{i} \cap B(x, t)$ and define for every $i \in\{0, \ldots, n+1\}$,

$$
\begin{equation*}
Z_{i}^{0}:=\left\{z \in \Upsilon_{i} \left\lvert\, \mathcal{R}(\{z\}) \leq C^{(0)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}}\right.\right\} \tag{4.7}
\end{equation*}
$$

We have $\mu\left(Z_{i}^{0}\right) \geq \mu\left(\Upsilon_{i}\right)-\mu\left(\Upsilon_{i} \backslash Z_{i}^{0}\right)>\frac{t^{n}}{2 C_{2}}$ because $\mu\left(\Upsilon_{i}\right) \stackrel{(i i)}{\geq} \frac{t^{n}}{C_{2}}$, and with (4.7), Chebyshev's inequality and $\int \mathcal{R}(\{z\}) \mathrm{d} \mu(z)=\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)$ we obtain $\mu\left(\Upsilon_{i} \backslash Z_{i}^{0}\right)<$ $\frac{t^{n}}{C^{(0)}}$. If $u=0, E \subset\left\{z_{0}, \ldots, z_{-1}\right\}=\emptyset$ and $z \in Z_{r}^{0}$, where $r \in\{0, \ldots, n+1\}$, the definition (4.7) implies (4.6) in this case.

Now we let $m \in\{0, \ldots, n\}$ and we assume that for all $j \in\{0, \ldots, m\}$ and $i \in\{j, \ldots, n+1\}$, there exist constants $C^{(j)}>1$ and sets $Z_{i}^{j} \subset F \cap B_{i} \cap B(x, t)$. For all $l \in\{0, \ldots, m-1\}$ there exist $z_{l} \in Z_{l}^{l}$ with

$$
\begin{equation*}
\mu\left(Z_{i}^{j}\right)>\frac{t^{n}}{2^{j+1} C_{2}} \tag{4.8}
\end{equation*}
$$

For all $u \in\{0, \ldots, m\}$, for all $E \subset\left\{z_{0}, \ldots, z_{u-1}\right\}$ and $z \in Z_{r}^{u}$ where $r \in\{u, \ldots$, $n+1\}$, we have

$$
\begin{equation*}
\mathcal{R}(E \cup\{z\}) \leq C^{(u)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{(\# E+1) n}} \tag{4.9}
\end{equation*}
$$

Next we start with the inductive step. From the induction hypothesis, we already have the constants $C^{(j)}$ and the sets Z_{i}^{j} for $j \in\{0, \ldots, m\}$ and $i \in\{j, \ldots, n+1\}$ as well as $z_{l} \in Z_{l}^{l}$ for $l \in\{0, \ldots, m-1\}$. Since $\mu\left(Z_{m}^{m}\right)>0$, we can choose $z_{m} \in Z_{m}^{m}$. We define $C^{(m+1)}:=2^{2 m+2} C^{(m)} C_{2}$ and, for $i \in\{m+1, \ldots, n+1\}$, we define

$$
\begin{equation*}
Z_{i}^{m+1}:=\bigcap_{\substack{E \subset\left\{z_{0}, \ldots, z_{m}\right\} \\ z_{m} \in E}} \underbrace{\left\{z \in Z_{i}^{m} \left\lvert\, \mathcal{R}(E \cup\{z\}) \leq C^{(m+1)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{\left.t^{(\# E+1) n}\right\}}\right.\right.}_{=: D_{i, E}^{m}} \tag{4.10}
\end{equation*}
$$

We have $\mu\left(Z_{i}^{m+1}\right) \geq \mu\left(Z_{i}^{m}\right)-\mu\left(Z_{i}^{m} \backslash Z_{i}^{m+1}\right) \geq \frac{t^{n}}{2^{m+2} C_{2}}$ for all $i \in\{m+1, \ldots$, $n+1\}$, because if $E \subset\left\{z_{0}, \ldots, z_{m}\right\}$ with $z_{m} \in E$, we get, using (4.10), Chebyshev's inequality, $\int \mathcal{R}(E \cup\{z\}) \mathrm{d} \mu(z)=\mathcal{R}\left(\left(E \backslash\left\{z_{m}\right\}\right) \cup\left\{z_{m}\right\}\right)$ and (4.9) that

$$
\mu\left(Z_{i}^{m} \backslash D_{i, E}^{m}\right)<\left(C^{(m+1)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{(\# E+1) n}}\right)^{-1} \mathcal{R}\left(\left(E \backslash\left\{z_{m}\right\}\right) \cup\left\{z_{m}\right\}\right)=\frac{C^{(m)}}{C^{(m+1)}} t^{n}
$$

which implies

$$
\mu\left(Z_{i}^{m} \backslash Z_{i}^{m+1}\right) \leq \sum_{\substack{E \subset\left\{z_{0}, \ldots, z_{m}\right\} \\ z_{m} \in E}} \mu\left(Z_{i}^{m} \backslash D_{i, E}^{m}\right)<\frac{1}{2^{m+2} C_{2}} t^{n}
$$

Now let $u \in\{0, \ldots, m+1\}, E \subset\left\{z_{0}, \ldots, z_{u-1}\right\}$ and $z \in Z_{r}^{u}$ where $r \in\{u, \ldots, n+1\}$. We have to show that (4.6) is valid. Due to the induction hypothesis and $z \in$ $Z_{r}^{m+1} \subset Z_{r}^{v}$ for all $v \in\{0, \ldots, m+1\}$, we only have to consider the case $u=m+1$ and $z_{m} \in E$. Then the inequality follows from (4.10). End of induction.

Now we construct z_{n+1}. We set $P_{n+1}:=\operatorname{aff}\left(z_{0}, \ldots, z_{n}\right), \hat{C}^{(n+1)}:=\tilde{C} C^{(n)} 2^{n+3} C_{2}$, where \tilde{C} is the constant from III, and define

$$
\begin{equation*}
\hat{Z}_{n+1}^{n+1}:=\left\{z \in Z_{n+1}^{n+1} \left\lvert\,\left(\frac{d\left(z, P_{n+1}\right)}{t}\right)^{p} \leq \hat{C}^{(n+1)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}}\right.\right\} . \tag{4.11}
\end{equation*}
$$

Next we show that $\mu\left(\hat{Z}_{n+1}^{n+1}\right) \geq \frac{t^{n}}{2^{n+3} C_{2}}>0$. Let $u \in Z_{n+1}^{n+1} \backslash \hat{Z}_{n+1}^{n+1} \subset B_{n+1} \subset$ $B\left(x,\left(k+k_{0}\right) t\right)$. With III applied on $w=u$ and $j=n+1$, we get

$$
\begin{equation*}
\left(\frac{d\left(u, P_{n+1}\right)}{t}\right)^{p} \leq \tilde{C} t^{n(n+1)} \mathcal{K}^{p}\left(z_{0}, \ldots, z_{n}, u\right) \tag{4.12}
\end{equation*}
$$

Now we get with (4.11), Chebyshev's inequality and (4.12) that

$$
\begin{aligned}
\mu\left(Z_{n+1}^{n+1} \backslash \hat{Z}_{n+1}^{n+1}\right) \leq & \left(\hat{C}^{(n+1)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}}\right)^{-1} \tilde{C} t^{n(n+1)} \\
& \times \int_{Z_{n+1}^{n+1} \backslash \hat{Z}_{n+1}^{n+1}} \mathcal{K}^{p}\left(z_{0}, \ldots, z_{n}, u\right) \mathrm{d} \mu(u)
\end{aligned}
$$

By using I we see that the integral on the RHS is equal to $\mathcal{R}\left(\left\{z_{0}, \ldots, z_{n-1}\right\} \cup\left\{z_{n}\right\}\right)$.
Hence with (4.5) and (4.6) we obtain

$$
\mu\left(\hat{Z}_{n+1}^{n+1}\right) \geq \mu\left(Z_{n+1}^{n+1}\right)-\mu\left(Z_{n+1}^{n+1} \backslash \hat{Z}_{n+1}^{n+1}\right)>0
$$

and we are able to choose $z_{n+1} \in \hat{Z}_{n+1}^{n+1} \subset Z_{n+1}^{n+1}$. Let $l \in\{0, \ldots, n+1\}$ and $E=\left\{z_{0}, \ldots, z_{n+1}\right\} \backslash\left\{z_{l}\right\}$. Set $z:=z_{n}$ if $l=n+1$ or $z:=z_{n+1}$ otherwise. Now set $E^{\prime}:=E \backslash\{z\}$ and use (4.6) to obtain $\mathcal{R}(E)=\mathcal{R}\left(E^{\prime} \cup\{z\}\right) \leq C^{(n+1)} \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{(n+1) n}}$.

All in all, there exists some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right)$ such that

$$
\begin{aligned}
& \int \chi_{\left\{\left(z_{0}, \ldots, \hat{z}_{l}, \ldots, z_{n+1}, w\right) \in \mathcal{O}_{k_{1}}(x, t)\right\}} \mathcal{K}^{p}\left(z_{0}, \ldots, \hat{z}_{l}, \ldots, z_{n+1}, w\right) \mathrm{d} \mu(w) \\
& \quad=\mathcal{R}(E) \leq C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{(n+1) n}}
\end{aligned}
$$

for all $l \in\{0, \ldots, n+1\}$. This ends the proof of IV.

With IV, there exist some $z_{i} \in F \cap B_{i} \cap B(x, t), i \in\{0, \ldots, n+1\}$, fulfilling (4.3) and (4.4). Let $w \in\left(F \cap B\left(x,\left(k+k_{0}\right) t\right)\right) \backslash \bigcup_{j=0}^{n} 2 B_{j}$. Hence we get with III $\left(P_{n+1}=\operatorname{aff}\left(z_{0}, \ldots, z_{n}\right)\right), \mathrm{I}$ and (4.3)

$$
\begin{align*}
& \int_{B\left(x,\left(k+k_{0}\right) t\right) \backslash \bigcup_{j=0}^{n} 2 B_{j}}\left(\frac{d\left(w, P_{n+1}\right)}{t}\right)^{p} \mathrm{~d} \mu(w) \tag{4.13}\\
& \quad<C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right) \mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t) .
\end{align*}
$$

Now we prove this estimate on the ball $2 B_{j}$, where $j \in\{0, \ldots, n\}$. We define the plain $P_{j}:=\operatorname{aff}\left(\left\{z_{0}, \ldots, z_{n+1}\right\} \backslash\left\{z_{j}\right\}\right)$ and get analogously with III, I and (4.3)

$$
\begin{equation*}
\int_{2 B_{j}}\left(\frac{d\left(w, P_{j}\right)}{t}\right)^{p} \mathrm{~d} \mu(w)<C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right) \mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t) \tag{4.14}
\end{equation*}
$$

Now we have an estimate on the ball $2 B_{j}$ but with plane P_{j} instead of P_{n+1}. If $z_{n+1} \in P_{n+1}$, we have $P_{n+1}=P_{j}$ for all $j \in\{0, \ldots, n+1\}$, and hence we get estimate (4.14) for P_{n+1}. From now on, we assume that $z_{n+1} \notin P_{n+1}$. Let $w \in 2 B_{j}$, set $w^{\prime}:=\pi_{P_{j}}(w), w^{\prime \prime}:=\pi_{P_{n+1}}\left(w^{\prime}\right)$ and deduce by inserting the point w^{\prime} with triangle inequality

$$
\begin{equation*}
d\left(w, P_{n+1}\right)^{p} \leq d\left(w, w^{\prime \prime}\right)^{p} \leq 2^{p-1}\left(d\left(w, P_{j}\right)^{p}+d\left(w^{\prime}, P_{n+1}\right)^{p}\right) . \tag{4.15}
\end{equation*}
$$

If $d\left(w^{\prime}, P_{n+1}\right)>0$, i.e., $w^{\prime} \notin P_{n+1}$, we gain with Lemma 2.2 $\left(P_{1}=P_{j}, P_{2}=P_{n+1}\right.$, $a_{1}=w^{\prime}, a_{2}=z_{n+1}$) where $P_{j, n+1}:=P_{j} \cap P_{n+1}$:

$$
\begin{equation*}
d\left(w^{\prime}, P_{n+1}\right)=d\left(z_{n+1}, P_{n+1}\right) \frac{d\left(w^{\prime}, P_{j, n+1}\right)}{d\left(z_{n+1}, P_{j, n+1}\right)} \tag{4.16}
\end{equation*}
$$

With $l \in\{0, \ldots, n\}, l \neq j$ (k_{1} is defined on page 1199), we get

$$
d\left(w^{\prime}, P_{j, n+1}\right) \leq d\left(w, P_{j, n+1}\right) \leq d(w, x)+d\left(x, x_{l}\right)+d\left(x_{l}, z_{l}\right) \leq k_{1} t
$$

With II we get that $\mathfrak{f c}_{j}\left(\Delta\left(z_{0}, \ldots, z_{n+1}\right)\right)$ is an $\left(n,(9 n-1) \frac{t}{C_{1}}\right)$-simplex and we obtain

$$
\begin{equation*}
\left(\frac{d\left(w^{\prime}, P_{n+1}\right)}{t}\right)^{p} \stackrel{(4.16)}{\leq}\left(\frac{d\left(z_{n+1}, P_{n+1}\right)}{t} \frac{k_{1} t C_{1}}{(9 n-1) t}\right)^{p} \stackrel{(4.4)}{\leq} C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}} \tag{4.17}
\end{equation*}
$$

where $C=C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right)$. If $d\left(w^{\prime}, P_{n+1}\right)=0$, this inequality is trivially true.

Finally, applying (4.14), (4.15), (4.17) and $\mu\left(2 B_{j}\right) \stackrel{(\mathrm{B})}{\leq} C_{0}\left(\operatorname{diam}\left(2 B_{j}\right)\right)^{n} \leq$ $C_{0}\left(\frac{4 t}{C_{1}}\right)^{n}((\mathrm{~B})$ from page 1196), we obtain

$$
\int_{2 B_{j}}\left(\frac{d\left(w, P_{n+1}\right)}{t}\right)^{p} \mathrm{~d} \mu(w) \leq C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right) \mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t) .
$$

Given that $B(y, k t) \subset B\left(x,\left(k+k_{0}\right) t\right)$, it follows with (4.13) that

$$
\begin{aligned}
\beta_{p ; k}(y, t)^{p} & \leq \frac{1}{t^{n}} \int_{B\left(x,\left(k+k_{0}\right) t\right)}\left(\frac{d\left(w, P_{n+1}\right)}{t}\right)^{p} \mathrm{~d} \mu(w) \\
& \leq C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right) \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{1}}(x, t)}{t^{n}}
\end{aligned}
$$

To obtain the main result of this theorem, the only thing left to show is $\mathcal{O}_{k_{1}}(x, t) \subset$ $\mathcal{O}_{k_{1}+k_{0}}(y, t)$. Let $\left(z_{0}, \ldots, z_{n+1}\right) \in \mathcal{O}_{k_{1}}(x, t)$. It follows that $z_{0}, \ldots, z_{n+1} \in B\left(x, k_{1} t\right)$ $\subset B\left(y,\left(k_{0}+k_{1}\right) t\right)$ and $d\left(z_{i}, z_{j}\right) \geq \frac{t}{k_{1}} \geq \frac{t}{k_{1}+k_{0}}$ with $i \neq j$ and $i, j=0, \ldots, n$. Thus $\left(z_{0}, \ldots, z_{n+1}\right) \in \mathcal{O}_{k_{1}+k_{0}}(y, t)$.

Theorem 4.7. Let $0<\lambda<2^{n}, k>2$, and $k_{0} \geq 1$, and let \mathcal{K}^{p} be some μ proper symmetric integrand (see Definition 3.1). There exists a constant $C=$ $C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right)$ such that

$$
\iint_{0}^{\infty} \beta_{p ; k}(x, t)^{p} \chi_{\left\{\tilde{\delta}_{k_{0}}(B(x, t)) \geq \lambda\right\}} \frac{\mathrm{d} t}{t} \mathrm{~d} \mu(x) \leq C \mathcal{M}_{\mathcal{K}^{p}}(\mu)
$$

where $\tilde{\delta}_{k_{0}}(B(x, t)):=\sup _{y \in B\left(x, k_{0} t\right)} \delta(B(y, t))$.
Proof. At first, we prove some intermediate results.
I. Let $x \in F, t>0$ and $\tilde{\delta}_{k_{0}}(B(x, t)) \geq \lambda$. There exists some $z \in B\left(x, k_{0} t\right)$ with $\delta(B(z, t)) \geq \frac{\lambda}{2}$. Now with Theorem 4.6 there exist some constants k_{1} and C so that with $k_{2}:=k_{1}+k_{0}$, we obtain $\beta_{p ; k}(x, t)^{p} \leq C \frac{\mathcal{M}_{\mathcal{K}^{p} ; k_{2}}(x, t)}{t^{n}}$.
II. Let $(x, t) \in \mathcal{D}_{\kappa}\left(u_{0}, \ldots, u_{n+1}\right):=\left\{(y, s) \in F \times(0, \infty) \mid\left(u_{0}, \ldots, u_{n+1}\right) \in\right.$ $\left.\mathcal{O}_{\kappa}(y, s)\right\}$ where $u_{0}, \ldots, u_{n+1} \in F$. We have $\left(u_{0}, \ldots, u_{n+1}\right) \in \mathcal{O}_{\kappa}(x, t)$ and so $\frac{d\left(u_{0}, u_{1}\right)}{2 \kappa} \leq t \leq \kappa d\left(u_{0}, u_{1}\right)$ as well as $x \in B\left(u_{0}, \kappa t\right)$.
III. With Fubini's theorem [7, 1.4, Thm. 1] and condition (B) from page 1196 we get

$$
\int_{F} \int_{0}^{\infty} \chi_{\mathcal{D}_{k_{2}}\left(u_{0}, \ldots, u_{n+1}\right)}(x, t) \frac{1}{t^{n}} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mu(x) \stackrel{\text { II }}{\leq} \int_{\frac{d\left(u_{0}, u_{1}\right)}{2 k_{2}}}^{k_{2} d\left(u_{0}, u_{1}\right)} \frac{1}{t^{n}} \int_{B\left(u_{0}, k_{2} t\right)} 1 \mathrm{~d} \mu(x) \frac{\mathrm{d} t}{t} \stackrel{(\mathrm{~B})}{=} C .
$$

Now we deduce with Fubini's theorem [7, 1.4, Thm. 1] that

$$
\begin{aligned}
& \int_{F} \int_{0}^{\infty} \beta_{p ; k}(x, t)^{p} \chi_{\left\{\tilde{\delta}_{k_{0}}(B(x, t)) \geq \lambda\right\}} \frac{\mathrm{d} t}{t} \mathrm{~d} \mu(x) \\
& \quad \stackrel{\mathrm{I}}{\leq} C \int_{F} \int_{0}^{\infty} \int \ldots \int_{\mathcal{O}_{k_{2}}(x, t)} \frac{\mathcal{K}^{p}\left(u_{0}, \ldots, u_{n+1}\right)}{t^{n}} \mathrm{~d} \mu\left(u_{0}\right) \ldots \mathrm{d} \mu\left(u_{n+1}\right) \frac{\mathrm{d} t}{t} \mathrm{~d} \mu(x) \\
& \quad{ }^{\text {IIII }} \leq \mathcal{M}_{\mathcal{K}^{p}}(\mu) .
\end{aligned}
$$

Corollary 4.8. Let $0<\lambda<2^{n}$, $k>2$, and $k_{0} \geq 1$, and let \mathcal{K}^{p} be some symmetric μ-proper integrand (see Definition 3.1). There exists a constant $C=$ $C\left(N, n, \mathcal{K}, p, C_{0}, k, k_{0}, \lambda\right)$ such that

$$
\iint_{0}^{\infty} \beta_{1 ; k}(x, t)^{p} \chi_{\left\{\tilde{\delta}_{k_{0}}(B(x, t)) \geq \lambda\right\}} \frac{\mathrm{d} t}{t} \mathrm{~d} \mu(x) \leq C \mathcal{M}_{\mathcal{K}^{p}}(\mu)
$$

Proof. This is a direct consequence of the previous theorem and Hölder's inequality.
4.3. β-numbers, approximating planes and angles. The next lemma states that if two balls are close to each other and if each part of the support of μ contained in those balls is well approximated by some plane, then these planes have a small angle.
Lemma 4.9. Let $x, y \in F, c \geq 1, \xi \geq 1$ and $t_{x}, t_{y}>0$ with $c^{-1} t_{y} \leq t_{x} \leq c t_{y}$. Furthermore, let $k \geq 4 c$ and $0<\lambda<2^{n}$ with $\delta\left(B\left(x, t_{x}\right)\right) \geq \lambda, \delta\left(B\left(y, t_{y}\right)\right) \geq \lambda$ and $d(x, y) \leq \frac{k}{2 c} t_{x}$. Then there exist some constants $C_{3}=C_{3}\left(N, n, C_{0}, \lambda, \xi, c\right)>1$ and $\varepsilon_{0}=\varepsilon_{0}\left(N, n, C_{0}, \lambda, \xi, c\right)>0$ so that for all $\varepsilon<\varepsilon_{0}$ and all planes $P_{1}, P_{2} \in$ $\mathcal{P}(N, n)$ with $\beta_{1 ; k}^{P_{1}}\left(x, t_{x}\right) \leq \xi \varepsilon$ and $\beta_{1 ; k}^{P_{2}}\left(y, t_{y}\right) \leq \xi \varepsilon$ we get: For all $w \in P_{1}$, we have $d\left(w, P_{2}\right) \leq C_{3} \varepsilon\left(t_{x}+d(w, x)\right)$, for all $w \in P_{2}$, we have $d\left(w, P_{1}\right) \leq C_{3} \varepsilon\left(t_{x}+d(w, x)\right)$ and we have $\varangle\left(P_{1}, P_{2}\right) \leq C_{3} \varepsilon$.

Proof. Due to $\delta\left(B\left(x, t_{x}\right)\right) \geq \lambda$ and Corollary 4.3, there exist some constants $C_{1}>3$ and C_{2} depending on N, n, C_{0}, λ, and some simplex $T=\Delta\left(x_{0}, \ldots, x_{n}\right) \in F \cap$ $B\left(x, t_{x}\right)$ so that T is an $\left(n, 10 n \frac{t_{x}}{C_{1}}\right.$-simplex and $\mu\left(B\left(x_{i}, \frac{t_{x}}{C_{1}}\right) \cap B\left(x, t_{x}\right)\right) \geq \frac{t_{x}^{n}}{C_{2}}$ for all $i \in\{0, \ldots, n\}$. For $B_{i}:=B\left(x_{i}, \frac{t_{x}}{C_{1}}\right)$ and $i \in\{0, \ldots, n\}$, we have $\mu\left(B_{i}\right) \geq$ $\mu\left(B_{i} \cap B\left(x, t_{x}\right)\right) \geq \frac{t_{x}^{n}}{C_{2}} \geq \frac{t_{y}^{n}}{c^{n} C_{2}}$. Since $B_{i} \cap B\left(x, t_{x}\right) \neq \emptyset$ and $k \geq 4 c \geq 4$ we obtain $B_{i} \subset B\left(x, k t_{x}\right)$ and $B_{i} \subset B\left(y, k t_{y}\right)$. Now we see for $i \in\{0, \ldots, n\}$,

$$
\begin{aligned}
\frac{1}{\mu\left(B_{i}\right)} \int_{B_{i}} d\left(z, P_{1}\right)+d\left(z, P_{2}\right) \mathrm{d} \mu(z) & =C_{2} t_{x} \beta_{1 ; k}^{P_{1}}\left(x, t_{x}\right)+c^{n} C_{2} t_{y} \beta_{1 ; k}^{P_{2}}\left(y, t_{y}\right) \\
& \leq 2 c^{n+1} C_{2} x i t_{x} \varepsilon .
\end{aligned}
$$

With Chebyshev's inequality, there exists $z_{i} \in B_{i}$ so that

$$
\begin{equation*}
d\left(z_{i}, P_{j}\right) \leq d\left(z_{i}, P_{1}\right)+d\left(z_{i}, P_{2}\right) \leq 2 c^{n+1} C_{2} \xi t_{x} \varepsilon \tag{4.18}
\end{equation*}
$$

for $i \in\{0, \ldots, n\}$ and $j=1,2$. We set $y_{i}:=\pi_{P_{1}}\left(z_{i}\right)$ and with

$$
\varepsilon<\varepsilon_{0}:=\frac{1}{2 c^{n+1} C_{2} \xi} \min \left\{\frac{1}{C_{1}},\left(10\left(10^{n}+1\right) \frac{C_{1}}{6}\left(2 \frac{C_{1}}{3}\right)^{n}\right)^{-1}\right\}
$$

we deduce that

$$
d\left(y_{i}, x_{i}\right) \leq d\left(y_{i}, z_{i}\right)+d\left(z_{i}, x_{i}\right) \leq d\left(z_{i}, P_{1}\right)+\frac{t_{x}}{C_{1}} \leq 2 c^{n+1} C_{2} \xi t_{x} \varepsilon+\frac{t_{x}}{C_{1}} \leq 2 \frac{t_{x}}{C_{1}},
$$

so, with Lemma [2.8, $S:=\Delta\left(y_{0}, \ldots, y_{n}\right)$ is an $\left(n, 6 n \frac{t_{x}}{C_{1}}\right)$-simplex and $S \subset$ $B\left(x, \frac{2 t_{x}}{C_{1}}+t_{x}\right) \subset B\left(x, 2 t_{x}\right)$. Furthermore, with (4.18) we have $d\left(y_{i}, P_{2}\right) \leq d\left(y_{i}, z_{i}\right)+$ $d\left(z_{i}, P_{2}\right) \leq 2 c^{n+1} C_{2} \xi t_{x} \varepsilon$. Now, with Lemma 2.17 $\left(C=\frac{C_{1}}{6 n}, \hat{C}=2, t=t_{x}\right.$, $\left.\sigma=2 c^{n+1} C_{2} \xi \varepsilon, m=n\right)$ we obtain

$$
\varangle\left(P_{1}, P_{2}\right) \leq 4 n\left(10^{n}+1\right) 2 \frac{C_{1}}{6}\left(2 \frac{C_{1}}{3}\right)^{n} 2 c^{n+1} C_{2} \xi \varepsilon=C\left(N, n, C_{0}, \lambda, \xi, c\right) \varepsilon .
$$

Moreover, we have $d\left(y_{0}, \pi_{P_{2}}\left(z_{0}\right)\right) \leq d\left(z_{0}, P_{1}\right)+d\left(z_{0}, P_{2}\right) \stackrel{4.18}{\leq} 2 c^{n+1} C_{2} \xi t_{x} \varepsilon$, so finally, with Lemma 2.18 $\left(\sigma=C \varepsilon, t=t_{x}, p_{1}=y_{0}, p_{2}=\pi_{P_{2}}\left(z_{0}\right)\right)$, we get for $w \in P_{1}$ that $d\left(w, P_{2}\right) \leq C\left(d\left(w, y_{0}\right)+t_{x}\right) \varepsilon \leq C\left(d(w, x)+t_{x}\right) \varepsilon$ and for $w \in P_{2}$ we obtain $d\left(w, P_{1}\right) \leq C\left(d\left(w, \pi_{P_{2}}\left(z_{0}\right)\right)+t_{x}\right) \leq C\left(d(w, x)+t_{x}\right) \varepsilon$, where $C=C\left(N, n, C_{0}, \lambda, \xi, c\right)$.

The next lemma describes the distance from a plane to a ball if the plane approximates the support of μ contained in the ball.

Lemma 4.10. Let $\sigma>0, x \in \mathbb{R}^{N}, t>0$ and $\lambda>0$ with $\delta(B(x, t)) \geq \lambda$. If $P \in$ $\mathcal{P}(N, n)$ with $\beta_{1 ; k}^{P}(x, t) \leq \sigma$, there exists some $y \in B(x, t) \cap F$ so that $d(y, P) \leq \frac{t}{\lambda} \sigma$. If additionally $\sigma \leq \lambda$, we have $B(x, 2 t) \cap P \neq \emptyset$.

Proof. With the requirements, we get $\mu(B(x, t)) \geq t^{n} \lambda$, and so

$$
\frac{1}{\mu(B(x, t))} \int_{B(x, t)} d(z, P) \mathrm{d} \mu(z) \leq \frac{t}{\lambda} \frac{1}{t^{n}} \int_{B(x, k t)} \frac{d(z, P)}{t} \mathrm{~d} \mu(z)=\frac{t}{\lambda} \beta_{1 ; k}^{P}(x, t) \leq \frac{t}{\lambda} \sigma .
$$

With Chebyshev's inequality, we get some $y \in B(x, t) \cap F$ with $d(y, P) \leq \frac{t}{\lambda} \sigma$. If $\sigma \leq \lambda$, it follows that $B(x, 2 t) \cap P \neq \emptyset$.

5. Proof of the main Result

At the end of this section (page 1207), we will give a proof of our main result Theorem 3.5 under the assumption that the forthcoming Theorem 5.4 is correct. We start with a few lemmas helpful for this proof.

5.1. Reduction to a symmetric integrand.

Lemma 5.1. Let \mathcal{K}^{p} be some proper integrand (see Definition 3.1). There exists some proper integrand $\tilde{\mathcal{K}}^{p}$, which is symmetric in all components and fulfils $\mathcal{M}_{\mathcal{K}^{p}}(E)=\mathcal{M}_{\tilde{\mathcal{K}}^{p}}(E)$ for all Borel sets E.

Proof. We set $\tilde{\mathcal{K}}^{p}\left(x_{0}, \ldots, x_{n+1}\right):=\frac{1}{\# S_{n+2}} \sum_{\phi \in S_{n+2}} \mathcal{K}^{p}\left(\phi\left(x_{0}, \ldots, x_{n+1}\right)\right)$, where S_{n+2} is the symmetric group of all permutations of $n+2$ symbols. Due to $\mathcal{K}^{p} \leq$ $\# S_{n+2} \tilde{\mathcal{K}}^{p}$, the integrand $\tilde{\mathcal{K}}^{p}$ fulfils the conditions of a proper integrand. Now Fubini's theorem [7, 1.4, Thm. 1] implies $\mathcal{M}_{\tilde{\mathcal{K}}^{p}}(E)=\mathcal{M}_{\mathcal{K}^{p}}(E)$.

5.2. Reduction to finite, compact and more regular sets with small curvature.

Lemma 5.2. Let E be a Borel set with $\mathcal{M}_{\mathcal{K}^{p}}(E)<\infty$, where \mathcal{K}^{p} is some proper integrand. Then we have $\mathcal{H}^{n}(E \cap B)<\infty$ for every ball B.

Proof. Let B be some ball and set $F:=E \cap B$. We prove the contraposition so we assume that $\mathcal{H}^{n}(F)=\infty$. With Lemma 2.11, there exists some constant $C>0$ and some $(n+1,(n+3) C)$-simplex $T=\Delta\left(x_{0}, \ldots, x_{n+1}\right) \in B$ with $\mathcal{H}^{n}\left(B\left(x_{0}, C\right) \cap F\right)=$ ∞ and $\mathcal{H}^{n}\left(B\left(x_{i}, C\right) \cap F\right)>0$ for all $i \in\{1, \ldots, n+1\}$. With Lemma 2.8, we conclude that $S=\Delta\left(y_{0}, \ldots, y_{n+1}\right)$ is an $(n+1, C)$-simplex for all $y_{i} \in B\left(x_{i}, C\right)$, $i \in\{0, \ldots, n+1\}$. For $t=C \sqrt{\frac{\operatorname{diam} B}{2 C}+1}$ and $\bar{C}=\sqrt{\frac{\operatorname{diam} B}{2 C}+1}$, we get $S \in$ $B(x, t \bar{C})$, where x is the centre of the ball B and S is an $\left(n+1, \frac{t}{C}\right)$-simplex. Hence we are in the right setting for using the second condition of a proper integrand. We obtain

$$
\begin{aligned}
\mathcal{M}_{\mathcal{K}^{p}}(E) & \geq \int_{B\left(x_{n+1}, C\right) \cap F} \cdots \int_{B\left(x_{0}, C\right) \cap F} \mathcal{K}^{p}\left(y_{0}, \ldots, y_{n+1}\right) \mathrm{d} \mathcal{H}^{n}\left(y_{0}\right) \ldots \mathrm{d} \mathcal{H}^{n}\left(y_{n+1}\right) \\
& =\infty
\end{aligned}
$$

Lemma 5.3. In this lemma, the integrand \mathcal{K} of $\mathcal{M}_{\mathcal{K}^{p}}$ only needs to be an $\left(\mathcal{H}^{n}\right)^{n+2}{ }_{-}$ integrable function. Let $p>0, n<N$ and $E \subset \mathbb{R}^{N}$ be a Borel set with $0<\mathcal{H}^{n}(E)<$ ∞ and $\mathcal{M}_{\mathcal{K}^{p}}(E)<\infty$. For all $\zeta>0$, there exists some compact $E^{*} \subset E$ with
(i) $\mathcal{H}^{n}\left(E^{*}\right)>\frac{\left(\operatorname{diam} E^{*}\right)^{n} \omega_{n}}{2^{2 n+1}}$,
(ii) $\forall x \in E^{*}, \forall t>0, \mathcal{H}^{n}\left(E^{*} \cap B(x, t)\right) \leq 2 \omega_{n} t^{n}$,
(iii) $\mathcal{M}_{\mathcal{K}^{p}}\left(E^{*}\right) \leq \zeta\left(\operatorname{diam} E^{*}\right)^{n}$,
where $\omega_{n}=\mathcal{H}^{n}(B(0,1))$ is the n-dimensional volume of the n-dimensional unit ball.

Proof. Due to $0<\mathcal{H}^{n}(E)<\infty$ and [7, 2.3, Thm. 2], for \mathcal{H}^{n}-almost all $x \in E$ we have

$$
\begin{equation*}
\frac{1}{2^{n}} \leq \limsup _{t \rightarrow 0^{+}} \frac{\mathcal{H}^{n}(E \cap B(x, t))}{\omega_{n} t^{n}} \leq 1 \tag{5.1}
\end{equation*}
$$

For $l \in \mathbb{N}$, we define the \mathcal{H}^{n}-measurable set

$$
\begin{equation*}
E_{m}:=\left\{x \in E \left\lvert\, \forall t \in\left(0, \frac{1}{m}\right)\right., \mathcal{H}^{n}(E \cap B(x, t)) \leq 2 \omega_{n} t^{n}\right\} . \tag{5.2}
\end{equation*}
$$

Due to $E_{l} \subset E_{l+1}$, 7. 1.1.1, Thm. 1(iii)] and (5.1) we get that

$$
\lim _{l \rightarrow \infty} \mathcal{H}^{n}\left(E_{l}\right)=\mathcal{H}^{n}\left(\bigcup_{l=1}^{\infty} E_{l}\right)=\mathcal{H}^{n}(E)
$$

Hence there exists some $m \in \mathbb{N}$ with $\mathcal{H}^{n}\left(E_{m}\right) \geq \frac{1}{2} \mathcal{H}^{n}(E)$ and $\mathcal{M}_{\mathcal{K}^{p}}\left(E_{m}\right) \leq$ $\mathcal{M}_{\mathcal{K}^{p}}(E)<\infty$. Define for $\tau>0$,

$$
\begin{equation*}
\mathcal{I}(\tau):=\int_{A(\tau)} \mathcal{K}^{p}\left(x_{0}, \ldots, x_{n+1}\right) \mathrm{d} \mathcal{H}^{n}\left(x_{0}\right) \ldots \mathrm{d} \mathcal{H}^{n}\left(x_{n+1}\right) \tag{5.3}
\end{equation*}
$$

where $A(\tau):=\left\{\left(x_{0}, \ldots, x_{n+1}\right) \in E_{m}^{n+2} \mid d\left(x_{0}, x_{i}\right)<\tau\right.$ for all $\left.i \in\{1, \ldots, n+1\}\right\}$.
Using (5.2) we obtain $\left(\mathcal{H}^{n}\right)^{n+2}(A(\tau)) \rightarrow 0$ for $\tau \rightarrow 0$. With $\mathcal{M}_{\mathcal{K}^{p}}\left(E_{m}\right)<\infty$, we conclude that $\lim _{\tau \rightarrow 0} \mathcal{I}(\tau)=0$, and so we are able to pick some $0<\tau_{0} \leq \frac{1}{2 m}$ with

$$
\begin{equation*}
\mathcal{I}\left(2 \tau_{0}\right) \leq \frac{\zeta \mathcal{H}^{n}\left(E_{m}\right)}{2 \omega_{n} \cdot 2^{n+3}} . \tag{5.4}
\end{equation*}
$$

We set

$$
\mathcal{V}:=\left\{B(x, \tau) \mid x \in E_{m}, 0<\tau<\tau_{0}, \mathcal{H}^{n}\left(E_{m} \cap B(x, \tau)\right) \geq \frac{\tau^{n} \omega_{n}}{2^{n+1}}\right\} .
$$

Since $0<\mathcal{H}^{n}\left(E_{m}\right)<\infty$, we get (5.1) with E_{m} instead of E [7, 2.3, Thm. 2]. This implies $\inf \{\tau \mid B(x, \tau) \in \mathcal{V}\}=0$ for \mathcal{H}^{n}-almost every $x \in E_{m}$. According to [8, 1.3], \mathcal{V} is a Vitali class. For every countable, disjoint subfamily $\left\{B_{i}\right\}_{i}$ of \mathcal{V}, we have $\sum_{i \in \mathbb{N}}\left(\operatorname{diam} B_{i}\right)^{n} \leq \frac{2^{2 n+1}}{\omega_{n}} \mathcal{H}^{n}\left(E_{m}\right)<\infty$. Applying Vitali's Covering Theorem [8, 1.3, Thm. 1.10], we get a countable subfamily of \mathcal{V} with disjoint balls $B_{i}=B\left(x_{i}, \tau_{i}\right)$ fulfilling $\mathcal{H}^{n}\left(E_{m} \backslash \bigcup_{i \in \mathbb{N}} B_{i}\right)=0$. Therefore, using (5.2), we have $\mathcal{H}^{n}\left(E_{m}\right) \leq \sum_{i \in \mathbb{N}} \mathcal{H}^{n}\left(E_{m} \cap B_{i}\right) \leq \sum_{i \in \mathbb{N}} 2 \omega_{n} \tau_{i}^{n}$, so that

$$
\begin{equation*}
\sum_{i \in \mathbb{N}} \tau_{i}^{n} \geq \frac{\mathcal{H}^{n}\left(E_{m}\right)}{2 \omega_{n}} \tag{5.5}
\end{equation*}
$$

Furthermore, with $\left(B_{i} \cap E_{m}\right)^{n+2} \subset A\left(2 \tau_{0}\right) \cap B_{i}^{n+2}$, we obtain

$$
\begin{equation*}
\sum_{i \in \mathbb{N}} \mathcal{M}_{\mathcal{K}^{p}}\left(B_{i} \cap E_{m}\right) \stackrel{\sqrt{5.3}}{\leq} \mathcal{I}\left(2 \tau_{0}\right) \stackrel{\sqrt{5.44}}{\leq} \frac{\zeta \mathcal{H}^{n}\left(E_{m}\right)}{2 \omega_{n} \cdot 2^{n+3}} \tag{5.6}
\end{equation*}
$$

We define

$$
I_{b}:=\left\{i \in \mathbb{N} \left\lvert\, \mathcal{M}_{\mathcal{K}^{p}}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m}\right) \geq \zeta \frac{\tau_{i}^{n}}{2^{n+2}}\right.\right\}
$$

and so

$$
\sum_{i \in I_{b}} \mathcal{M}_{\mathcal{K}^{p}}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m}\right) \geq \zeta \frac{\sum_{i \in I_{b}} \tau_{i}^{n}}{2^{n+2}}
$$

We have $\sum_{i \in I_{b}} \tau_{i}^{n} \leq \frac{\mathcal{H}^{n}\left(E_{m}\right)}{4 \omega_{n}}$, since assuming the converse would imply

$$
\sum_{i \in \mathbb{N}} \mathcal{M}_{\mathcal{K}^{p}}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m}\right) \stackrel{\sqrt{5.6}}{<} \zeta \frac{\sum_{i \in I_{b}} \tau_{i}^{n}}{2^{n+2}} \leq \sum_{i \in I_{b}} \mathcal{M}_{\mathcal{K}^{p}}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m}\right)
$$

Using (5.5), we obtain $I_{b} \neq \mathbb{N}$. Now we choose some $i \in \mathbb{N} \backslash I_{b}$, and the regularity of the Hausdorff measure [8, 1.2, Thm. 1.6] implies the existence of some compact set $E^{*} \subset B\left(x_{i}, \tau_{i}\right) \cap E_{m}$ with
(i) $\mathcal{H}^{n}\left(E^{*}\right)>\frac{1}{2} \mathcal{H}^{n}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m}\right) \geq \frac{\tau_{i}^{n} \omega_{n}}{2^{n+1}} \geq \frac{\left(\operatorname{diam} E^{*}\right)^{n} \omega_{n}}{2^{2 n+1}}$.
(ii) $\forall x \in E^{*}, \forall t>0$, we have $\mathcal{H}^{n}\left(E^{*} \cap B(x, t)\right) \leq \mathcal{H}^{2}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m} \cap B(x, t)\right) \leq$ $2 \omega_{n} t^{n}$, since if $t<\frac{1}{m}$ (5.2) implies $\mathcal{H}^{n}(E \cap B(x, t)) \leq 2 \omega_{n} t^{n}$, and if $\tau_{i}<\frac{1}{m}<t$ (5.2) implies $\mathcal{H}^{n}\left(B\left(x_{i}, \tau_{i}\right) \cap E_{m}\right) \leq 2 \omega_{n} t^{n}$.
(iii) $\mathcal{M}_{\mathcal{K}^{p}}\left(E^{*}\right) \leq \zeta \frac{\tau_{i}^{n}}{2^{n+2}} \leq \zeta\left(\operatorname{diam} E^{*}\right)^{n}$ since $i \notin I_{b}$ and for some ball B with $E^{*} \subset B$ and $\operatorname{diam} B=2 \operatorname{diam} E^{*}$ we have $\frac{\tau_{i}^{n}}{2^{n+2}} \stackrel{(\mathrm{i})}{\leq} \frac{\mathcal{H}^{n}\left(E^{*} \cap B\right)}{2 \omega_{n}} \stackrel{(\text { ii) }}{\leq}$ $\left(\operatorname{diam} E^{*}\right)^{n}$.

Next, we present the crucial theorem of this work.
Theorem 5.4. Let $\mathcal{K}:\left(\mathbb{R}^{N}\right)^{n+2} \rightarrow[0, \infty)$. There exists some $k>2$ such that for every $C_{0} \geq 10$, there exists some $\eta=\eta\left(N, n, \mathcal{K}, C_{0}, k\right) \in\left(0, \omega_{n} 2^{-(2 n+2)}\right]$ so that if μ is a Borel measure on \mathbb{R}^{N} with compact support F such that \mathcal{K}^{2} is a symmetric μ-proper integrand (cf. Definition 3.1) and μ fulfils
(A) $\mu(B(0,5)) \geq 1, \mu\left(\mathbb{R}^{N} \backslash B(0,5)\right)=0$,
(B) $\mu(B) \leq C_{0}(\operatorname{diam} B)^{n}$ for every ball B,
(C) $\mathcal{M}_{\mathcal{K}^{2}}(\mu) \leq \eta$,
(D) $\beta_{1 ; k ; \mu}^{P_{0}}(0,5) \leq \eta$ for some plane $P_{0} \in \mathcal{P}(N, n)$ with $0 \in P_{0}$,
then there exists some Lipschitz function $A: P_{0} \rightarrow P_{0}^{\perp} \subset \mathbb{R}^{N}$ so that the graph $G(A) \subset \mathbb{R}^{N}$ fulfils $\mu(G(A)) \geq \frac{99}{100} \mu\left(\mathbb{R}^{N}\right) .\left(P_{0}^{\perp}:=\left\{x \in \mathbb{R}^{N} \mid x \cdot v=0\right.\right.$ for all $\left.v \in P_{0}\right\}$ denotes the orthogonal complement of P_{0}.)

First we show that, under the assumption that the previous theorem is correct, we can prove Theorem 3.5. The remaining proof of Theorem 5.4 is then given in the following sections 6 7 and We will use the notation $s E:=\left\{x \in \mathbb{R}^{N} \mid s^{-1} x \in E\right\}$ for $s>0$ and some set $E \subset \mathbb{R}^{N}$. Distinguish this notation from $s B(x, t)=B(x, s t)$, where the centre stays unaffected and only the radius is scaled.

Proof of Theorem 3.5. Let \mathcal{K}^{2} be some proper integrand (see Definition 3.1), let $E \subset \mathbb{R}^{N}$ be some Borel set with $\mathcal{M}_{\mathcal{K}^{2}}(E)<\infty$ and let $C_{0}=2^{2 n+2}$. Furthermore, let $k>2$ and $0<\eta \leq \omega_{n} 2^{-(2 n+2)}$ be the constants given by Theorem 5.4. Using Lemma [5.1] we can assume that \mathcal{K} is symmetric.

We start with a countable covering of \mathbb{R}^{N} with balls B_{i} so that $\mathbb{R}^{N} \subset \bigcup_{i \in \mathbb{N}} B_{i}$. We will show that for all $i \in \mathbb{N}$ the sets $E \cap B_{i}$ are n-rectifiable, which implies that E is n-rectifiable.

Let $i \in \mathbb{N}$ with $\mathcal{H}^{n}\left(E \cap B_{i}\right)>0$. With Lemma 5.2. we conclude that $\mathcal{H}^{n}\left(E \cap B_{i}\right)<$ ∞. Then, using [9, Thm. 3.3.13], we can decompose $E \cap B_{i}=E_{\mathrm{r}}^{i} \dot{\cup} E_{\mathrm{u}}^{i}$ into two disjoint subsets, where E_{r}^{i} is n-rectifiable and E_{u}^{i} is purely n-unrectifiable.

Now we assume that $E \cap B_{i}$ is not n-rectifiable, so $\mathcal{H}^{n}\left(E_{\mathrm{u}}^{i}\right)>0$. The set E_{u}^{i} is a Borel set and fulfils $0<\mathcal{H}^{n}\left(E_{\mathrm{u}}^{i}\right) \leq \mathcal{H}^{N}\left(E \cap B_{i}\right)<\infty$ and $\mathcal{M}_{\mathcal{K}^{2}}\left(E_{\mathrm{u}}^{i}\right) \leq \mathcal{M}_{\mathcal{K}^{2}}(E)<$ ∞. Now we apply Lemma 5.3 with $\zeta=\eta \frac{1}{\overline{C C}}$ where the constants \hat{C} and \tilde{C} are given in this passage and we get some compact set $E^{*} \subset E_{\mathrm{u}}^{i}$ which fulfils condition (i), (ii) and (iii) from Lemma 5.3, We set $a:=\left(\operatorname{diam} E^{*}\right)^{-1}$ and $\tilde{\mu}=\mathcal{H}^{n} \mathrm{~L} a E^{*}$. Let \tilde{B} be a ball with $a E^{*} \subset \tilde{B}$ and $\operatorname{diam} \tilde{B}=2$. Using (i), we get $\delta_{\tilde{\mu}}(\tilde{B}) \geq$ $\frac{\omega_{n}}{2^{2 n+1}}$. So, Theorem $4.6\left(p=2, x=y \hat{=}\right.$ centre of $\left.\tilde{B}, t=1, \lambda=\frac{\omega_{n}}{2^{3 n+1}}, k_{0}=1\right)$
implies $\beta_{2 ; k ; \tilde{\mu}}(\tilde{B})^{2}<\hat{C} \mathcal{M}_{\mathcal{K}^{2}}(\tilde{\mu}) \leq \eta^{2}$, for some constant $\hat{C}=\hat{C}\left(N, n, \mathcal{K}, C_{0}, k\right) \geq 1$. Using Hölder's inequality there exists some n-dimensional plane $\tilde{P}_{0} \in \mathcal{P}(N, n)$ with $\beta_{1 ; k ; \tilde{\mu}}^{\tilde{P}_{0}}(\tilde{B}) \leq \eta$. Now we define a measure μ by $\mu(\cdot):=\frac{2^{2 n+1}}{\omega_{n}} \tilde{\mu}\left(\cdot+\pi_{\tilde{P}_{0}}(b)\right)$, where b is the centre of \tilde{B}. This is also a Borel measure with compact support, and Lemma 4.10 ($\sigma=\eta, B(x, t)=\tilde{B}, \lambda=\frac{\omega_{n}}{2^{2 n+1}}$) implies that the support fulfils $F:=a E^{*}-\pi_{\tilde{P}_{0}}(b) \subset B(0,2)$. This measure fulfils condition (D) from Theorem $5.4\left(P_{0}=\tilde{P}_{0}-\pi_{\tilde{P}_{0}}(b)\right)$, and (i) implies condition (A). To get condition (B) for some arbitrary ball, cover it by some ball with centre on F, double the diameter and apply (ii). Use $\mathcal{M}_{\mathcal{K}^{2}}(\mu)=\tilde{C}(n) a^{n} \mathcal{M}_{\mathcal{K}^{2}}\left(E^{*}\right)$ and (iii) to obtain (C). Finally we mention that \mathcal{K}^{2} is μ-proper, since μ is an adapted version of \mathcal{H}^{n}. Hence we can apply Theorem 5.4 and after some scaling and translation we obtain some Lipschitz function which covers a part of positive Hausdorff measure of E_{u}^{i} which is in contrast to E_{u}^{i} being purely n-unrectifiable. Hence $E \cap B_{i}$ is n-rectifiable.

6. Construction of the Lipschitz graph

6.1. Partition of the support of the measure μ. Now we start with the proof of Theorem 5.4. Let $\mathcal{K}:\left(\mathbb{R}^{N}\right)^{n+2} \rightarrow[0, \infty)$ and let $C_{0} \geq 10$ be some fixed constant. There is one step in the proof which only works for integrability exponent $p=2$. ($p=2$ is used in Lemma 8.11 so that the results of Theorem 7.3 and Theorem 7.17 fit together.) Since most of the proof can be given with fewer constraints to p, we start with $p \in(1, \infty)$ and restrict to $p=2$ only if needed. Furthermore, let $k>2,0<\eta \leq \omega_{n} 2^{-(2 n+2)}, P_{0} \in \mathcal{P}(N, n)$ with $0 \in P_{0}$ and μ be a Borel measure on \mathbb{R}^{N} with compact support F such that \mathcal{K}^{p} is a symmetric μ-proper integrand (cf. Definition 3.1) and
(A) $\mu(B(0,5)) \geq 1, \mu\left(\mathbb{R}^{N} \backslash B(0,5)\right)=0$,
(B) $\mu(B) \leq C_{0}(\operatorname{diam} B)^{n}$ for every ball B,
(C) $\mathcal{M}_{\mathcal{K}^{p}}(\mu) \leq \eta$,
(D) $\beta_{1 ; k ; \mu}^{P_{0}}(0,5) \leq \eta$.

In this section, we will prove that if k is large and η is small enough, we can construct some function $A: P_{0} \rightarrow P_{0}^{\perp}$ which covers some part of the support F of μ. For this purpose, we will give a partition of the support of μ in four parts, $\operatorname{supp}(\mu)=\mathcal{Z} \dot{\cup} F_{1} \dot{\cup} F_{2} \dot{\cup} F_{3}$, and construct the function A so that the graph of A covers \mathcal{Z}, i.e., $\mathcal{Z} \subset G(A)$.

The following sections 7 and 8 will give a proof of $\mu\left(F_{1} \cup F_{2} \cup F_{3}\right) \leq \frac{1}{100}$; hence with (A) we will obtain $\mu(G(A)) \geq \frac{99}{100} \mu\left(\mathbb{R}^{N}\right)$, which is the statement of Theorem 5.4.

From now on, we will only work with the fixed measure μ, so we can simplify the expressions by setting $\beta_{1 ; k}:=\beta_{1 ; k ; \mu}$ and $\delta(\cdot):=\delta_{\mu}(\cdot)$. Furthermore, we fix the constant

$$
\begin{equation*}
\delta:=\min \left\{\frac{10^{-10}}{600^{n} N_{0}}, \frac{2}{50^{n}}\right\}, \tag{6.1}
\end{equation*}
$$

where $N_{0}=N_{0}(N)$ is the constant from Besicovitch's Covering Theorem [7, 1.5.2, Thm. 2].

Definition 6.1. Let $\alpha, \varepsilon>0$. We define the set

$$
S_{\text {total }}^{\varepsilon, \alpha}:=\left\{(x, t) \in F \times(0,50) \left\lvert\, \begin{array}{lll}
& \begin{array}{l}
\text { (i) } \\
\text { (ii) }
\end{array} & \delta(B(x, t)) \geq \frac{1}{2} \delta, \\
\beta_{1 ; k}(x, t)<2 \varepsilon, \\
\text { (iii) } & \exists P_{(x, t)} \in \mathcal{P}(N, n) \\
& \text { s.t. }\left\{\begin{array}{l}
\beta_{1 ; k}^{P(x, t)}(x, t) \leq 2 \varepsilon \\
\text { and } \\
\varangle\left(P_{(x, t)}, P_{0}\right) \leq \alpha
\end{array}\right.
\end{array}\right.\right\} .
$$

Having in mind that the definition of $S_{\text {total }}^{\varepsilon, \alpha}$ depends on the choice of ε and α, we will normally skip these and write $S_{\text {total }}$ instead. In the same manner, we will handle the following definitions of H, h and S. For $x \in F$ we define

$$
\begin{gathered}
H(x):=\left\{t \in(0,50) \mid \exists y \in F, \exists \tau \text { with } \frac{t}{4} \leq \tau \leq \frac{t}{3}, d(x, y)<\frac{\tau}{3} \text { and }(y, \tau) \notin S_{\text {total }}\right\}, \\
h(x):=\sup (H(x) \cup\{0\}) \quad \text { and } \quad S:=\left\{(x, t) \in S_{\text {total }} \mid t \geq h(x)\right\} .
\end{gathered}
$$

Sometimes, we identify a ball $B=B(x, t)$ with the tuple ($x, t)$ and write to simplify matters $B \in S$ instead of $(x, t) \in S$. In the same manner we use the notation $\beta_{1 ; k}(B)$.
Lemma 6.2. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, we have that $S_{\text {total }} \neq \emptyset$ and
(i) $F \times[40,50) \subset\{(x, t) \in F \times(0,50) \mid t \geq h(x)\}=S$.
(ii) If $(x, t) \in S$ and $t \leq t^{\prime}<50$, we have $\left(x, t^{\prime}\right) \in S$.

Proof. (i) If $x \in F \subset B(0,5)$ and $10 \leq t<50$, we have $F \subset B(x, t)$. Using (A), (D) and $P_{(x, t)}:=P_{0}$ we get $(x, t) \in S_{\text {total }}$, which implies that $F \times[10,50) \subset S_{\text {total }}$. Now if $x \in F$ and $t \in[40,50)$ we deduce for arbitrary $y \in F$ and $\tau \in\left[\frac{t}{4}, \frac{t}{3}\right]$ that $(y, \tau) \in S_{\text {total }}$, which implies that $H(x) \subset(0,40), h(x) \leq 40$ and hence the first inclusion. For the equality it is enough to prove that the central set is contained in S. Let $x \in F$ and $t \in(0,50)$ with $h(x) \leq t<50$. Assume that $(x, t) \notin S$. Due to $h(x) \leq t$, we obtain $(x, t) \notin S_{\text {total }}$, which implies that $t<10$. Hence with $y=x$ and $\tau=t$ we get $3 t \in H(x)$. This implies $h(x) \geq 3 t>t$ and hence a contradiction to $t \geq h(x)$. So, we obtain $(x, t) \in S$.
(ii) We have $x \in F$ and $h(x) \leq t \leq t^{\prime}<50$, so with (i) we conclude that $\left(x, t^{\prime}\right) \in S$.

Remember that the function h depends on the set $S_{\text {total }}$, which depends on the choice of ε and α. Hence the sets defined in the following definition depend on α and ε as well.

Definition 6.3 (Partition of F). Let $\alpha, \varepsilon>0$. We define

$$
\begin{gathered}
\mathcal{Z}:=\{x \in F \mid h(x)=0\}, \\
F_{1}:=\left\{x \in F \backslash \mathcal{Z} \left\lvert\, \begin{array}{l}
\exists y \in F, \exists \tau \in\left[\frac{h(x)}{5}, \frac{h(x)}{2}\right], \text { with } d(x, y) \leq \frac{\tau}{2} \\
\text { and } \\
\delta(B(y, \tau)) \leq \delta
\end{array}\right.\right\}, \\
F_{2}:=\left\{x \in F \backslash\left(\mathcal{Z} \cup F_{1}\right) \left\lvert\, \begin{array}{l}
\exists y \in F, \exists \tau \in\left[\frac{h(x)}{5}, \frac{h(x)}{2}\right], \text { with } d(x, y) \leq \frac{\tau}{2} \\
\text { and } \\
\beta_{1 ; k}(y, \tau) \geq \varepsilon
\end{array}\right.\right\},
\end{gathered}
$$

$$
F_{3}:=\left\{x \in F \backslash\left(\mathcal{Z} \cup F_{1} \cup F_{2}\right)\right.
$$

$$
\left.\begin{array}{l}
\exists y \in F, \exists \tau \in\left[\frac{h(x)}{5}, \frac{h(x)}{2}\right], \text { with } d(x, y) \leq \frac{\tau}{2} \\
\text { and for all planes } P \in \mathcal{P}(N, n) \text { with } \\
\beta_{1 ; k}^{P}(y, \tau) \leq \varepsilon \text { we have } \varangle\left(P, P_{0}\right) \geq \frac{3}{4} \alpha
\end{array}\right\}
$$

In this section, we prove that \mathcal{Z} is rectifiable by constructing a function A such that the graph of A will cover \mathcal{Z}. This is done by inverting the orthogonal projection $\left.\pi\right|_{\mathcal{Z}}: \mathcal{Z} \rightarrow P_{0}$. After that, to complete the proof, it remains to show that \mathcal{Z} constitutes the major part of F. Right now, we can prove that $\mu\left(F_{2}\right) \leq 10^{-6}$ (cf. section 8.3, F_{2} is small) where the control of the other sets needs some more preparations.

Lemma 6.4. Let $\alpha, \varepsilon>0$. Definition 6.3 gives a partition of F, i.e., $F=$ $\mathcal{Z} \dot{\cup} F_{1} \dot{\cup} F_{2} \dot{\cup} F_{3}$.

Proof. From the definition we see that the sets are disjoint. We show $F \backslash \mathcal{Z} \subset$ $F_{1} \cup F_{2} \cup F_{3}$. Let $x \in F \backslash \mathcal{Z}$, so we have $h(x)>0$. There exist some sequences $\left(y_{l}\right)_{l \in \mathbb{N}} \in F^{\mathbb{N}},\left(t_{l}\right)_{l \in \mathbb{N}}$ and $\left(\tau_{l}\right)_{l \in \mathbb{N}}$ so that for all $l \in \mathbb{N}$, we have $0<t_{l} \leq h(x)$, $t_{l} \rightarrow h(x), \frac{t_{l}}{4} \leq \tau_{l} \leq \frac{t_{l}}{3}, d\left(x, y_{l}\right)<\frac{\tau_{l}}{3}$ and $\left(y_{l}, \tau_{l}\right) \notin S_{t o t a l}$. Due to $\tau_{l} \leq \frac{t_{l}}{3} \leq \frac{h(x)}{3} \leq$ $\frac{50}{3}$, we have for every $l \in \mathbb{N}$ either $\delta\left(B\left(y_{l}, \tau_{l}\right)\right)=\frac{\mu\left(B\left(y_{l}, \tau_{l}\right)\right)}{\tau_{l}^{n}}<\frac{1}{2} \delta$ or $\delta\left(B\left(y_{l}, \tau_{l}\right)\right) \geq$ $\frac{1}{2} \delta$ and $\beta_{1 ; k}\left(y_{l}, \tau_{l}\right) \geq 2 \varepsilon$ or $\delta\left(B\left(y_{l}, \tau_{l}\right)\right) \geq \frac{1}{2} \delta$ and $\beta_{1 ; k}\left(y_{l}, \tau_{l}\right)<2 \varepsilon$, and for every plane $P \in \mathcal{P}(N, n)$ with $\beta_{1 ; k}^{P}\left(y_{l}, \tau_{l}\right) \leq 2 \varepsilon$, we have $\varangle\left(P, P_{0}\right)>\alpha$.

Choose l so large that $\frac{4 h(x)}{5} \leq t_{l}$. We obtain $\frac{h(x)}{5} \leq \frac{t_{l}}{4} \leq \tau_{l} \leq \frac{t_{l}}{3} \leq \frac{h(x)}{2}$. Furthermore, we have $y_{l} \in \stackrel{5}{F}$ and $d\left(x, y_{l}\right) \leq \frac{\tau_{l}}{3}<\frac{\tau_{l}^{5}}{2}$. Since $\left(y_{l}, \tau_{l}\right)$ fulfils one of these three cases, it follows that $x \in F_{1} \cup F_{2} \cup F_{3}$.

The following lemma is for later use (cf. Lemma 8.10 and Lemma 8.11).
Lemma 6.5. Let $\alpha>0$. There exists some constant $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}, \alpha\right)$ so that if $\eta<2 \bar{\varepsilon}$ and $k \geq 2000$, there holds for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right):$ If $x \in F_{3}$ and $h(x) \leq t \leq$ $\min \{100 h(x), 49\}$, we get $\varangle\left(P_{(x, t)}, P_{0}\right)>\frac{1}{2} \alpha$, where $P_{(x, t)}$ is the plane granted since $(x, t) \in S_{\text {total }}$ (cf. Definition 6.1).
Proof. Let $\alpha>0$ and $k \geq 400$. We set $\bar{\varepsilon}:=\min \left\{\varepsilon_{0}, \varepsilon_{0}^{\prime}, \alpha\left(5 C_{3}\right)^{-1}\right\}$, where $\varepsilon_{0}, \varepsilon_{0}^{\prime}, C_{3}$ and C_{3}^{\prime} depend only on N, n and C_{0} will be chosen during this proof. Furthermore, let $\eta \leq 2 \varepsilon<2 \bar{\varepsilon}$.

Since $x \in F_{3}$ and $x \notin\left(F_{1} \cap F_{2}\right)$, there exists some $y \in F, \tau \in\left[\frac{h(x)}{5}, \frac{h(x)}{2}\right]$ and $\bar{P} \in \mathcal{P}(N, n)$ with $d(x, y) \leq \frac{\tau}{2}, \beta_{1 ; k}^{\bar{P}}(y, \tau) \leq \varepsilon$ and $\varangle\left(\bar{P}, P_{0}\right) \geq \frac{3}{4} \alpha$. Furthermore $h(x) \leq t$ implies $(x, t) \in S \subset S_{\text {total }}$ and hence $\delta(B(x, t)) \geq \frac{1}{2} \delta$ and $\beta_{1 ; k}^{P_{(x, t)}}(x, t) \leq 2 \varepsilon$. Now with Lemma $4.9\left(c=500, \xi=2, t_{x}=t, t_{y}=\tau, \lambda=\frac{\delta}{2}\right)$, there exist some constants $C_{3}=C_{3}\left(N, n, C_{0}\right)>1$ and $\varepsilon_{0}=\varepsilon_{0}\left(N, n, C_{0}\right)>0$ so that $\varangle\left(\bar{P}, P_{(x, t)}\right) \leq$ $C_{3} \varepsilon$. Due to $\varangle\left(\bar{P}, P_{0}\right) \geq \frac{3}{4} \alpha$ and $\varepsilon<\frac{\alpha}{4 C_{3}}$ this gives $\varangle\left(P_{(x, t)}, P_{0}\right)>\frac{1}{2} \alpha$.
6.2. The distance to a well approximable ball. We recall that the set S depends on the choice of α and ε. Hence the functions d and D defined in the next definition depend on α and ε as well. We introduce $\pi:=\pi_{P_{0}}: \mathbb{R}^{N} \rightarrow P_{0}$, the orthogonal projection on P_{0}.

Definition 6.6 (The functions d and $D)$. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, we get with Lemma 6.2(i) that $S \neq \emptyset$. We define $d: \mathbb{R}^{N} \rightarrow[0, \infty)$ and $D: P_{0} \rightarrow[0, \infty)$ with

$$
d(x):=\inf _{(X, t) \in S}(d(X, x)+t), \quad D(y):=\inf _{x \in \pi^{-1}(y)} d(x)
$$

Let us call a ball $B(X, t)$ with $(X, t) \in S$ a good ball. Then the function d measures the distance from the given point x to the nearest good ball, using the furthermost point in the ball. This implies that a ball $B(x, d(x))$ always contains some good ball. The function D does something similar. Consider the projection of all good balls to the plane P_{0}. Then D measures the distance to the nearest projected good ball in the same sense as above (cf. the next lemma).
Lemma 6.7. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$ and $y \in P_{0}$ we have

$$
D(y)=\inf _{(X, t) \in S}(d(\pi(X), y)+t)
$$

Proof. Due to $d(X, x) \geq d(\pi(X), \pi(x))$ we have $D(y) \geq \inf _{(X, t) \in S}(d(\pi(X), y)+t)$. Assume that $\lim _{l \rightarrow \infty}\left(d\left(\pi\left(X_{l}\right), y\right)+t_{l}\right)>\inf _{(X, t) \in S}(d(\pi(X), y)+t)$ for some sequence $\left(X_{l}, t_{l}\right) \in S$. Now there exists some $l \in \mathbb{N}$ so that

$$
\begin{aligned}
D(y) & >d\left(\pi\left(X_{l}\right)+X_{l}-\pi\left(X_{l}\right), y+X_{l}-\pi\left(X_{l}\right)\right)+t_{l} \\
& \geq \inf _{x \in \pi^{-1}(y)} d\left(X_{l}, x\right)+t_{l} \geq D(y)
\end{aligned}
$$

which is a contradiction.
Lemma 6.8. The functions d and D are Lipschitz functions with Lipschitz constant 1.
Proof. Let $x, y \in \mathbb{R}^{N}$. We get with the triangle inequality $d(x) \leq d(y)+d(x, y)$ and $d(y) \leq d(x)+d(x, y)$. This implies $|d(x)-d(y)| \leq d(x, y)$. Using the previous lemma, we can use the same argument for the function D.
Lemma 6.9. We have $\left\{x \in \mathbb{R}^{N} \mid d(x)<1\right\} \subset B(0,6)$ and $d(x) \leq 60$ for all $x \in$ $B(0,5)$.
Proof. Let $x \in \mathbb{R}^{N}$ with $\inf _{(X, t) \in S}(d(X, x)+t)=d(x)<1$. Hence there exists some $X \in F \subset B(0,5)$ with $d(0, x) \leq d(0, X)+d(X, x)<6$. If $x \in B(0,5)$, we have $d(x) \leq 10+50$.
Lemma 6.10. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, we have $d(x) \leq h(x)$ for all $x \in F$ and

$$
\mathcal{Z}=\{x \in F \mid d(x)=0\}, \quad \pi(\mathcal{Z})=\left\{y \in P_{0} \mid D(y)=0\right\}
$$

Furthermore, both sets \mathcal{Z} and $\pi(\mathcal{Z})$ are closed. We recall that π denotes the orthogonal projection on the plane P_{0}.
Proof. Let $x \in F$. With Lemma 6.2(i), we have $(x, h(x)) \in S$ and hence $d(x) \leq$ $h(x)$. This implies $\mathcal{Z} \subset\{x \in F \mid d(x)=0\}$.

Now let $x \in F$ with $h(x)>0$. We prove $d(x)>0$. There exist some sequences $t_{l} \rightarrow h(x)$ and some sequence $\left(X_{i}, s_{i}\right) \in S$ with $d\left(X_{i}, x\right)+s_{i} \rightarrow d(x)$. If on the one hand there exists some subsequence with $X_{i} \rightarrow x$ we obtain for another subsequence $s_{i} \geq h\left(X_{i}\right) \geq t_{i}>0$ for sufficiently large i and hence $d(x)>0$. If on the other hand $d\left(X_{i}, x\right)$ has a positive lower bond, we conclude that $d(x) \geq \lim _{l \rightarrow \infty} d\left(X_{l}, x\right)>0$.

Now we prove the second equality. If $y \in \pi(\mathcal{Z})$, there exists some $x_{0} \in \mathcal{Z}$ with $\pi\left(x_{0}\right)=y$ and $d\left(x_{0}\right)=0$. Now we get $0 \leq D(y) \leq d\left(x_{0}\right)=0$.

If $y \in P_{0}$ with $D(y)=0$, since d is continuous, we get with Lemma 6.9 that there exists some $a \in \pi^{-1}(y)$ with $d(a)=0$. This implies $a \in F$ and hence $a \in \mathcal{Z}$. Thus $y \in \pi(\mathcal{Z})$.

According to Lemma 6.8, d and D are continuous, and hence these sets are closed.

Lemma 6.11. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}\right)$ so that if $\eta<2 \bar{\varepsilon}$ and $k \geq 4$ for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$, there holds: For all $x, y \in F$ we have

$$
\begin{aligned}
d(x, y) & \leq 6(d(x)+d(y))+2 d(\pi(x), \pi(y)) \\
d\left(\pi^{\perp}(x), \pi^{\perp}(y)\right) & \leq 6(d(x)+d(y))+2 \alpha d(\pi(x), \pi(y)) .
\end{aligned}
$$

Proof. Let $0<\alpha<\frac{1}{4}$ and $k \geq 4$. During this proof, there occur several smallness conditions on ε. The minimum of those will give us the constant $\bar{\varepsilon}$. Let $\eta \leq 2 \varepsilon<2 \bar{\varepsilon}$.

The first estimate is an immediate consequence of the second estimate. So we focus on this one. Due to $F \subset B(0,5)$ the LHS is always less than 10 . Hence we can assume that $d(x)+d(y)<2$. We choose some arbitrary $r_{x} \in(d(x), d(x)+1) \subset(0,3)$. There exists some $(X, t) \in S$ with $d(x) \leq d(X, x)+t<r_{x}$. According to Lemma 6.2 (ii), it follows that $\left(X, r_{x}\right) \in S$. Analogously, for all $r_{y} \in(d(y), d(y)+1)$, we can choose some $Y \in F$ with $d(Y, y)<r_{y}$ and $\left(Y, r_{y}\right) \in S$. Now it is enough to prove $d\left(\pi^{\perp}(x), \pi^{\perp}(y)\right) \leq 6\left(r_{x}+r_{y}\right)+2 \alpha d(\pi(x), \pi(y))$ since $r_{x} \geq d(x)$ and $r_{y} \geq d(y)$ were arbitrarily chosen. We can assume that $d(X, Y)>2\left(r_{x}+r_{y}\right)$ since otherwise $d(x, y) \leq d(x, X)+d(X, Y)+d(Y, y)$ immediately implies the desired estimate.

We define $B_{1}:=B\left(X, \frac{1}{2} d(X, Y)\right)$ and $B_{2}:=B\left(Y, \frac{1}{2} d(X, Y)\right)$. With Lemmar6(i) we obtain $B_{1}, B_{2} \in S$. Let P_{1} and P_{2} be the associated planes to B_{1} and B_{2} (see Definition 6.1). With Lemma $4.9\left(x=X, y=Y, c=1, \xi=2, t_{x}=t_{y}=\frac{1}{2} d(X, Y)\right.$, $\left.\lambda=\frac{1}{2} \delta\right)$ there exist some constants $C_{3}=C_{3}\left(N, n, C_{0}\right)>1$ and $\varepsilon_{0}=\varepsilon_{0}\left(N, n, C_{0}\right)>$ 0 so that if $\varepsilon<\varepsilon_{0}$ for $w \in P_{1}$, we obtain

$$
\begin{equation*}
d\left(w, P_{2}\right) \leq C_{3}\left(N, n, C_{0}, \delta\right) \varepsilon\left(\frac{1}{2} d(X, Y)+d(w, X)\right) \tag{6.2}
\end{equation*}
$$

Let $B_{1}^{\prime}:=B\left(X, \frac{1}{2} \varepsilon^{\frac{1}{2 n}} d(X, Y)+r_{x}\right)$ and $B_{2}^{\prime}:=B\left(Y, \frac{1}{2} \varepsilon^{\frac{1}{2 n}} d(X, Y)+r_{y}\right)$. Lemma $6.2(\mathrm{i})$ implies that these balls are in S. Now we conclude using $\delta\left(B_{i}^{\prime}\right) \geq \frac{\delta}{2}, B_{i}^{\prime} \subset k B_{i}$, and $\beta_{1 ; k}^{P_{i}}\left(B_{i}\right) \leq 2 \varepsilon$ for $i \in\{1,2\}$ that

$$
\frac{1}{\mu\left(B_{i}^{\prime}\right)} \int_{B_{i}^{\prime}} \frac{d\left(X^{\prime}, P_{i}\right)}{d(X, Y)} \mathrm{d} \mu\left(X^{\prime}\right) \leq \frac{1}{\delta \varepsilon^{\frac{1}{2}}} \frac{1}{\left(\frac{1}{2} d(X, Y)\right)^{n}} \int_{k B_{i}} \frac{d\left(X^{\prime}, P_{i}\right)}{\frac{1}{2} d(X, Y)} \mathrm{d} \mu\left(X^{\prime}\right) \leq \frac{2}{\delta} \varepsilon^{\frac{1}{2}} .
$$

With Chebyshev's inequality, we deduce that there exist some $X^{\prime} \in B_{1}^{\prime}$ and some $Y^{\prime} \in B_{2}^{\prime}$ so that $d\left(X^{\prime}, P_{1}\right) \leq \frac{2}{\delta} \varepsilon^{\frac{1}{2}} d(X, Y)$ and $d\left(Y^{\prime}, P_{2}\right) \leq \frac{2}{\delta} \varepsilon^{\frac{1}{2}} d(X, Y)$.

Now let $X_{1}^{\prime}:=\pi_{P_{1}}\left(X^{\prime}\right)$ be the orthogonal projection of X^{\prime} on $P_{1}, Y_{2}^{\prime}:=\pi_{P_{2}}\left(Y^{\prime}\right)$ the orthogonal projection of Y^{\prime} on P_{2}, and $X_{12}^{\prime}:=\pi_{P_{2}}\left(X_{1}^{\prime}\right)$ the orthogonal projection of X_{1}^{\prime} on P_{2}. If ε is small enough, we have with $\varrho \in\left\{\pi, \pi^{\perp}\right\}$:

$$
\begin{aligned}
d\left(\varrho(X), \varrho\left(X^{\prime}\right)\right) \leq d\left(X, X^{\prime}\right) & \leq \frac{1}{2} \varepsilon^{\frac{1}{2 n}} d(X, Y)+r_{x}, \\
d\left(\varrho(Y), \varrho\left(Y^{\prime}\right)\right) \leq d\left(Y, Y^{\prime}\right) & \leq \frac{1}{2} \varepsilon^{\frac{1}{2 n}} d(X, Y)+r_{y}, \\
d\left(\varrho\left(X^{\prime}\right), \varrho\left(X_{1}^{\prime}\right)\right) \leq d\left(X^{\prime}, X_{1}^{\prime}\right) & =d\left(X^{\prime}, P_{1}\right) \leq \frac{2}{\delta} \varepsilon^{\frac{1}{2}} d(X, Y), \\
d\left(\varrho\left(Y^{\prime}\right), \varrho\left(Y_{2}^{\prime}\right)\right) \leq d\left(Y^{\prime}, Y_{2}^{\prime}\right) & =d\left(Y^{\prime}, P_{2}\right) \leq \frac{2}{\delta} \varepsilon^{\frac{1}{2}} d(X, Y), \\
d\left(\varrho\left(X_{1}^{\prime}\right), \varrho\left(X_{12}^{\prime}\right)\right) \leq d\left(X_{1}^{\prime}, X_{12}^{\prime}\right) & =d\left(X_{1}^{\prime}, P_{2}\right) \stackrel{\frac{\sqrt{6.2 / 2}}{<}}{<} 2 C_{3} \varepsilon d(X, Y) .
\end{aligned}
$$

According to Definition 6.1 we have $\varangle\left(P_{2}, P_{0}\right) \leq \alpha$ and we get with Lemma 2.13 ($X_{12}^{\prime}, Y_{2}^{\prime} \in P_{2}$) using $\alpha \leq \frac{1}{4}$:

$$
\begin{align*}
d\left(X_{12}^{\prime}, Y_{2}^{\prime}\right) & \leq \frac{1}{1-\alpha} d\left(\pi\left(X_{12}^{\prime}\right), \pi\left(Y_{2}^{\prime}\right)\right) \leq 2 d\left(\pi\left(X_{12}^{\prime}\right), \pi\left(Y_{2}^{\prime}\right)\right) \tag{6.3}\\
d\left(\pi^{\perp}\left(X_{12}^{\prime}\right), \pi^{\perp}\left(Y_{2}^{\prime}\right)\right) & \leq \frac{\alpha}{1-\alpha} d\left(\pi\left(X_{12}^{\prime}\right), \pi\left(Y_{2}^{\prime}\right)\right) \leq \frac{4}{3} \alpha d\left(\pi\left(X_{12}^{\prime}\right), \pi\left(Y_{2}^{\prime}\right)\right) . \tag{6.4}
\end{align*}
$$

Inserting the intermediate points $X^{\prime}, X_{1}^{\prime}, X_{12}^{\prime}, Y_{2}^{\prime}, Y^{\prime}$ using triangle inequality twice and using the previous inequalities, there exists some constant C so that

$$
\begin{aligned}
d(X, Y) & \leq C \frac{1}{\delta} \varepsilon^{\frac{1}{2 n}} d(X, Y)+r_{x}+r_{y}+2 d\left(\pi\left(X_{12}^{\prime}\right), \pi\left(Y_{2}^{\prime}\right)\right) \\
& \leq C \frac{1}{\delta} \varepsilon^{\frac{1}{2 n}} d(X, Y)+3\left(r_{x}+r_{y}\right)+2 d(\pi(X), \pi(Y)),
\end{aligned}
$$

and hence if ε fulfils $C \frac{1}{\delta} \varepsilon^{\frac{1}{2 n}} \leq \frac{1}{2}$, we get

$$
\begin{equation*}
d(X, Y) \leq 6\left(r_{x}+r_{y}\right)+4 d(\pi(X), \pi(Y)) \tag{6.5}
\end{equation*}
$$

As for $d(X, Y)$, we estimate $d\left(\pi^{\perp}(X), \pi^{\perp}(Y)\right)$ by repeated use of the triangle inequality and (6.4). With (6.5), we deduce that

$$
\begin{aligned}
& d\left(\pi^{\perp}(X), \pi^{\perp}(Y)\right) \\
& \leq C \frac{1}{\delta} \varepsilon^{\frac{1}{2 n}} d(X, Y)+3\left(r_{x}+r_{y}\right)+\frac{4}{3} \alpha d(\pi(X), \pi(Y)) \\
& \stackrel{(6.5)}{\leq} C \frac{1}{\delta} \varepsilon^{\frac{1}{2 n}}\left[6\left(r_{x}+r_{y}\right)+4 d(\pi(X), \pi(Y))\right]+3\left(r_{x}+r_{y}\right)+\frac{4}{3} \alpha d(\pi(X), \pi(Y)) \\
& \leq 4\left(r_{x}+r_{y}\right)+2 \alpha d(\pi(X), \pi(Y)) .
\end{aligned}
$$

This implies using $d\left(\pi^{\perp}(x), \pi^{\perp}(X)\right) \leq d(x, X) \leq r_{x}$ and $d\left(\pi^{\perp}(Y), \pi^{\perp}(y)\right) \leq d(Y, y)$ $\leq r_{y}$ that

$$
\begin{aligned}
d\left(\pi^{\perp}(x), \pi^{\perp}(y)\right) & \leq 5\left(r_{x}+r_{y}\right)+2 \alpha d(\pi(X), \pi(Y)) \\
& \leq 6\left(r_{x}+r_{y}\right)+2 \alpha d(\pi(x), \pi(y))
\end{aligned}
$$

6.3. A Whitney-type decomposition of $P_{0} \backslash \pi(\mathcal{Z})$. In this part, we show that $P_{0} \backslash \pi(\mathcal{Z})$ can be decomposed as a union of disjoint cubes R_{i}, where the diameter of R_{i} is proportional to $D(x)$ for all $x \in R_{i}$. This result is a variant of the Whitney decomposition for open sets in \mathbb{R}^{n}; cf. [11, Appendix J].

Definition 6.12 (Dyadic primitive cells).

1. We set \mathcal{D} to be the set of all dyadic primitive cells on P_{0}. We recall that the plane P_{0} is an n-dimensional linear subspace of \mathbb{R}^{N}.
2. Let $r \in(0, \infty)$ and Q be some cube in \mathbb{R}^{N}. By $r Q$, we denote the cube with the same centre and orientation as Q but r-times the diameter.

We mention that the function D depends on the choice of α and ε because D depends on the set $S \subset S_{\text {total }}^{\varepsilon, \alpha}$. Hence the family of cubes given by the following lemma depends on the choice of α and ε as well.

Lemma 6.13. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, then there exists a countable family of cubes $\left\{R_{i}\right\}_{i \in I} \subset \mathcal{D}$ such that
(i) $10 \operatorname{diam} R_{i} \leq D(x) \leq 50 \operatorname{diam} R_{i}$ for all $x \in 10 R_{i}$,
(ii) $P_{0} \backslash \pi(\mathcal{Z})=\bigcup_{i \in I} R_{i}=\bigcup_{i \in I} 2 R_{i}$ and cubes R_{i} have disjoint interior,
(iii) for every $i, j \in I$ with $10 R_{i} \cap 10 R_{j} \neq \emptyset$, we have $\frac{1}{5} \operatorname{diam} R_{j} \leq \operatorname{diam} R_{i} \leq$ $5 \operatorname{diam} R_{j}$,
(iv) for every $i \in I$, there are at most 180^{n} cells R_{j} with $10 R_{i} \cap 10 R_{j} \neq \emptyset$.

Proof. For $z \in P_{0}, D(z)>0$, we define $Q_{z} \in \mathcal{D}$ as the largest dyadic primitive cell that contains z and fulfils $\operatorname{diam} Q_{z} \leq \frac{1}{20} \inf _{u \in Q_{z}} D(u)$. For such a given z the cell Q_{z} exists because the function D is continuous and $D(z)>0$. Hence if we choose a small enough dyadic primitive cell Q that contains z, we get $\operatorname{diam} Q \leq$ $\frac{1}{20} \inf _{u \in Q} D(u)$. Due to the dyadic structure, there can only be one largest dyadic primitive cell that contains z and fulfils the upper condition. We choose $R_{i} \in \mathcal{D}$ such that $\left\{R_{i} \mid i \in I\right\}=\left\{Q_{z} \in \mathcal{D} \mid z \in P_{0}, D(z)>0\right\}$ and $R_{i}=R_{j}$ is equivalent to $i=j$.
(i) Let $x \in 10 R_{i}$ and $u \in R_{i}$. We get $20 \operatorname{diam} R_{i} \leq D(u)<D(x)+10 \operatorname{diam} R_{i}$, and hence $10 \operatorname{diam} R_{i} \leq D(x)$. Let $J_{i} \in \mathcal{D}$ be the smallest cell in \mathcal{D} with $R_{i} \subsetneq J_{i}$ and choose $u \in J_{i}$ so that $D(u)<20 \operatorname{diam} J_{i}=40 \operatorname{diam} R_{i}$. This is possible because otherwise R_{i} is not maximal relating to $\operatorname{diam} R_{i} \leq \frac{1}{20} \inf _{v \in R_{i}} D(v)$. We obtain $D(x) \leq D(u)+d(u, x)<50 \operatorname{diam} R_{i}$.
(ii) If the interior of some cells R_{i} and R_{j} were not disjoint, because of the dyadic structure, one cell would be contained in the other. But then one of those would not be the maximal cell. Hence the R_{i} 's have disjoint interior. For all $x \in 2 R_{i}$, we obtain using (i) and Lemma 6.10 that $x \notin \pi(\mathcal{Z})$. Now let $x \in P_{0} \backslash \pi(\mathcal{Z})$. With Lemma 6.10 we get $D(x)>0$. So there exists the cube $Q_{x} \in \mathcal{D}$ with $x \in Q_{x}$ and hence $x \in \bigcup_{i \in I} R_{i}$.
(iii) If $10 R_{i} \cap 10 R_{j} \neq \emptyset$ we can apply (i) for some $x \in 10 R_{i} \cap 10 R_{j}$ and obtain the assertion.
(iv) Let $i \in I$ and R_{j} with $10 R_{i} \cap 10 R_{j} \neq \emptyset$. We conclude with (iii) that $d\left(R_{i}, R_{j}\right) \leq 30 \operatorname{diam} R_{i}$ and so $R_{j} \subset(1+30+5) R_{i}$. Furthermore, we have diam $R_{j} \geq$ $\frac{1}{5} \operatorname{diam} R_{i}$. Since the cells R_{j} are disjoint, there exist at most $\frac{\mathcal{H}^{n}\left(36 R_{i}\right)}{\mathcal{H}^{n}\left(R_{j}\right)} \leq(180)^{n}$ cells R_{j} with $10 R_{i} \cap 10 R_{j} \neq \emptyset$.

Now we set $U_{12}:=B(0,12) \cap P_{0}$ and $I_{12}:=\left\{i \in I \mid R_{i} \cap U_{12} \neq \emptyset\right\}$.
Lemma 6.14. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, for every $i \in I_{12}$, there exists some ball $B_{i}=$ $B\left(X_{i}, t_{i}\right)$ with $\left(X_{i}, t_{i}\right) \in S$, $\operatorname{diam} R_{i} \leq \operatorname{diam} B_{i} \leq 200 \operatorname{diam} R_{i}$ and $d\left(\pi\left(B_{i}\right), R_{i}\right) \leq$ 100 diam R_{i}.

Proof. Let $i \in I_{12}$ and $x \in R_{i}$. Use Lemma 6.7 Lemma 6.10 and Lemma 6.13(i), (ii) to get some $(X, t) \in S$ with $d(\pi(X), x)+t \leq 2 D(x) \leq 100$ diam R_{i}. Choose $B_{i}:=B\left(X_{i}, t_{i}\right):=B(X, r)$ with $r=\max \left\{t, \frac{\operatorname{diam} \bar{R}_{i}}{2}\right\} \leq 100 \operatorname{diam} R_{i}$. Now we have $d\left(\pi\left(B_{i}\right), R_{i}\right) \leq 100 \operatorname{diam} R_{i}$ and $\operatorname{diam} R_{i} \leq \operatorname{diam} B_{i} \leq 200 \operatorname{diam} R_{i}$. We can show that $r<50$, and hence with Lemma 6.2(ii), we get $(X, r) \in S$.
6.4. Construction of the function A. We recall that $\pi:=\pi_{P_{0}}: \mathbb{R}^{N} \rightarrow P_{0}$ is the orthogonal projection on P_{0} and introduce $\pi^{\perp}:=\pi_{P_{0}}^{\perp}: \mathbb{R}^{N} \rightarrow P_{0}^{\perp}$, the orthogonal projection on P_{0}^{\perp}, where $P_{0}^{\perp}:=\left\{x \in \mathbb{R}^{N} \mid x \cdot v=0\right.$ for all $\left.v \in P_{0}\right\}$ is the orthogonal complement of P_{0}. To define the function A, we want to invert the projection $\left.\pi\right|_{\mathcal{Z}}$ on \mathcal{Z}.
Lemma 6.15. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}\right)$ so that if $\eta<2 \bar{\varepsilon}$ and $k \geq 4$ for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$, the orthogonal projection $\left.\pi\right|_{\mathcal{Z}}: \mathcal{Z} \rightarrow P_{0}$ is injective.
Proof. The assertion follows directly from Lemma 6.10 and Lemma 6.11.

Since $\left.\pi\right|_{\mathcal{Z}}: \mathcal{Z} \rightarrow P_{0}$ is injective, we are able to define the desired Lipschitz function A on $\pi(\mathcal{Z})$ by

$$
A(a):=\pi^{\perp}\left(\left.\pi\right|_{\mathcal{Z}} ^{-1}(a)\right)
$$

where $a \in \pi(\mathcal{Z})$.
Lemma 6.16. Under the conditions of the previous lemma, the map $\left.A\right|_{\pi(\mathcal{Z})}$ is 2α-Lipschitz.

Proof. Due to Lemma 6.15 for $a, b \in \pi(\mathcal{Z})$, there exist distinct $X, Y \in \mathcal{Z}$ with $\pi(X)=a$ and $\pi(Y)=b$. We have $A(a)=\pi^{\perp}(X), A(b)=\pi^{\perp}(Y)$ and Lemma 6.10 implies that $d(X)=d(Y)=0$. So, with Lemma 6.11, we get $d(A(a), A(b)) \leq$ $2 \alpha d(a, b)$.

Now we have a Lipschitz function A defined on $\pi(\mathcal{Z})$. By using Kirszbraun's theorem [9, Thm. 2.10.43], we would obtain a Lipschitz extension of A defined on P_{0} with the same Lipschitz constant 2α, where the graph of the extension covers \mathcal{Z}. But until now, we do not know that \mathcal{Z} is a major part of F. We cannot even be sure that \mathcal{Z} is not a null set. So we do not use Kirszbraun's theorem here, but we will extend A by an explicit construction. This will help us to show that the other parts of F, in particular F_{1}, F_{2}, F_{3}, are quite small.

Definition 6.17. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, for all $i \in I_{12}$, we set $P_{i}:=P_{\left(X_{i}, t_{i}\right)}$, where $P_{\left(X_{i}, t_{i}\right)}$ is the n-dimensional plane, which is, in the sense of Definition 6.1, associated to the ball $B\left(X_{i}, t_{i}\right)=B_{i}$ given by Lemma 6.14.

Lemma 6.18. Let $0<\alpha \leq \frac{1}{2}$ and $\varepsilon>0$. If $\eta \leq 2 \varepsilon$, then for all $i \in I_{12}$, there exists some affine map $A_{i}: P_{0} \rightarrow P_{0}^{\perp}$ with graph $G\left(A_{i}\right)=P_{i}$ and A_{i} is 2α-Lipschitz.

Proof. Use $\varangle\left(P_{i}, P_{0}\right) \leq \alpha \leq \frac{1}{2}$ (cf. definition of $S_{\text {total }}$) and apply Corollary 2.14.
In the following, we use differentiable functions defined on subsets of P_{0}. For the definition of the derivative see section A.2 on page 1247 ,

Lemma 6.19. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, then there exists some partition of unity $\phi_{i} \in C^{\infty}\left(U_{12}, \mathbb{R}\right), i \in I_{12}$, with $0 \leq \phi_{i} \leq 1$ on $U_{12}, \phi_{i} \equiv 0$ on the exterior of $3 R_{i}$ and $\sum_{i \in I_{0}} \phi_{i}(a)=1$ for all $a \in U_{12}$. Furthermore there exists some constant $C=C(n)$ with $\left|\partial^{\omega} \phi_{i}(a)\right| \leq \frac{C(n)}{\left(\operatorname{diam} R_{i}\right)^{|\omega|}}$ where ω is some multi-index with $1 \leq|\omega| \leq 2$.
Proof. For every $i \in I_{12}$, we choose some function $\tilde{\phi}_{i} \in \mathcal{C}^{\infty}\left(P_{0}, \mathbb{R}\right)$ with $0 \leq \tilde{\phi}_{i} \leq$ $1, \tilde{\phi}_{i} \equiv 1$ on $2 R_{i}, \tilde{\phi}_{i} \equiv 0$ on the exterior of $3 R_{i},\left|\partial^{\omega} \tilde{\phi}_{i}\right| \leq \frac{C}{\operatorname{diam} R_{i}}$ for all multi-indices ω with $|\omega|=1$ and $\left|\partial^{\kappa} \tilde{\phi}_{i}\right| \leq \frac{C}{\left(\operatorname{diam} R_{i}\right)^{2}}$ for all multi-indices κ with $|\kappa|=2$. Now on $V:=\bigcup_{i \in I_{12}} 2 R_{i}$, we can define the partition of unity $\phi_{i}(a):=\frac{\tilde{\phi}_{i}(a)}{\sum_{j \in I_{12} \tilde{\alpha}_{j}} \phi_{j}(a)}$. For all $a \in V$, there exists some $i \in I_{12}$ with $a \in 2 R_{i}$ and hence $\sum_{j \in I_{12}} \tilde{\phi}_{j}(a) \geq 1$. Moreover, due to Lemma 6.13(iv), there are only finitely many $j \in I_{12}$ such that $\tilde{\phi}_{j}(a) \neq 0$. Due to the control we have on the derivatives of $\tilde{\phi}_{i}$, we obtain with Lemma 6.13(iv) the desired estimates of the derivatives of ϕ_{i}.

Definition 6.20 (Definition of A on U_{12}). Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$ and $k \geq 4$, we extend the function $A: \pi(\mathcal{Z}) \rightarrow P_{0}^{\perp} \subset \mathbb{R}^{N}, a \mapsto \pi^{\perp}\left(\left.\pi\right|_{\mathcal{Z}} ^{-1}(a)\right)$ (see page 1215) to
the whole set U_{12} by setting for $a \in U_{12}$,

$$
A(a):= \begin{cases}\pi^{\perp}\left(\left.\pi\right|_{\mathcal{Z}} ^{-1}(a)\right), & a \in \pi(\mathcal{Z}), \\ \sum_{i \in I_{12}} \phi_{i}(a) A_{i}(a), & a \in U_{12} \cap \bigcup_{i \in I_{12}} 2 R_{i} .\end{cases}
$$

With $\mathcal{Z} \subset F \subset B(0,5)$, we get $\pi(\mathcal{Z}) \subset U_{12}$ and, with Lemma 6.13(ii), we obtain $\bigcup_{i \in I_{12}} 2 R_{i} \cap \pi(\mathcal{Z})=\emptyset$; hence we have defined A on the whole set

$$
U_{12}=\left(U_{12} \cap \bigcup_{i \in I_{12}} 2 R_{i}\right) \dot{\cup} \pi(\mathcal{Z})
$$

6.5. A is Lipschitz continuous. In this section, we show that A is Lipschitz continuous. We start with some useful estimates.

Lemma 6.21. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\bar{k} \geq 4$ and some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}\right)$ so that if $k \geq \bar{k}$ and $\eta<2 \bar{\varepsilon}$ for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$, there exist some constants $C>1$ and $\bar{C}=\bar{C}\left(N, n, C_{0}\right)>1$ so that for all $i, j \in I_{12}$ with $i \neq j$ and $10 R_{i} \cap 10 R_{j} \neq \emptyset$, we get
(i) $d\left(B_{i}, B_{j}\right) \leq C \operatorname{diam} R_{j}$,
(ii) $d\left(A_{i}(q), A_{j}(q)\right) \leq \bar{C} \varepsilon \operatorname{diam} R_{j}$ for all $q \in 100 R_{j}$,
(iii) the Lipschitz constant of the map $\left(A_{i}-A_{j}\right): P_{0} \rightarrow P_{0}^{\perp}$ fulfils $^{\operatorname{Lip}_{A_{i}-A_{j}} \leq}$ $\bar{C} \varepsilon$,
(iv) $d\left(A(u), A_{j}(u)\right) \leq \bar{C} \varepsilon \operatorname{diam} R_{j}$ for all $u \in 2 R_{j} \cap U_{12}$.

Proof. Let $0<\alpha \leq \frac{1}{4}$. We set $\bar{\varepsilon}=\min \left\{\frac{\delta}{2}, \bar{\varepsilon}^{\prime}, \varepsilon_{0}\right\}$, where $\delta=\delta(N, n)$ is defined on page $1208, \bar{\varepsilon}^{\prime}$ is the upper bound for ε given by Lemma 6.11 and ε_{0} is the constant from Lemma 4.9, Let $\eta<2 \bar{\varepsilon}$ and choose ε such that $\eta \leq 2 \varepsilon<2 \bar{\varepsilon}$.
(i) Let $B_{i}=B\left(X_{i}, t_{i}\right)$ and $B_{j}=B\left(X_{j}, t_{j}\right)$. Lemma 6.13 and Lemma 6.14 imply $d\left(\pi\left(X_{i}\right), \pi\left(X_{j}\right)\right) \leq C \operatorname{diam} R_{j}$, and, using $\left(X_{l}, t_{l}\right) \in S$ we have $d\left(X_{l}\right) \leq 500 \operatorname{diam} R_{j}$ for $l \in\{i, j\}$. Now Lemma 6.11 implies the assertion.
(ii) At first, we show for $q \in 100 R_{j}$ that $d\left(A_{i}(q)+q, X_{i}\right) \leq C \operatorname{diam} R_{j}$. Since $\left(X_{i}, t_{i}\right) \in S \subset S_{\text {total }}, \varepsilon \leq \frac{\delta}{4}$, and using Lemma 4.10 ($\sigma=2 \varepsilon, x=X_{i}, t=t_{i}$, $\left.\lambda=\frac{1}{2} \delta, P=P_{i}\right)$ we get $B\left(X_{i}, 2 t_{i}\right) \cap P_{i} \neq \emptyset$. Thus there exists some $a \in P_{0}$ with $A_{i}(a)+a \in B\left(X_{i}, 2 t_{i}\right) \cap P_{i}$ and $a \in \pi\left(2 B_{i}\right)$. Since A_{i} is 2α-Lipschitz and $\alpha<\frac{1}{2}$, using Lemmas 6.13 and 6.14 we obtain by inserting $A_{i}(a)+a$ with triangle inequality

$$
\begin{equation*}
d\left(A_{i}(q)+q, X_{i}\right) \leq\left|A_{i}(q)-A_{i}(a)\right|+d(q, a)+\operatorname{diam} B_{i} \leq C \operatorname{diam} R_{j} . \tag{6.6}
\end{equation*}
$$

With Lemmas 6.13 and 6.14, there exists some constant $C>2$ so that $\frac{1}{C} t_{j} \leq t_{i} \leq$ $C t_{j}$. Moreover, we have $\left(X_{i}, t_{i}\right),\left(X_{j}, t_{j}\right) \in S \subset S_{\text {total }}$. With $k \geq \bar{k}:=2 C^{2} \geq 4 C$, Lemma $4.9\left(x=X_{j}, y=X_{i}, c=C, \xi=2, t_{x}=t_{j}, t_{y}=t_{i}, \lambda=\frac{\delta}{2}\right)$ implies that there exist some $\varepsilon_{0}>0$ and some constant $C_{3}=C_{3}\left(N, n, C_{0}\right)>1$ so that, for $\varepsilon<\bar{\varepsilon} \leq \varepsilon_{0}$ with the already shown (i), (6.6) and Lemma 6.14 we get

$$
\begin{equation*}
d\left(A_{i}(q)+q, P_{j}\right) \leq C_{3} \varepsilon\left(t_{j}+d\left(A_{i}(q)+q, X_{j}\right)\right) \leq C \varepsilon \operatorname{diam} R_{j} . \tag{6.7}
\end{equation*}
$$

Furthermore, there exists some $o \in P_{0}$ so that $A_{j}(o)+o=\pi_{P_{j}}\left(A_{i}(q)+q\right)$. Now we have $d\left(A_{j}(o)+o, A_{j}(q)+q\right) \leq 2 d(o, q) \leq 2 d\left(A_{i}(q)+q, A_{j}(o)+o\right)$ since A is 2α-Lipschitz, and hence with Lemma 6.13 and Lemma 6.14 we obtain for some $C=C\left(N, n, C_{0}\right)$:
$d\left(A_{i}(q)+q, A_{j}(q)+q\right) \leq d\left(A_{i}(q)+q, P_{j}\right)+d\left(A_{j}(o)+o, A_{j}(q)+q\right) \stackrel{\sqrt{6.7}}{\leq} C \varepsilon \operatorname{diam} R_{j}$.
(iii) Without loss of generality, we assume that $\operatorname{diam} R_{i} \leq \operatorname{diam} R_{j}$. We have $B\left(y, 2 \operatorname{diam} R_{i}\right) \cap P_{0} \subset 20 R_{i} \cap 20 R_{j}$ for some $y \in 10 R_{i} \cap 10 R_{j} \neq \emptyset$. We choose arbitrary $a, b \in B\left(y, 2 \operatorname{diam} R_{i}\right) \cap P_{0}$ with $d(a, b) \geq \operatorname{diam} R_{i}$. Now, with (ii), we get

$$
\left|\left(A_{i}-A_{j}\right)(a)-\left(A_{i}-A_{j}\right)(b)\right| \leq C \varepsilon \operatorname{diam} R_{i} \leq C\left(N, n, C_{0}\right) \varepsilon d(a, b)
$$

Since $A_{i}-A_{j}$ is an affine map, this implies $\operatorname{Lip}_{A_{i}-A_{j}} \leq C\left(N, n, C_{0}\right) \varepsilon$.
(iv) We get the estimate using Definition6.20, $\sum_{l \in I_{12}} \phi_{l}(u)=1$, Lemma6.13(iv) and (ii) of the current lemma.
Lemma 6.22. Let $0<\alpha \leq \frac{1}{4}$. There exist some $\bar{k} \geq 4$ and some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}, \alpha\right)$ $<\alpha$ so that if $k \geq \bar{k}$ and $\eta<2 \bar{\varepsilon}$ for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$, the function A is Lipschitz continuous on $2 R_{j} \cap U_{12}$ for all $j \in I_{12}$ with Lipschitz constant 3α.

Proof. Let $0<\alpha \leq \frac{1}{4}$. We set $\bar{\varepsilon}:=\min \left\{\bar{\varepsilon}^{\prime}, \frac{\alpha}{\bar{C}}\right\}$, where $\bar{\varepsilon}^{\prime}$ is the upper bound for ε given by Lemma 6.21 and $\tilde{C}\left(N, n, C_{0}\right)$ is some constant presented at the end of this proof. Let $\eta<2 \bar{\varepsilon}$ and choose $\varepsilon>0$ such that $\eta \leq 2 \varepsilon<2 \bar{\varepsilon}$. Let $a, b \in 2 R_{j} \cap U_{12}$. We obtain

$$
|A(a)-A(b)| \leq \sum_{i \in I_{12}} \phi_{i}(a)\left|A_{i}(a)-A_{i}(b)\right|+\sum_{i \in I_{12}}\left|\phi_{i}(a)-\phi_{i}(b)\right|\left|A_{i}(b)-A_{j}(b)\right| .
$$

If $\phi_{i}(a)-\phi_{i}(b) \neq 0$, we get $3 R_{i} \cap 2 R_{j} \neq \emptyset$ and so we can apply Lemma6.13(iii), (iv) and Lemma 6.21(ii). Since $\varepsilon<\bar{\varepsilon} \leq \frac{\alpha}{\bar{C}}$, we obtain with Lemma 6.18 and Lemma 6.19 that A is 3α Lipschitz.

Lemma 6.23. Under the conditions of the previous lemma for $a, b \in U_{12} \backslash \pi(\mathcal{Z})$ with $[a, b] \subset U_{12} \backslash \pi(\mathcal{Z})$, we have that $d(A(a), A(b)) \leq 3 \alpha d(a, b)$.

Proof. Lemma 6.13(ii) implies that for all $v \in[a, b]$, there exists some $j \in I_{12}$ with $v \in R_{j}$, and, with Lemma 6.13(i), we get $D(v)>0$. Assume that the set $\tilde{I}_{12}:=\left\{i \in I_{12} \mid R_{i} \cap[a, b] \neq \emptyset\right\}$ is infinite. The cubes R_{i} have disjoint interior, so there exists some sequence $\left(R_{i_{l}}\right)_{l \in \mathbb{N}}, i_{l} \in \tilde{I}_{12}$, with $\operatorname{diam} R_{i_{l}} \rightarrow 0$. Hence there exists some sequence $\left(v_{l}\right)_{l \in \mathbb{N}}$ with $v_{l} \in R_{i_{l}} \cap[a, b]$, and, with Lemma 6.13(i), we obtain $D\left(v_{l}\right) \leq 50 \operatorname{diam} R_{i_{l}} \rightarrow 0$. Let $\bar{v} \in[a, b]$ be an accumulation point of $\left(v_{l}\right)_{l \in \mathbb{N}}$. Since D is continuous (Lemma 6.8), we deduce that $D(\bar{v})=0$, which is according to Lemma 6.10 equivalent to $\bar{v} \in \pi(\mathcal{Z})$. This is in contradiction to $[a, b] \subset P_{0} \backslash \pi(\mathcal{Z})$, and so the set \tilde{I}_{12} has to be finite. With Lemma 6.22 and $[a, b] \subset \bigcup_{i \in \tilde{I}_{12}} R_{i}$, we get $d(A(a), A(b)) \leq 3 \alpha d(a, b)$.

Now we show that A is Lipschitz continuous on U_{12} with some large Lipschitz constant. After that, using the continuity of A, we are able to prove that A is Lipschitz continuous with Lipschitz constant 3α.
Lemma 6.24. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\bar{k} \geq 4$ and some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}, \alpha\right)$ $<\alpha$ so that if $k \geq \bar{k}$ and $\eta<2 \bar{\varepsilon}$ for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$, A is Lipschitz continuous on U_{12}.

Proof. Let $0<\alpha \leq \frac{1}{4}$, let $k \geq \bar{k} \geq 4$, where \bar{k} is the constant from Lemma 6.22, and let $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}, \alpha\right) \leq \frac{\delta}{4}$ be so small that we can apply Lemmas 6.11, 6.16, 6.21 and 6.23. Furthermore, let $\varepsilon>0$ such that $\eta \leq 2 \varepsilon<2 \bar{\varepsilon}$. Let $a, b \in U_{12}$ with $a \in \pi(\mathcal{Z})$ and $b \in 2 R_{j}$ for some $j \in I_{12}$. We estimate $d(A(a), A(b)) \leq$ $d\left(A(a)+a, X_{j}\right)+d\left(X_{j}, A(b)+b\right)$ where X_{j} is the centre of the ball $B_{j}=B\left(X_{j}, t_{j}\right)$ (see Lemma 6.14).

At first, we consider $d\left(A(a)+a, X_{j}\right)$. Since $A(a)+a \in \mathcal{Z}$, Lemma 6.10 implies $d(A(a)+a)=0$. Moreover, with Lemma 6.14 and $\left(X_{j}, t_{j}\right) \in S$, we deduce that $d\left(X_{j}\right) \leq 100 \operatorname{diam} R_{j}$ and

$$
d\left(\pi(A(a)+a), \pi\left(X_{j}\right)\right) \leq d(a, b)+d\left(b, \pi\left(X_{j}\right)\right) \leq d(a, b)+C \operatorname{diam} R_{j} .
$$

Using those estimates, Lemma 6.11implies $d\left(A(a)+a, X_{j}\right) \leq 2 d(a, b)+C \operatorname{diam} R_{j}$.
Now we consider $d\left(X_{j}, A(b)+b\right)$. We have $\left(X_{j}, t_{j}\right) \in S \subset S_{\text {total }}$, and hence, with Lemma 4.10 using $\varepsilon<\bar{\varepsilon} \leq \frac{\delta}{4}$, there exists some $y \in B\left(X_{j}, 2 t_{j}\right) \cap P_{j}$, where P_{j} is the associated plane to B_{j} (see Definition 6.17). Since $\varangle\left(P_{j}, P_{0}\right) \leq \alpha \leq \frac{1}{4}$, we deduce from Lemma 2.13, Lemma 6.14 and Lemma 6.21(iv) that

$$
\begin{aligned}
d\left(X_{j}, A(b)+b\right) & \leq d\left(X_{j}, y\right)+d\left(y, A_{j}(b)+b\right)+d\left(A_{j}(b)+b, A(b)+b\right) \\
& \leq C\left(\operatorname{diam} R_{j}+d(a, b)\right) .
\end{aligned}
$$

With Lemma 6.13, Lemma 6.10 and using that D is 1 -Lipschitz (Lemma 6.8) we obtain $\operatorname{diam} R_{j} \leq D(b)-D(a) \leq d(a, b)$ and hence $d(A(a), A(b)) \leq C d(a, b)$. Due to Lemma 6.16 and Lemma 6.23 it remains to handle the case were $a, b \notin \pi(\mathcal{Z})$ and $[a, b] \cap \pi(\mathcal{Z}) \neq \emptyset$. This follows immediately from the just proven case and the triangle inequality.
Lemma 6.25. Under the conditions of Lemma 6.24 for some $a \in \pi(\mathcal{Z}), i \in I_{12}$ and $b \in 2 R_{j}$, we get $d(A(a), A(b)) \leq 3 \alpha d(a, b)$.
Proof. We set $c:=\inf _{x \in[a, b] \cap \pi(\mathcal{Z})} d(x, b)$. Due to Lemma 6.10, there exists some $v \in[a, b] \cap \pi(\mathcal{Z})$ with $d(v, b)=c$. Furthermore, there exists some sequence $\left(v_{l}\right)_{l} \subset$ $[v, b]$ with $v_{l} \rightarrow v$ where $l \rightarrow \infty$. With Lemma 6.13, we deduce that ($[v, b] \backslash$ $\{v\}) \subset \bigcup_{j \in I_{12}} 2 R_{j}$. For every $l \in \mathbb{N}$ we obtain with Lemma $6.23 d(A(v), A(b)) \leq$ $d\left(A(v), A\left(v_{l}\right)\right)+3 \alpha d(v, b)$, and, since A is continuous (Lemma 6.24) we conclude with $l \rightarrow \infty$ that $d(A(v), A(b)) \leq 3 \alpha d(v, b)$. The assertion follows since we already know that A is 2α-Lipschitz on $\pi(\mathcal{Z})$.

Lemma 6.26. Under the conditions of Lemma 6.24 we have $d(A(a), A(b)) \leq$ $3 \alpha d(a, b)$ for $a, b \in \bigcup_{j \in I_{12}} 2 R_{j} \cap U_{12}$.
Proof. This is an immediate consequence of Lemma 6.22, Lemma 6.23 and Lemma 6.25

Lemma 6.27. Under the conditions of Lemma 6.24, the function A is Lipschitz continuous on U_{12} with Lipschitz constant 3α.

Proof. This follows directly from the previous lemma and Lemma 6.16.
The following estimate is for later use.
Lemma 6.28. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\bar{k} \geq 4$ and some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}\right)$ so that if $k \geq \bar{k}$ and $\eta<2 \bar{\varepsilon}$ for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$, there exists some constant $C=$ $C\left(N, n, C_{0}\right)$ so that for all $j \in I_{12}, a \in 2 R_{j}$ and all multi-indices κ with $|\kappa|=2$ we have $\partial^{\kappa} A(a) \left\lvert\, \leq \frac{C \varepsilon}{\operatorname{diam} R_{j}}\right.$.

Proof. Choose \bar{k} and $\bar{\varepsilon}$ as in Lemma 6.21. Let κ be some multi-index with $|\kappa|=2$. For $i \in I_{12}$, the function A_{i} is an affine map, and hence for some suitable $l_{1}, l_{2} \in$ $\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\partial^{\kappa} A=\partial^{\kappa}\left(\sum_{i \in I_{12}} \phi_{i} A_{i}\right)=\sum_{i \in I_{12}}\left(\partial^{\kappa} \phi_{i}\right) A_{i}+\sum_{i \in I_{12}}\left(\partial_{l_{1}} \phi_{i} \partial_{l_{2}} A_{i}+\partial_{l_{2}} \phi_{i} \partial_{l_{1}} A_{i}\right) . \tag{6.8}
\end{equation*}
$$

Let $j \in I_{12}$ and $a \in 2 R_{j}$. Lemman6.13 implies that there exist at most 180^{n} cells R_{i} so that $\partial^{\kappa} \phi_{i}(a) \neq 0$ or $\partial^{\omega} \phi_{i}(a) \neq 0$, where ω is a multi-index with $|\omega|=1$. So only finite sums occur in the following estimates. We have $\sum_{i \in I_{12}} \partial^{\omega} \phi_{i}=\partial^{\omega} \sum_{i \in I_{12}} \phi_{i}=$ $\partial^{\omega} 1=0$ so that we get

$$
\begin{aligned}
\left|\partial^{\kappa} A\right| \stackrel{[6.8 \mid}{\leq} & \sum_{i \in I_{12}}\left|\partial^{\kappa} \phi_{i}\right|\left|A_{i}-A_{j}\right|+\sum_{i \in I_{12}}\left|\partial_{l_{1}} \phi_{i}\right|\left|\partial_{l_{2}}\left(A_{i}-A_{j}\right)\right| \\
& \quad+\sum_{i \in I_{12}}\left|\partial_{l_{2}} \phi_{i}\right|\left|\partial_{l_{1}}\left(A_{i}-A_{j}\right)\right| .
\end{aligned}
$$

To estimate these sums, we only have to consider the case when a is in the support of ϕ_{i} for some $i \in I_{12}$. This implies $3 R_{i} \cap 2 R_{j} \neq \emptyset$. Now use Lemma 6.21(ii), (iii), Lemma 6.19, and Lemma 6.13(iii), (iv) to obtain the assertion.

7. γ-FUNCTIONS

In this section, we introduce the γ-function of some function $g: P_{0} \rightarrow P_{0}^{\perp}$. This function measures how well g can be approximated in some ball by some affine function. The main results of this section are Theorem 7.3 and Theorem 7.17 We will use these statements in section 8.4 to prove that $\mu\left(F_{3}\right)$ is small.
Definition 7.1. Let $U \subset P_{0}, q \in U$ and $t>0$ so that $B(q, t) \cap P_{0} \subset U$. Furthermore, let $\mathcal{A}=\mathcal{A}\left(P_{0}, P_{0}^{\perp}\right)$ be the set of all affine functions $a: P_{0} \rightarrow P_{0}^{\perp}$ and let $g: U \rightarrow P_{0}^{\perp}$ be some function. We define

$$
\gamma_{g}(q, t):=\inf _{a \in \mathcal{A}} \frac{1}{t^{n}} \int_{B(q, t) \cap P_{0}} \frac{d(g(u), a(u))}{t} \mathrm{~d} \mathcal{H}^{n}(u) .
$$

Lemma 7.2. Let $U \subset P_{0}, q \in U$ and $t>0$ so that $B(q, t) \cap P_{0} \subset U$. Furthermore, let $g: U \rightarrow P_{0}^{\perp}$ be a Lipschitz continuous function such that the Lipschitz constant fulfils $60 n\left(10^{n}+1\right)\left(8 n \frac{\omega_{n-1}}{\omega_{n}}\right)^{n+1} \leq \operatorname{Lip}_{g}^{-1}$, where ω_{n} denotes the n-dimensional volume of the n-dimensional unit ball. Then we have

$$
\gamma_{g}(q, t) \leq 3 \tilde{\gamma}_{g}(q, t):=3 \inf _{P \in \mathcal{P}(N, n)} \frac{1}{t^{n}} \int_{B(q, t) \cap P_{0}} \frac{d(u+g(u), P)}{t} \mathrm{~d} \mathcal{H}^{n}(u)
$$

where $\mathcal{P}(N, n)$ is the set of all n-dimensional affine planes in \mathbb{R}^{N}.
Proof. Let g be a Lipschitz continuous function with an appropriate Lipschitz constant. By using $a: u \rightarrow g(q) \in \mathcal{A}$ as a constant map and by using that g is 1-Lipschitz, we deduce that $\gamma_{g}(q, t) \leq \operatorname{Lip}_{g} \omega_{n}$. It follows, since for every $a \in \mathcal{A}$ the graph $G(a)$ of a is in $\mathcal{P}(N, n)$, that $\tilde{\gamma}_{g}(q, t) \leq \gamma_{g}(q, t) \leq \operatorname{Lip}_{g} \omega_{n}$. Let $0<\xi<\operatorname{Lip}_{g} \omega_{n}$ and choose some $P \in \mathcal{P}(N, n)$ so that

$$
\begin{equation*}
\frac{1}{t^{n}} \int_{B(q, t) \cap P_{0}} \frac{d(u+g(u), P)}{t} \mathrm{~d} \mathcal{H}^{n}(u) \leq \tilde{\gamma}_{g}(q, t)+\xi \leq 2 \operatorname{Lip}_{g} \omega_{n} \tag{7.1}
\end{equation*}
$$

We set $D_{1}:=\left\{v \in B(q, t) \cap P_{0} \mid d(v+g(v), P) \leq 4 \operatorname{Lip}_{g} t\right\}, D_{2}:=\left(B(q, t) \cap P_{0}\right) \backslash D_{1}$ and obtain using Chebyshev's inequality and (7.1)

$$
\begin{equation*}
\mathcal{H}^{n}\left(D_{1}\right) \geq \omega_{n} t^{n}-\mathcal{H}^{n}\left(D_{2}\right) \geq \frac{\omega_{n}}{2} t^{n} \tag{7.2}
\end{equation*}
$$

Assume that every simplex $\triangle\left(u_{0}, \ldots, u_{n}\right) \in D_{1}$ is not an (n, H)-simplex, where $H=\frac{\omega_{n}}{4 \omega_{n-1}} t$. With Lemma $2.10\left(m=n, D=D_{1}\right)$, there exists some plane $\hat{P} \in \mathcal{P}(N, n-1)$ such that $D_{1} \subset U_{H}(\hat{P}) \cap B(q, t) \cap P_{0}$. We get

$$
\mathcal{H}^{n}\left(D_{1}\right) \leq \mathcal{H}^{n}\left(U_{H}(\hat{P}) \cap B(q, t) \cap P_{0}\right) \leq 2 H \omega_{n-1} t^{n-1}=\frac{\omega_{n}}{2} t^{n} .
$$

This is in contradiction to (7.2), so there exists some (n, H)-simplex $\triangle\left(u_{0}, \ldots, u_{n}\right) \in$ D_{1}. We set $\hat{P}_{0}:=P_{0}+g\left(u_{0}\right), y_{i}:=u_{i}+g\left(u_{0}\right) \in \hat{P}_{0}$ for all $i \in\{0, \ldots, n\}$ and $S:=\Delta\left(y_{0}, \ldots, y_{n}\right) \subset \hat{P}_{0} \cap B\left(q+g\left(u_{0}\right), t\right)$. We recall that P is the plane satisfying (7.1). We obtain for all $i \in\{0, \ldots, n\}$,

$$
\begin{aligned}
d\left(y_{i}, P\right) & \leq d\left(u_{i}+g\left(u_{0}\right), u_{i}+g\left(u_{i}\right)\right)+d\left(u_{i}+g\left(u_{i}\right), P\right) \\
& \leq \operatorname{Lip}_{g} d\left(u_{0}, u_{i}\right)+4 \operatorname{Lip}_{g} t \leq 6 \operatorname{Lip}_{g} t .
\end{aligned}
$$

With Lemma 2.17, $C=4 \frac{\omega_{n-1}}{\omega_{n}}>1,7 \hat{C}=1, m=n, \sigma=6 \operatorname{Lip}_{g}, P_{1}=\hat{P}_{0}, P_{2}=P$ and $x=q+g\left(u_{0}\right)$, we get $\varangle\left(P_{0}, P\right)=\varangle\left(\hat{P}_{0}, P\right)<\frac{1}{2}$, and, with Corollary [2.14] there exists some affine map $\bar{a}: P_{0} \rightarrow P_{0}^{\perp}$ with graph $G(\bar{a})=P$. Now we obtain with Lemma 2.13 $\left(P_{1}=P, P_{2}=P_{0}\right), u, v \in P_{0}$ and $\varangle\left(P_{0}, P\right)<\frac{1}{2}$ that

$$
\begin{equation*}
d(v+\bar{a}(v), u+\bar{a}(u)) \leq 2 d\left(\pi_{P_{0}}(v+\bar{a}(v)), \pi_{P_{0}}(u+g(u))\right) . \tag{7.3}
\end{equation*}
$$

This yields for $u \in B(q, t) \cap P_{0}$ and some suitable $v \in P_{0}$ with $v+\bar{a}(v)=\pi_{P}(u+g(u))$:

$$
\begin{aligned}
d(g(u), \bar{a}(u)) & \leq d(u+g(u), P)+d\left(\pi_{P}(u+g(u)), u+\bar{a}(u)\right) \\
& \stackrel{(77.3)}{\leq} d(u+g(u), P)+2 d\left(\pi_{P_{0}}(v+\bar{a}(v)), \pi_{P_{0}}(u+g(u))\right) \\
& =3 d(u+g(u), P)
\end{aligned}
$$

Finally, using $\bar{a} \in \mathcal{A}$ and the last estimate, we get $\gamma_{g}(q, t) \stackrel{\sqrt{(7.1)}}{\leq} 3\left(\tilde{\gamma}_{g}(q, t)+\xi\right)$, and $0<\xi<\alpha \omega_{n}$ was arbitrarily chosen.
7.1. γ-functions and affine approximation of Lipschitz functions. In this and the following subsections, we use the notation $U_{l}:=B(0, l) \cap P_{0}$ for $l \in$ $\{6,8,10\}$.
Theorem 7.3. Let $1<p<\infty$ and let $g: P_{0} \rightarrow P_{0}^{\perp}$ be a Lipschitz continuous function with Lipschitz constant Lip_{g} and compact support. For all $\theta>0$, there exist some set $H_{\theta} \subset U_{6}$ and some constants $C=C(n, p)$ and $\hat{C}=\hat{C}(n, N)$ with

$$
\mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right) \leq \frac{C}{\theta^{p(n+1)} \operatorname{Lip}_{g}^{p}} \int_{U_{10}}\left(\int_{0}^{2} \gamma_{g}(x, t)^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(x)
$$

[^4]so that, for all $y \in P_{0}$, there exists some affine map $a_{y}: P_{0} \rightarrow P_{0}^{\perp}$ so that if $r \leq \theta$ and $B(y, r) \cap H_{\theta} \neq \emptyset$, we have
$$
\left\|g-a_{y}\right\|_{L^{\infty}\left(B(y, r) \cap P_{0}, P_{0}^{\perp}\right)} \leq \hat{C} r \theta \operatorname{Lip}_{g}
$$
where $\|\cdot\|_{L^{\infty}(E)}$ denotes the essential supremum on $E \subset P_{0}$ with respect to the \mathcal{H}^{n}-measure.

To prove this theorem, we need the following lemma. If ν is some map, we use the notation $\nu_{t}(x):=\frac{1}{t^{n}} \nu\left(\frac{x}{t}\right)$.
Lemma 7.4. There exists some radial function $\nu \in C_{0}^{\infty}\left(P_{0}, \mathbb{R}\right)$ with
(1) $\operatorname{supp}(\nu) \subset B(0,1) \cap P_{0}$ and $\widehat{\nu}(0)=0$,
(2) for all $x \in P_{0} \backslash\{0\}$ and $i \in\{1, \ldots, n\}$, we have

$$
\begin{equation*}
\int_{0}^{\infty}|\widehat{\nu}(t x)|^{2} \frac{\mathrm{~d} t}{t}=1 \quad \text { and } \quad 0<\int_{0}^{\infty}\left|\widehat{\left(\partial_{i} \nu\right)_{t}}(x)\right|^{2} \frac{\mathrm{~d} t}{t}<\infty \tag{7.4}
\end{equation*}
$$

(3) for all $i \in\{1, \ldots, n\}$, the function $\partial_{i} \nu$ has mean value zero and, for all $a \in \mathcal{A}\left(P_{0}, P_{0}^{\perp}\right)$ (affine functions), the function à has mean value zero as well.

Proof. Let $\nu_{1}: P_{0} \rightarrow \mathbb{R}$ be some nonharmonic $\left(\Delta \nu_{1} \neq 0\right)$, radial C^{∞} function with support in $B(0,1) \cap P_{0}$. We set $\nu_{2}:=\Delta \nu_{1} \in C^{\infty}\left(P_{0}\right) \cap C_{0}^{\infty}\left(B(0,1) \cap P_{0}\right)$ and $0<c_{1}:=\int_{0}^{\infty}\left|\widehat{\nu_{2}}(t e)\right|^{2} \frac{\mathrm{~d} t}{t}$, where e is some normed vector in P_{0}. Since ν_{1} is radial, ν_{2} is radial as well. We have $\left|\widehat{\nu_{2}}(t e)\right|=4 \pi^{2} t^{2}\left|\widehat{\nu_{1}}(t e)\right|$ and hence

$$
0<c_{1}=\int_{0}^{\infty}\left|\widehat{\nu_{2}}(t e)\right|^{2} \frac{\mathrm{~d} t}{t}=16 \pi^{4} \int_{0}^{\infty} t^{3}\left|\widehat{\nu_{1}}(t e)\right|^{2} \mathrm{~d} t<\infty
$$

because ν_{1} is in the Schwarz space and therefore $\widehat{\nu}_{1}$ as well [11, 2.2.15, 2.2.11 (11)]. The previous equality also implies $\widehat{\nu_{2}}(0)=0$. Now we set $\nu:=\sqrt{\frac{1}{c_{1}}} \nu_{2}$, which is a radial $C_{0}^{\infty}\left(P_{0}, \mathbb{R}\right)$ function that fulfils (1). We have for all $x \in P_{0} \backslash\{0\}$ (use substitution with $t=r \frac{1}{|x|}$ and the fact that $\widehat{\nu}$ is radial), $\int_{0}^{\infty}|\widehat{\nu}(t x)|^{2} \frac{\mathrm{~d} t}{t}=\int_{0}^{\infty}|\widehat{\nu}(r e)|^{2} \frac{\mathrm{~d} r}{r}=1$. In a similar way, we deduce for $i \in\{1, \ldots, n\}$ (using $\left|\left(\phi^{-1}(t x)\right)^{\kappa}\right| \leq\left|\phi^{-1}(t x)\right|=|t x|$ where κ is some multi-index with $|\kappa|=1$) that

$$
\begin{aligned}
\left.\int_{0}^{\infty} \widehat{\left(\partial_{i} \nu\right)_{t}}(x)\right|^{2} \frac{\mathrm{~d} t}{t} & \leq|2 \pi i|^{2} \int_{0}^{\infty}|t x|^{2}|\widehat{\nu}(t x)|^{2} \frac{\mathrm{~d} t}{t} \\
& =4 \pi^{2} \int_{0}^{\infty} r\left|\widehat{\nu}\left(r \frac{x}{|x|}\right)\right|^{2} \mathrm{~d} r<\infty
\end{aligned}
$$

where we use that the Fourier transform of a Schwartz function is a Schwartz function as well [11, 2.2.15]. The left-hand side of the previous inequality cannot be zero, because this would imply that $\partial_{i} \nu(x)=0$ for all $x \in P_{0}$, which is in contradiction to $0 \neq \nu \in C_{0}^{\infty}\left(P_{0}, \mathbb{R}\right)$. Hence ν fulfils (2). Using partial integration and $\Delta a=0$ for all $a \in \mathcal{A}\left(P_{0}, P_{0}^{\perp}\right)$ implies that $\partial_{i} \nu$ and $a \nu$ have mean value zero.

For some function $f: P_{0} \rightarrow P_{0}^{\perp}$ and $x \in P_{0}$, we define the convolution of ν_{t} and f by

$$
\left(\nu_{t} * f\right)(x):=\int_{P_{0}} \nu_{t}(x-y) f(y) \mathrm{d} \mathcal{H}^{n}(y)
$$

Lemma 7.5 (Calderón's identity). Let ν be the function given by Lemma 7.4 and let $u \in P_{0} \backslash\{0\}$ and $f \in L^{2}\left(P_{0}, P_{0}^{\perp}\right)$ or let $f \in \mathscr{S}^{\prime}\left(P_{0}\right)$ be a tempered distribution and $u \in \mathscr{S}\left(P_{0}\right)$ (Schwartz space) with $u(0)=0$. Then we have

$$
\begin{equation*}
f(u)=\int_{0}^{\infty}\left(\nu_{t} * \nu_{t} * f\right)(u) \frac{\mathrm{d} t}{t} . \tag{7.5}
\end{equation*}
$$

Léger calls this identity "Calderón's formula" 19, p. 862, §5. Calderón's formula and the size of F_{3}]. Grafakos presents a similar version called "Calderón reproducing formula" [11, p. 371, Exercise 5.2.2].

Proof. At first, let $f \in L^{2}\left(P_{0}, P_{0}^{\perp}\right)$ and $u \in P_{0} \backslash\{0\}$. We have $\widehat{\left(\nu_{t}\right)}(u)=\widehat{\nu}(t u)$ and, with Fubini's theorem, we obtain

$$
\left(\int_{0}^{\infty}\left(\nu_{t} * \nu_{t} * f\right)(u) \frac{\mathrm{d} t}{t}\right)^{-}=\int_{0}^{\infty} \widehat{\left(\nu_{t}\right)}(u) \widehat{\left(\nu_{t}\right)}(u) \widehat{f}(u) \frac{\mathrm{d} t}{t} \stackrel{\boxed{77.4})}{=} \widehat{f}(u) .
$$

The Fourier inversion holds on $L^{2}\left(P_{0}, P_{0}^{\perp}\right)$ [11, 2.2.4. The Fourier transform on $L^{1}+L^{2}$], which gives the statement. We use the same idea to get this result for tempered distributions.

Proof of Theorem 7.3. Let $g \in C_{0}^{0,1}\left(P_{0}, P_{0}^{\perp}\right)$ and let ν be the function given by Lemma [7.4] We define

$$
\begin{aligned}
& g_{1}(u):=\int_{2}^{\infty}\left(\nu_{t} * \nu_{t} * g\right)(u) \frac{\mathrm{d} t}{t}+\int_{0}^{2}\left(\nu_{t} *\left(\chi_{P_{0} \backslash U_{10}} \cdot\left(\nu_{t} * g\right)\right)\right)(u) \frac{\mathrm{d} t}{t} \\
& g_{2}(u):=\int_{0}^{2}\left(\nu_{t} *\left(\chi_{U_{10}} \cdot\left(\nu_{t} * g\right)\right)\right)(u) \frac{\mathrm{d} t}{t}
\end{aligned}
$$

and the previous lemma implies that $g=g_{1}+g_{2}$. We recall the notation $U_{l}=$ $B(0, l) \cap P_{0}$ for $l \in\{6,8,10\}$ and continue the proof of Theorem 7.3 with several lemmas.
Lemma 7.6. $g_{1} \in C^{\infty}\left(U_{8}\right)$ and there exists some constant $C=C(\nu)$ so that for all multi-indices κ with $|\kappa| \leq 2$ we have $\left\|\partial^{\kappa} g_{1}\right\|_{L^{\infty}\left(U_{8}, P_{0}^{\perp}\right)} \leq C \operatorname{Lip}_{g}$.
g_{2} is Lipschitz continuous on U_{8} with Lipschitz constant $C(\nu) \operatorname{Lip}_{g}$.
Proof. For $x \in P_{0}$ we set

$$
g_{11}(x):=\int_{2}^{\infty}\left(\nu_{t} * \nu_{t} * g\right)(x) \frac{\mathrm{d} t}{t}, \quad g_{12}(x):=\int_{0}^{2}\left(\nu_{t} *\left(\chi_{P_{0} \backslash U_{10}} \cdot\left(\nu_{t} * g\right)\right)\right)(x) \frac{\mathrm{d} t}{t}
$$

so that $g_{1}=g_{11}+g_{12}$ and we set $\varphi(x):=\int_{2}^{\infty}\left(\nu_{t} * \nu_{t}\right)(x) \frac{\mathrm{d} t}{t}$. At first, we show some intermediate results:
I. $g_{12}(x)=0$ for all $x \in U_{8}$, due to the support of ν_{t} and $\chi_{P_{0} \backslash U_{10}} \cdot\left(\nu_{t} * g\right)$.
II. For every multi-index κ, there exists some constant $C=C(n, \nu, \kappa)$ such that $\left|\partial^{\kappa} \varphi\right| \leq C$, where $\partial^{\kappa} \varphi(y):=\int_{2}^{\infty} \partial^{\kappa}\left(\nu_{t} * \nu_{t}\right)(y) \frac{\mathrm{d} t}{t}$. This is given by $\partial^{\kappa}\left(\nu_{t}(y)\right)=$ $\frac{1}{t^{|\kappa|}}\left(\partial^{\kappa} \nu\right)_{t}(y)$, and $\left|\partial^{\kappa}\left(\nu_{t} * \nu_{t}\right)(y)\right| \leq\|\nu\|_{L^{\infty}\left(P_{0}, \mathbb{R}\right)}\left\|\partial^{\kappa} \nu\right\|_{L^{\infty}\left(P_{0}, \mathbb{R}\right)} \frac{\omega_{n}}{t^{n+|k|}}$.
III. For every multi-index κ, the function $\partial^{\kappa} \varphi$ has bounded support in $B(0,4) \cap$ P_{0}.

Proof of I-III. Let $0<t \leq 2$ and $x \in P_{0} \backslash B(0,4)$. We have $\left(\nu_{t} * \nu_{t}\right)(x)=0$, which implies that $\int_{0}^{2}\left(\nu_{t} * \nu_{t}\right)(x) \frac{\mathrm{d} t}{t}=0$. Now we consider φ as a tempered distribution.

The convolution with δ_{0}, the Dirac mass at the origin, is an identity; hence we get with Calderón's identity (Lemma 7.5) for all $\eta \in \mathscr{S}\left(P_{0}\right)$ with $\eta(0)=0$:

$$
\begin{aligned}
\varphi(\eta) & =\varphi(\eta)-\delta_{0}(\eta)=\left(\int_{2}^{\infty}\left(\nu_{t} * \nu_{t}\right) \frac{\mathrm{d} t}{t}\right)(\eta)-\left(\int_{0}^{\infty}\left(\nu_{t} * \nu_{t}\right) \frac{\mathrm{d} t}{t}\right)(\eta) \\
& =-\left(\int_{0}^{2}\left(\nu_{t} * \nu_{t}\right) \frac{\mathrm{d} t}{t}\right)(\eta)
\end{aligned}
$$

Since this holds for arbitrary $\eta \in \mathscr{S}\left(P_{0}\right)$ with $\operatorname{supp}(\eta) \subset P_{0} \backslash B(0,4)$, we conclude that for such η we have

$$
\int_{P_{0}} \varphi(x) \eta(x) \mathrm{d} \mathcal{H}^{n}(x)=-\int_{P_{0}} \int_{0}^{2}\left(\nu_{t} * \nu_{t}\right)(x) \frac{\mathrm{d} t}{t} \eta(x) \mathrm{d} \mathcal{H}^{n}(x)=0
$$

and hence $\operatorname{supp}(\varphi) \subset B(0,4) \cap P_{0}$. For the same kind of η, we get, using Fubini's theorem and partial integration,

$$
\int_{P_{0}} \partial^{\kappa} \varphi(x) \eta(x) \mathrm{d} \mathcal{H}^{n}(x)=(-1)^{|\kappa|} \int_{2}^{\infty} \int_{P_{0}}\left(\nu_{t} * \nu_{t}\right)(x) \partial^{\kappa} \eta(x) \mathrm{d} \mathcal{H}^{n}(x) \frac{\mathrm{d} t}{t}=0
$$

since $\partial^{\kappa} \eta \in \mathscr{S}\left(P_{0}\right)$ with $\operatorname{supp}\left(\partial^{\kappa} \eta\right) \subset P_{0} \backslash B(0,4)$.

$$
\text { IV. } \varphi \in C_{0}^{\infty}\left(P_{0}\right)
$$

Proof of IV. With II and III we conclude for every multi-index κ that $\partial^{\kappa} \varphi \in$ $L^{1}\left(P_{0}, \mathbb{R}\right)$. With Fubini's theorem and partial integration, we see that $\partial^{\kappa} \varphi$ is the weak derivative of φ; hence we have $\varphi \in W^{l, 1}\left(P_{0}\right)$ for every $l \in \mathbb{N}$. The Sobolev imbedding theorem [1, Thm. 4.12] gives us $\varphi \in C^{\infty}\left(P_{0}\right)$ and, with III, we obtain $\varphi \in C_{0}^{\infty}\left(P_{0}\right)$.

Now we have for all $x \in U_{8}$ with Fubini's theorem [7, 1.4, Thm. 1] $g_{11}(x)=$ $(\varphi * g)(x)$. We know that $\varphi \in C_{0}^{\infty}\left(P_{0}\right)$ and $g \in C_{0}^{0,1}\left(P_{0}, P_{0}^{\perp}\right)$. Hence we have $g_{11} \in C_{0}^{\infty}\left(P_{0}\right), g \in W^{1, \infty}\left(P_{0}\right)$ and for $i, j \in\{1, \ldots, n\}$ we have $\partial_{i} g_{11}=\varphi * \partial_{i} g$ and $\partial_{i} \partial_{j} g_{11}=\partial_{i} \varphi * \partial_{j} g$. With the Minkowski inequality [11, Thm. 1.2.10] and IV, we obtain for $i, j \in\{1, \ldots, n\}$:

$$
\begin{gathered}
\left\|\partial_{i} g_{1}\right\|_{L^{\infty}\left(U_{8}, \mathbb{R}\right)} \stackrel{I}{=}\left\|\partial_{i} g_{11}\right\|_{L^{\infty}\left(U_{8}, \mathbb{R}\right)} \leq\left\|\partial_{i} g\right\|_{L^{\infty}\left(U_{8}, \mathbb{R}\right)}\|\varphi\|_{L^{1}\left(P_{0}\right)} \leq C(\nu) \operatorname{Lip}_{g}, \\
\left\|\partial_{i} \partial_{j} g_{1}\right\|_{L^{\infty}\left(U_{8}, \mathbb{R}\right)} \stackrel{I}{=}\left\|\partial_{i} \partial_{j} g_{11}\right\|_{L^{\infty}\left(U_{8}, \mathbb{R}\right)} \leq\left\|\partial_{i} g\right\|_{L^{\infty}\left(U_{8}, \mathbb{R}\right)}\left\|\partial_{j} \varphi\right\|_{L^{1}\left(P_{0}\right)} \leq C(\nu) \operatorname{Lip}_{g} .
\end{gathered}
$$

Now it is easy to see that g_{2} is $C \operatorname{Lip}_{g}$-Lipschitz on U_{8} because we have $g_{2}=g-g_{1}$ and g as well as g_{1} are $C \operatorname{Lip}_{g}$-Lipschitz on U_{8}.

Remark 7.7. Under the assumption that

$$
\begin{equation*}
\int_{U_{10}}\left(\int_{0}^{2} \gamma_{g}(x, t)^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(x)<\infty \tag{7.6}
\end{equation*}
$$

the next lemmas will prove that $g_{2} \in W_{0}^{1, p}\left(P_{0}, P_{0}^{\perp}\right)$. We show for this purpose in Lemma 7.10 that $\partial_{i} g_{2}(x):=\int_{0}^{2} \partial_{i}\left(\nu_{t} *\left(\chi_{U_{10}}\left(\nu_{t} * g\right)\right)\right)(x) \frac{\mathrm{d} t}{t}$ is in $L^{p}\left(P_{0}, P_{0}^{\perp}\right)$. Using Fubini's theorem [7, 1.4, Thm. 1] and partial integration it turns out that $\partial_{i} g_{2}$ fulfils the condition of a weak derivative.

Lemma 7.8. We have $\operatorname{supp}\left(g_{2}\right) \subset B(0,12) \cap P_{0}$ and $\operatorname{supp}\left(\partial_{i} g_{2}\right) \subset B(0,12) \cap P_{0}$ for all $1 \leq i \leq n$.

Proof. If $0<t<2$ and $x \in P_{0}$, we have $\operatorname{supp}\left(\nu_{t}(x-\cdot)\right) \subset B(x, 2) \cap P_{0}$ and $\operatorname{supp}\left(\chi_{U_{10}}\left(\nu_{t} * g\right)\right) \subset B(0,10) \cap P_{0}$. This implies $\operatorname{supp}\left(\nu_{t} *\left(\chi_{U_{10}}\left(\nu_{t} * g\right)\right)\right) \subset B(0,12) \cap$ P_{0}, and hence we obtain $\operatorname{supp}\left(g_{2}\right) \subset B(0,12)$ and $\operatorname{supp}\left(\partial_{i} g_{2}\right) \subset B(0,12) \cap P_{0}$.
Lemma 7.9. Let $x \in U_{10}$ and $0<t<2$. We have $\left|\frac{\left(\nu_{t} * g\right)(x)}{t}\right| \leq\|\nu\|_{L^{\infty}\left(P_{0}, \mathbb{R}\right)} \gamma_{g}(x, t)$.
Proof. If $a: P_{0} \rightarrow P_{0}^{\perp}$ is an affine function, we get using Lemma 7.4(3) that $\left(\nu_{t} * a\right)(x)=0$ and hence, with Lemma 7.4(1),

$$
\begin{aligned}
\left|\frac{\left(\nu_{t} * g\right)(x)}{t}\right| & =\left|\frac{\left(\nu_{t} *(g-a)\right)(x)}{t}\right| \\
& \leq\|\nu\|_{L^{\infty}\left(P_{0}, \mathbb{R}\right)} \frac{1}{t^{n}} \int_{P_{0} \cap B(x, t)}\left|\frac{g(y)-a(y)}{t}\right| \mathrm{d} \mathcal{H}^{n}(y) .
\end{aligned}
$$

Since a was an arbitrary affine function, this implies the assertion.
We have $p \in(1, \infty)$ and, for the proof of Theorem 7.3, we can assume (7.6).
Lemma 7.10. We have $g_{2} \in W_{0}^{1, p}\left(P_{0}, P_{0}^{\perp}\right)$ and there exists some constant $C=$ $C(n, p, \nu)$ so that for all $i \in\{1, \ldots, n\}$,

$$
\left\|\partial_{i} g_{2}\right\|_{L^{p}\left(P_{0}, P_{0}^{\perp}\right)}^{p} \leq C \int_{U_{10}}\left(\int_{0}^{2} \gamma_{g}(x, t)^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(x)
$$

where $\partial_{i} g_{2}(x)=\int_{0}^{2} \partial_{i}\left(\nu_{t} *\left(\chi_{U_{10}}\left(\nu_{t} * g\right)\right)\right)(x) \frac{\mathrm{d} t}{t}$.
Proof. We recall that $\partial_{i} g_{2}$ is the weak derivative of g_{2} (cf. Remark 7.7). Due to [1. Cor. 6.31, An equivalent norm for $W_{0}^{m, p}(\Omega)$] and Lemma [7.8, we only have to consider $\left\|\partial_{i} g_{2}\right\|_{L^{p}\left(P_{0}\right)}$ for all $i \in\{0, \ldots, n\}$ to get $g_{2} \in W_{0}^{1, p}\left(P_{0}, P_{0}^{\perp}\right)$. For $x \in P_{0}$, we have $\partial_{i} \nu_{t}(x)=\partial_{i} t^{-n} \nu\left(\frac{x}{t}\right)=t^{-1}\left(\partial_{i} \nu\right)_{t}(x)$ and hence

$$
\partial_{i} g_{2}(x)=\int_{0}^{2} \partial_{i}\left(\nu_{t} *\left(\chi_{U_{10}}\left(\nu_{t} * g\right)\right)\right)(x) \frac{\mathrm{d} t}{t}=\int_{0}^{2}\left(\left(\partial_{i} \nu\right)_{t} *\left(\chi_{U_{10}}\left(\frac{\nu_{t} * g}{t}\right)\right)\right)(x) \frac{\mathrm{d} t}{t} .
$$

Using duality (cf. [1, The normed dual of $\left.L^{p}(\Omega)\right]$) it suffices to consider the following. Let $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $f \in L^{p^{\prime}}\left(P_{0}\right)$ with $\|f\|_{L^{p^{\prime}}\left(P_{0}\right)}=1$. We get with Fubini's theorem [7, 1.4, Thm. 1] and Hölder's inequality

$$
\begin{aligned}
& \left|\int_{P_{0}} f(x) \partial_{i} g_{2}(x) \mathrm{d} \mathcal{H}^{n}(x)\right| \\
& \quad \leq \int_{P_{0}} \int_{0}^{2}\left|\left(\left(\partial_{i} \nu\right)_{t} * f\right)(y)\right|\left|\left(\chi_{U_{10}}\left(\frac{\nu_{t} * g}{t}\right)\right)(y)\right| \frac{\mathrm{d} t}{t} \mathrm{~d} \mathcal{H}^{n}(y) \\
& \quad \leq \int_{P_{0}}\left(\int_{0}^{2}\left|\left(\left(\partial_{i} \nu\right)_{t} * f\right)(y)\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{2}}\left(\int_{0}^{2}\left|\left(\chi_{U_{10}}\left(\frac{\nu_{t} * g}{t}\right)\right)(y)\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{2}} \mathrm{~d} \mathcal{H}^{n}(y) \\
& \quad \leq\left\|\left(\int_{0}^{\infty}\left|\left(\partial_{i} \nu\right)_{t} * f\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{2}}\right\|_{L^{p^{\prime}}\left(P_{0}\right)} \\
& \quad \times\left(\int_{P_{0}}\left(\int_{0}^{2}\left|\left(\chi_{U_{10}}\left(\frac{\nu_{t} * g}{t}\right)\right)(y)\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(y)\right)^{\frac{1}{p}}
\end{aligned}
$$

There exists some constant $C=C(n, \nu)$ with $\left|\partial_{i} \nu(x)\right|+\left|\nabla \partial_{i} \nu(x)\right| \leq C(1+|x|)^{-n-1}$ because ν is a Schwartz function. Together with Lemma 7.4 all the requirements of

Lemma A. 8 with $\phi=\partial_{i} \nu$ and $q=p^{\prime}$ are fulfilled, which implies, since $\|f\|_{L^{p}\left(P_{0}\right)}=1$, that the first factor of the RHS of the last estimate is some constant $C(n, p, \nu)$ independent of f. All in all, we obtain

$$
\left\|\partial_{i} g_{2}\right\|_{L^{p}\left(P_{0}\right)} \leq C(n, p, \nu)\left(\int_{P_{0}}\left(\int_{0}^{2}\left|\left(\chi_{U_{10}}\left(\frac{\nu_{t} * g}{t}\right)\right)(y)\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(y)\right)^{\frac{1}{p}}
$$

and with Lemma 7.9 the assertion holds.
Definition 7.11. Let B be a ball with centre in P_{0} and let $f: P_{0} \rightarrow P_{0}^{\perp}$ be some map. We define the average of f on B and some maximal function for $x \in P_{0}$:

$$
\begin{gathered}
\underset{B}{\operatorname{Avg}(f)}:=\frac{1}{(\operatorname{diam} B)^{n}} \int_{B \cap P_{0}} f \mathrm{~d} \mathcal{H}^{n}, \\
N(f)(x):=\sup _{\substack{t \in(0, \infty), y \in P_{0} \\
\text { with } d(y, x) \leq t}}\left\{\frac{1}{2 t} \operatorname{Avg}(|f-\underset{B(y, t)}{\operatorname{Avg}(f)} \underset{B(y, t)}{\operatorname{Avg}}(f)|)\right\} .
\end{gathered}
$$

Moreover we define the oscillation of f on B by

$$
\operatorname{osc}_{B}(f):=\sup _{x \in B \cap P_{0}}|f(x)-\operatorname{Avg}(f)| .
$$

Lemma 7.12. We have $\left\|N\left(g_{2}\right)\right\|_{L^{p}\left(P_{0}, \mathbb{R}\right)} \leq C\left\|D g_{2}\right\|_{L^{p}\left(P_{0}, P_{0}^{\perp}\right)}$, where $C=C(n, p)$.
Proof. We recall that $g_{2} \in W_{0}^{1, p}\left(P_{0}, P_{0}^{\perp}\right)$ (cf. Lemma 7.9) and conclude with Poincaré's inequality that $\operatorname{Avg}_{B}\left(\left|g_{2}-\operatorname{Avg}_{B}\left(g_{2}\right)\right|\right)=C(n)$ diam $B \quad \operatorname{Avg}_{B}\left(\left|D g_{2}\right|\right)$ (if f is a matrix, we denote by $|f|$ a matrix norm), and hence we get for $x \in P_{0}$,

$$
N\left(g_{2}\right)(x) \leq C(n) \sup _{\substack{t \in(,), \infty), y \in P_{0} \\ \text { with } d(y, x) \leq t}} \operatorname{Avg}(y, t)<\left(\left|D g_{2}\right|\right)=C(n) M\left(D g_{2}\right)(x),
$$

where $M\left(D g_{2}\right)$ is the uncentred Hardy-Littlewood maximal function. Now, using [11, Thm. 2.1.6], we get the assertion.

Definition 7.13. Let $\theta>0$. We define $H_{\theta}:=\left\{x \in U_{6} \mid N\left(g_{2}\right)(x) \leq \theta^{n+1} \operatorname{Lip}_{g}\right\}$.
Lemma 7.14. Let $\theta>0$. There exists some constant $C=C(n, p, \nu)$ so that

$$
\mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right) \leq \frac{C}{\theta^{p(n+1)} \operatorname{Lip}_{g}^{p}} \int_{U_{10}}\left(\int_{0}^{2} \gamma_{g}(x, t)^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(x) .
$$

Proof. With Lemma 7.12, Lemma 7.10 and

$$
\left\|D g_{2}\right\|_{L^{p}\left(P_{0}, P_{0}^{\perp}\right)}^{p} \leq n^{p-1} \sum_{i=1}^{n}\left\|\partial_{i} g_{2}\right\|_{L^{p}\left(P_{0}, P_{0}^{\perp}\right)}^{p},
$$

there exists some constant $C=C(n, p, \nu)$ with

$$
\begin{aligned}
\left\|N\left(g_{2}\right)\right\|_{L^{p}\left(P_{0}, P_{0}^{\perp}\right)}^{p} & \leq C \operatorname{sum}_{i=1}^{n}\left\|\partial_{i} g_{2}\right\|_{L^{p}\left(P_{0}, P_{0}^{\perp}\right)}^{p} \\
& \leq C \int_{U_{10}}\left(\int_{0}^{2} \gamma_{g}(x, t)^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{p}{2}} \mathrm{~d} \mathcal{H}^{n}(x)
\end{aligned}
$$

Hence, using Chebyshev's inequality, we get the assertion.

Lemma 7.15. Let B be a ball with centre in P_{0}. If $\left(B \cap P_{0}\right) \subset U_{8}$, then there exists some constant $C=C(N, n, \nu)$ with

$$
\operatorname{osc}_{B}\left(g_{2}\right) \leq C \operatorname{diam} B\left(\frac { 1 } { \operatorname { d i a m } B } \operatorname { A v g } _ { B } \left(\left\lvert\, g_{2}-\underset{B}{\left.\left.\operatorname{Avg}\left(g_{2}\right) \mid\right)\right)^{\frac{1}{n+1}} \operatorname{Lip}_{g}^{\frac{n}{n+1}}}\right.\right.\right.
$$

Proof. Let $\left(B \cap P_{0}\right) \subset U_{8}$ and $\lambda:=\operatorname{osc}_{B}\left(g_{2}\right)$. The function g_{2} is Lipschitz continuous on U_{8} with $\operatorname{Lip}_{g_{2}}=C(\nu) \operatorname{Lip}_{g}$ (see Lemma (7.6) and $B \cap P_{0}$ is closed. Hence there exists some $y \in B \cap P_{0}$ with $\lambda=\left|g_{2}(y)-\operatorname{Avg}_{B} g_{2}\right|$, and we get for $x \in B$ with $d(x, y) \leq \frac{\lambda}{2 \operatorname{Lip}_{g_{2}}}$ using triangle inequality $\left|g_{2}(x)-\underset{B}{\operatorname{Avg}}\left(g_{2}\right)\right| \geq \frac{\lambda}{2}$. Furthermore, using that g_{2} is continuous on U_{8} for all $l \in\{1, \ldots, N\}$, there exists some $z_{l} \in B \cap P_{0}$, with $g_{2}^{l}\left(z_{l}\right)=\underset{B}{\operatorname{Avg}}\left(g_{2}^{l}\right)$ (where $g_{2}^{l}\left(z_{l}\right) \in \mathbb{R}$ means the l-th component of $g_{2}\left(z_{l}\right) \in$ \mathbb{R}^{N}). With $g_{2}^{l}(y)-\underset{B}{\operatorname{Avg}\left(g_{2}^{l}\right)} \leq \operatorname{Lip}_{g_{2}} d\left(y, z_{l}\right)$ for all $l \in\{1, \ldots, N\}$ we get $\lambda^{2} \leq$ $N\left(\operatorname{Lip}_{g_{2}} \operatorname{diam} B\right)^{2}$, which implies $\frac{\lambda}{\sqrt{N} \operatorname{Lip}_{g_{2}}} \leq \operatorname{diam} B$. Since $y \in B$, there exists some ball $\hat{B} \subset B \cap B\left(y, \frac{\lambda}{2 \operatorname{Lip}_{g_{2}}}\right)$ with diam $\hat{B} \geq \frac{\lambda}{2 \sqrt{N} \operatorname{Lip}_{g_{2}}}$, and hence with $\mid g_{2}(x)-$ $\operatorname{Avg}_{B}\left(g_{2}\right) \left\lvert\, \geq \frac{\lambda}{2}\right.$ we obtain $(\operatorname{diam} B)^{n} \underset{B}{\operatorname{Avg}}\left|g_{2}(x)-\underset{B}{\operatorname{Avg}}\left(g_{2}\right)\right| \geq \omega_{n}\left(\frac{\lambda}{4 \sqrt{N} \operatorname{Lip}_{g_{2}}}\right)^{n} \frac{\lambda}{2}$. Using $\operatorname{Lip}_{g_{2}}=C(\nu) \operatorname{Lip}_{g}$, this implies the assertion.

Lemma 7.16. Let $\theta>0$ and $y \in P_{0}$. There exists some constant $C=C(N, n, \nu)$ and some affine map $a_{y}: P_{0} \rightarrow P_{0}^{\perp}$ so that if $r \leq \theta$ and $B(y, r) \cap H_{\theta} \neq \emptyset$, we have $\left\|g-a_{y}\right\|_{L^{\infty}\left(B(y, r) \cap P_{0}, P_{0}^{\perp}\right)} \leq C r \theta \operatorname{Lip}_{g}$.

Proof. Let $y \in P_{0}$. If $\theta \geq 1$, we can choose $a_{y}\left(y^{\prime}\right):=g(y)$ as a constant and get the desired result directly from the Lipschitz condition. Now let $0<\theta<1$ and $y^{\prime} \in B(y, r) \cap P_{0}$. We set $a_{y}\left(y^{\prime}\right):=g(y)+D g_{1}(y) \phi^{-1}\left(y^{\prime}-y\right)$. We have $d\left(y^{\prime}, U_{6}\right) \leq d\left(y^{\prime}, H_{\theta}\right) \leq d\left(y^{\prime}, y\right)+d\left(y, H_{\theta}\right) \leq 2$. So we get $y^{\prime}, y \in U_{8}$. Using Taylor's theorem and Lemma 7.6 we obtain

$$
\begin{aligned}
\left|g_{1}\left(y^{\prime}\right)-\left[g_{1}(y)+D g_{1}(y) \phi^{-1}\left(y^{\prime}-y\right)\right]\right| & \leq \sum_{|\kappa|=2}\left\|\partial^{\kappa} g_{1}\right\|_{L^{\infty}\left(U_{8}\right)}\left|y^{\prime}-y\right|^{2} \\
& \leq C(n, \nu) \operatorname{Lip}_{g} r^{2} .
\end{aligned}
$$

Since $r \leq \theta<1, B(y, r) \cap H_{\theta} \neq \emptyset$ and $H_{\theta} \subset U_{6}$, we obtain $B(y, r) \cap P_{0} \subset U_{8}$, and we can apply Lemma 7.15. Together with the definition of H_{θ} this leads to $\operatorname{osc}_{B(y, r)} g_{2}+\operatorname{Lip}_{g} r^{2} \leq C(N, n, \nu) r \theta \operatorname{Lip}_{g}$. Now by using $g=g_{1}+g_{2}$ and $\mid g_{2}\left(y^{\prime}\right)-$ $g_{2}(y) \mid \leq 2 \operatorname{osc}_{B(y, r)} g_{2}$ we get for every $y^{\prime} \in B(y, r) \cap P_{0}$ that

$$
\left|g\left(y^{\prime}\right)-\left[g(y)+D g_{1}(y) \phi^{-1}\left(y^{\prime}-y\right)\right]\right| \leq C(N, n, \nu) r \theta \operatorname{Lip}_{g}
$$

Lemma 7.14 and Lemma 7.16 complete the proof of Theorem 7.3
7.2. The γ-function of A and integral Menger curvature. In this section, we prove the following Theorem 7.17. It states that we get a similar control on the γ-functions applied to our function A as we get in Corollary 4.8 on the β-numbers.

For $\alpha, \varepsilon>0, \eta \leq 2 \varepsilon$ and $k \geq 4$, we defined A on U_{12} (cf. Definition 6.20). Since in this section we only apply the γ-functions to A, we set $\gamma(q, t):=\gamma_{A}(q, t)$ and we recall the notation $U_{10}:=B(0,10) \cap P_{0}$.

Theorem 7.17. There exist some $\tilde{k} \geq 4$ and some $\tilde{\alpha}=\tilde{\alpha}(n)>0$ so that, for all α with $0<\alpha \leq \tilde{\alpha}$, there exists some $\tilde{\varepsilon}=\tilde{\varepsilon}\left(N, n, C_{0}, \alpha\right)$ so that, if $k \geq \tilde{k}$ and $\eta \leq \tilde{\varepsilon}^{p}$, we have for all $\varepsilon \in\left[\eta^{\frac{1}{p}}, \tilde{\varepsilon}\right]$ that there exists some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}, k\right)$ so that

$$
\int_{U_{10}} \int_{0}^{2} \gamma(q, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) \leq C \varepsilon^{p}+C \mathcal{M}_{\mathcal{K}^{p}}(\mu) \leq C \varepsilon^{p}
$$

Proof. Let $\bar{k} \geq 4$ be the maximum of all thresholds for k given in section 6 and let $\tilde{\alpha}=\tilde{\alpha}(n) \leq \frac{1}{4}$ be the upper bound for the Lipschitz constant given by Lemma 7.2, We set $\tilde{k}:=\max \{\bar{k}, \tilde{C}+1, \hat{C}\}$ where the constants \tilde{C} and \hat{C} are fixed constants which will be set during this section $\sqrt[8]{ }$ Let $0 \leq \alpha \leq \tilde{\alpha}$. Let $\bar{\varepsilon}=\varepsilon\left(N, n, C_{0}, \alpha\right) \leq \alpha$ be the minimum of all thresholds for ε given in section 6. We set $\tilde{\varepsilon}:=\min \left\{\bar{\varepsilon},\left(2 C^{\prime} C_{1}\right)^{-1}\right\}<$ 1.9 and assume that $k \geq \tilde{k}$ and $\eta \leq \tilde{\varepsilon}^{p}$. Now let $\varepsilon>0$ with $\eta \leq \varepsilon^{p} \leq \tilde{\varepsilon}^{p}$. For the rest of this section, we fix the parameters $k, \eta, \alpha, \varepsilon$ and mention that they meet all requirements of the lemmas in section 6.

We start the proof of Theorem 7.17 with several lemmas. First, we prove
Lemma 7.18. There exists some constant $C=C\left(N, n, p, C_{0}\right)$ so that

$$
\sum_{i \in I_{12}} \int_{R_{i} \cap U_{10}} \int_{0}^{\frac{\operatorname{diam} R_{i}}{2}} \gamma(q, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) \leq C \varepsilon^{p}
$$

Proof. Let $i \in I_{12}, q \in R_{i}, 0<t<\frac{\operatorname{diam} R_{i}}{2}$ and $u \in B(q, t) \cap P_{0} \subset 2 R_{i}$. The function A is in $C^{\infty}\left(2 R_{i}, P_{0}^{\perp}\right)$ (see the definition of A on page 1215). Taylor's theorem implies $\inf _{a \in \mathcal{A}} d(A(u), a(u)) \leq t^{2} \frac{C\left(N, n, C_{0}\right) \varepsilon}{\text { diam } R_{i}}$ since the infimum over all affine functions cancels out the linear part and the second order derivatives of the remainder can be estimated using Lemma 6.28. Now we have

$$
\gamma(q, t) \leq \frac{\omega_{n}}{t} \sup _{u \in B(q, t) \cap P_{0}} \inf _{a \in \mathcal{A}} d(A(u), a(u)) \leq t \frac{C\left(N, n, C_{0}\right) \varepsilon}{\operatorname{diam} R_{i}} .
$$

Hence, Lemma 6.13(ii) implies the statement.
The previous lemma implies that, due to Lemma 6.13(ii), it remains to handle the two terms in the following sum to prove Theorem 7.17 If $q_{1} \in R_{i}$, we get with Lemma 6.13 that $\frac{D\left(q_{1}\right)}{100} \leq \frac{\text { diam } R_{i}}{2}$ and if $q_{2} \in \pi(\mathcal{Z})$, we obtain with Lemma 6.10 $D\left(q_{2}\right)=0$. Hence we conclude using Lemma 6.13(ii) that

$$
\begin{align*}
& \sum_{i \in I_{12}} \int_{R_{i} \cap U_{10}} \int_{\frac{\text { diam } R_{i}}{2}}^{2} \gamma(q, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q)+\int_{\pi(\mathcal{Z}) \cap U_{10}} \int_{0}^{2} \gamma(q, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) \\
= & \int_{U_{10}} \int_{\frac{D(q)}{100}}^{2} \gamma(q, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) . \tag{7.7}
\end{align*}
$$

In the following, we prove some estimate for $\gamma(q, t)$ where $q \in U_{10}$ and $\frac{D(q)}{100}<$ $t<2$. To get this estimate, we need the next lemma.

[^5]Lemma 7.19. For all $q \in U_{10}$ and for all t with $\frac{D(q)}{100}<t<2$, there exist some $\tilde{X}=\tilde{X}(q) \in F$ and some $T=T(t)>0$ with

$$
\begin{equation*}
(\tilde{X}, T) \in S, \quad d(\pi(\tilde{X}), q) \leq T \quad \text { and } \quad 20 t \leq T \leq 200 t \tag{7.8}
\end{equation*}
$$

Proof. We have $D(q)=\inf _{(X, s) \in S}(d(\pi(X), q)+s)$, and hence there exists some $(\tilde{X}, \tilde{s}) \in S$ with $d(\pi(\tilde{X}), q)+\tilde{s} \leq D(q)+100 t \leq 200 t$. We set $T:=\min \{40,200 t\}$ which fulfils $20 t \leq T \leq 200 t$ as $t<2$. Using Lemma 6.2(i), (ii) and $200 t \geq \tilde{s}$, we obtain $(\tilde{X}, T) \in S$.

With $d(\pi(\tilde{X}), q) \leq d(\pi(\tilde{X}), 0)+d(0, q) \leq 5+10$ we get $d(\pi(\tilde{X}), q) \leq T$.
Now let q, t, \tilde{X} and T be as in Lemma 7.19, Furthermore, let $X \in B(\tilde{X}, 200 t) \cap F$. We choose some n-dimensional plane called $\hat{P}=\hat{P}(q, t, X)$ with

$$
\begin{equation*}
\beta_{1 ; k}^{\hat{P}}(X, t) \leq 2 \beta_{1 ; k}(X, t) \tag{7.9}
\end{equation*}
$$

and define

$$
\mathcal{I}(q, t):=\left\{i \in I_{12} \mid R_{i} \cap B(q, t) \neq \emptyset\right\} .
$$

With Lemma 6.13, we have $\left(B(q, t) \cap P_{0}\right) \subset U_{12} \subset \pi(\mathcal{Z}) \cup \bigcup_{i \in I_{12}} R_{i}$. We set

$$
\begin{aligned}
K_{0} & :=\int_{B(q, t) \cap \pi(\mathcal{Z})} \frac{d(u+A(u), \hat{P})}{t^{n+1}} \mathrm{~d} \mathcal{H}^{n}(u), \\
K_{i} & :=\int_{B(q, t) \cap R_{i}} \frac{d(u+A(u), \hat{P})}{t^{n+1}} \mathrm{~d} \mathcal{H}^{n}(u)
\end{aligned}
$$

and get with Lemma 7.2 that

$$
\begin{equation*}
\gamma(q, t) \leq 3 K_{0}+3 \sum_{i \in \mathcal{I}(q, t)} K_{i} . \tag{7.10}
\end{equation*}
$$

First, we consider K_{0}.
Lemma 7.20. There exists some constant $\tilde{C}>1$ so that

$$
\int_{B(q, t) \cap \pi(\mathcal{Z})} d(u+A(u), \hat{P}) \mathrm{d} \mathcal{H}^{n}(u) \leq \int_{B(X, \tilde{C} t) \cap \mathcal{Z}} d(x, \hat{P}) \mathrm{d} \mathcal{H}^{n}(x) .
$$

Proof. Let $g: \pi(\mathcal{Z}) \rightarrow \mathcal{Z}, u \mapsto u+A(u)$. This function is bijective, continuous (A is 2α-Lipschitz on $\pi(Z)$) and $g^{-1}=\left.\pi\right|_{\mathcal{Z}}$ is Lipschitz continuous with Lipschitz constant 1. With $f(x)=d(x, \hat{P})$ and $s=n$, we apply [27, Lem. A.1] and get

$$
\int_{B(q, t) \cap \pi(\mathcal{Z})} d(u+A(u), \hat{P}) \mathrm{d} \mathcal{H}^{n}(u) \leq \int_{g(B(q, t) \cap \pi(\mathcal{Z}))} d(x, \hat{P}) \mathrm{d} \mathcal{H}^{n}(x) .
$$

Now it remains to show that there exists some constant C so that $g(B(q, t) \cap \pi(\mathcal{Z})) \subset$ $B(X, C t) \cap \mathcal{Z}$. Let $x \in g(B(q, t) \cap \pi(\mathcal{Z}))$. This implies $x \in \mathcal{Z}$ and so, using Lemma 6.10, we get $d(x)=0$. With (7.8), we conclude that $d(\tilde{X}) \leq d(\tilde{X}, \tilde{X})+T \leq 200 t$, and we obtain with (7.8) $d(\pi(x), \pi(\tilde{X})) \leq 201 t$. So, with Lemma 6.11, we have $d(x, \tilde{X}) \leq 1602 t$. We deduce with $\tilde{C}=1802$ that $d(x, X) \leq d(x, \tilde{X})+d(\tilde{X}, X) \leq \tilde{C} t$ and so $g(B(q, t) \cap \pi(\mathcal{Z})) \subset B(X, \tilde{C} t) \cap \mathcal{Z}$.

Lemma 7.21. There exists some constant $C=C\left(N, n, C_{0}\right)>1$ so that

$$
\int_{B(X, \tilde{C} t) \cap \mathcal{Z}} d(x, \hat{P}) \mathrm{d} \mathcal{H}^{n}(x) \leq C \int_{B(X,(\tilde{C}+1) t)} d(x, \hat{P}) \mathrm{d} \mu(x) .
$$

Proof. First, we prove for an arbitrary ball B with centre in \mathcal{Z},

$$
\begin{equation*}
\mathcal{H}^{n}(\mathcal{Z} \cap B) \leq C\left(N, n, C_{0}\right) \mu(B) \tag{7.11}
\end{equation*}
$$

With [7. Dfn. 2.1], we get $\mathcal{H}^{n}(\mathcal{Z} \cap B)=\lim _{\tau \rightarrow 0} \mathcal{H}_{\tau}^{n}(\mathcal{Z} \cap B)$. Let $0<\tau_{0}<$ $\min \left\{\frac{\operatorname{diam} B}{2}, 50\right\}$. We define $\mathcal{F}:=\left\{B(x, s) \mid x \in \mathcal{Z} \cap B, s \leq \tau_{0}\right\}$. With Besicovitch's covering theorem [7] 1.5.2, Thm. 2], there exist $N_{0}=N_{0}(N)$ countable families $\mathcal{F}_{j} \subset \mathcal{F}, j=1, \ldots, N_{0}$, of disjoint balls where the union of all those balls covers $\mathcal{Z} \cap B$. For every ball $\tilde{B}=B(x, s) \in \mathcal{F}_{j}$, we have $x \in \mathcal{Z}$ and hence, using the definition of \mathcal{Z} (see page 1209), we deduce that $h(x)=0$. With $h(x)=0<s<50$ and Lemma6.6(i), we get $(x, s) \in S \subset S_{\text {total }}$ and so $\left(\frac{\operatorname{diam} \tilde{B}}{2}\right)^{n} \leq 2 \frac{\mu(\tilde{B})}{\delta}$. The centre of B is also in \mathcal{Z}, and hence, analogously, we conclude that $\left(\frac{\text { diam } B}{2}\right)^{n} \leq 2 \frac{\mu(B)}{\delta}$. With (B) from page 1208, we get $\mu(2 B) \leq 4^{n} C_{0} \frac{2}{\delta} \mu(B)$. Since $x \in B$ and $s \leq \tau_{0}<\frac{\operatorname{diam} B}{2}$, we obtain $\tilde{B}=B(x, s) \subset 2 B$. Now, by definition of $\mathcal{H}_{\tau_{0}}^{n}$ [7, Dfn. 2.1] and because $\delta=\delta(N, n)$ (see (6.1)), we deduce that

$$
\mathcal{H}_{\tau_{0}}^{n}(\mathcal{Z} \cap B) \leq 2 \sum_{j=1}^{N_{0}} \sum_{\tilde{B} \in \mathcal{F}_{j}} \omega_{n} \frac{\mu(\tilde{B})}{\delta} \leq 2 \frac{\omega_{n}}{\delta} \sum_{j=1}^{N_{0}} \mu(2 B) \leq C\left(N, n, C_{0}\right) \mu(B)
$$

So, with $\tau_{0} \rightarrow 0$, the inequality (7.11) is proven.
Let \tilde{C} be the constant from Lemma 7.20. For an arbitrary $0<\sigma \leq t$, we define

$$
\mathcal{G}_{\sigma}:=\{B(x, s) \mid x \in \mathcal{Z} \cap B(X, \tilde{C} t), s \leq \sigma\} .
$$

With Besicovitch's covering theorem [7, 1.5.2, Thm. 2], there exist $N_{0}=N_{0}(N)$ families $\mathcal{G}_{\sigma, j} \subset \mathcal{G}_{\sigma}$ of disjoint balls, where $j=1, \ldots, N_{0}$, and those balls cover $\mathcal{Z} \cap B(X, \tilde{C} t)$. We denote by p_{B} the centre of the ball B and conclude that

$$
\begin{aligned}
& \int_{\mathcal{Z} \cap B(X, \tilde{C} t)} d(x, \hat{P}) \mathrm{d} \mathcal{H}^{n}(x) \leq \sum_{j=1}^{N_{0}} \sum_{B \in \mathcal{G}_{\sigma, j}} \int_{\mathcal{Z} \cap B} \sigma+d\left(p_{B}, \hat{P}\right) \mathrm{d} \mathcal{H}^{n}(x) \\
& \quad \begin{array}{l}
\text { (7.11) } \\
\leq
\end{array} C\left(N, n, C_{0}\right) \sum_{j=1}^{N_{0}} \sum_{B \in \mathcal{G}_{\sigma, j}} \int_{B}\left(\sigma+d\left(p_{B}, \hat{P}\right)\right) \mathrm{d} \mu(x) \\
& \quad C\left(N, n, C_{0}\right)\left(\mu(B(X,(\tilde{C}+1) t)) 2 \sigma+\int_{B(X,(\tilde{C}+1) t)} d(x, \hat{P}) \mathrm{d} \mu(x)\right) .
\end{aligned}
$$

With $\sigma \rightarrow 0$, the assertion holds.
With Lemma 7.20 and Lemma 7.21, we get for K_{0} using that $k \geq \tilde{k} \geq \tilde{C}+1$, where \tilde{k} is defined on page 1227

$$
\begin{equation*}
K_{0} \leq C\left(N, n, C_{0}\right) \beta_{1 ; k}^{\hat{P}}(X, t) \stackrel{\sqrt{(7.9)}}{\leq} C\left(N, n, C_{0}\right) \beta_{1 ; k}(X, t) \tag{7.12}
\end{equation*}
$$

To estimate K_{i}, we need the following lemma.
Lemma 7.22. There exists some constant $C_{4}=C_{4}\left(N, n, C_{0}\right)>1$ so that, for all $i \in I_{12}$ and $u \in R_{i}$, we have $d\left(\pi_{P_{i}}(u+A(u)), B_{i}\right) \leq C_{4} \operatorname{diam} R_{i}$. We recall that P_{i} is the n-dimensional plane, which is, in the sense of Definition 6.1, associated to the ball $B\left(X_{i}, t_{i}\right)=B_{i}$ given by Lemma 6.14 (cf. Definition 6.17).

Proof. For every $i \in I_{12} \subset I$, we have with Lemma 6.14 that $B_{i}=B\left(X_{i}, t_{i}\right)$ and $\left(X_{i}, t_{i}\right) \in S \subset S_{\text {total }}$. Hence we can use Lemma $4.10\left(~ \sigma=2 \varepsilon, x=X_{i}, t=t_{i}, \lambda=\frac{\delta}{2}\right.$, $P=P_{i}$) to get some $y \in 2 B_{i} \cap P_{i}$, where $P_{i}=P_{\left(X_{i}, t_{i}\right)}$. We obtain with Lemma 2.13 ($P_{1}=P_{j}, P_{2}=P_{0}$), $\alpha \leq \tilde{\alpha}<\frac{1}{2}$ ($\tilde{\alpha}$ is defined on page 1227) and Lemma 6.14, $d\left(u+A_{i}(u), y\right) \leq \frac{1}{1-\alpha} d(u, \pi(y))<2\left[d\left(u, \pi\left(X_{i}\right)\right)+d\left(\pi\left(X_{i}\right), \pi(y)\right)\right] \leq C \operatorname{diam} R_{i}$.
Moreover, with Lemma 6.21(iv) and $\varepsilon \leq \tilde{\varepsilon} \leq 1$ ($\tilde{\varepsilon}$ is defined on page 1227), we get

$$
d\left(\pi_{P_{i}}(u+A(u)), u+A_{i}(u)\right) \leq d\left(u+A(u), u+A_{i}(u)\right) \leq C \operatorname{diam} R_{i}
$$

for some $C=C\left(N, n, C_{0}\right)$. Using these estimates, $u+A_{i}(u)=\pi_{P_{i}}\left(u+A_{i}(u)\right)$ and triangle inequality, we obtain the assertion.

Now, with Lemma 7.22 and K_{i} from (7.10), we obtain for $i \in \mathcal{I}(q, t) \subset I_{12}$:

$$
\begin{aligned}
K_{i} \leq & \frac{1}{t^{n}} \int_{B(q, t) \cap R_{i}} \frac{d\left(u+A(u), P_{i}\right)}{t} \mathrm{~d} \mathcal{H}^{n}(u) \\
& +\frac{1}{t^{n}} \sup \left\{\left.\frac{d\left(\pi_{P_{i}}(v+A(v)), \hat{P}\right)}{t} \right\rvert\, v \in B(q, t) \cap R_{i}\right\} \mathcal{H}^{n}\left(B(q, t) \cap R_{i}\right)
\end{aligned}
$$

$$
\stackrel{\text { L. TT.22 }}{\leq} \frac{1}{t^{n}} \int_{B(q, t) \cap R_{i}} \frac{d\left(u+A(u), P_{i}\right)}{t} \mathrm{~d} \mathcal{H}^{n}(u)
$$

$$
\begin{equation*}
+\omega_{n}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n} \sup \left\{\left.\frac{d(w, \hat{P})}{t} \right\rvert\, w \in P_{i}, d\left(w, B_{i}\right) \leq C_{4} \operatorname{diam} R_{i}\right\} \tag{7.13}
\end{equation*}
$$

Since P_{i} is the graph of A_{i}, we get for any $u \in B(q, t) \cap R_{i}$ with Lemma 6.21(iv) that there exists some $\bar{C}=\bar{C}\left(N, n, C_{0}\right)$ with

$$
d\left(u+A(u), P_{i}\right) \leq d\left(u+A(u), u+A_{i}(u)\right)=d\left(A(u), A_{i}(u)\right) \leq \bar{C} \varepsilon \operatorname{diam} R_{i},
$$

and so, using Lemma A.4.

$$
\begin{equation*}
\frac{1}{t^{n}} \int_{B(q, t) \cap R_{i}} \frac{d\left(u+A(u), P_{i}\right)}{t} \mathrm{~d} \mathcal{H}^{n}(u) \leq \varepsilon C\left(N, n, C_{0}\right)\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1} \tag{7.14}
\end{equation*}
$$

Lemma 7.23. There exists some constant $C=C\left(N, n, C_{0}\right)$ so that for all $i \in$ $\mathcal{I}(q, t)$,

$$
\left.\begin{array}{l}
\sup \left\{\left.\frac{d(w, \hat{P})}{t}\right|_{d\left(w, B_{i}\right) \leq C_{4}} \operatorname{diam} R_{i}\right.
\end{array}\right\}, \begin{gathered}
w \in P_{i} \\
\\
\quad \leq \frac{C}{t}\left[\varepsilon \operatorname{diam} R_{i}+\left(\frac{1}{\left(\operatorname{diam} R_{i}\right)^{n}} \int_{2 B_{i}} d(z, \hat{P})^{\frac{1}{3}} \mathrm{~d} \mu(z)\right)^{3}\right]
\end{gathered}
$$

Proof. Let $i \in \mathcal{I}(q, t)$. Due to the construction of $B_{i}=B\left(X_{i}, t_{i}\right)$ (see Lemma 6.14), we have $\left(X_{i}, t_{i}\right) \in S \subset S_{\text {total }}$ and so $\delta\left(X_{i}, t_{i}\right) \geq \frac{\delta}{2}$. With Corollary 4.3 $\left(\lambda=\frac{\delta}{2}, B(x, t)=B\left(X_{i}, t_{i}\right), \Upsilon=\mathbb{R}^{N}\right)$, there exist constants $C_{1}=C_{1}\left(N, n, C_{0}\right)>3$, $C_{2}=C_{2}\left(N, n, C_{0}\right)>1$ and some $\left(n, 10 n \frac{t_{i}}{C_{1}}\right)$-simplex $T=\Delta\left(x_{0}, \ldots, x_{n}\right) \in F \cap B_{i}$ with

$$
\begin{equation*}
\mu\left(B\left(x_{\kappa}, \frac{t_{i}}{C_{1}}\right) \cap B_{i}\right) \geq \frac{t_{i}^{n}}{C_{2}} \text { and } B\left(x_{\kappa}, \frac{t_{i}}{C_{1}}\right) \subset 2 B_{i} \subset k B_{i}=B\left(X_{i}, k t_{i}\right), \tag{7.15}
\end{equation*}
$$

for all $\kappa=0, \ldots, n$, and we used that $C_{1}>3$ and $k \geq \tilde{k} \geq 2(\tilde{k}$ is defined on page 1227). We set $C^{\prime}:=400 C_{2}, \tilde{B}_{\kappa}:=B\left(x_{\kappa}, \frac{t_{i}}{C_{1}}\right)$ and define for all $\kappa=0, \ldots, n$,

$$
\begin{equation*}
Z_{\kappa}:=\left\{z \in \tilde{B}_{\kappa} \cap F \mid d\left(z, P_{i}\right) \leq C^{\prime} \varepsilon \operatorname{diam} R_{i}\right\} . \tag{7.16}
\end{equation*}
$$

We have $\left(X_{i}, t_{i}\right) \in S_{\text {total }}$ and hence $\beta_{1: k}^{P_{i}}\left(X_{i}, t_{i}\right) \leq 2 \varepsilon$. Using this and Lemma 6.14, we obtain with Chebyshev's inequality

$$
\mu\left(\tilde{B}_{\kappa} \backslash Z_{\kappa}\right)<\frac{t_{i}^{n+1}}{C^{\prime} \varepsilon \operatorname{diam} R_{i}} \beta_{1 ; k}^{P_{i}}\left(X_{i}, t_{i}\right) \leq \frac{t_{i}^{n+1} 100}{C^{\prime} \varepsilon t_{i}} 2 \varepsilon=\frac{t_{i}^{n}}{2 C_{2}} .
$$

Using Lemma 6.14 again, we get

$$
\begin{equation*}
\mu\left(Z_{\kappa}\right) \geq \mu\left(\tilde{B}_{\kappa}\right)-\mu\left(\tilde{B}_{\kappa} \backslash Z_{\kappa}\right) \stackrel{(7.15)}{\geq} \frac{t_{i}^{n}}{C_{2}}-\frac{t_{i}^{n}}{2 C_{2}}=\frac{t_{i}^{n}}{2 C_{2}} \geq \frac{\operatorname{diam} R_{i}^{n}}{2^{n+1} C_{2}}>0 \tag{7.17}
\end{equation*}
$$

For all $\kappa \in\{0, \ldots, n\}$, let $z_{\kappa} \in Z_{\kappa} \subset \tilde{B}_{\kappa}$ and set $y_{\kappa}:=\pi_{P_{i}}\left(z_{\kappa}\right)$. Since $\varepsilon \leq \tilde{\varepsilon} \leq \frac{1}{2 C^{\prime} C_{1}}$ ($\tilde{\varepsilon}$ was chosen on page 1227), we deduce that

$$
d\left(y_{\kappa}, x_{\kappa}\right) \leq d\left(y_{\kappa}, z_{\kappa}\right)+d\left(z_{\kappa}, x_{\kappa}\right) \leq d\left(z_{\kappa}, P_{i}\right)+\frac{t_{i}}{C_{1}} \stackrel{\text { 7.166) }}{\leq} C^{\prime} \varepsilon \operatorname{diam} R_{i}+\frac{t_{i}}{C_{1}} \leq 2 \frac{t_{i}}{C_{1}}
$$

Due to Lemma [2.8, the simplex $S=\Delta\left(y_{0}, \ldots, y_{n}\right)$ is an ($n, 6 n \frac{t_{i}}{C_{1}}$)-simplex, and, using the triangle inequality, we obtain $S \subset 2 B_{i}$. Now, with Lemma $2.16\left(C=\frac{C_{1}}{6 n}\right.$, $\left.\hat{C}=2, t=t_{i}, m=n, x=X_{i}\right)$ there exists some orthonormal basis $\left(o_{1}, \ldots, o_{n}\right)$ of $P_{i}-y_{0}$ and there exist $\gamma_{l, r} \in \mathbb{R}$ with $o_{l}=\sum_{r=1}^{l} \gamma_{l, r}\left(y_{r}-y_{0}\right)$ and $\left|\gamma_{l, r}\right| \leq\left(\frac{2 C_{1}}{3}\right)^{n} \frac{C_{1}}{6 n t_{i}}$ for all $1 \leq l \leq n$ and $1 \leq r \leq l$.

Now let $w \in P_{i}$ with $d\left(w, B_{i}\right) \leq C_{4} \operatorname{diam} R_{i}$. We obtain

$$
\begin{equation*}
w-y_{0}=\sum_{\kappa=1}^{n}\left\langle w-y_{0}, o_{\kappa}\right\rangle o_{\kappa}=\sum_{\kappa=1}^{n}\left\langle w-y_{0}, o_{\kappa}\right\rangle \sum_{r=1}^{\kappa} \gamma_{\kappa, r}\left(y_{r}-y_{0}\right), \tag{7.18}
\end{equation*}
$$

and so, with Remark $2.1(b=w, P=\hat{P})$ and $\left|w-y_{0}\right| \leq d\left(w, B_{i}\right)+\operatorname{diam} B_{i}+$ $d\left(B_{i}, y_{0}\right) \leq C t_{i}$, we get

$$
d(w, \hat{P}) \stackrel{\frac{\boxed{7.18}}{\leq}}{\leq} n C C_{1}^{n+1} \sum_{r=1}^{n}\left(d\left(y_{r}, z_{r}\right)+d\left(z_{r}, \hat{P}\right)\right)
$$

$$
\begin{equation*}
\stackrel{\sqrt{7.16}}{\leq} n^{2} C C_{1}^{n+1} C^{\prime} \varepsilon \operatorname{diam} R_{i}+n C C_{1}^{n+1} \sum_{r=0}^{n} d\left(z_{r}, \hat{P}\right) \tag{7.19}
\end{equation*}
$$

The previous results are valid for arbitrary $z_{\kappa} \in Z_{\kappa}$; hence we get

$$
d(w, \hat{P})-n^{2} C C_{1}^{n+1} C^{\prime} \varepsilon \operatorname{diam} R_{i}
$$

$$
\begin{aligned}
& \stackrel{\sqrt{7.19}}{\leq}\left(\frac{1}{\prod_{r=0}^{n} \mu\left(Z_{r}\right)} \int_{Z_{0}} \cdots \int_{Z_{n}}\left(n C C_{1}^{n+1} \sum_{r=0}^{n} d\left(z_{r}, \hat{P}\right)\right)^{\frac{1}{3}} \mathrm{~d} \mu\left(z_{n}\right) \ldots \mathrm{d} \mu\left(z_{0}\right)\right)^{3} \\
& \leq n C C_{1}^{n+1}\left(\sum_{r=0}^{n} \frac{1}{\mu\left(Z_{r}\right)} \int_{Z_{r}} d\left(z_{r}, \hat{P}\right)^{\frac{1}{3}} \mathrm{~d} \mu\left(z_{r}\right)\right)^{3} \\
& \stackrel{(7.17]}{\leq}[\sqrt{7.15)} \\
& \quad n C C_{1}^{n+1}\left(\frac{2^{n+1} C_{2}}{\operatorname{diam} R_{i}^{n}} \int_{2 B_{i}} d(z, \hat{P})^{\frac{1}{3}} \mathrm{~d} \mu(z)\right)^{3}
\end{aligned}
$$

where we used that the sets Z_{r} are disjoint. Since $w \in P_{i}$ was arbitrarily chosen with $d\left(w, B_{i}\right) \leq C_{4} \operatorname{diam} R_{i}$, we get the statement.

Lemma 7.24. There exists some constant $C=C\left(n, C_{0}\right)$ so that

$$
\sum_{i \in \mathcal{I}(q, t)}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n} \frac{1}{t}\left(\frac{1}{\left(\operatorname{diam} R_{i}\right)^{n}} \int_{2 B_{i}} d(z, \hat{P})^{\frac{1}{3}} \mathrm{~d} \mu(z)\right)^{3} \leq C \beta_{1 ; k}(X, t) .
$$

Proof. Let $i \in \mathcal{I}(q, t)\left(\mathcal{I}(q, t)\right.$ is defined on page 1228) and $x \in 2 B_{i}$. We define

$$
J(i):=\left\{j \in \mathcal{I}(q, t) \mid \operatorname{diam} B_{j} \leq \operatorname{diam} B_{i}, 2 B_{i} \cap 2 B_{j} \neq \emptyset\right\}
$$

and

$$
\Xi_{i}(x):=\sum_{j \in J(i)} \chi_{2 B_{j}}(x)
$$

First, we prove some intermediate results:
I. For all $i \in \mathcal{I}(q, t)$, we have $\int_{2 B_{i}} \Xi_{i}(x) \mathrm{d} \mu(x) \leq C\left(n, C_{0}\right)\left(\operatorname{diam} R_{i}\right)^{n}$. This implies that $\Xi_{i}(x)<\infty$ for μ-almost all $x \in 2 B_{i}$.
Proof of I. Let $i \in \mathcal{I}(q, t)$ and $j \in J(i)$. With Lemma 6.14 applied to j and the definition of $J(i)$, we deduce that diam $R_{j} \leq 200 \operatorname{diam} R_{i}$. Using Lemma 6.14 and $j \in J(i)$, we get $d\left(R_{i}, R_{j}\right) \leq C$ diam R_{i}. This implies for some large enough constant $C>1$ that $R_{j} \subset C R_{i}$. Since the cubes $\stackrel{\circ}{R}_{j}$ are disjoint (see Lemma 6.13(ii)), we get with Lemma A. 4 .

$$
\sum_{j \in J(i)}\left(\operatorname{diam} R_{j}\right)^{n}=\sum_{j \in J(i)}(\sqrt{n})^{n} \mathcal{H}^{n}\left(R_{j}\right) \leq(\sqrt{n})^{n} \mathcal{H}^{n}\left(C R_{i}\right)=C(n)\left(\operatorname{diam} R_{i}\right)^{n}
$$

In the following, we apply Fatou's lemma [7, 1.3, Thm. 1] to interchange the integration with the summation. With (B) from page 1208 and Lemma 6.14 we obtain

$$
\begin{aligned}
\int_{2 B_{i}} \Xi_{i}(x) \mathrm{d} \mu(x) & \leq \sum_{j \in J(i)} \mu\left(2 B_{j}\right) \stackrel{(\mathrm{B})}{\leq} C\left(n, C_{0}\right) \sum_{j \in J(i)}\left(\operatorname{diam} R_{j}\right)^{n} \\
& \leq C\left(n, C_{0}\right)\left(\operatorname{diam} R_{i}\right)^{n} .
\end{aligned}
$$

II. Let $x \in \mathbb{R}^{N}$ and $m \in \mathbb{N}$. There exists some $C=C(n)>1$ with $\sum_{\substack{i \in \mathcal{I}(q, t) \\ \Xi_{i}(x)=m}} \chi_{2 B_{i}}(x)$ $\leq C$.
Proof of II. Let $l, o \in \mathcal{I}(q, t)$ with $x \in 2 B_{l} \cap 2 B_{o}$ and $\Xi_{l}(x)=m=\Xi_{o}(x)$. Without loss of generality, we have diam $B_{l} \leq \operatorname{diam} B_{o}$.

Assume that diam $B_{l}<\operatorname{diam} B_{o}$. We define $J(l, x):=\left\{\iota \in J(l) \mid x \in 2 B_{\iota}\right\}$. Let $j \in J(l, x)$. By definition of $J(l)$, we get $\operatorname{diam} B_{j} \leq \operatorname{diam} B_{l}<\operatorname{diam} B_{o}$ and $x \in$ $2 B_{j}$. Since $x \in 2 B_{o}$, it follows that $2 B_{o} \cap 2 B_{j} \neq \emptyset$ and, because diam $B_{j}<\operatorname{diam} B_{o}$, we get $j \in J(o, x)$. Furthermore, we have $o \in J(o, x)$, but $o \notin J(l, x)$ because by our assumption we have $\operatorname{diam} B_{l}<\operatorname{diam} B_{o}$. So we get $J(l, x) \subsetneq J(o, x)$. Now we obtain a contradiction:

$$
m=\Xi_{l}(x)=\sum_{j \in J(l)} \chi_{2 B_{j}}(x)=\sum_{j \in J(l, x)} \chi_{2 B_{j}}(x)<\sum_{j \in J(o, x)} \chi_{2 B_{j}}(x)=\Xi_{o}(x)=m .
$$

Hence there exists some $\lambda=\lambda(x, m) \in(0, \infty)$ so that, for $l \in \mathcal{I}(q, t)$ with $x \in 2 B_{l}$ and $\Xi_{l}(x)=m$, we have diam $B_{l}=\lambda$, and, we obtain with Lemma 6.14 that $\lambda \leq$ $200 \operatorname{diam} R_{l} \leq 200 \lambda$ and $d\left(R_{l}, \pi\left(B_{l}\right)\right) \leq 100 \lambda$. Using $d\left(R_{l}, \pi(x)\right) \leq d\left(R_{l}, \pi\left(B_{l}\right)\right)+$ $2 \operatorname{diam} B_{l} \leq 102 \lambda$, we get $R_{l} \subset B(\pi(x), 103 \lambda) \cap P_{0}$. With Lemma A.4, we have
$\mathcal{H}^{n}\left(R_{l}\right) \geq(\sqrt{n})^{-n}\left(\frac{1}{200} \lambda\right)^{n}$, and according to Lemma 6.13(ii) the cubes R_{l} have disjoint interior. This implies that there exists some constant $C(n)$ so that there are at most $C(n)$ indices $l \in \mathcal{I}(q, t)$ with $\Xi_{l}(x)=m$ and $x \in 2 B_{l}$. This implies the assertion.
III. We have $i \in J(i)$ and so $\Xi_{i}(x) \neq 0$ for all $x \in 2 B_{i}$. Hence, with $x \in \mathbb{R}^{N}$, the term

$$
\chi_{2 B_{i}}(x) \Xi_{i}(x)^{-2}:= \begin{cases}\Xi_{i}(x)^{-2} & \text { if } x \in 2 B_{i} \\ 0 & \text { otherwise }\end{cases}
$$

is well-defined. Now there exists some constant $C(n)$ so that, for all $x \in \mathbb{R}^{N}$, we get

$$
\sum_{i \in \mathcal{I}(q, t)} \chi_{2 B_{i}}(x) \Xi_{i}(x)^{-2}=\sum_{m=1}^{\infty} \sum_{\substack{i \in \mathcal{I}(q, t) \\ \Xi_{i}(x)=m}} \chi_{2 B_{i}}(x) \frac{1}{m^{2}} \stackrel{\mathrm{II}}{\leq} C(n) .
$$

IV. Let $i \in \mathcal{I}(q, t)$. Since $i \in J(i)$, we have $\Xi_{i}(x) \neq 0$ for $x \in 2 B_{i}$. We obtain with Hölder's inequality

$$
\begin{aligned}
& {\left[\frac{1}{\left(\operatorname{diam} R_{i}\right)^{n}} \int_{2 B_{i}} d(z, \hat{P})^{\frac{1}{3}} \Xi_{i}(z)^{\frac{-2}{3}} \Xi_{i}(z)^{\frac{2}{3}} \mathrm{~d} \mu(z)\right]^{3}} \\
& \quad \stackrel{\mathrm{I}}{\leq} C\left(n, C_{0}\right) \frac{1}{\left(\operatorname{diam} R_{i}\right)^{n}} \int_{2 B_{i}} d(z, \hat{P}) \Xi_{i}(z)^{-2} \mathrm{~d} \mu(z)
\end{aligned}
$$

V. We have

$$
\frac{1}{t^{n+1}} \int_{\bigcup_{i \in \mathcal{I}(q, t)} 2 B_{i}} d(z, \hat{P}) \mathrm{d} \mu(z) \leq 2 \beta_{1 ; k}(X, t)
$$

where $X \in B(\tilde{X}(q), 200 t)$ (cf. page 1228).
Proof of III-V. At first, we prove that there exists some constant $\hat{C}>1$ so that for $i \in \mathcal{I}(q, t)$ we have $2 B_{i} \subset B(X, \hat{C} t)$. Let $i \in \mathcal{I}(q, t)$. By definition of $\mathcal{I}(q, t)$ (see page 1228), we obtain $R_{i} \cap B(q, t) \neq \emptyset$. Let $\tilde{u} \in R_{i} \cap B(q, t)$. Since $\frac{D(q)}{100}<t$ (see page 1228), we get, using the triangle inequality, $D(\tilde{u}) \leq D(q)+d(q, \tilde{u})<101 t$. It follows with Lemma 6.13(i) that

$$
\begin{equation*}
\operatorname{diam} R_{i} \leq \frac{1}{10} D(\widetilde{u})<11 t \tag{7.20}
\end{equation*}
$$

With Lemma 6.14 and (7.8), we get $(X \in B(\tilde{X}, 200 t)$; see page (1228)

$$
d\left(\pi\left(B_{i}\right), \pi(X)\right) \leq d\left(\pi\left(B_{i}\right), \tilde{u}\right)+d(\tilde{u}, q)+d(q, \pi(\tilde{X}))+d(\pi(\tilde{X}), \pi(X))
$$

$$
\begin{equation*}
\stackrel{\sqrt{77.8}}{\leq} d\left(\pi\left(B_{i}\right), R_{i}\right)+\operatorname{diam} R_{i}+t+200 t+d(\tilde{X}, X) \stackrel{\sqrt{77.20}}{\leq} C t \text {. } \tag{7.21}
\end{equation*}
$$

Now let $x \in 2 B_{i}=B\left(X_{i}, 2 t_{i}\right)$. Since $\left(X_{i}, t_{i}\right) \in S$, using Lemma 6.14 and (7.20), we get $d(x)<4400 t$. Due to $X \in B(\tilde{X}, 200 t) \cap F$ and (7.8), we deduce that $d(X) \leq 400 t$. With Lemma 6.14 and estimates (7.20) and (7.21), we obtain with triangle inequality $d(\pi(x), \pi(X)) \leq C t$. Now there exists some constant $\hat{C}>1$ so that we get with Lemma $6.11 d(x, X) \leq \hat{C} t$. All in all we have proven that, for all $i \in \mathcal{I}(q, t)$, we have $2 B_{i} \subset B(X, \hat{C} t)$. Since $k \geq \tilde{k} \geq \hat{C}$ (see page 1227), we get the assertion with condition (7.9) from page 1228 .

Now, Lemma 7.24 can be proven by applying IV, III, and V and using the monotone convergence theorem [7, 1.3, Thm. 2] to interchange the summation and the integration.

Now we can give some estimate for $\gamma(q, t)$, where $q \in U_{10}$ and $\frac{D(q)}{100}<t<2$. Using the inequalities (7.10), (7.12), (7.13), (7.14), Lemma 7.23 and Lemma 7.24 we get using $T \leq 200 t$ (cf. Lemma 7.19) for every $X \in B(\tilde{X}, T) \cap F \subset B(\tilde{X}, 200 t) \cap F$:

$$
\gamma(q, t) \leq C\left(N, n, C_{0}\right) \beta_{1 ; k}(X, t)+C\left(N, n, C_{0}\right) \varepsilon \sum_{i \in \mathcal{I}(q, t)}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1} .
$$

With Lemma 7.19, we get $(\tilde{X}, T) \in S \subset S_{\text {total }}$ and $20 t \leq T \leq 200 t$. Using this, the previous estimate, the definition of $\delta=\delta(n)$ on page 1208 and (B) from page 1208 we get

$$
\begin{aligned}
\gamma(q, t)^{p} & \leq \frac{2}{\delta T^{n}} \int_{B(\tilde{X}, T)} \gamma(q, t)^{p} \mathrm{~d} \mu(X) \\
& \leq C \frac{1}{t^{n}} \int_{B(\tilde{X}, 200 t)} \beta_{1 ; k}(X, t)^{p} \mathrm{~d} \mu(X)+C \varepsilon^{p}\left(\sum_{i \in \mathcal{I}(q, t)}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1}\right)^{p}
\end{aligned}
$$

where $C=C\left(N, n, p, C_{0}\right)$. We recall that for every $q \in U_{10}$ there exists some $\tilde{X}=\tilde{X}(q)$ (cf. Lemma 7.19) such that the previous inequality is valid. This implies

$$
\begin{equation*}
\int_{U_{10}} \int_{\frac{D(q)}{100}}^{2} \gamma(q, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) \leq C\left(N, n, p, C_{0}\right) a+C\left(N, n, p, C_{0}\right) \varepsilon^{p} b \tag{7.22}
\end{equation*}
$$

where

$$
\begin{aligned}
a & :=\int_{U_{10}} \int_{\frac{D(q)}{100}}^{2} \frac{1}{t^{n}} \int_{B(\tilde{X}(q), 200 t)} \beta_{1 ; k}(X, t)^{p} \mathrm{~d} \mu(X) \frac{\mathrm{d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q), \\
b & :=\int_{U_{10}} \int_{\frac{D(q)}{100}}^{2}\left(\sum_{i \in \mathcal{I}(q, t)}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1}\right)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) .
\end{aligned}
$$

To estimate a and b, we need the following lemma.
Lemma 7.25. Let $q \in U_{10}, \frac{D(q)}{100} \leq t \leq 2$ and $X \in B(\tilde{X}(q), 200 t) \cap F$, where $\tilde{X}(q)$ is given by Lemma 7.19. Then $d(\pi(X), q) \leq 400 t$ and there exists some $\tilde{\lambda}=$ $\tilde{\lambda}\left(N, n, C_{0}\right)>0$ so that, with $k_{0}=401$, we have $\tilde{\delta}_{k_{0}}(B(X, t))=\sup _{y \in B\left(X, k_{0} t\right)} \frac{\mu(B(y, t))}{t^{n}}$ $\geq \tilde{\lambda}$, where $\tilde{\delta}_{k_{0}}(B(X, t))$ was defined on page 1196, Furthermore, there holds for all $i \in \mathcal{I}(q, t)$ that

$$
\begin{equation*}
d\left(q, R_{i}\right) \leq t \tag{7.23}
\end{equation*}
$$

$$
\operatorname{diam} R_{i}<11 t
$$

and there exists some constant $C=C(n)$ with

$$
\begin{equation*}
\sum_{i \in \mathcal{I}(q, t)}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1} \leq C, \quad \sum_{i \in I_{12}}\left(\operatorname{diam} R_{i}\right)^{n} \leq C . \tag{7.24}
\end{equation*}
$$

Proof. Let $q \in U_{10}, \frac{D(q)}{100} \leq t \leq 2$ and $X \in B(\tilde{X}(q), 200 t) \cap F$. We have $d(X, \tilde{X}(q)) \leq$ $200 t$ and, with (7.8), we get $d(\pi(\tilde{X}(q)), q) \leq 200 t$. This implies $d(\pi(X), q) \leq 400 t$ by using triangle inequality. With (7.8), we obtain $(\tilde{X}(q), T) \in S \subset S_{\text {total }}$ and, by
definition of $S_{\text {total }}$, we conclude that $\delta(B(\tilde{X}(q), T)) \geq \frac{\delta}{2}$. We have $B(\tilde{X}(q), T) \subset$ $B(X, 400 t)$ and hence with (7.8) we get $\delta(B(X, 400 t)) \geq \frac{\delta}{2 \cdot 20^{n}}$. Applying Corollary 4.3(ii) with $\lambda=\frac{\delta}{2 \cdot 20^{n}}$ on $B(X, 400 t)$, we get constants $C_{1}=C_{1}\left(N, n, C_{0}\right)$, $C_{2}=C_{2}\left(N, n, C_{0}\right)$ and in particular one ball $B(x, s)$ with $s=\frac{400 t}{C_{1}}$ and

$$
\begin{equation*}
\mu(B(x, s) \cap B(X, 400 t)) \geq \frac{(400 t)^{n}}{C_{2}} \tag{7.25}
\end{equation*}
$$

We have $\delta \leq \frac{2}{50^{n}}$ (cf. (6.1)), and Lemma 4.2 gives us $C_{1}>400$. This yields $s<t$. From (7.25), we get $B(x, s) \cap B(X, 400 t) \neq \emptyset$, which implies $d(x, X)<401 t$, and with (7.25) we get $\sup _{y \in B(X, 401 t)} \delta(B(y, t)) \geq \frac{400^{n}}{C_{2}}=: \tilde{\lambda}$. Let $i \in \mathcal{I}(q, t)$. Due to the definition of $\mathcal{I}(q, t)$ (see page (1228), we have $d\left(q, R_{i}\right) \leq t$ and we can choose some $\tilde{u} \in R_{i} \cap B(q, t)$. With Lemma 6.13(i), we obtain $10 \operatorname{diam} R_{i} \leq(D(q)+$ $d(q, \tilde{u}))<11 t$. The intervals R_{i} have disjoint interior (see Lemma 6.13(ii)) and, from $R_{i} \cap B(q, t) \neq \emptyset$ for all $i \in \mathcal{I}(q, t)$, we get $R_{i} \subset B(q, 12 t)$. With Lemma A.4 this implies

$$
\begin{aligned}
& \sum_{i \in \mathcal{I}(q, t)}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1} \stackrel{\sqrt{7.23}}{<} \frac{11}{t^{n}} \sum_{i \in \mathcal{I}(q, t)}\left(\operatorname{diam} R_{i}\right)^{n} \\
&=\frac{11}{t^{n}} \sum_{i \in \mathcal{I}(q, t)}(\sqrt{n})^{n} \mathcal{H}^{n}\left(R_{i}\right)=C(n) .
\end{aligned}
$$

Now let $i \in I_{12}$. We have $R_{i} \cap B(0,12) \neq \emptyset$. If $(Y, r) \in S \subset S_{\text {total }}$, we get $Y \in F \subset B(0,5)$ (cf. (A) on page 1208) and hence we obtain $d(\pi(Y), 0) \leq 5$ as well as $r \leq 50$. With $\tilde{v} \in R_{i} \cap B(0,12)$ and Lemma 6.13(i), we get

$$
\operatorname{diam} R_{i} \leq \frac{1}{10} D(\tilde{v})=\frac{1}{10} \inf _{(Y, r) \in S}(d(\pi(Y), \tilde{v})+r) \leq \frac{1}{10}(5+12+50)<7
$$

Hence, for all $i \in I_{12}$, we have $R_{i} \subset B(0,19)$, and the cubes R_{i} have disjoint interior (cf. Lemma 6.13(ii)). With Lemma A.4 we deduce that $\sum_{i \in I_{12}}\left(\operatorname{diam} R_{i}\right)^{n}=$ $C(n)$.

To control the terms a and b we will use Fubini's theorem [7, 1.4, Thm. 1] in the following abbreviated by (F). Now, using Lemma 7.25 and Corollary $4.8(\lambda=\tilde{\lambda}$, $k_{0}=401$), we conclude that

$$
\begin{aligned}
& a \stackrel{(\mathrm{~F})}{\leq} \int_{F} \int_{0}^{2} \frac{1}{t^{n}} \int_{U_{10}} \chi_{\{d(\pi(X), q) \leq 400 t\}} \mathrm{d} \mathcal{H}^{n}(q) \chi_{\left\{\tilde{\delta}_{k_{0}}(B(X, t)) \geq \tilde{\lambda}\right\}} \beta_{1 ; k}(X, t)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mu(X) \\
& \quad \leq C\left(N, n, \mathcal{K}, p, C_{0}, k\right) \mathcal{M}_{\mathcal{K}^{p}}(\mu) .
\end{aligned}
$$

Now we consider the integral b. We use Fatou's lemma [7, 1.3, Thm. 1] to interchange the summation with the integration:

$$
\begin{aligned}
& b \stackrel{(7.24)}{\leq}(7.23) \\
& \leq \int_{U_{10}} \int_{\frac{D(q)}{100}}^{2} \sum_{i \in I_{12}} \chi_{\left\{t>\frac{\operatorname{diam} R_{i}}{11}, d\left(q, R_{i}\right) \leq t\right\}}\left(\frac{\operatorname{diam} R_{i}}{t}\right)^{n+1} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mathcal{H}^{n}(q) \\
& \stackrel{(F)}{\leq} \quad C \sum_{i \in I_{12}}\left(\operatorname{diam} R_{i}\right)^{n+1} \int_{\frac{\operatorname{diam} R_{i}}{11}}^{\infty} \int_{U_{10}} \chi_{\left\{d\left(q, R_{i}\right) \leq t\right\}} \mathrm{d} \mathcal{H}^{n}(q) \frac{\mathrm{d} t}{t^{n+2}}
\end{aligned}
$$

$$
\stackrel{\sqrt{7.24]}}{\leq} \quad C(n, p) .
$$

Due to Lemma 6.13(ii) the proof of Theorem [7.17is completed by applying Lemma 7.18, (7.7) and (C) from page 1208 because $\mathcal{M}_{\mathcal{K}^{p}}(\mu) \stackrel{(\mathrm{C})}{\leq} \eta<\varepsilon^{p}$ (see pages 1208 and 1227).

8. \mathcal{Z} is not too small

Our aim is to prove Theorem 5.4, In Definition 6.3, we defined a partition of the support F of our measure μ in four parts, namely $\mathcal{Z}, F_{1}, F_{2}, F_{3}$. Then, in section 6.4. we constructed some function A, the graph Γ of which covers the set \mathcal{Z}. To get our main result, we need to know that we covered a major part of F. In this last part of the proof of Theorem 5.4 we show that the μ-measure of F_{1}, F_{2}, F_{3} is quite small. In particular, we deduce that $\mu\left(F_{1} \cup F_{2} \cup F_{3}\right) \leq \frac{1}{100}$. As stated at the beginning of section 6.1, this completes the proof of Theorem 5.4.
8.1. Most of F is close to the graph of A. With $K:=2(104 \cdot 10 \cdot 6+214)$, we define the set G by

$$
\begin{aligned}
& \left\{x \in F \backslash \mathcal{Z} \mid \forall i \in I_{12} \text { with } \pi(x) \in 3 R_{i}, \text { we have } x \notin K B_{i}\right\} \\
& \\
& \cup\{x \in F \backslash \mathcal{Z} \mid \pi(x) \in \pi(\mathcal{Z})\} .
\end{aligned}
$$

At first, we show that the μ-measure of G is small.
Lemma 8.1. Let $0<\alpha \leq \frac{1}{280}$. There exist some $\tilde{\varepsilon}=\tilde{\varepsilon}\left(N, n, C_{0}, \alpha\right)$ so that, if $\eta<2 \tilde{\varepsilon}$ and $k \geq 4$, there exists some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}\right)$ so that, for all $\varepsilon \in\left[\frac{\eta}{2}, \tilde{\varepsilon}\right)$, we have

$$
\mu(G) \leq C \mathcal{M}_{\mathcal{K}^{p}}(\mu) \stackrel{(C)}{\leq} C \eta,
$$

where the condition (C) was given on page 1208 ,
Proof. Let $0<\alpha \leq \frac{1}{280}$ and $\tilde{\varepsilon}:=\min \left\{\bar{\varepsilon}, \frac{\alpha}{C}\right\}$ where $\bar{\varepsilon}$ is given by Lemma 6.11 and $\bar{C}=\bar{C}\left(N, n, C_{0}\right)$ is a fixed constant defined in this proof on page 1237. Furthermore let $\eta<2 \tilde{\varepsilon}, k \geq 4$ and $\eta \leq 2 \varepsilon<2 \tilde{\varepsilon}$.

Let $x \in G$. If $x \in G \backslash \pi^{-1}(\pi(\mathcal{Z})) \subset F \subset B(0,5)$, with Lemma 6.13(ii), there exists some $i \in I_{12}$ with $\pi(x) \in R_{i} \subset 2 R_{i}$. Let X_{i} be the centre of B_{i} (cf. Lemma 6.14). We set

$$
X(x):= \begin{cases}X_{i} & \text { if } x \in G \backslash \pi^{-1}(\pi(\mathcal{Z})) \\ \pi(x)+A(\pi(x)) & \text { if } x \in G \cap \pi^{-1}(\pi(\mathcal{Z}))\end{cases}
$$

Claim 1. For all $x \in G$ and $X=X(x)$ defined as above, we have

$$
\begin{equation*}
d(x, X)<7 d(x), \quad d(\pi(x), \pi(X)) \leq \frac{d(x)}{10}, \quad \frac{d(x)}{2} \leq d(X, x), \quad\left(X, \frac{d(x)}{10}\right) \in S \tag{8.1}
\end{equation*}
$$

Proof of Claim 1.

1. Case: $x \in G \backslash \pi^{-1}(\pi(\mathcal{Z}))$. Due to the definition of G and $\pi(x) \in 2 R_{i} \subset 3 R_{i}$, we have $x \notin K B_{i}$. By adding some $q \in R_{i}$ with the triangle inequality and using Lemma 6.14 we get $d\left(\pi(x), \pi\left(X_{i}\right)\right) \leq 104 \operatorname{diam} B_{i}$. With Lemma 6.14 we know $\left(X_{i}, \frac{\operatorname{diam} B_{i}}{2}\right) \in S$ and hence we get $d\left(X_{i}\right)<\operatorname{diam} B_{i}$. Using $x \notin K B_{i}$ and Lemma 6.11, we get $K \cdot \frac{\operatorname{diam} B_{i}}{2}<d\left(x, X_{i}\right)<6 d(x)+214 \operatorname{diam} B_{i}$, which yields by definition of K (cf. the beginning of this subsection) $104 \operatorname{diam} B_{i}<\frac{d(x)}{10}$. From the previous two estimates, we get $d\left(x, X_{i}\right)<7 d(x)$; i.e., the first inequality holds in this case. Furthermore, we have the second one since $d\left(\pi(x), \pi\left(X_{i}\right)\right) \leq 104 \operatorname{diam} B_{i}<\frac{d(x)}{10}$.

We have $\left(X_{i}, \frac{\operatorname{diam} B_{i}}{2}\right) \in S$, so we get $d(x) \leq d\left(X_{i}, x\right)+\frac{\operatorname{diam} B_{i}}{2}<d\left(X_{i}, x\right)+\frac{d(x)}{2}$, and hence the third inequality holds in this case. Due to Lemma 6.9, we have $\frac{\text { diam } B_{i}}{2}<\frac{d(x)}{10}<\frac{60}{10}<50$, so that with Lemma6.2(ii) we deduce that $\left(X, \frac{d(x)}{10}\right) \in S$.
2. Case: $x \in G \cap \pi^{-1}(\pi(\mathcal{Z}))$. We have $\pi(x) \in \pi(\mathcal{Z})$ and hence $X=\pi(x)+$ $A(\pi(x)) \in \mathcal{Z}$ (cf. Definition 6.20). By definition of \mathcal{Z} and Lemma66.2(i), we obtain $(X, \sigma) \in S$ for all $\sigma \in(0,50)$ and hence $\frac{d(x)}{2} \leq d(X, x)+\sigma$, which establishes the third estimate. Moreover, we have $d(\pi(X), \pi(x))=d(\pi(x), \pi(x))=0$. Using Lemma 6.10, we obtain $d(X)=0$ and hence we get with Lemma 6.11 $d(x, X) \leq$ $6 d(x)$. Furthermore, we have with Lemma 6.9 that $\frac{d(x)}{10} \leq 6<50$ so that by definition of \mathcal{Z}, we get $\left(X, \frac{d(x)}{10}\right) \in S$. Claim 1 is proved.

Let $P_{x}:=P_{\left(X, \frac{d(x)}{10}\right)}$ be the plane associated to $B\left(X, \frac{d(x)}{10}\right)$ (cf. Definition 6.1). We define

$$
\begin{equation*}
\Upsilon:=\left\{u \in B\left(X, \frac{d(x)}{10}\right) \left\lvert\, d\left(u, P_{x}\right) \leq \frac{8}{\delta} \frac{d(x)}{10} \varepsilon\right.\right\} . \tag{8.2}
\end{equation*}
$$

Due to Definition 6.1 we have $\beta_{1 ; k}^{P_{x}}\left(X, \frac{d(x)}{10}\right) \leq 2 \varepsilon$ and hence we get using Chebyshev's inequality

$$
\mu\left(B\left(X, \frac{d(x)}{10}\right) \backslash \Upsilon\right) \leq \frac{\delta}{8 \varepsilon}\left(\frac{d(x)}{10}\right)^{n} \beta_{1 ; k}^{P_{x}}\left(X, \frac{d(x)}{10}\right) \leq \frac{\delta}{4}\left(\frac{d(x)}{10}\right)^{n} .
$$

Since $\Upsilon \subset B\left(X, \frac{d(x)}{10}\right)$ and $\delta\left(B\left(X, \frac{d(x)}{10}\right)\right) \geq \frac{1}{2} \delta\left(\right.$ cf. Definition 6.1] of $\left.S_{\text {total }}\right)$, we obtain

$$
\mu\left(B\left(X, \frac{d(x)}{10}\right) \cap \Upsilon\right) \geq \mu\left(B\left(X, \frac{d(x)}{10}\right)\right)-\mu\left(B\left(X, \frac{d(x)}{10}\right) \backslash \Upsilon\right) \geq \frac{\delta}{4}\left(\frac{d(x)}{10}\right)^{n}
$$

With Corollary $4.3\left(\lambda=\frac{\delta}{4}, t=\frac{d(x)}{10}\right)$, there exist constants $C_{1}=C_{1}\left(N, n, C_{0}\right), C_{2}=$ $C_{2}\left(N, n, C_{0}\right)$ and an $\left(n, 10 n \frac{d(x)}{10 C_{1}}\right)$-simplex $T=\Delta\left(x_{0}, \ldots, x_{n}\right) \in F \cap B\left(X, \frac{d(x)}{10}\right) \cap \Upsilon$ so that for all $j \in\{0, \ldots, n\}$,

$$
\begin{equation*}
\mu\left(B\left(x_{j}, \frac{d(x)}{10 C_{1}}\right) \cap B\left(X, \frac{d(x)}{10}\right) \cap \Upsilon\right) \geq\left(\frac{d(x)}{10}\right)^{n} \frac{1}{C_{2}} . \tag{8.3}
\end{equation*}
$$

Let $y_{j} \in B\left(x_{j}, \frac{d(x)}{10 C_{1}}\right) \cap \Upsilon$ for all $j \in\{0, \ldots, n\}$. By applying Lemma $2.8(n+1)$ times, we find that $\Delta\left(y_{0}, \ldots, y_{n}\right)$ is an $\left(n, 8 n \frac{d(x)}{10 C_{1}}\right)$-simplex.
Claim 2. For all $x \in G$, we have $d\left(x, \operatorname{aff}\left(y_{0}, \ldots, y_{n}\right)\right) \geq \frac{d(x)}{4}$.
Proof of Claim 2. Let $P_{y}:=\operatorname{aff}\left(y_{0}, \ldots, y_{n}\right)$ be the plane through y_{0}, \ldots, y_{n}. Applying Lemma $2.17\left(C=\frac{C_{1}}{8 n}, \hat{C}=1, t=\frac{d(x)}{10}, \sigma=\frac{8}{\delta} \varepsilon, P_{1}=P_{y}, P_{2}=P_{x}\right.$, $\left.S=\Delta\left(y_{0}, \ldots, y_{n}\right), x=X, m=n\right)$ yields $\varangle\left(P_{y}, P_{x}\right) \leq \alpha$, where we use that $\varepsilon \leq \tilde{\varepsilon} \leq \frac{\alpha}{C}$ and \bar{C} is given by Lemma 2.17. So, with Definition 6.1 we obtain $\varangle\left(P_{y}, P_{0}\right) \leq 2 \alpha$. Let $\hat{P}_{y} \in \mathcal{P}(N, n)$ be the n-dimensional plane parallel to P_{y} with $X \in \hat{P}_{y}$, and $\hat{P}_{0} \in \mathcal{P}(N, n)$ be the plane parallel to P_{0} with $X \in \hat{P}_{0}$. We have $\alpha \leq \frac{1}{280}$, and hence
$d\left(\pi_{\hat{P}_{y}}(x), \pi_{\hat{P}_{0}}(x)\right)=\left|\pi_{\hat{P}_{y}-X}(x-X)-\pi_{\hat{P}_{0}-X}(x-X)\right| \leq d(x, X) \varangle\left(\hat{P}_{y}, \hat{P}_{0}\right) \stackrel{\boxed{8.11}}{<} \frac{d(x)}{20}$.
Furthermore, with (8.1), we get $d\left(\pi_{\hat{P}_{0}}(x), X\right)=d(\pi(x), \pi(X)) \leq \frac{d(x)}{10}$. Using the triangle inequality, the previous two estimates imply $d\left(\pi_{\hat{P}_{y}}(x), X\right) \leq \frac{d(x)}{20}+\frac{d(x)}{10}$.

Since $y_{0} \in \Upsilon \subset B\left(X, \frac{d(x)}{10}\right)$ we have $d\left(P_{y}, \hat{P}_{y}\right)=d\left(X, P_{y}\right) \leq d\left(X, y_{0}\right) \leq \frac{d(x)}{10}$, and hence

$$
\frac{d(x)}{2} \stackrel{\sqrt{8.11}}{\leq} d\left(x, P_{y}\right)+d\left(P_{y}, \hat{P}_{y}\right)+d\left(\pi_{\hat{P}_{y}}(x), X\right) \leq d\left(x, P_{y}\right)+\frac{d(x)}{4},
$$

and we gain $d\left(x, P_{y}\right) \geq \frac{d(x)}{4}$. Claim 2 is proved.
With (8.1) and $d\left(y_{j}, X\right) \leq d\left(y_{j}, x_{j}\right)+d\left(x_{j}, X\right) \leq \frac{d(x)}{10 C_{1}}+\frac{d(x)}{10}$, we obtain $y_{0}, \ldots y_{n}$, $x \in B(X, 7 d(x))$, which is a subset of $B\left(X, \frac{C_{1}}{8 n} \frac{d(x)}{10}\right)$, where we used the explicit characterisation of C_{1} given in Lemma 4.2, Due to the second property of a μ proper integrand (see Definition 3.1), there exists some $\tilde{C}=\tilde{C}\left(N, n, \mathcal{K}, p, C_{0}\right) \geq 1$ so that we get with Claim 2

$$
\begin{aligned}
\mathcal{K}^{p}\left(y_{0}, \ldots, y_{n}, x\right) & \geq \tilde{C}^{-1}\left(\frac{d(x)}{10}\right)^{-n(n+1)}\left(\frac{d\left(x, \operatorname{aff}\left(y_{0}, \ldots, y_{n}\right)\right)}{\frac{d(x)}{10}}\right)^{p} \\
& >\tilde{C}^{-1}\left(\frac{d(x)}{10}\right)^{-n(n+1)}
\end{aligned}
$$

This estimate holds for all $y_{i} \in B\left(x_{i}, \frac{d(x)}{10 C_{1}}\right) \cap \Upsilon$. By restricting the integration to the balls $B\left(x_{i}, \frac{d(x)}{10 C_{1}}\right)$ and using the previous estimate as well as estimate (8.3), we get

$$
\int \cdots \int \mathcal{K}^{p}\left(y_{0}, \ldots, y_{n}, x\right) \mathrm{d} \mu\left(y_{0}\right) \ldots \mathrm{d} \mu\left(y_{n}\right) \geq \tilde{C}^{-1} C_{2}^{-(n+1)}
$$

We have proven the previous inequality for all $x \in G$, so finally we deduce with (C) from page 1208 that there exists some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}\right)$ so that

$$
\mu(G) \leq \tilde{C} C_{2}^{(n+1)} \int_{G} \int \cdots \int \mathcal{K}^{p}\left(y_{0}, \ldots, y_{n}, x\right) \mathrm{d} \mu\left(y_{0}\right) \ldots \mathrm{d} \mu\left(y_{n}\right) \mathrm{d} \mu(x) \stackrel{(\mathrm{C})}{\leq} C \eta .
$$

Lemma 8.2. Let $\alpha, \varepsilon>0$. If $\eta \leq 2 \varepsilon$, we have $(20 K)^{-1} d(x) \leq D(\pi(x)) \leq d(x)$ for all $x \in F \backslash G$, where K is the constant defined on page 1236 at the beginning of this subsection.

Proof. Let $x \in F \backslash G$. We have $D(\pi(x))=\inf _{y \in \pi^{-1}(\pi(x))} d(y) \leq d(x)$. If $x \in \mathcal{Z}$, Lemma 6.10 implies $d(x)=0$, so the statement is trivial. Now we assume $x \notin \mathcal{Z}$. Since $x \notin G \cup \mathcal{Z}$, by definition of G, there exists some $i \in I_{12}$ with $\pi(x) \in 3 R_{i}$ and $x \in K B_{i}$. We have $B_{i}=B\left(X_{i}, t_{i}\right)$ where $\left(X_{i}, t_{i}\right) \in S$ (see Lemma 6.14) and $K>1$ (see page 1236), so we obtain $d(x) \leq d\left(X_{i}, x\right)+t_{i}<K \operatorname{diam} B_{i}$. Now, with Lemma 6.13 (i) and 6.14, we deduce that $D(\pi(x)) \geq \frac{1}{20 K} d(x)$.

Lemma 8.3. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\bar{\varepsilon}=\bar{\varepsilon}\left(N, n, C_{0}\right)$ and some $\tilde{k} \geq 4$ so that, if $\eta<2 \bar{\varepsilon}$ and $k \geq \tilde{k}$, for all $\varepsilon \in\left[\frac{\eta}{2}, \bar{\varepsilon}\right)$ we have that the following is true. There exists some constant $C=C(n)$ so that, for all $x \in F$ with $t \geq \frac{d(x)}{10}$, we have

$$
\int_{B(x, t) \backslash G} d(u, \pi(u)+A(\pi(u))) \mathrm{d} \mu(u) \leq C \varepsilon t^{n+1} .
$$

Proof. Let $0<\alpha \leq \frac{1}{4}$. We choose some ε with $\eta \leq 2 \varepsilon<2 \bar{\varepsilon}$ and some $k \geq \tilde{k}:=$ $\max \{\bar{k}, \tilde{C}\}$, where $\bar{\varepsilon}$ and \bar{k} are given by Lemma 6.21 and \tilde{C} is a fixed constant
introduced in step VI of this proof. Let $x \in F$ and $t \geq \frac{d(x)}{10}$. We define

$$
I(x, t):=\left\{i \in I_{12} \mid\left(3 R_{i} \times P_{0}^{\perp}\right) \cap B(x, t) \cap(F \backslash G) \neq \emptyset\right\}
$$

where $3 R_{i} \times P_{0}^{\perp}:=\left\{x \in \mathbb{R}^{N} \mid \pi(x) \in 3 R_{i}\right\}$. At first, we prove some intermediate results:
I. Due to the definition of G we have

$$
(B(x, t) \cap F) \backslash(G \cup \mathcal{Z}) \subset \bigcup_{i \in I(x, t)}\left(3 R_{i} \times P_{0}^{\perp}\right) \cap K B_{i}
$$

II. Let $u \in 3 R_{i} \times P_{0}^{\perp}$. Using Lemma 6.13(iv) implies that $\sum_{j \in I_{12}} \phi_{j}(\pi(u))$ is a finite sum.
III. Let $i \in I(x, t)$ and $j \in I_{12}$. We define $\phi_{i, j}$ to be 0 if $3 R_{i}$ and $3 R_{j}$ are disjoint and 1 if they are not disjoint. We have $\phi_{j}(\pi(u)) \leq 1=\phi_{i, j}$ for all $u \in$ $\left(3 R_{i} \times P_{0}^{\perp}\right) \cap K B_{i}$, since if $\phi_{j}(\pi(u)) \neq 0$ the definition of ϕ_{j} (see page 1215) gives us $\pi(u) \in 3 R_{j}$ and because $\pi(u) \in 3 R_{i}$, we deduce that $3 R_{i} \cap 3 R_{j} \neq \emptyset$.
IV. If $\phi_{i, j} \neq 0$, we can apply Lemma 6.13(iii) and Lemma 6.21(i). Hence, using Lemma 6.14, the size of B_{i} as well as the distance of B_{i} to B_{j} are comparable to the size of B_{j}. Consequently, there exists some constant \tilde{C} so that $K B_{i} \subset \tilde{C} B_{j} \subset k B_{j}$.
V. If $u \in k B_{j}$, we have $\left|\pi^{\perp}(u)-A_{j}(\pi(u))\right|<2 d\left(u, P_{j}\right)$. We recall that P_{j} is the graph of the affine map A_{j} (cf. Definition 6.17 and Lemma 6.18).

Proof of I-V. We set $\hat{P}_{0}:=P_{0}+A_{j}(\pi(u))$ and $v:=\pi(u)+A_{j}(\pi(u))=\pi_{\hat{P}_{0}}(u)$. We get

$$
\left|\pi_{P_{j}}(u)-v\right|=\left|\pi_{P_{j}-v}(u-v)-\pi_{\hat{P}_{0}-v}(u-v)\right| \leq|u-v| \varangle\left(P_{j}, P_{0}\right) .
$$

Using this and $\varangle\left(P_{j}, P_{0}\right) \leq \alpha<\frac{1}{2}$ (cf. Definition 6.17) we obtain $|u-v|<$ $d\left(u, P_{j}\right)+\frac{1}{2}|u-v|$ and hence $\left|\pi^{\perp}(u)-A_{j}(\pi(u))\right|=|u-v|<2 d\left(u, P_{j}\right)$.

If $u \in \mathcal{Z}$, the definition of A (see page 1215) yields $d(u, \pi(u)+A(\pi(u)))=0$. Using Lemma 6.19 and Definition 6.20 we get

$$
\begin{aligned}
& \int_{B(x, t) \backslash G} d(u, \pi(u)+A(\pi(u))) \mathrm{d} \mu(u) \\
& \quad \leq \int_{B(x, t) \backslash(G \cup \mathcal{Z})} \sum_{j \in I_{12}} \phi_{j}(\pi(u))\left|\pi^{\perp}(u)-A_{j}(\pi(u))\right| \mathrm{d} \mu(u) .
\end{aligned}
$$

Using I to V we obtain
$\int_{B(x, t) \backslash G} d(u, \pi(u)+A(\pi(u))) \mathrm{d} \mu(u) \leq 2 \sum_{i \in I(x, t)} \sum_{j \in I_{12}} \phi_{i, j} t_{j}^{n+1} \frac{1}{t_{j}^{n}} \int_{k B_{j}} \frac{d\left(u, P_{j}\right)}{t_{j}} \mathrm{~d} \mu(u)$.
Now we get the statement by using the following five results.
VI. Lemma 6.21 and the definition of $S_{\text {total }}$ imply $\beta_{1 ; k}^{P_{j}}\left(B_{j}\right) \leq 2 \varepsilon$.
VII. Let $i \in I(x, t)$ and $j \in I_{12}$. If $\phi_{i, j} \neq 0$, we conclude that $3 R_{i} \cap 3 R_{j} \neq \emptyset$. Hence, with Lemma 6.13(iii) and Lemma 6.14 we deduce that $2 t_{j}=\operatorname{diam} B_{j} \leq$ 1000 diam R_{i}.
VIII. For $i \in I(x, t)$, we have with Lemma6.13(iv) that $\sum_{j \in I_{12}} \phi_{i, j} \leq(180)^{n}$.
IX. For $i \in I(x, t)$, there exists some $y \in B(x, t) \cap(F \backslash G)$ with $\pi(y) \in 3 R_{i}$. We obtain with Lemma 6.13, Lemma 8.2 and our assumption $t \geq \frac{d(x)}{10}$ that $10 \operatorname{diam} R_{i} \leq$ $d(x)+d(x, y) \leq 11 t$.
X. Let $i \in I(x, t)$. With IX we obtain diam $R_{i}<2 t$ and, because $\left(3 R_{i} \times P_{0}^{\perp}\right) \cap$ $B(x, t) \neq \emptyset$, we get $R_{i} \subset B\left(\pi(x), t+\operatorname{diam} 3 R_{i}\right) \cap P_{0} \subset B(\pi(x), 7 t) \cap P_{0}$. Moreover, with Lemma 6.13(ii), the primitive cells R_{i} have disjoint interior and hence we get with Lemma A. 4 (we recall that ω_{n} denotes the volume of the n-dimensional unit sphere)

$$
\sum_{i \in I(x, t)}\left(\operatorname{diam} R_{i}\right)^{n} \leq \sqrt{n}^{n} \mathcal{H}^{n}\left(B(\pi(x), 7 t) \cap P_{0}\right)=\sqrt{n}^{n} \omega_{n}(7 t)^{n} .
$$

Definition 8.4. We define $\tilde{F}:=\left\{x \in F \backslash G \left\lvert\, d(x, \pi(x)+A(\pi(x))) \leq \varepsilon^{\frac{1}{2}} d(x)\right.\right\}$.
Theorem 8.5. Let $0<\alpha \leq \frac{1}{4}$. There exist some $\hat{\varepsilon}=\hat{\varepsilon}\left(N, n, C_{0}\right) \leq \frac{1}{4}$ and some $\tilde{k} \geq$ 4 so that if $\eta<2 \hat{\varepsilon}$ and $k \geq \hat{k}$, there exists some constant $C_{5}=C_{5}\left(N, n, \mathcal{K}, p, C_{0}\right)$ so that, for all $\varepsilon \in\left[\frac{\eta}{2}, \hat{\varepsilon}\right)$, we have $\mu(F \backslash \tilde{F}) \leq C_{5} \varepsilon^{\frac{1}{2}}$.

Proof. Let $0<\alpha \leq \frac{1}{4}$. We choose some ε with $\eta \leq 2 \varepsilon<2 \hat{\varepsilon}:=\min \left\{2 \tilde{\varepsilon}, 2 \bar{\varepsilon}, \frac{1}{2}\right\}$ and some $k \geq \tilde{k}$ where $\tilde{\varepsilon}$ is given by Lemma 8.1 and $\bar{\varepsilon}$ and \tilde{k} are given by Lemma 8.3,

At first, we prove some intermediate results:
I. We have $\mathcal{Z} \subset \tilde{F}$ because for $x \in \mathcal{Z}$ the definition of A on \mathcal{Z} (see Definition 6.20) implies that $d(x, \pi(x)+A(\pi(x)))=d(x, x)=0$.
II. If $x \in F \backslash(\tilde{F} \cup G)$, we conclude with I that $x \notin \mathcal{Z}$ and, with Lemma 6.10. we deduce that $d(x) \neq 0$. So $\mathcal{G}=\left\{\left.B\left(x, \frac{d(x)}{10}\right) \right\rvert\, x \in F \backslash(\tilde{F} \cup G)\right\}$ is a set of nondegenerate balls. For $x \in F \subset B(0,5)$, we have $d(x) \leq 60$ (see Lemma (6.9) so that we can apply Besicovitch's covering theorem [7, 1.5.2, Thm. 2] to \mathcal{G} and get $N_{0}=N_{0}(N)$ families $\mathcal{B}_{m} \subset \mathcal{G}, m=1, \ldots, N_{0}$, of disjoint balls with $F \backslash(\tilde{F} \cup G) \subset \bigcup_{m=1}^{N_{0}} \bigcup_{B \in \mathcal{B}_{m}} B$.
III. Since d is 1-Lipschitz (Lemma 6.8), for all $u \in B\left(x, \frac{d(x)}{10}\right), d(x)-d(u) \leq$ $d(x, u) \leq \frac{d(x)}{10}$ and hence $\frac{1}{d(u)} \leq \frac{10}{9} \frac{1}{d(x)}<\frac{2}{d(x)}$.
IV. Let $1 \leq m \leq N_{0}$ and let $B_{x}=B\left(x, \frac{d(x)}{10}\right)$ and $B_{y}=B\left(y, \frac{d(y)}{10}\right)$ be two balls in \mathcal{B}_{m}. Then we either have
a) $\pi\left(\frac{1}{40 K} B_{x}\right) \cap \pi\left(\frac{1}{40 K} B_{y}\right)=\emptyset$ or
b) if $2 d(x) \geq d(y)$, then $B_{y} \subset 200 B_{x}$ and diam $B_{y}>(40 K)^{-1} \operatorname{diam} B_{x}$,
where K is the constant from page 1236 .
Proof of I-IV. Let $\pi\left(\frac{1}{40 K} B_{x}\right) \cap \pi\left(\frac{1}{40 K} B_{y}\right) \neq \emptyset$ and $2 d(x) \geq d(y)$. We deduce with Lemma 6.11 $d(x, y)<19 d(x)$, which implies $B_{y} \subset B\left(x, 19 d(x)+\frac{d(y)}{10}\right)=200 B_{x}$. With Lemma 8.2, we get $\frac{d(x)}{20 K} \leq D(\pi(y))+d(\pi(x), \pi(y))<d(y)+\frac{d(x)}{40 K}$, and hence $d(y)>(40 K)^{-1} d(x)$. All in all, we have proven that either case a) or case b) is true.
V. There exists some constant $C=C(n)$ so that $\sum_{B \in \mathcal{B}_{m}}(\operatorname{diam} B)^{n} \leq C$ for all $1 \leq m \leq N_{0}$.

Proof of V . Let $1 \leq m \leq N_{0}$. We recursively construct for every m some sequence of numbers, some sequence of balls and some sequence of sets. At first, we define the initial elements. Let $d_{m}^{1}:=\sup _{B \in \mathcal{B}_{m}} \operatorname{diam} B$. We have $d_{m}^{1}<\infty$ because, for all $x \in F \subset B(0,5)$, we have with Lemma 6.9 that $d(x) \leq 60$. Now we choose
$B_{m}^{1} \in \mathcal{B}_{m}$ with $\operatorname{diam} B_{m}^{1} \geq \frac{d_{m}^{1}}{2}$ and define

$$
\mathcal{B}_{m}^{1}:=\left\{B \in \mathcal{B}_{m} \left\lvert\, \pi\left(\frac{1}{40 K} B_{m}^{1}\right) \cap \pi\left(\frac{1}{40 K} B\right) \neq \emptyset\right.\right\} .
$$

We continue these sequences recursively. We set $d_{m}^{i+1}=\sup _{B^{\prime} \in \mathcal{B}_{m} \backslash \bigcup_{j=1}^{i} \mathcal{B}_{m}^{j}} \operatorname{diam} B^{\prime}$, choose $B_{m}^{i+1} \in \mathcal{B}_{m} \backslash \bigcup_{j=1}^{i} \mathcal{B}_{m}^{j}$ with diam $B_{m}^{i+1} \geq \frac{d_{m}^{i+1}}{2}$ and define

$$
\mathcal{B}_{m}^{i+1}:=\left\{B \in \mathcal{B}_{m} \backslash \bigcup_{j=1}^{i} \mathcal{B}_{m}^{j} \left\lvert\, \pi\left(\frac{1}{40 K} B_{m}^{i+1}\right) \cap \pi\left(\frac{1}{40 K} B\right) \neq \emptyset\right.\right\} .
$$

If there exists some $l \in \mathbb{N}$ so that eventually $\mathcal{B}_{m} \backslash \bigcup_{j=1}^{l} \mathcal{B}_{m}^{j}=\emptyset$, we set $\mathcal{B}_{m}^{i}:=\emptyset$ for all $i \geq l$ and interrupt the sequences $\left(d_{m}^{i}\right)$ and $\left(B_{m}^{i}\right)$. We have the following results:
(i) For all $l \in \mathbb{N}$ and $B_{m}^{l}=B\left(x_{m}^{l}, \frac{d\left(x_{m}^{l}\right)}{10}\right)$, we have with Lemma 6.9 and $x_{m}^{l} \in$ $F \subset B(0,5)$ that $\frac{d\left(x_{m}^{l}\right)}{10} \leq 6$. Hence we get $B_{m}^{l} \subset B(0,11)$.
(ii) For all $1 \leq m \leq N_{0}$, we have $\bigcup_{i=1}^{\infty} \mathcal{B}_{m}^{i}=\mathcal{B}_{m}$.

Proof of (i) and (ii). If there exist only finitely many d_{m}^{l}, the construction implies $\mathcal{B}_{m} \subset \bigcup_{j=1}^{\infty} \mathcal{B}_{m}^{j}$.
Now we assume that there exist infinitely many d_{m}^{l}. Since \mathcal{B}_{m} is a family of disjoint balls, the set $\left\{B_{m}^{l} \mid l \in \mathbb{N}\right\}$ is also a family of disjoint balls. Due to (i), all of those balls are contained in $B(0,11)$. If there exists some $c>0$ with diam $B_{m}^{l}>c$ for all $l \in \mathbb{N}$, there cannot be infinitely many such balls. Hence we deduce that diam $B_{m}^{l} \rightarrow 0$ if $l \rightarrow \infty$. Let $B \in \mathcal{B}_{m}$. If $B \notin \bigcup_{i=1}^{\infty} \mathcal{B}_{m}^{i}$, we obtain $2 \operatorname{diam} B_{m}^{l} \geq d_{m}^{l} \geq \operatorname{diam} B$ for all $l \in \mathbb{N}$ where we used the definition of d_{m}^{l}. This is in contradiction to diam $B_{m}^{l} \rightarrow 0$. So we get $B \in \bigcup_{i=1}^{\infty} \mathcal{B}_{m}^{i}$. All in all, we have proven $\bigcup_{i=1}^{\infty} \mathcal{B}_{m}^{i} \supset \mathcal{B}_{m}$. The inverse inclusion follows by definition of \mathcal{B}_{m}^{i}.
(iii) Let $1 \leq m \leq N_{0}, l \in \mathbb{N}$ and $B_{y}=B\left(y, \frac{d(y)}{10}\right) \in \mathcal{B}_{m}^{l}, B_{m}^{l}=B\left(x_{m}^{l}, \frac{d\left(x_{m}^{l}\right)}{10}\right) \in$ \mathcal{B}_{m}^{l}. We have $\pi\left(\frac{1}{40 K} B_{m}^{l}\right) \cap \pi\left(\frac{1}{40 K} B_{y}\right) \neq \emptyset$ and $2 d\left(x_{m}^{l}\right)=10 \operatorname{diam} B_{m}^{l} \geq 10 \frac{d_{m}^{l}}{2} \geq$ $10 \frac{\text { diam } B_{y}}{2}=d(y)$. Hence IV implies $B_{y} \subset 200 B_{m}^{l}$ and diam $B_{y}>(40 K)^{-1} \operatorname{diam} B_{m}^{l}$. The balls in \mathcal{B}_{m}^{l} are disjoint, so, with Lemma A. $1\left(s=\frac{\text { diam } B_{m}^{l}}{80 K}, r=200 \frac{\mathrm{diam} B_{m}^{l}}{2}\right)$, we deduce that $\# \mathcal{B}_{m}^{l} \leq(200 \cdot 80 K)^{N}$.
(iv) $\left\{\frac{1}{40 K} B_{m}^{l}\right\}_{l \in \mathbb{N}}$ is a family of disjoint balls, and with (i) we get $\pi\left(\frac{1}{40 K} B_{m}^{l}\right) \subset$ $\pi(B(0,11))$ for all $l \in \mathbb{N}$. Hence we obtain

$$
\sum_{l=1}^{\infty}\left(\operatorname{diam} \pi\left(\frac{1}{40 K} B_{m}^{l}\right)\right)^{n} \leq \frac{2^{n}}{\omega_{n}} \mathcal{H}^{n}(\pi(B(0,11)))=22^{n}
$$

Now we are able to prove V by using (ii), (iii) and (iv):

$$
\sum_{B \in \mathcal{B}_{m}}(\operatorname{diam} B)^{n} \leq \sum_{l=1}^{\infty} \sum_{B \in \mathcal{B}_{m}^{l}}\left(d_{m}^{l}\right)^{n}=C(n) \sum_{l=1}^{\infty}\left(\operatorname{diam} \pi\left(\frac{1}{40 K} B_{m}^{l}\right)\right)^{n} \leq C(n)
$$

Finally, we can finish the proof of Theorem 8.5 Let p_{B} denote the centre of some ball B. Using the definition of \tilde{F} and Lemma 8.3, there exists some constant
$C=C(n)$ so that we obtain

$$
\begin{aligned}
\varepsilon^{\frac{1}{2}} \mu(F \backslash(\tilde{F} \cup G)) & <\int_{F \backslash(\tilde{F} \cup G)} \frac{d(u, \pi(u)+A(\pi(u)))}{d(u)} \mathrm{d} \mu(u) \\
& \leq \sum_{m=1}^{\text {II }} \sum_{B \in \mathcal{B}_{m}}^{N_{0}} \int_{B \backslash(\tilde{F} \cup G)} \frac{d(u, \pi(u)+A(\pi(u)))}{d(u)} \mathrm{d} \mu(u) \\
& \stackrel{\text { III }}{<} \sum_{m=1}^{N_{0}} \sum_{B \in \mathcal{B}_{m}} \frac{2}{d\left(p_{B}\right)} C \varepsilon\left(\frac{\operatorname{diam} B}{2}\right)^{n+1} \leq C(N, n) \varepsilon .
\end{aligned}
$$

This leads to $\mu(F \backslash(\tilde{F} \cup G)) \leq C(N, n) \varepsilon^{\frac{1}{2}}$. With $\eta<2 \varepsilon \leq \varepsilon^{\frac{1}{2}}$ and Lemma 8.1 the assertion holds.
8.2. F_{1} is small. Now we are able to estimate $\mu\left(F_{1}\right)$. We recall that η and k are fixed constants (cf. the first lines of section 6.1) and that F_{1} depends on the choice of $\alpha, \varepsilon>0$ (cf. Definition 6.3).

Theorem 8.6. Let $0<\alpha \leq \frac{1}{4}$. There exist some $\varepsilon^{*}=\varepsilon^{*}\left(N, n, C_{0}\right)$ and some $\tilde{k} \geq 4$ so that if $\eta<2 \varepsilon^{*}$ and $k \geq \tilde{k}$, for all $\varepsilon \in\left[\frac{\eta}{2}, \varepsilon^{*}\right)$, we have $\mu\left(F_{1}\right)<10^{-6}$.

Proof. Let $0<\alpha \leq \frac{1}{4}$ and let $\hat{\varepsilon}, C_{5}$ and \tilde{k} be the constants given by Theorem 8.5, We set $\varepsilon^{*}:=\min \left\{\hat{\varepsilon}, \frac{10^{-14}}{C_{5}^{2}}\right\}$ and choose some $k \geq \tilde{k}$ and some $\varepsilon \in\left[\frac{\eta}{2}, \varepsilon^{*}\right)$. First, we prove some intermediate results:
I. Let $\mathcal{G}=\left\{\left.B\left(x, \frac{h(x)}{10}\right) \right\rvert\, x \in F_{1} \cap \tilde{F}\right\}$. This is a set of nondegenerate balls because $\mathcal{Z} \cap F_{1}=\emptyset$ and, by definition of $h(\cdot)$ (see page (1208), we get $h(x) \leq 50$ for all $x \in F$. With Besicovitch's covering theorem [7, 1.5.2, Thm. 2], there exist $N_{0}=N_{0}(N)$ families $\mathcal{B}_{m} \subset \mathcal{G}, m=1, \ldots, N_{0}$, containing countably many disjoint balls with $F_{1} \cap \tilde{F} \subset \bigcup_{m=1}^{N_{0}} \bigcup_{B \in \mathcal{B}_{m}} B$.
II. Let $1 \leq m \leq N_{0}$ and $B=B\left(x, \frac{h(x)}{10}\right)$ where $x \in F_{1} \cap \tilde{F}$. Due to the definition of F_{1}, there exist some $y \in F$ and some $\tau \in\left[\frac{h(x)}{5}, \frac{h(x)}{2}\right]$ with $d(x, y) \leq \frac{\tau}{2}$ and $\delta(B(y, \tau)) \leq \delta$. For any $z \in B$, we get $d(z, y) \leq \frac{h(x)}{10}+\frac{\tau}{2} \leq \tau$. Hence we obtain $B \subset B(y, \tau)$ and conclude that $\mu(B) \leq \delta \tau^{n}<3^{n} \delta(\operatorname{diam} B)^{n}$.
III. For all $1 \leq m \leq N_{0}$, we have $\sum_{B \in \mathcal{B}_{m}}(\operatorname{diam} B)^{n} \leq 192^{n}$.

Proof of I-III. We define the function $\tilde{A}: U_{12} \rightarrow \mathbb{R}^{N}, u \mapsto u+A(u)$, where $U_{12}=$ $B(0,12) \cap P_{0} . \tilde{A}$ is Lipschitz continuous with Lipschitz constant less than 2 because A is defined on U_{12} (see page 1216), 3α-Lipschitz continuous (see Lemma 6.27) and $\alpha \leq \frac{1}{4}$. Let $B=B\left(x, \frac{h(x)}{10}\right) \in \mathcal{B}_{m}$. We have $F \subset B(0,5)$ (see (A) on page (1208), and so $\pi(F) \subset P_{0} \cap B(0,5)$ because π is the orthogonal projection on P_{0} and $0 \in P_{0}$. With the definition of \tilde{F}, Lemma 6.10 and $\varepsilon^{\frac{1}{2}}<\frac{1}{20}$, we obtain $d\left(x, x_{0}\right)<\frac{h(x)}{20}$ where $x_{0}:=\tilde{A}(\pi(x))$. Let $z \in \pi\left(B\left(x_{0}, \frac{h(x)}{40}\right)\right) \subset U_{12}$. Using the triangle inequality with the point $\tilde{A}\left(\pi\left(x_{0}\right)\right)=x_{0}$ and where \tilde{A} is 2-Lipschitz, we get $d(\tilde{A}(z), x) \leq \frac{h(x)}{10}$. This implies $\tilde{A}\left(\pi\left(B\left(x_{0}, \frac{h(x)}{40}\right)\right)\right) \subset B \cap \tilde{A}\left(U_{12}\right)$, and hence we gain

Figure 2. $\pi\left(B\left(x_{0}, \frac{h(x)}{40}\right)\right) \subset \pi\left(B\left(x, \frac{h(x)}{10}\right) \cap \tilde{A}\left(U_{12}\right)\right)$
$\pi\left(B\left(x_{0}, \frac{h(x)}{40}\right)\right) \subset \pi\left(B \cap \tilde{A}\left(U_{12}\right)\right)$ (see Figure 24). Now we have with [7. 2.4.1, Thm. 1]
(8.4) $\frac{\omega_{n}}{8^{n}}(\operatorname{diam} B)^{n}=\omega_{n}\left(\frac{h(x)}{40}\right)^{n}=\mathcal{H}^{n}\left(\pi\left(B\left(x_{0}, \frac{h(x)}{40}\right)\right)\right) \leq \mathcal{H}^{n}\left(B \cap \tilde{A}\left(U_{12}\right)\right)$.

The balls in \mathcal{B}_{m} are disjoint, so we conclude using [7, 2.4.1, Thm. 1] for the last estimate

$$
\sum_{B \in \mathcal{B}_{m}}(\operatorname{diam} B)^{n} \stackrel{\sqrt{8.4}}{\leq} \frac{8^{n}}{\omega_{n}} \sum_{B \in \mathcal{B}_{m}} \mathcal{H}^{n}\left(B \cap \tilde{A}\left(U_{12}\right)\right) \leq \frac{8^{n}}{\omega_{n}} \mathcal{H}^{n}\left(\tilde{A}\left(U_{12}\right)\right) \leq 192^{n}
$$

Now we have $\mu\left(F_{1} \cap \tilde{F}\right) \stackrel{\mathrm{I}}{\leq} \sum_{m=1}^{N_{0}} \sum_{B \in \mathcal{B}_{m}} \mu(B) \stackrel{\text { II, III }}{\leq} \delta N_{0} \cdot 576^{n}$. Since $\delta \leq \frac{10^{-10}}{600^{n} N_{0}}$ (see (6.11)) and $\varepsilon^{\frac{1}{2}}<\frac{10^{-7}}{C_{5}}$, we deduce together with Theorem 8.5 that $\mu\left(F_{1}\right)<$ 10^{-6}.
8.3. F_{2} is small. We recall that $0<\eta \leq 2^{-(n+1)}$ and $k \geq 1$ are fixed constants (cf. the first lines of section 6.1) and that F_{2} depends on the choice of $\alpha, \varepsilon>0$ (cf. Definition 6.3).

Theorem 8.7. Let $\alpha, \varepsilon>0$. There exists some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}, k\right)$ so that if $\eta \leq \frac{\varepsilon^{p}}{C} 10^{-6}$, we have $\mu\left(F_{2}\right) \leq 10^{-6}$.

Proof. Let $x \in F_{2}$ and $t \in(h(x), 2 h(x))$. It follows that $x \notin F_{1} \cup \mathcal{Z}$, and hence, for all $y \in F$ and for all $\tau \in\left[\frac{h(x)}{5}, \frac{h(x)}{2}\right]$ with $d(x, y) \leq \frac{\tau}{2}$, we obtain $\delta(B(y, \tau))>\delta$. So, in particular, we get $\delta\left(B\left(x, \frac{h(x)}{2}\right)\right)>\delta$ for $x=y$ and $\tau=\frac{h(x)}{2}$. If $k_{0}=1$, this implies $\tilde{\delta}_{k_{0}}(B(x, t)) \geq \delta(B(x, t))>\frac{\delta}{4^{n}}$, where we used $\frac{h(x)}{2}<t<2 h(x)$. Let (y, τ) be as in the definition of F_{2}. Then we have $d(x, y)+\tau<2 \tau \leq h(x)<t$ and hence $B(y, \tau) \subset B(x, t)$. We conclude that $\beta_{1 ; k}(x, t) \geq\left(\frac{\tau}{t}\right)^{n+1} \beta_{1 ; k}(y, \tau) \geq$ $\frac{\varepsilon}{10^{n+1}}$. Now, with Corollary $4.8\left(\lambda=\frac{\delta}{4^{n}}, k_{0}=1\right)$, there exists some constant
$C=C\left(N, n, \mathcal{K}, p, C_{0}, k\right)$ so that

$$
\begin{aligned}
\mathcal{M}_{\mathcal{K}^{p}}(\mu) & \geq \frac{1}{C} \int_{F_{2}} \int_{h(x)}^{2 h(x)} \beta_{1 ; k}(x, t)^{p} \chi_{\left\{\tilde{\delta}_{k_{0}}(B(x, t)) \geq \frac{\delta}{\left.4^{n}\right\}}\right.} \frac{\mathrm{d} t}{t} \mathrm{~d} \mu(x) \\
& \geq \frac{1}{C} \int_{F_{2}} \int_{h(x)}^{2 h(x)}\left(\frac{\varepsilon}{10^{n+1}}\right)^{p} \frac{\mathrm{~d} t}{t} \mathrm{~d} \mu(x) \geq \frac{1}{C}\left(\frac{\varepsilon}{10^{n+1}}\right)^{p} \mu\left(F_{2}\right) \ln (2) .
\end{aligned}
$$

Finally, using the previous inequality, condition (C) from page 1208 and $\eta \leq$ $\frac{\ln (2)}{10^{p(n+1)} C} \varepsilon^{p} 10^{-6}$, we get the assertion.
8.4. F_{3} is small. We mention for review that \tilde{F} is defined on page 1240 and set

$$
\tilde{\tilde{F}}:=\left\{x \in \tilde{F} \left\lvert\, \mu(\tilde{F} \cap B(x, t)) \geq \frac{99}{100} \mu(F \cap B(x, t))\right. \text { for all } t \in(0,2)\right\} .
$$

Lemma 8.8. Let $0<\alpha \leq \frac{1}{4}$. There exists some $\hat{\varepsilon}=\hat{\varepsilon}\left(N, n, C_{0}\right) \leq \frac{1}{4}$ and some $\tilde{k} \geq 4$ so that if $\eta<2 \hat{\varepsilon}$ and $k \geq \tilde{k}$, there exists some constant $C=C\left(N, n, \mathcal{K}, p, C_{0}\right)$ so that, for all $\varepsilon \in\left[\frac{\eta}{2}, \hat{\varepsilon}\right)$, we have $\mu(F \backslash \tilde{\tilde{F}}) \leq C \varepsilon^{\frac{1}{2}}$.

Proof. Let $0<\alpha \leq \frac{1}{4}$ and choose $\hat{\varepsilon}, \tilde{k}$ to be the constants given by Theorem 8.5 and let $k \geq \tilde{k}, \eta \leq 2 \varepsilon<2 \hat{\varepsilon}$. Due to Theorem 8.5] we only have to consider $\mu(\tilde{F} \backslash \tilde{\tilde{F}})$. For all $x \in \tilde{F} \backslash \tilde{\tilde{F}}$ using the definition of \tilde{F}, there exists some $t_{x} \in(0,2)$ with $\mu\left(\tilde{F} \cap B\left(x, t_{x}\right)\right) \leq 99 \mu\left((F \backslash \tilde{F}) \cap B\left(x, t_{x}\right)\right)$. Hence $\tilde{F} \backslash \tilde{\tilde{F}}$ is covered by balls $B\left(x, t_{x}\right)$ with centre in $\tilde{F} \backslash \tilde{\tilde{F}}$. So with Besicovitch's covering theorem [7, 1.5.2, Thm. 2] there exist $N_{0}=N_{0}(N)$ families $\mathcal{B}_{m}, m=1, \ldots, N_{0}$, of disjoint balls $B\left(x, t_{x}\right)$ so that

$$
\mu(\tilde{F} \backslash \tilde{\tilde{F}}) \leq \sum_{m=1}^{N_{0}} \sum_{B \in \mathcal{B}_{m}} \mu(\tilde{F} \cap B) \leq 99 \sum_{m=1}^{N_{0}} \sum_{B \in \mathcal{B}_{m}} \mu((F \backslash \tilde{F}) \cap B) \leq 99 N_{0} \mu(F \backslash \tilde{F}),
$$

and with Theorem 8.5 the assertion holds.
Lemma 8.9. Let $\theta, \alpha>0$. There exist some constant $C=C\left(N, n, C_{0}, \theta\right)>1$ and some constant $\varepsilon_{0}=\varepsilon_{0}\left(N, n, C_{0}, \theta\right)>0$ so that if $\eta<2 \varepsilon_{0}$ and $k \geq 4$, we have for all $\varepsilon \in\left[\frac{\eta}{2}, \varepsilon_{0}\right)$ that the following is true. If $(x, t) \in S$ and $100 t \geq \theta$, then we have $\varangle\left(P_{(x, t)}, P_{0}\right) \leq C \varepsilon$.
Proof. Let $\theta, \alpha>0, k \geq 4$ and $\eta<2 \varepsilon<2 \varepsilon_{0}$ where the constant ε_{0} is given by Lemma 4.9. Let $t \geq \frac{\theta}{100}$ and $(x, t) \in S$. We get with (A) and (D) (see page (1208) $\beta_{1 ; k}^{P_{0}}(x, t) \leq\left(\frac{500}{\theta}\right)^{n+1} 2 \varepsilon$. Furthermore, we have with Definition 6.1 that $\beta_{1 ; k}^{P_{(x, t)}}(x, t) \leq 2 \varepsilon$ and with $(x, t) \in S \subset S_{\text {total }}$ we obtain $\delta(B(x, t)) \geq \frac{\delta}{2}$. Now, with Lemma 4.9 ($y=x, c=1, \xi=2\left(\frac{500}{\theta}\right)^{n+1}, t_{x}=t_{y}=t, \lambda=\frac{\delta}{2}$), there exists some constant $C_{3}=C_{3}\left(N, n, C_{0}, \theta\right)$ so that $\varangle\left(P_{(x, t)}, P_{0}\right) \leq C_{3} \varepsilon$.

Lemma 8.10. Let $\theta, \alpha>0$. If $k \geq 400$, there exists some constant $\varepsilon^{*}=$ $\varepsilon^{*}\left(N, n, C_{0}, \alpha, \theta\right)$ so that if $\eta<2 \varepsilon^{*}$, we have for all $\varepsilon \in\left[\frac{\eta}{2}, \varepsilon^{*}\right)$ that for all $x \in F_{3}$ we have $h(x)<\frac{\theta}{100}$.
Proof. Let $\theta, \alpha>0$ and $k \geq 400$. We set $\varepsilon^{*}:=\min \left\{\bar{\varepsilon}, \varepsilon_{0}, \frac{\alpha}{2 C}\right\}$ where $\bar{\varepsilon}$ is given by Lemma 6.5 and ε_{0} as well as C are given by Lemma 8.9, Let $\eta \leq 2 \varepsilon<2 \varepsilon^{*}$ and
$x \in F_{3}$. With Lemma 6.2(i), we have $(x, h(x)) \in S$ and, with Lemma 6.5, we get $\varangle\left(P_{(x, h(x))}, P_{0}\right)>\frac{1}{2} \alpha$. Hence we obtain $h(x)<\frac{\theta}{100}$ with Lemma 8.9.

Lemma 8.11. Let $p=2$. There exist some $\hat{k} \geq 400$, some $\tilde{\alpha}=\tilde{\alpha}(n)>0$ and some $\hat{\theta}=\hat{\theta}\left(N, n, C_{0}\right) \in(0,1)$ so that for all $\alpha \in(0, \tilde{\alpha}]$ and $\theta \in(0, \hat{\theta}]$ there exists some $\hat{\varepsilon}=\hat{\varepsilon}\left(N, n, C_{0}, \alpha, \theta\right)$ so that if $k \geq \hat{k}$ and $\eta<\hat{\varepsilon}^{2}$, we have for all $\varepsilon \in[\sqrt{\eta}, \hat{\varepsilon})$ that there exist some set $H_{\theta} \subset U_{6}$ and some constant $C=C\left(N, n, \mathcal{K}, C_{0}, k\right)$ with $\mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right)<C\left(\frac{\varepsilon}{\theta^{n+1} \alpha}\right)^{2}$ and, for all $x \in F_{3} \cap \tilde{\tilde{F}}$, we have $d\left(\pi(x), H_{\theta}\right)>h(x)$.

Proof. Let \tilde{k} and $\tilde{\alpha}(n)$ be the thresholds given by Theorem 7.17 and let $\hat{C}=$ $\hat{C}(N, n)$ be the constant given by Theorem [7.3] Moreover, let $C_{1}=C_{1}\left(N, n, C_{0}\right)$ and $C_{2}=C_{2}\left(N, n, C_{0}\right)$ be the constants given by Corollary 4.3 applied with $\lambda=\frac{\delta}{4}$, and let $\delta=\delta(N, n)$ be the value fixed on page 1208. We set $\hat{\theta}:=$ $\frac{1}{400}\left[18 n\left(10^{n}+1\right)\left(\frac{C_{1}}{4}\right)^{n+1} \hat{C}\right]^{-1}$ and choose $\theta \in(0, \hat{\theta}]$. Let $\alpha \in(0, \tilde{\alpha}]$, and let $\bar{\varepsilon}_{1}=\bar{\varepsilon}\left(N, n, C_{0}, \alpha\right), \bar{\varepsilon}_{2}=\bar{\varepsilon}\left(N, n, C_{0}, \alpha\right), \tilde{\varepsilon}=\tilde{\varepsilon}\left(N, n, C_{0}, \alpha\right), \varepsilon_{0}=\varepsilon_{0}\left(N, n, C_{0}, \theta\right)$, and $\varepsilon^{*}=\varepsilon^{*}\left(N, n, C_{0}, \alpha, \theta\right)$ be the thresholds given by Lemmas 6.5, 6.24, Theorem 7.17 Lemma 8.9 and Lemma 8.10 respectively. Finally, let C be the constant from Lemma 8.9, We set

$$
\hat{\varepsilon}:=\min \left\{\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}, \tilde{\varepsilon}, \varepsilon_{0}, \varepsilon^{*},(\hat{C} \theta \alpha)^{2}, \frac{\alpha}{400}\left[4 n\left(10^{n}+1\right)\left(\frac{C_{1}}{4}\right)^{n+1} 2 C_{2}\right]^{-1}, \frac{\alpha}{100 C}\right\}
$$

and assume that $k \geq \hat{k}:=\max \{\tilde{k}, 400\}$ and $\eta \leq \hat{\varepsilon}^{2}$. Now let $\varepsilon>0$ with $\eta \leq \varepsilon^{2}<\hat{\varepsilon}^{2}$.
Until now, we defined the map A only on $U_{12}=B(0,12) \cap P_{0}$ (see page 1216). Furthermore, we have shown that A is Lipschitz continuous with Lipschitz constant 3α (see Lemma 6.27). With Lemma A.5 an application of Kirszbraun's theorem, there exists an extension $\tilde{A}: P_{0} \rightarrow \mathbb{R}^{N}$ of A with compact support, the same Lipschitz constant 3α and $A=\tilde{A}$ on U_{12}. If one wants to omit Zorn's lemma, used for the proof of Lemma A.5, one can get the same result with a slightly larger Lipschitz constant (see the remark after Lemma A. 5 for details). We denote this extension of A also by A.

Using Theorem 7.3 with $g=A, p=2$ and Theorem 7.17, there exist some set $H_{\theta} \subset U_{6}$ and some constant $C=C\left(N, n, \mathcal{K}, C_{0}, k\right)$ with $\mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right) \leq$ $\frac{C(n)}{\theta^{2(n+1)} \operatorname{Lip}_{A}^{2}} C \varepsilon^{2}$. Furthermore, we get for all $y \in P_{0}$ some affine map $a_{y}: P_{0} \rightarrow P_{0}^{\perp}$ so that if $r \leq \theta$ and $B(y, r) \cap H_{\theta} \neq \emptyset$, we have $\left\|A-a_{y}\right\|_{L^{\infty}\left(B(y, r) \cap P_{0}, P_{0}^{\perp}\right)} \leq \hat{C} r \theta \operatorname{Lip}_{A}$. We recall that $\operatorname{Lip}_{A}=3 \alpha$ (cf. Lemma 6.27). For $x \in F_{3} \cap \tilde{\tilde{F}} \subset F_{3} \cap \tilde{F}$, we have with the previous lemma that $h(x)<\frac{\theta}{100}$. Let $t \in\left[h(x), \frac{\theta}{100}\right]$. If $x^{\prime} \in B(x, 2 t) \cap \tilde{F}$, we obtain with Lemma 6.10 and the definition of $\tilde{F}: d\left(x^{\prime}, \pi\left(x^{\prime}\right)+A\left(\pi\left(x^{\prime}\right)\right)\right) \leq$ $\varepsilon^{\frac{1}{2}}\left(d(x)+d\left(x, x^{\prime}\right)\right) \leq 3 \varepsilon^{\frac{1}{2}} t$. Let $P_{\pi(x)}$ denote the n-dimensional plane, which is the graph of the affine map $a_{\pi(x)}$. Now we assume, contrary to the statement of this lemma, that $d\left(\pi(x), H_{\theta}\right) \leq h(x)$. This implies $\pi(B(x, 2 t)) \cap H_{\theta} \neq \emptyset$, and so we have $d\left(\pi\left(x^{\prime}\right)+A\left(\pi\left(x^{\prime}\right)\right), P_{\pi(x)}\right) \leq\left\|A-a_{\pi(x)}\right\|_{L^{\infty}\left(B(\pi(x), 2 t) \cap P_{0}, P_{0}^{\perp}\right)} \leq 6 \hat{C} \theta \alpha t$ for all $x^{\prime} \in B(x, 2 t) \cap \tilde{F}$. We combine those estimates and obtain, using $3 \varepsilon^{\frac{1}{2}} \leq 3 \hat{C} \theta \alpha$,
(8.5) $d\left(x^{\prime}, P_{\pi(x)}\right) \leq d\left(x^{\prime}, \pi\left(x^{\prime}\right)+A\left(\pi\left(x^{\prime}\right)\right)\right)+d\left(\pi\left(x^{\prime}\right)+A\left(\pi\left(x^{\prime}\right)\right), P_{\pi(x)}\right) \leq 9 \hat{C} \theta \alpha t$.

Since $h(x) \leq t$, we get $(x, t) \in S \subset S_{\text {total }}$ with Lemma 6.2(i) so that we have $\delta(B(x, t)) \geq \frac{\delta}{2}$. If $x \in \tilde{\tilde{F}}$, this estimate and the definition of $\tilde{\tilde{F}}$ imply $\delta(\tilde{F} \cap B(x, t))>$ $\frac{1}{4} \delta$.

Now we apply Corollary $4.3\left(\Upsilon=\tilde{F}, \lambda=\frac{\delta}{4}\right)$, and so there exist constants $C_{1}\left(N, n, C_{0}\right), C_{2}\left(N, n, C_{0}\right)$ and an $\left(n, 10 n \frac{t}{C_{1}}\right)$-simplex $T=\Delta\left(x_{0}, \ldots, x_{n}\right) \in F \cap$ $B(x, t) \cap \tilde{F}$ so that $\mu\left(\tilde{B}_{i}\right) \geq \frac{t^{n}}{C_{2}}$ for all $i \in\{0, \ldots, n\}$ where $\tilde{B}_{i}:=B\left(x_{i}, \frac{t}{C_{1}}\right) \cap$ $B(x, t) \cap \tilde{F}$. With $(x, t) \in S \subset S_{\text {total }}$, we get for all $i \in\{0, \ldots, n\}$,

$$
\frac{1}{\mu\left(\tilde{B}_{i}\right)} \int_{\tilde{B}_{i}} d\left(z, P_{(x, t)}\right) \mathrm{d} \mu(z) \leq C_{2} t \beta_{1 ; k}^{\left.P_{(x, t)}^{(}\right)}(x, t) \leq 2 C_{2} t \varepsilon
$$

This implies for all $i \in\{0, \ldots, n\}$ the existence of $y_{i} \in \tilde{B}_{i}$ with $d\left(y_{i}, P_{(x, t)}\right) \leq 2 C_{2} t \varepsilon$. With Lemma 2.8, we deduce that $S:=\Delta\left(y_{0}, \ldots, y_{n}\right) \subset B(x, t)$ is an $\left(n, 8 n \frac{t}{C_{1}}\right)$ simplex. Next, we apply Lemma $2.17\left(m=n, C=\frac{C_{1}}{8 n}, \hat{C}=1, \sigma=2 C_{2} \varepsilon\right)$ and get $\varangle\left(P_{(x, t)}, P_{y_{0}, \ldots, y_{n}}\right) \leq \frac{\alpha}{400}$. We have $y_{i} \in \tilde{B}_{i} \subset B(x, 2 t) \cap \tilde{F}$, and hence we get with (8.5) and Lemma $2.17\left(C=\frac{C_{1}}{8 n}, \hat{C}=1, \sigma=9 \hat{C} \theta \alpha\right) \varangle\left(P_{y_{0}, \ldots, y_{n}}, P_{\pi(x)}\right) \leq \frac{\alpha}{400}$. We combine those two angle estimates and conclude that $\varangle\left(P_{(x, t)}, P_{\pi(x)}\right) \leq \frac{\alpha}{200}$, which is true for all $x \in F_{3} \cap \tilde{\tilde{F}}$ with $d\left(\pi(x), H_{\theta}\right) \leq h(x)$ and all $t \in\left[h(x), \frac{\theta}{100}\right]$. Now we use this result for $t=h(x)$ and for $t=\frac{\theta}{100}$ and obtain $\varangle\left(P_{(x, h(x))}, P_{\left(x, \frac{\theta}{100}\right)}\right) \leq \frac{\alpha}{100}$. Together with Lemma 8.9 we get $\varangle\left(P_{(x, h(x))}, P_{0}\right) \leq \frac{\alpha}{50}$. This is in contradiction to Lemma 6.5 hence our assumption that $d\left(\pi(x), H_{\theta}\right) \leq h(x)$ is invalid for all $x \in F_{3} \cap \tilde{\tilde{F}}$.

Theorem 8.12. Let $p=2$. There exist some constants $\overline{\bar{k}} \geq 4,0<\overline{\bar{\alpha}}=\overline{\bar{\alpha}}(n)<\frac{1}{6}$ and $0<\overline{\bar{\theta}}=\overline{\bar{\theta}}\left(N, n, C_{0}\right)$ so that, for all $\alpha \in(0, \overline{\bar{\alpha}}]$ and all $\theta \in(0, \overline{\bar{\theta}}]$, there exists some $0<\overline{\bar{\varepsilon}}=\overline{\bar{\varepsilon}}\left(N, n, C_{0}, \alpha, \theta\right)<\frac{1}{8}$ so that if $k \geq \overline{\bar{k}}$ and $\eta<\overline{\bar{\varepsilon}}^{2}$, we obtain for all $\varepsilon \in[\sqrt{\eta}, \overline{\bar{\varepsilon}}):$

$$
\mu\left(F_{3}\right) \leq 10^{-6}
$$

Proof. Let $\overline{\bar{k}}$ be the maximum and $\overline{\bar{\alpha}}<\frac{1}{6}$ be the minimum of all thresholds for k and α given by Lemmas 6.27, 8.8, 8.10 and 8.11. Furthermore, we set $\overline{\bar{\theta}}:=\hat{\theta}$, where $\hat{\theta}=\hat{\theta}\left(N, n, C_{0}\right)$ is given by Lemma 8.11 Let $0<\alpha \leq \overline{\bar{\alpha}}$ and $0<\theta \leq \overline{\bar{\theta}}$. We define $\overline{\bar{\varepsilon}}=\overline{\bar{\varepsilon}}\left(N, n, C_{0}, \alpha, \theta\right)$ as the minimum of $\frac{1}{16}$, a small constant depending on $N, n, \mathcal{K}, C_{0}, \alpha, \theta$ given by the last lines of this proof, and of all upper bounds for ε stated in Lemmas 6.27, 8.8, 8.10 and 8.11, Let $k \geq \overline{\bar{k}}$ and $\eta \leq \varepsilon^{2}<\bar{\varepsilon}^{2}$. We have $\mu\left(F_{3}\right) \leq \mu\left(F_{3} \cap \tilde{\tilde{F}}\right)+\mu\left(F_{3} \backslash \tilde{\tilde{F}}\right)$. With Lemma $8.8(p=2)$, there exists some constant $C=C\left(N, n, \mathcal{K}, C_{0}\right)$ so that $\mu\left(F_{3} \backslash \tilde{\tilde{F}}\right) \leq \mu(F \backslash \tilde{\tilde{F}}) \leq C \varepsilon^{\frac{1}{2}}$. Hence we only have to consider $\mu\left(F_{3} \cap \tilde{\tilde{F}}\right)$. We set $\mathcal{G}:=\left\{B(x, 2 h(x)) \mid x \in\left(F_{3} \cap \tilde{\tilde{F}}\right)\right\}$. This is a set of nondegenerate balls because $x \in F_{3} \subset F \backslash \mathcal{Z}$. Furthermore, we have $h(x) \leq 50$ for all $x \in F$ (see the definition of h on page 1208). With Besicovitch's covering theorem [7] 1.5.2, Thm. 2] there exist N_{0} families $\mathcal{B}_{l} \subset \mathcal{G}, l=1, \ldots, N_{0}$, of disjoint balls such that we conclude with property (B) from page 1208 that

$$
\mu\left(F_{3} \cap \tilde{\tilde{F}}\right) \leq \sum_{l=1}^{N_{0}} \sum_{B \in \mathcal{B}_{l}} \mu(B \cap \tilde{\tilde{F}}) \stackrel{(\mathrm{B})}{\leq} C_{0} \sum_{l=1}^{N_{0}} \sum_{B \in \mathcal{B}_{l}}(\operatorname{diam} B)^{n} .
$$

Let $1 \leq l \leq N_{0}$ and let $B_{1}=B\left(x_{1}, 2 h\left(x_{1}\right)\right), B_{2}=B\left(x_{2}, 2 h\left(x_{2}\right)\right) \in \mathcal{B}_{l}$ with $B_{1} \neq B_{2}$. Since the balls in \mathcal{B}_{l} are disjoint, we deduce $2 h\left(x_{1}\right)+2 h\left(x_{2}\right) \leq d\left(x_{1}, x_{2}\right)$ and, because of the definition of \tilde{F} and Lemma 6.10, we get $d\left(x_{i}, \pi\left(x_{i}\right)+A\left(\pi\left(x_{i}\right)\right)\right) \leq$ $\varepsilon^{\frac{1}{2}} d\left(x_{i}\right) \leq \varepsilon^{\frac{1}{2}} h\left(x_{i}\right)$ for $i=1,2$. Since $\varepsilon^{\frac{1}{2}}<\frac{1}{4}, \alpha<\frac{1}{6}$ and A is 3α Lipschitz continuous, the former two estimates imply $h\left(x_{1}\right)+h\left(x_{2}\right)<d\left(\pi\left(x_{1}\right), \pi\left(x_{2}\right)\right)$. Thus $\pi\left(\frac{1}{2} B_{1}\right)$ and $\pi\left(\frac{1}{2} B_{2}\right)$ are disjoint. We have $x_{i} \in\left(\tilde{\tilde{F}} \cap F_{3}\right) \subset F \subset B(0,5)$ for $i=1,2$. With Lemma 8.10, we conclude that $h\left(x_{i}\right) \leq \frac{\theta}{100}<\frac{1}{2}$. This implies $\pi\left(\frac{1}{2} B_{i}\right) \subset U_{6}$. Using Lemma 8.11, there exists some set $H_{\theta} \subset U_{6}$ and some constant $C=C\left(N, n, \mathcal{K}, C_{0}, k\right)$ with $\mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right)<C\left(\frac{\varepsilon}{\theta^{n+1} \alpha}\right)^{2}$ so that $d\left(\pi(x), H_{\theta}\right)>h(x)$ for all $x \in F_{3} \cap \tilde{\tilde{F}}$, in particular for $x=x_{i}$. We conclude that $\pi\left(\frac{1}{2} B_{i}\right) \cap H_{\theta}=\emptyset$, and hence

$$
\begin{aligned}
\sum_{B \in \mathcal{B}_{l}}(\operatorname{diam} B)^{n} & =4^{n} \sum_{B \in \mathcal{B}_{l}}\left(\frac{1}{2} \operatorname{diam} \pi\left(\frac{1}{2} B\right)\right)^{n} \\
& =4^{n} \sum_{B \in \mathcal{B}_{l}} \frac{1}{\omega_{n}} \mathcal{H}^{n}\left(\pi\left(\frac{1}{2} B\right)\right) \leq \frac{4^{n}}{\omega_{n}} \mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right) .
\end{aligned}
$$

Now we obtain

$$
\mu\left(F_{3} \cap \tilde{\tilde{F}}\right) \leq C_{0} N_{0} \frac{4^{n}}{\omega_{n}} \mathcal{H}^{n}\left(U_{6} \backslash H_{\theta}\right) \leq C\left(\frac{\varepsilon}{\theta^{n+1} \alpha}\right)^{2},
$$

and we have already shown that $\mu\left(F_{3} \backslash \tilde{\tilde{F}}\right) \leq C \varepsilon^{\frac{1}{2}}$. Using $\varepsilon<\overline{\bar{\varepsilon}}$, we finally get $\mu\left(F_{3}\right)<10^{-6}$.

Appendix A

A.1. Measure theoretical statements. The following lemmas are stated without proof.
Lemma A.1. Let \mathcal{E} be a set of disjoint balls (open or closed) in \mathbb{R}^{N} with radius equal or larger than $s \in(0, \infty)$ and $B \subset B(x, r)$ for all $B \in \mathcal{E}$. Then \mathcal{E} is a finite set with $\# \mathcal{E} \leq\left(\frac{r}{s}\right)^{N}$.
Lemma A.2. Let $s>0$ and $B(x, r)$ be an open or closed ball in \mathbb{R}^{m} with $s<r$. There exists some family \mathcal{E} of disjoint closed balls with $\operatorname{diam} B=2$ s for all $B \in \mathcal{E}$, $B(x, r) \subset \bigcup_{B \in \mathcal{E}} 5 B$ and $\# \mathcal{E} \leq\left(\frac{2 r}{s}\right)^{m}$.
Lemma A.3. Let $A \subset \mathbb{R}^{N}$ be a closed set with $\nu(A)>0$, where ν is some outer measure on \mathbb{R}^{n}. There exists some $x \in A$ so that $\nu(B(x, h))>0$ for all $h>0$.
Lemma A.4. Let R be an n-dimensional cube in \mathbb{R}^{N}. Then $(\operatorname{diam} R)^{n}=$ $(\sqrt{n})^{n} \mathcal{H}^{n}(R)$.
Lemma A.5. Let $K \subset \mathbb{R}^{m}$ be a bounded set and let $f: K \rightarrow \mathbb{R}^{N}$ be a Lipschitz function. Then f has a Lipschitz extension $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{N}$ with compact support and the same Lipschitz constant.
A.2. Differentiation and Fourier transform on a linear subspace. Let $P_{0} \in$ $G(N, n)$ be an n-dimensional linear subspace of \mathbb{R}^{N} and let $f: P_{0} \rightarrow R$ be some function, where $R \in\left\{\mathbb{R}, \mathbb{R}^{N}\right\}$. In this section, we explain what we mean by differentiating this function. Furthermore, we define the Fourier transform of f and give some basic properties. Let $\phi: \mathbb{R}^{n} \rightarrow P_{0}$ be a fixed isometric isomorphism. We set $\tilde{f}: \mathbb{R}^{n} \rightarrow R, \tilde{f}(x)=f(\phi(x))=(f \circ \phi)(x)$.

Definition A.6. Let $l \in \mathbb{N} \cup\{0\}$. We say $f \in C^{l}\left(P_{0}, R\right)$ iff $\tilde{f} \in C^{l}\left(\mathbb{R}^{n}, R\right)$ (l-times continuously differentiable). If $l \geq 1$ for all $i \in\{1, \ldots, n\}$, we set $\partial_{i} f:=$ $D_{i} \tilde{f} \circ \phi^{-1}=D_{i}(f \circ \phi) \circ \phi^{-1}, \Delta f:=\sum_{j=1}^{n} \partial_{j} \partial_{j} f, D f:=\left(\partial_{1} f, \ldots, \partial_{n} f\right)$, and if $\kappa=\left(\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}\right)$ is a multi-index, we set $\partial^{\kappa} f:=\partial_{1}^{\kappa_{1}} \partial_{2}^{\kappa_{2}} \ldots \partial_{n}^{\kappa_{n}} f$ and $|\kappa|=$ $\kappa_{1}+\cdots+\kappa_{n}$.

Now we define the Fourier transform for some function $f \in \mathscr{S}\left(P_{0}\right)$, where $\mathscr{S}\left(P_{0}\right)$ is the Schwartz space of rapidly decreasing functions $f: P_{0} \rightarrow \mathbb{C}$; cf. [11] 2.2.1. The class of Schwartz functions]. We will get the same results as for some function $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.

Definition A. 7 (Fourier transform). Let $y \in P_{0}$ and $f \in \mathscr{S}\left(P_{0}\right)$. We set

$$
\widehat{f}(y):=\widehat{(f \circ \phi)}\left(\phi^{-1}(y)\right)=\int_{\mathbb{R}^{n}} f(\phi(z)) e^{-2 \pi i \phi^{-1}(y) \cdot z} \mathrm{~d} \mathcal{L}^{n}(z)
$$

If $f: P_{0} \rightarrow \mathbb{C}^{N}$ with $f_{i} \in \mathscr{S}\left(P_{0}\right)$, i.e., every component of f is a Schwartz function, then we write $f \in \mathscr{S}\left(P_{0}, \mathbb{C}^{N}\right)$. We define the Fourier transform of some function $f \in \mathscr{S}\left(P_{0}, \mathbb{C}^{N}\right)$ by $\widehat{f}:=\left(\widehat{f}_{1}, \ldots, \widehat{f}_{N}\right)$, and if $f, g \in \mathscr{S}\left(P_{0}\right)$ we define the convolution of f and g by $(g * f)(w)=\int_{P_{0}} g(w-v) f(v) \mathrm{d} \mathcal{H}^{n}(v)$.

A.3. Littlewood-Paley theorem.

Lemma A. 8 (Continuous version of the Littlewood-Paley theorem). Let ϕ be an integrable $C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ function with mean value zero fulfilling $|\phi(x)|+|\nabla \phi(x)| \leq$ $C(1+|x|)^{-n-1}$ and $0<\int_{0}^{\infty}\left|\widehat{\left(\phi_{t}\right)}(x)\right|^{2} \frac{\mathrm{~d} t}{t}<\infty$, where $\phi_{t}(x)=\frac{1}{t^{n}} \phi\left(\frac{x}{t}\right)$. For all $q \in$ $(1, \infty)$, there exists some constant $C=C(n, q, \phi)$ such that, for all $f \in L^{q}\left(\mathbb{R}^{n} ; \mathbb{R}^{N}\right)$, we have

$$
\left\|\left(\int_{0}^{\infty}\left|\phi_{t} * f\right|^{2} \frac{\mathrm{~d} t}{t}\right)^{\frac{1}{2}}\right\|_{L^{q}\left(\mathbb{R}^{n} ; \mathbb{R}\right)} \leq C\|f\|_{L^{q}\left(\mathbb{R}^{n} ; \mathbb{R}^{N}\right)}
$$

Proof. The proof is analogous to the proof of the Littlewood-Paley theorem [11, Thm. 5.1.2].

Acknowledgments

The author would like to thank Heiko von der Mosel for all his helpful advice. Furthermore he thanks Armin Schikorra and Sebastian Scholtes for many fruitful discussions.

References

[1] Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR2424078
[2] Jonas Azzam and Xavier Tolsa, Characterization of n-rectifiability in terms of Jones' square function: Part II, Geom. Funct. Anal. 25 (2015), no. 5, 1371-1412, DOI 10.1007/s00039-015-0334-7. MR3426057
[3] Simon Blatt, A note on integral Menger curvature for curves, Math. Nachr. 286 (2013), no. 2-3, 149-159, DOI 10.1002/mana.201100220. MR 3021472
[4] Simon Blatt and Sławomir Kolasiński, Sharp boundedness and regularizing effects of the integral Menger curvature for submanifolds, Adv. Math. 230 (2012), no. 3, 839-852, DOI 10.1016/j.aim.2012.03.007. MR 2921162
[5] Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993. MR1251061
[6] James J. Dudziak, Vitushkin's conjecture for removable sets, Universitext, Springer, New York, 2010. MR2676222
[7] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR1158660
[8] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
[9] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
[10] Michael H. Freedman, Zheng-Xu He, and Zhenghan Wang, Möbius energy of knots and unknots, Ann. of Math. (2) 139 (1994), no. 1, 1-50, DOI 10.2307/2946626. MR 1259363
[11] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR2445437
[12] Immo Hahlomaa, Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), no. 2, 143-169, DOI 10.4064/fm185-2-3. MR2163108
[13] Immo Hahlomaa, Curvature integral and Lipschitz parametrization in 1-regular metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 99-123. MR2297880
[14] Immo Hahlomaa, Menger curvature and rectifiability in metric spaces, Adv. Math. 219 (2008), no. 6, 1894-1915, DOI 10.1016/j.aim.2008.07.013. MR2456269
[15] Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1-15, DOI 10.1007/BF01233418. MR1069238
[16] Peter W. Jones, The traveling salesman problem and harmonic analysis, Conference on Mathematical Analysis (El Escorial, 1989), Publ. Mat. 35 (1991), no. 1, 259-267, DOI 10.5565/PUBLMAT_35191_12. MR 1103619
[17] Sławomir Kolasiński, Geometric Sobolev-like embedding using high-dimensional Menger-like curvature, Trans. Amer. Math. Soc. 367 (2015), no. 2, 775-811. MR3280027
[18] Sławomir Kolasiński, Paweł Strzelecki, and Heiko von der Mosel, Characterizing $W^{2, p}$ submanifolds by p-integrability of global curvatures, Geom. Funct. Anal. 23 (2013), no. 3, 937984, DOI 10.1007/s00039-013-0222-y. MR3061777
[19] J. C. Léger, Menger curvature and rectifiability, Ann. of Math. (2) 149 (1999), no. 3, 831-869, DOI 10.2307/121074. MR 1709304
[20] Gilad Lerman and J. Tyler Whitehouse, High-dimensional Menger-type curvatures. II. dseparation and a menagerie of curvatures, Constr. Approx. 30 (2009), no. 3, 325-360, DOI 10.1007/s00365-009-9073-z. MR2558685
[21] Gilad Lerman and J. Tyler Whitehouse, High-dimensional Menger-type curvatures. Part I: Geometric multipoles and multiscale inequalities, Rev. Mat. Iberoam. 27 (2011), no. 2, 493555, DOI 10.4171/RMI/645. MR2848529
[22] Yong Lin and Pertti Mattila, Menger curvature and C^{1} regularity of fractals, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1755-1762, DOI 10.1090/S0002-9939-00-05814-7. MR 1814107
[23] Pertti Mattila, Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. MR 1333890
[24] Karl Menger, Untersuchungen über allgemeine Metrik (German), Math. Ann. 103 (1930), no. 1, 466-501, DOI 10.1007/BF01455705. MR 1512632
[25] Fedor Nazarov, Xavier Tolsa, and Alexander Volberg, The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions, Publ. Mat. 58 (2014), no. 2, 517-532. MR3264510
[26] Jun O'Hara, Energy of a knot, Topology 30 (1991), no. 2, 241-247, DOI 10.1016/0040-9383(91)90010-2. MR 1098918
[27] Sebastian Scholtes, For which positive p is the integral Menger curvature \mathcal{M}_{p} finite for all simple polygons?, 2012, arXiv:1202.0504.
[28] P. Stein, Classroom notes: A note on the volume of a simplex, Amer. Math. Monthly 73 (1966), no. 3, 299-301, DOI 10.2307/2315353. MR1533698
[29] Paweł Strzelecki, Marta Szumańska, and Heiko von der Mosel, A geometric curvature double integral of Menger type for space curves, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 1, 195-214. MR2489022
[30] Pawel Strzelecki, Marta Szumańska, and Heiko von der Mosel, Regularizing and self-avoidance effects of integral Menger curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 1, 145-187. MR 2668877
[31] Paweł Strzelecki, Marta Szumańska, and Heiko von der Mosel, On some knot energies involving Menger curvature, Topology Appl. 160 (2013), no. 13, 1507-1529, DOI 10.1016/j.topol.2013.05.022. MR3091327
[32] Paweł Strzelecki and Heiko von der Mosel, Integral Menger curvature for surfaces, Adv. Math. 226 (2011), no. 3, 2233-2304, DOI 10.1016/j.aim.2010.09.016. MR2739778
[33] Paweł Strzelecki and Heiko von der Mosel, Menger curvature as a knot energy, Phys. Rep. 530 (2013), no. 3, 257-290, DOI 10.1016/j.physrep.2013.05.003. MR3105400
[34] Paweł Strzelecki and Heiko von der Mosel, Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in \mathbb{R}^{n}. Part I: Smoothing and self-avoidance effects, J. Geom. Anal. 23 (2013), no. 3, 1085-1139, DOI 10.1007/s12220-011-9275-z. MR 3078345
[35] Xavier Tolsa, Characterization of n-rectifiability in terms of Jones' square function: part I, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3643-3665, DOI 10.1007/s00526-015-0917-z. MR3426090
[36] Xavier Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous CalderónZygmund theory, Progress in Mathematics, vol. 307, Birkhäuser/Springer, Cham, 2014. MR 3154530
[37] Xavier Tolsa, Rectifiable measures, square functions involving densities, and the Cauchy transform, Mem. Amer. Math. Soc. 245 (2017), no. 1158, v+130, DOI 10.1090/memo/1158. MR 3589161
[38] Xavier Tolsa and Tatiana Toro, Rectifiability via a square function and Preiss' theorem, Int. Math. Res. Not. IMRN 13 (2015), 4638-4662, DOI 10.1093/imrn/rnu082. MR3439088

Institut für Mathematik, RWTH Aachen University, Templergraben 55, D-52062 Aachen, Germany

E-mail address: meurer@instmath.rwth-aachen.de

[^0]: Received by the editors November 16, 2015 and, in revised form, May 22, 2016 and June 3, 2016.

 2010 Mathematics Subject Classification. Primary 28A75; Secondary 28A80, 42B20.
 Key words and phrases. Geometric measure theory, Menger curvature, rectifiability, β numbers.

[^1]: ${ }^{1}$ Karl Menger [24] realized that $c(x, y, z)$ can be expressed purely in terms of mutual distances between the points; see [14 for the explicit expression.
 ${ }^{2}$ Hence, we agree with a remark made by Lerman and Whitehouse at the end of the introduction of [20].
 ${ }^{3}$ Introduced by P. W. Jones in 15] and 16.

[^2]: ${ }^{4} \mathrm{~A}$ characterisation of all possible integrands for our result can be found at the beginning of section 3.1 In section 3.2 we discuss one of the integrands of Lerman and Whitehouse.

[^3]: ${ }^{5} \mathrm{~A}$ set E is n-dimensional Ahlfors regular if and only if the restricted Hausdorff measure $\mathcal{H}^{n} \mathrm{~L} E$ is n-dimensional Ahlfors regular.
 ${ }^{6}$ Our main result does not work with their integrands, but most of the partial results are valid; cf. section 3.2

[^4]: ${ }^{7}$ As the volume of the unit sphere is strictly monotonously decreasing when the dimension $n \geq 5$ increases, we get $\frac{\omega_{n-1}}{\omega_{n}}>1$ for all $n \geq 6$. With the factor 4 we have that $4 \frac{\omega_{n-1}}{\omega_{n}}>1$ for all $n \in \mathbb{N}$.

[^5]: ${ }^{8} \tilde{C}$ is given in Lemma $7.20 \hat{C}$ is given in Lemma 7.24 V .
 ${ }^{9} C^{\prime}, C_{1}$ are given in Lemma 7.23

