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FRACTIONAL POWERS OF QUATERNIONIC OPERATORS

AND KATO’S FORMULA USING SLICE

HYPERHOLOMORPHICITY

FABRIZIO COLOMBO AND JONATHAN GANTNER

Abstract. In this paper we introduce fractional powers of quaternionic op-
erators. Their definition is based on the theory of slice hyperholomorphic
functions and on the S-resolvent operators of the quaternionic functional cal-
culus. The integral representation formulas of the fractional powers and the
quaternionic version of Kato’s formula are based on the notion of S-spectrum
of a quaternionic operator.

The proofs of several properties of the fractional powers of quaternionic
operators rely on the S-resolvent equation. This equation, which is very im-
portant and of independent interest, has already been introduced in the case
of bounded quaternionic operators, but for the case of unbounded operators
some additional considerations have to be taken into account. Moreover, we
introduce a new series expansion for the pseudo-resolvent, which is of indepen-
dent interest and allows to investigate the behavior of the S-resolvents close
to the S-spectrum.

The paper is addressed to researchers working in operator theory and in
complex analysis.

1. Introduction

The theory of holomorphic functions has several applications in operator theory.
For example it allows us to define groups and semigroups of linear operators that
have applications in PDE and in other fields of mathematics and physics; see [23,
26, 41, 43, 48, 49].

Quaternionic linear operators play a crucial role in quaternionic quantum me-
chanics because Schrödinger’s equation can be formulated just using complex num-
bers or quaternions; see the fundamental paper [15] on the logic of quantum me-
chanics by Birkhoff and von Neumann and the subsequent papers [25, 28, 42]. For
the quaternionic formulation of quantum mechanics, we refer the reader to the book
of Adler [1].

In the definition of functions of quaternionic linear operators, the classical theory
of holomorphic functions has to be replaced by the recently developed theory of slice
hyperholomorphic functions; see the books [12, 22, 31]. The notion of S-spectrum
is the most fundamental concept in quaternionic operator theory: the slice hy-
perholomorphic functional calculus (called S-functional or quaternionic functional
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calculus), which is the quaternionic analogue of the Riesz-Dunford functional cal-
culus, is based on this notion of spectrum; see [23,50] for the classical case and the
original papers [4, 17, 18] and the book [22] for the quaternionic case.

Thanks to the quaternionic functional calculus, it has been possible to develop
the theory of quaternionic evolution operators (see [3, 9, 19, 35]) and the spectral
theorem for quaternionic operators using the notion of S-spectrum [6, 7, 33]. We
point out that there were several attempts to prove the spectral theorem over the
quaternions in the literature, for instance [28, 51, 53], but the notion of spectrum
used is not clearly specified except for the paper [27]. In this paper the authors
use the right spectrum σR(M) of a normal quaternionic matrix M , which, however,
turns out to be equal to the S-spectrum σS(M). Using the notion of S-spectrum,
it is possible to define also the continuous functional calculus (see [32]), where the
authors use the notion of slice hyperholomorphicity in the approach of [34].

The theory of slice hyperholomorphic functions and the quaternionic functional
calculus have allowed us to generalize Schur analysis to this setting. The literature
on classical Schur analysis is very large, we quote the books [2,13], for an overview
of the classical case, and the first papers [8, 10, 11] for the slice hyperholomorphic
setting together with the book [12] and the references therein for an overview of
the existing literature.

Recently, we proved the Taylor expansion in the operator for the S-functional
calculus; see [16]. In this paper we address the problem of defining fractional powers
of quaternionic operators using the Cauchy formula of slice hyperholomorphic func-
tions. To explain our results and the main differences with respect to the classical
case, we recall some facts on the classical theory; see for example [26].

The theory of fractional powers of linear operators has been developed by several
authors. Without claiming completeness, we mention among them, for the early
works, the papers [14, 38–40, 44–47, 54, 55]. The literature is now very wide and it
has developed in several directions.

Let A be a closed linear operator on a complex Banach space such that (0,∞) ⊂
ρ(A), where ρ(A) is the resolvent set of A. We denote by

R(λ,A) := (λI −A)−1, λ ∈ ρ(A),

the resolvent operator and we assume that ‖R(λ,A)‖ ≤ M/(1+λ) for some constant
M > 0 and all λ ∈ (0,∞). If this holds true then there exists an open sector Σ in
C such that R+ ⊂ Σ ⊂ ρ(A) and ‖R(λ,A)‖ ≤ 2M/(1 + |λ|) all λ ∈ Σ.

We consider a branch of the fractional power λ → λ−α for α > 0. This is a
holomorphic function and the resolvent operator λ → R(λ,A) is also a holomorphic
operator-valued function. We can therefore define

A−α :=
1

2πi

∫
γ

λ−αR(λ,A)dλ

where γ is a piecewise smooth path in Σ \ R+ that surrounds the spectrum of A,
which is in general unbounded. Due to Cauchy’s integral theorem, the definition
of the fractional power Aα does not depend on the choice of γ if the path does
not intersect the spectrum of A. Moreover some properties of the fractional powers
depend on the resolvent equation

R(λ,A)−R(μ,A) = −(λ− μ)R(λ,A)R(μ,A), λ, μ ∈ ρ(A).
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The idea of using the Cauchy formula for holomorphic functions to define functions
of operators is the basis of the Riesz-Dunford functional calculus.

In the case of quaternionic operators (and also in the case of n-tuples of opera-
tors) slice hyperholomorphicity is among the most useful notions of holomorphicity
to define functions of operators. The skew-field of quaternions H can be written as
H =

⋃
I∈S

CI , where S consists of all quaternions I such that I2 = −1 and CI is
the complex plane with imaginary unit I. We say that a function f : U ⊂ H → H

is (left) slice hyperholomorphic in U if its restriction fI to the complex plane CI is
in the kernel of the Cauchy-Riemann operator

1

2

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
= 0 for all x = x0 + Ix1 ∈ U ∩ CI and all I ∈ S.

In a similar way, one can define right slice hyperholomorphic functions.
The Cauchy formula for slice hyperholomorphic functions is the tool to define

the quaternionic functional calculus or S-functional calculus. There are, however,
differences with respect to the classical case: the notion of spectrum of an operator
is for example not what one would expect by readapting the classical case. Instead,
the S-spectrum of a bounded right linear operator on T on a two-sided quaternionic
Banach space V is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},
where s = s0 + s1i+ s2j+ s3k is a quaternion, Re(s) = s0 and |s|2 = s20 + s21 + s22 +
s23. There are two resolvent operators associated with the quaternionic functional
calculus, because the theory of slice hyperholomorphic functions contains different
Cauchy kernels for left or right slice hyperholomorphic functions. The left and the
right S-resolvent operators are defined as

(1.1) S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ H \ σS(T ),

and

(1.2) S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ H \ σS(T ),

respectively. Let U ⊂ H be a suitable domain that contains the S-spectrum of
T . We define the quaternionic functional calculus for left slice hyperholomorphic
functions f : U → H by

(1.3) f(T ) =
1

2π

∫
∂(U∩CI )

S−1
L (s, T ) dsI f(s),

where dsI = −dsI, and for right slice hyperholomorphic functions f : U → H, by

(1.4) f(T ) =
1

2π

∫
∂(U∩CI )

f(s) dsI S−1
R (s, T ).

As one may observe, the integrals in (1.3) and (1.4) are computed on the bound-
ary of U in the complex plane CI and in principle the integral would depend on
the imaginary unit I chosen in S. Fortunately, this is not the case so that the
quaternionic functional calculus turns out to be well defined. This calculus can be
extended to the case of unbounded operators under the condition that the function
is slice hyperholomorphic at infinity.

In the case of the quaternions, the function s → s−α with α > 0 is both left
and right slice hyperholomorphic on H \ (−∞, 0], but not at infinity. So we cannot
use the S-functional calculus, but have to proceed directly with the definition using



1048 F. COLOMBO AND J. GANTNER

the Cauchy formula in order to define T−α. For a right slice hyperholomorphic
function, we have

(1.5) T−α :=
1

2π

∫
Γ

s−α dsI S
−1
R (s, T ),

where I ∈ S and Γ is a path in the complex plane CI that surrounds the intersection
of the S-spectrum of the operator T with the complex plane CI . The same operator
can be defined using the left S-resolvent operator

(1.6) T−α :=
1

2π

∫
Γ

S−1
L (s, T ) dsI s

−α.

Using the above definition we can give some canonical integral representations of
the fractional powers depending on the location of the S-spectrum. For example if
σS(T ) ⊂ {s ∈ H : Re(s) > 0}, under further assumptions, we have

T−α =
1

π

∫ ∞

0

τ−α
(
cos
(απ

2

)
T + sin

(απ
2

)
τI
)
(T 2 + τ2)−1 dτ.

This representation can be deduced from both formula (1.5) and (1.6). We point out
that the functions, to which we can apply both versions of the S-functional calculus,
are called intrinsic functions and they play an important role in the theory of slice
hyperholomorphic functions and quaternionic operators.

The proofs of several properties of the fractional powers, for example the semi-
group property, are based on the resolvent equation. In the case of bounded oper-
ators we have shown in [4] that

S−1
R (s, T )S−1

L (p, T ) = [[S−1
R (s, T )− S−1

L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]](p2 − 2s0p+ |s|2)−1

for s, p ∈ H \ σS(T ).
This equation holds also for unbounded operators, but one has to show that it

is meaningful on the entire space V . This has been verified in Section 2.
Moreover, in this paper we extend Kato’s formula to the quaternionic setting.

Kato considers in his paper [44] linear operators in the Banach space X that are
not necessarily infinitesimal generators of semigroups. He considers the class of
operators of type (ω,M) that are defined as follows:

(I) A is densely defined and closed,
(II) the resolvent set of −A contains the open sector | arg λ| < π−ω, ω ∈ (0, π),

and λ(λI+A)−1 is uniformly bounded in each small sector | argλ| < π−ω−ε
for ε > 0 and

λ‖(λI +A)−1‖ ≤ M, λ > 0.

Kato quotes in his references that similar operators are considered also by M. A.
Krasnosel’skii and P. E. Sobolevskii.

If A is an operator of type (ω,M), then the fractional powers Aα for α ∈ (0, 1)
can be defined indirectly via

(λI +Aα)−1 =
sin(πα)

π

∫ ∞

0

μα

λ2 + 2λμα cos(πα) + μ2α
(μI +A)−1dμ.

The proof of Kato’s formula is done in several steps. We point out that the for-
mula is obtained using a Cauchy integral representation: the right-hand side of the
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formula is equal to

J(λ) :=
1

2πi

∫
γ

(λ+ zα)−1(A− z) dz,

where λ > 0 and the path γ lies in the resolvent set of A and goes from ∞e−iθ to
∞eiθ with ω < θ < π avoiding the negative real axis and zero. Operator-valued
function J(λ) satisfies the resolvent equation. The question is whether it can be
expressed in the form

J(λ) = (λ+Aα)−1.

In other words one has to show that a single-valued function J defined on a subset
E of the complex plane with values in the Banach algebra of all bounded linear
operators B(X) that satisfies the equation

(1.7) J(λ)− J(λ′) = −(λ− λ′)J(λ)J(λ′) = −(λ− λ′)J(λ′)J(λ) ∀ λ, λ′ ∈ E

is the resolvent operator of a closed linear operator Aα.
In the quaternionic case the S-resolvent equation involves both resolvent oper-

ators, but despite this fact we are able to prove Kato’s formula in this setting. If
T is of type (M,ω), then we can define for p with arg(p) > φ0 > max{ω, απ} the
operator

Fα(p, T ) :=
sin(απ)

π

∫ +∞

0

tα(p2 − 2ptα cos(απ) + t2α)−1S−1
R (−t, T ) dt.

The operator-valued left slice hyperholomorphic function p → Fα(p, T ) does not
satisfy the equation (1.7) in general, but only if λ and μ are real. This is, however,
sufficient in order to show the existence of an operator Bα, with S−1

R (p,Bα) =
Fα(p, T ), which we define to be Tα.

We point out that in order to show that Fα(p, T ) satisfies (1.7) on the negative
real line, we prove that it equals a Cauchy-type integral if 0 ∈ ρS(T ). In this case,
we have

Fα(p, T ) =
1

2π

∫
Γ

S−1
R (p, sα) dsI S

−1
R (s, T ),

with

S−1
R (p, sα) = −(sα − p)(s2α − 2Re(p)sα + |p|2)−1

and Γ being any path that goes from∞eIθ to∞e−Iθ with θ ∈ (φ0, π) in an arbitrary
plane CI avoiding the negative real axis and 0. If p is real, then S−1

R (p, sα) is
intrinsic and we can represent Fα(p, T ) also using the left S-resolvent. Once more
it is then the S-resolvent equation that allows us to show that Fα(p, T ) satisfies
(1.7) in this case.

Outline of the paper. In Section 2 we introduce the necessary definitions and
results of the theory of slice hyperholomorphic functions and the S-functional cal-
culus. The S-resolvent equation for unbounded operators and some results on
operator-valued slice hyperholomorphic functions are proved here. Section 3 con-
tains preliminary results on the S-resolvents: we introduce a new series expansion
for the pseudo-resolvent and use it to show that the S-resolvent is actually slice
hyperholomorphic, which has always been used but never shown for unbounded
operators. Then we show that the norms of the S-resolvents tends, in a certain
sense, to infinity as one approaches the S-spectrum under suitable assumptions
and that therefore there cannot exist any slice hyperholomorphic continuation of
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the S-resolvents, which is a fundamental fact for several proofs in this paper. Sec-
tion 4 contains the definition of the fractional powers of a quaternionic operator and
the proof that they are well defined. Moreover, we prove the semigroup property of
the fractional powers and some integral representations. Section 5 is dedicated to
the extension of Kato’s formula to the quaternionic setting. Finally, the appendices
contain several quite technical estimates needed in the proofs of Section 4.

2. Preliminary results

The skew-field of quaternions consists of the real vector space

H := {ξ0 +
3∑

i=1

ξiei : ξi ∈ R},

which is endowed with an associative product satisfying

e21 = e22 = e23 = e1e2e3 = −1.

The real part of a quaternion x = ξ0 +
∑3

i=1 ξiei is defined as Re(x) := ξ0, its

imaginary part as x :=
∑3

i=1 ξiei and its conjugate as x := Re(x)− x.
Each element of the set

S := {x ∈ H : Re(x) = 0, |x| = 1}
is a square root of −1 and is therefore called an imaginary unit. For any I ∈ S,
the subspace CI := {x0 + Ix1 : x1, x2 ∈ R} is an isomorphic copy of the field of
complex numbers. If I, J ∈ S with I ⊥ J , set K = IJ = −JI. Then 1, I, J and K
form an orthonormal basis of H as a real vector space and 1 and J form a basis of
H as a left or right vector space over the complex plane CI , that is,

H = CI + CIJ and H = CI + JCI .

Any quaternion x belongs to such a complex plane: if we set

Ix :=

{
x/|x|, if x �= 0,

any I ∈ S, if x = 0,

then x = x0 + Ixx1 with x0 = Re(x) and x1 = |x|. The set

[x] := {x0 + Ix1 : I ∈ S}
is a 2-sphere that reduces to a single point if x is real.

2.1. Slice hyperholomorphic functions. As pointed out in the introduction,
quaternionic operator theory is based on the theory of slice hyperholomorphic func-
tions, the most important results of which we introduce now. The proofs of the
results stated in this subsection can be found in the book [22].

Definition 2.1. Let U ⊂ H be open and let f : U → H be real differentiable.
For any I ∈ S, let fI := f |U∩CI

denote the restriction of f to the plane CI . The
function f is called left slice hyperholomorphic if, for all I ∈ S,

(2.1)
1

2

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
= 0 for all x = x0 + Ix1 ∈ U ∩ CI

and right slice hyperholomorphic if, for all I ∈ S,

(2.2)
1

2

(
∂

∂x0
fI(x) +

∂

∂x1
fI(x)I

)
= 0 for all x = x0 + Ix1 ∈ U ∩ CI .
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A left slice hyperholomorphic function that satisfies f(U ∩ CI) ⊂ CI for all I ∈ S

is called intrinsic.
We denote the set of all left slice hyperholomorphic functions on U by SHL(U),

the set of all right slice hyperholomorphic functions on U by SHR(U) and the set
of all intrinsic functions by N (U).

Note that an intrinsic function is both left and right slice hyperholomorphic
because fI(x) ∈ CI commutes with the imaginary unit I in the respective Cauchy-
Riemann-operator. The converse is not true: the constant function x �→ b ∈ H \ R
is left and right slice hyperholomorphic, but it is not intrinsic.

The importance of the class of intrinsic functions is due to the fact that the mul-
tiplication and composition with intrinsic functions preserve slice hyperholomorphy.
This is not true for arbitrary slice hyperholomorphic functions.

Corollary 2.2. If f ∈ N (U) and g ∈ SHL(U), then fg ∈ SHL(U). If f ∈
SHR(U) and g ∈ N (U), then fg ∈ SHR(U).

If g ∈ N (U) and f ∈ SHL(g(U)), then f ◦ g ∈ SHL(U). If g ∈ N (U) and
f ∈ SHR(g(U)), then f ◦ g ∈ SHR(U).

Important examples of slice hyperholomorphic functions are power series with
quaternionic coefficients: series of the form

∑+∞
n=0 x

nan are left slice hyperholomor-
phic and series of the form

∑∞
n=0 anx

n are right slice hyperholomorphic on their
domains of convergence. A power series is intrinsic if and only if its coefficients are
real.

Any slice hyperholomorphic function on the other hand can be expanded into a
power series at any real point.

Definition 2.3. The slice derivative of a function f ∈ SHL(U) is defined as

∂Sf(x) = lim
CIx�s→x

(s− x)−1(f(s)− f(x)) for x = x0 + Ixx1 ∈ U,

where limCIx�s→x g(s) denotes the limit as s tends to x in CIx . The slice derivative
of a function f ∈ SHR(U) is defined as

∂Sf(x) = lim
CIx�s→x

(f(s)− f(x))(s− x)−1 for x = x0 + Ixx1 ∈ U.

Corollary 2.4. The slice derivative of a left (or right) slice hyperholomorphic
function is again left (or right) slice hyperholomorphic. Moreover, it coincides with
the derivative with respect to the real part, that is,

∂Sf(x) =
∂

∂x0
f(x) for x = x0 + Ix1.

Theorem 2.5. If f is left slice hyperholomorphic on the ball B(r, α) with radius r
centered at α ∈ R, then

f(x) =

+∞∑
n=0

(x− α)n
1

n!
∂n
Sf(α) for x ∈ B(r, α).

If f is right slice hyperholomorphic on B(r, α), then

f(x) =

+∞∑
n=0

1

n!
∂n
Sf(α)(x− α)n for x ∈ B(r, α).
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Slice hyperholomorphic functions possess good properties when they are defined
on suitable domains.

Definition 2.6. A set U ⊂ H is called

(i) axially symmetric if [x] ⊂ U for any x ∈ U and
(ii) a slice domain if U is open, U ∩ R �= 0 and U ∩ CI is a domain for any

I ∈ S.

Theorem 2.7 (Identity Principle). Let U be a slice domain, let f be left or right
slice hyperholomorphic on U and let Z be the set of zeros of f . If there exists an
imaginary unit I ∈ S such that Z ∩ CI has an accumulation point in U ∩ CI , then
f ≡ 0.

As a consequence of the Identity Principle, the values of a slice hyperholomorphic
function on an axially symmetric slice domain are uniquely determined by its values
on an arbitrary complex plane CI . Therefore, any function that is holomorphic on
a suitable subset of a complex plane possesses an unique slice hyperholomorphic
extension.

Theorem 2.8 (Representation Formula). Let U be an axially symmetric slice do-
main and let I ∈ S. For any x = x0+Ixx1 ∈ U set xI := x0+Ix1. If f ∈ SHL(U),
then

f(x) =
1

2
(1− IxI)f(xI) +

1

2
(1 + IxI)f(xI) for all x ∈ U.

If f ∈ SHR(U), then

f(x) = f(xI)(1− IIx)
1

2
+ f(xI)(1 + IIx)

1

2
for all x ∈ U.

Corollary 2.9. Let I ∈ S and let f : O → H be real differentiable, where O is a
domain in CI that is symmetric with respect to the real axis.

(i) The axially symmetric hull [O] :=
⋃

z∈O[z] of O is an axially symmetric
slice domain.

(ii) If f satisfies (2.1), then there exists a unique left slice hyperholomorphic
extension of f to [O].

(iii) If f satisfies (2.2), then there exists a unique right slice hyperholomorphic
extension of f to [O].

Remark 2.10. If f has a left and a right slice hyperholomorphic extension, they do
not necessarily coincide. Consider for instance the function z �→ bz on CI with a
constant b ∈ CI \ R. Its left slice hyperholomorphic extension to H is x �→ xb, but
its right slice hyperholomorphic extension is x �→ bx.

Finally, slice hyperholomorphic functions satisfy an adapted version of Cauchy’s
integral theorem and a Cauchy-type integral formula with a modified kernel, which
is the starting point for the definition of the S-functional calculus.

Definition 2.11. We define the left slice hyperholomorphic Cauchy kernel as

S−1
L (s, x) = −(x2 − 2Re(s)x+ |s|2)−1(x− s) for x /∈ [s]

and the right slice hyperholomorphic Cauchy kernel as

S−1
R (s, x) = −(x− s)(x2 − 2Re(s)x+ |s|2)−1 for x /∈ [s].
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Corollary 2.12. The left slice hyperholomorphic Cauchy kernel S−1
L (s, x) is left

slice hyperholomorphic in the variable x and right slice hyperholomorphic in the
variable s on its domain of definition. Moreover, we have S−1

R (s, x) = −S−1
L (x, s).

Remark 2.13. If x and s belong to the same complex plane, they commute and the
slice hyperholomorphic Cauchy kernels reduce to the classical one:

1

s− x
= S−1

L (s, x) = S−1
R (s, x).

Theorem 2.14 (Cauchy’s integral theorem). Let O ⊂ H be open, let I ∈ S and let
DI be a bounded open subset of O ∩ CI with DI ⊂ O ∩ CI such that its boundary
consists of a finite number of continuously differentiable Jordan curves. For any
f ∈ SHR(U) and g ∈ SHL(U), it is∫

∂DI

f(s) dsI g(s) = 0,

where dsI = −I ds.

Theorem 2.15 (Cauchy’s integral formula). Let U ⊂ H be a bounded axially
symmetric slice domain such that its boundary ∂(U ∩CI) in CI consists of a finite
number of continuously differentiable Jordan curves. Let I ∈ S and set dsI = −I ds.
If f is left slice hyperholomorphic on an open set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI )

S−1
L (s, x) dsI f(s) for all x ∈ U.

If f is right slice hyperholomorphic on an open set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, x) for all x ∈ U.

The pointwise product of two slice hyperholomorphic functions is in general not
slice hyperholomorphic. However, it is possible to define regularized products that
preserve left and right slice hyperholomorphicity. The left slice hyperholomorphic
Cauchy kernel S−1

L (s, x) is the inverse of the function x �→ s−x with respect to this

left slice hyperholomorphic product. Similarly, S−1
R (s, x) the inverse of the function

x �→ s− x with respect to the right slice hyperholomorphic product. We therefore
define S−n

L (s, x) and S−n
R (s, x) as the n-th inverse power of the function x �→ s− x

with respect to the left, respectively right, slice hyperholomorphic product.

Definition 2.16. Let s, x ∈ H with s /∈ [x]. For n ∈ N0, we define

S−n
L (s, x) := (x2 − 2Re(s)x+ |s|2)−n

n∑
k=0

(
n

k

)
(−x)ksn−k

and

S−n
R (s, x) :=

n∑
k=0

(
n

k

)
sn−k(−x)k(x2 − 2Re(s)x+ |s|2)−n.

A theory of slice hyperholomorphicity can also be developed for functions with
values a two-sided Banach space over the quaternions. The first results were stated
in [5].
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Definition 2.17. Let V be a two-sided quaternionic Banach space, let U ⊂ H be
open and let f : U → V be real differentiable. For any I ∈ S, let fI := f |U∩CI

denote the restriction of f to the plane CI . The function f is called left slice
hyperholomorphic if, for any I ∈ S,

(2.3)
1

2

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
= 0 for all x = x0 + Ix1 ∈ U ∩ CI

and right slice hyperholomorphic if, for any I ∈ S,

(2.4)
1

2

(
∂

∂x0
fI(x) +

∂

∂x1
fI(x)I

)
= 0 for all x = x0 + Ix1 ∈ U ∩ CI .

We denote the set of all left slice hyperholomorphic functions on U by SHL(U, V ),
the set of all right slice hyperholomorphic functions on U by SHR(U, V ).

Remark 2.18. The paper [5] actually starts from a different definition. Therein, an
operator-valued function f is called strongly left slice hyperholomorphic if it admits
a left slice derivative, that is,

(2.5) lim
CI�s→x

(s− x)−1(fI(x)− fI(s))

exists in the topology of V for any s ∈ U ∩CI and any I ∈ S and the limits coincide
for all I ∈ S if s is real.

The function f is called weakly left slice hyperholomorphic if, for any continuous
left linear functional Λ in the (left) dual space V ∗ of V , the function Λf admits a
left slice derivative, that is,

lim
CI�s→x

(s− x)−1(ΛfI(x)− ΛfI(s))

exists in H for any s ∈ U ∩ CI and any I ∈ S and the limits coincide of all
I ∈ S if s is real. This is equivalent to Λf being left slice hyperholomorphic in
the sense of Definition 2.1 by [5, Proposition 3.2] if Λf is real differentiable. By
Theorem 3.6 in [5] the notions of strong and weak left slice hyperholomorphicity
are equivalent and by Proposition 3.9 they are both equivalent to the notion of left
slice hyperholomorphicity defined in Definition 2.17 as long as f is assumed to be
real differentiable.

Analogue considerations can be done for right slice hyperholomorphic functions.
In this case, the right slice derivative defined by

(2.6) lim
CI�s→x

(fI(x)− fI(s))(s− x)−1

replaces the notion of left slice derivative and the notion of weak right slice hy-
perholomorphicity must be defined using right linear functionals in the right dual
space of V instead of left linear functionals.

Many results for scalar-valued slice hyperholomorphic functions also hold true
in the operator-valued case. The proofs of the following results can be found in [5].

Theorem 2.19 (Identity Principle, [5, Proposition 3.11]). Let U be a slice domain,
let f be left or right slice hyperholomorphic on U with values in a two-sided quater-
nionic Banach space and let Z be the set of zeros of f . If there exists an imaginary
unit I ∈ S such that Z ∩ CI has an accumulation point in U ∩ CI , then f ≡ 0.
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Theorem 2.20 (Representation Formula, [5, Theorem 3.15]). Let V be a two-
sided quaternionic Banach space, let U be an axially symmetric slice domain and
let I ∈ S. For any x = x0 + Ixx1 ∈ U set xI := x0 + Ix1. If f ∈ SHL(U, V ), then

f(x) =
1

2
(1− IxI)f(xI) +

1

2
(1 + IxI)f(xI) for all x ∈ U.

If f ∈ SHR(U, V ), then

f(x) = f(xI)(1− IIx)
1

2
+ f(xI)(1 + IIx)

1

2
for all x ∈ U.

An immediate consequence of this theorem is the following extension result,
which can be shown as the one in the scalar case.

Corollary 2.21. Let V be a two-sided quaternionic Banach space, let I ∈ S and
let f : O → V be real differentiable, where O is a domain in CI that is symmetric
with respect to the real axis.

(i) If f satisfies (2.3), then there exists a unique left slice hyperholomorphic
extension of f to [O].

(ii) If f satisfies (2.4), then there exists a unique right slice hyperholomorphic
extension of f to [O].

Theorem 2.22 (Cauchy’s integral formula, [5, Theorem 3.13]). Let U ⊂ H be a
bounded axially symmetric slice domain such that its boundary ∂(U ∩ CI) in CI

consists of a finite number of continuously differentiable Jordan curves. Let I ∈ S

and set dsI = −I ds. If f is left slice hyperholomorphic on an open set that contains
U , then

f(x) =
1

2π

∫
∂(U∩CI )

S−1
L (s, x) dsI f(s) for all x ∈ U.

If f is right slice hyperholomorphic on an open set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, x) for all x ∈ U.

To the best of the authors’ knowledge, the proofs of several fundamental results
have not yet been given explicitly for the case of vector-valued slice hyperholomor-
phic functions. Thus, we shall give them for the sake of completeness.

Corollary 2.23. Let V be a two-sided quaternionic Banach space. The slice deriv-
ative of a left (or right) slice hyperholomorphic function with values in V defined by
(2.5), respectively (2.6), is again left (or right) slice hyperholomorphic. Moreover,
it coincides with the derivative with respect to the real part, that is,

∂Sf(x) =
∂

∂x0
f(x) for x = x0 + Ix1.

Proof. Assume that f ∈ SHL(U, V ), choose I ∈ S and consider fI = fU∩CI
. The

quaternionic Banach space V also carries the structure of a complex Banach space
over the complex field CI , which we obtain by restricting the multiplication with
quaternionic scalars on the left to CI . The function fI is then a function with
values in this complex Banach space that is holomorphic in the classical sense. Its
derivative coincides with the slice derivative of f on CI , i.e.,

(∂Sf)|U∩CI
= f ′

I =
∂

∂x0
fI ,
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where f ′
I denotes the usual derivative of fI , when it is considered a holomorphic

function with values in a complex Banach space over CI . In particular this function
is again holomorphic in the classical sense and thus satisfies (2.3). The statement
for right slice hyperholomorphic functions follows with analogous arguments. �

Theorem 2.24. Let V be a two-sided quaternionic Banach space and assume that
the function f takes values in V . If f is left slice hyperholomorphic on the ball
B(r, α) with radius r centered at α ∈ R, then

f(x) =
+∞∑
n=0

(x− α)n
1

n!
∂n
Sf(α) for x ∈ B(r, α).

If f is right slice hyperholomorphic on B(r, α), then

f(x) =

+∞∑
n=0

1

n!
∂n
Sf(α)(x− α)n for x ∈ B(r, α).

Proof. Assume that f is left slice hyperholomorphic on B(r, α) and consider an
imaginary unit I ∈ S. As in the proof of Corollary 2.23 we may consider V as
a Banach space over CI by restricting the scalar multiplication with quaternions
on the left to CI . The restriction fI of f to the complex plane CI is then a
holomorphic function with values in a complex Banach space and thus admits a
power series expansion at α that converges on B(r, α) ∩ CI . For x ∈ B(r, α) ∩ CI ,
we obtain

f(x) = fI(x) =
+∞∑
n=0

(x− α)n
1

n!
f
(n)
I (α) =

+∞∑
n=0

(x− α)n
1

n!

∂n

∂xn
0

fI(α).

By Corollary 2.23, we have ∂n

∂xn
0
fIx(α) =

∂n

∂xn
0
f(α) = ∂n

Sf(α). Thus the coefficients

are independent of the plane CI and the statement holds true. The case of right
slice hyperholomorphic functions can be shown by analogous arguments. �

Finally, we also give the proof of Cauchy’s integral theorem for vector-valued
slice hyperholomorphic functions. It is based on the quaternionic version of the
Hahn-Banach theorem, which was originally proved in [52] and a proof of which
can also be found in [22]. We need the following corollary.

Corollary 2.25 ([22, Corollary 4.10.2]). Let V be a two-sided quaternionic Banach
space. If Λ(v) = 0 for all continuous right linear functionals Λ : V → H, then v = 0.

Similarly, if Λ(v) = 0 for all continuous left linear functionals Λ : V → H, then
also v = 0.

Theorem 2.26 (Cauchy’s integral theorem). Let V be a two-sided quaternionic
Banach space, let O ⊂ H be open and let I ∈ S. Furthermore assume that DI is
a bounded open subset of O ∩ CI with DI ⊂ O ∩ CI , whose boundary consists of a
finite number of continuously differentiable Jordan curves. If f ∈ SHR(U, V ) and
g ∈ SHL(U,H) or if f ∈ SHR(U,H) and g ∈ SHL(U, V ), then∫

∂DI

f(s) dsI g(s) = 0,

where dsI = −I ds.
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Proof. Assume that f ∈ SHR(U, V ) and g ∈ SHL(U,H) and consider a continuous
right linear functional Λ : V → H. The function s �→ Λf(s) = Λ(f(s)) is a
quaternion-valued right slice hyperholomorphic function. Thus we deduce from
Theorem 2.14 that

Λ

(∫
∂DI

f(s) dsI g(s)

)
=

∫
∂DI

Λf(s) dsI g(s) = 0

and from Corollary 2.25 in turn that the statement holds true. The other case
follows with analogous arguments. �

2.2. The S-functional calculus. The natural extension of the Riesz-Dunford
functional calculus for complex linear operators to quaternionic linear operators
is the so-called S-functional calculus. It is based on the theory of slice hyperholo-
morphic functions and follows the principal idea of the classical case: to formally
replace the scalar variable x in the Cauchy formula by an operator. The proofs of
the results stated in this subsection can be found in [4, 22].

Let V be a two-sided quaternionic Banach space. We denote the set of all
bounded quaternionic right-linear operators on V by B(V ) and the set of all closed
and densely defined quaternionic right-linear operators on V by K(V ).

Definition 2.27. We define the S-resolvent set of an operator T ∈ K(V ) as

ρS(T ) := {s ∈ H : (T 2 − 2Re(s)T + |s|2I)−1 ∈ B(V )}
and the S-spectrum of T as

σS(T ) := H \ ρS(T ).

For s ∈ H and T ∈ K(V ), we set

Qs(T ) := T 2 − 2Re(s)T + |s|2I.
If s ∈ ρS(T ), then the operator

Qs(T )
−1 = (T 2 − 2Re(s)T + |s|2I)−1

is called the pseudo-resolvent of T at s. We point out that, in contrast to the
notation we use in this paper, in the literature it is often the pseudo-resolvent that
is denoted by the symbol Qs(T ).

Definition 2.28. Let T ∈ K(V ). The left S-resolvent operator is defined as

(2.7) S−1
L (s, T ) := Qs(T )

−1s− TQs(T )
−1

and the right S-resolvent operator is defined as

(2.8) S−1
R (s, T ) := −(T − Is)Qs(T )

−1.

Remark 2.29. Observe that one obtains the right S-resolvent operator by formally
replacing the variable x in the right slice hyperholomorphic Cauchy kernel by the
operator T . The same procedure yields

(2.9) S−1
L (s, T )v = −Qs(T )

−1(T − sI)v, for v ∈ D(T )

for the left S-resolvent operator. This operator is not defined on the entire space V ,
but only on the domain D(T ) of T . One can exploit the fact that Qs(T )

−1 and T
commute on D(T ) in order to overcome this problem: commuting T and Qs(T )

−1

in (2.9) yields (2.7). For arbitrary s ∈ H, the operator T 2 − 2Re(s)T + |s|2I maps
D(T 2) to V . Hence, the pseudo-resolvent Qs(T )

−1 maps V to D(T 2) ⊂ D(T ) if
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s ∈ ρS(T ). Since T is closed and Qs(T )
−1 is bounded, equation (2.7) then defines

a continuous and therefore bounded right linear operator on the entire space V .
Hence, the left resolvent S−1

L (s, T ) is the natural extension of the operator (2.9)

to V . In particular, if T is bounded, then S−1
L (s, T ) can be defined directly by (2.9).

If one considers left linear operators, then one must modify the definition of the
right S-resolvent operator for the same reasons.

Remark 2.30. The S-resolvent operators reduce to the classical resolvent if T and
s commute, that is

S−1
L (s, T ) = S−1

R (s, T ) = (sI − T )−1.

This is in particular the case if s is real.

As pointed out in the introduction, the S-spectrum is the proper generalization
of the notion of right-eigenvalues [20, Theorem2.5].

Theorem 2.31. Let T ∈ K(V ). Then s ∈ H is a right eigenvalue if and only if it
is an S-eigenvalue.

The following important result has implicitly been assumed to hold true in the
literature. For the case of bounded operators a proof can be found in [29], but
by the best of the authors’ knowledge, it has never been shown for unbounded
operators. (The paper [35] contains a proof in a more general setting: it considers
real alternative ∗-algebras instead of quaternions. However, the proof in this paper
requires that there exits a real point in the S-resolvent set of the operator.) For the
sake of completeness, we therefore give its proof in this paper. Since the arguments
for unbounded operators are quite technical, we postpone them to Section 3.

Lemma 2.32. Let T ∈ K(V ). The map s �→ S−1
L (s, T ) is a right slice hyperholo-

morphic function on ρS(T ) with values in the two-sided quaternionic Banach space
B(V ). The map s �→ S−1

R (s, T ) is a left slice hyperholomorphic function on ρS(T )
with values in the two-sided quaternionic Banach space B(V ).

The S-resolvent equation has been proved in [4] for the case that T is a bounded
operator. For the sake of completeness we show the S-resolvent equation for the
case of unbounded operators.

Theorem 2.33 (S-resolvent equation). Let T ∈ K(V ). If s, p ∈ ρS(T ) with s /∈ [p],
then

S−1
R (s, T )S−1

L (p, T )v =
[
[S−1

R (s, T )− S−1
L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]
]
(p2 − 2s0p+ |s|2)−1v, v ∈ V.

(2.10)

Proof. We recall from [22] that the left S-resolvent operator satisfies the equation

(2.11) TS−1
L (p, T )v = S−1

L (p, T )pv − v, v ∈ V,

and that the right S-resolvent operator satisfies the equation

(2.12) S−1
R (s, T )Tv = sS−1

R (s, T )v − v, v ∈ D(T ).

As in the case of bounded operators, the S-resolvent equation is deduced from
these two relations. However, we have to pay attention to being consistent with
the domains of definition of every operator that appears in the proof.
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We show that, for every v ∈ V , one has

(2.13) S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)v
= [S−1

R (s, T )− S−1
L (p, T )]pv − s[S−1

R (s, T )− S−1
L (p, T )]v.

We then obtain the original equation (2.10) by replacing v by (p2−2s0p+ |s|2)−1v.
For w ∈ V , the left S-resolvent equation (2.11) implies

S−1
R (s, T )S−1

L (p, T )pw = S−1
R (s, T )TS−1

L (p, T )w + S−1
R (s, T )w.

Since Qs(T )
−1 = (T 2 − 2s0T + |s|2I)−1 maps V onto D(T 2), the left S-resolvent

S−1
L (s, T ) = Qs(T )

−1s− TQs(T )
−1 maps V to D(T ). Consequently, S−1

L (p, T )w ∈
D(T ) and the right S-resolvent equation (2.12) yields

(2.14) S−1
R (s, T )S−1

L (p, T )pw = sS−1
R (s, T )S−1

L (p, T )w−S−1
L (p, T )w+S−1

R (s, T )w.

If we apply this identity with w = pv we get

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)v
= S−1

R (s, T )S−1
L (p, T )p2v − 2s0S

−1
R (s, T )S−1

L (p, T )pv

+ |s|2S−1
R (s, T )S−1

L (p, T )v

= sS−1
R (s, T )S−1

L (p, T )pv − S−1
L (p, T )pv + S−1

R (s, T )pv

− 2s0S
−1
R (s, T )S−1

L (p, T )pv + |s|2S−1
R (s, T )S−1

L (p, T )v.

Applying identity (2.14) again with w = v gives

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)v
= s2S−1

R (s, T )S−1
L (p, T )v − sS−1

L (p, T )v + sS−1
R (s, T )v

− S−1
L (p, T )pv + S−1

R (s, T )pv

− 2s0sS
−1
R (s, T )S−1

L (p, T )v + 2s0S
−1
L (p, T )v − 2s0S

−1
R (s, T )v

+ |s|2S−1
R (s, T )S−1

L (p, T )v

= (s2−2s0s+ |s|2)S−1
R (s, T )S−1

L (p, T )v−(2s0−s)[S−1
R (s, T )v−S−1

L (p, T )v]

+ [S−1
R (s, T )− S−1

L (p, T )]pv.

The identity 2s0 = s+ s implies s2 − 2s0s+ |s|2 = 0 and 2s0 − s = s, and hence we
obtain the desired equation (2.13). �

Definition 2.34. Let T ∈ K(V ).

(i) An axially symmetric slice domain U is called T -admissible if σS(T ) ⊂ U
and ∂(U ∩ CI) is the union of a finite number of Jordan curves for any
I ∈ S.

(ii) A function f is said to be left (or right) slice hyperholomorphic on σS(T )
if it is left (or right) slice hyperholomorphic on an open set O such that
U ⊂ O for some T -admissible slice domain U . We will denote the class of
such functions by SHL(σS(T )) (or SHR(σS(T ))).

Formally replacing the slice hyperholomorphic Cauchy kernels in the Cauchy
formula by the S-resolvent operators leads to the natural generalization of the
Riesz-Dunford functional calculus to quaternionic linear operators.
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Definition 2.35 (S-functional calculus for bounded operators). Let T ∈ B(V ),
choose I ∈ S and set dsI = −I ds. For f ∈ SHL(σS(T )), we define

f(T ) :=
1

2π

∫
∂(U∩CI )

S−1
L (s, T ) dsI f(s).

For f ∈ SHR(σS(T )), we define

f(T ) :=
1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, T ).

These integrals are independent of the choice of the bounded slice domain U and
the imaginary unit I ∈ S.

A function f is said to be left (or right) slice hyperholomorphic at ∞, if f is left

(or right) slice hyperholomorphic on H \B(r, 0) for some ball B(r, 0) and the limit
f(∞) := limx→∞ f(x) exists. By SHL(σS(T )∪{∞}) we denote the set of functions
f ∈ SHL(σS(T )) that are left slice hyperholomorphic at∞, and similarly we denote
the corresponding sets of right slice hyperholomorphic and intrinsic functions.

Lemma 2.36. Let T ∈ K(T ) with ρS(T ) ∩ R �= ∅, let α ∈ ρS(T ) ∩ R and set
A := (T − αI)−1 = −S−1

L (α, T ) ∈ B(V ). We define the function Φα : H ∪ {∞} →
H ∪ {∞} by Φα(s) = (s − α)−1 for s ∈ H \ {α} and Φα(α) = ∞ and Φα(∞) = 0.
Then f ∈ SHL(σS(T ) ∪ {∞}) if and only if f ◦ Φ−1

α ∈ SHL(σS(A)) and f ∈
SHR(σS(T ) ∪ {∞}) if and only if f ◦ Φ−1

α ∈ SHR(σS(A)).

Definition 2.37. Let T ∈ K(T ), let α ∈ ρS(T ) ∩ R and let A and Φα be as in
Lemma 2.36. For f ∈ SHL(σS(T ) ∪ {∞}) or f ∈ SHR(σS(T ) ∪ {∞}), we define

f(T ) = f ◦ Φ−1
α (A)

in the sense of Definition 2.35.

Theorem 2.38. Let T ∈ K(V ). If f ∈ SHL(σS(T ) ∪ {∞}), then

f(T ) = f(∞)I +
1

2π

∫
∂(U∩CI )

S−1
L (s, T ) dsI f(s)

and if f ∈ SHR(σS(T ) ∪ {∞}), then

f(T ) = f(∞)I +
1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, T )

for any imaginary unit I ∈ S and any T -admissible slice domain U such that f
is left (resp. right) slice hyperholomorphic on U . In particular, Definition 2.37 is
independent of the choice of α.

Corollary 2.39. Let T ∈ K(V ) and let σS(T ) denote the extended S-spectrum
of T , that is, σS(T ) = σS(T ) if T is bounded and σS(T ) = σS(T ) ∪ {∞} if T is
unbounded. The S-functional calculus has the following properties:

(i) If f, g ∈ SHL(σS(T )) and a ∈ H, then (fa + g)(T ) = f(T )a + g(T ). If
f, g ∈ SHR(σS(T )) and a ∈ H, then (af + g)(T ) = af(T ) + g(T ).

(ii) If f ∈ N (σS(T )) and g ∈ SHL(σS(T )) or if f ∈ SHR(σS(T )) and g ∈
N (σS(T )), then (fg)(T ) = f(T )g(T ).

(iii) If g ∈ N (σS(T )), then σS(g(T )) = g(σS(T )) and f(g(T )) = f ◦ g(T ) if
f ∈ SHL(g(σS(T ))) or f ∈ SHR(g(σS(T ))).
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Although polynomials do not belong to the class of admissible functions if the
operator is unbounded, they are still compatible with the S-functional calculus as
the following lemma shows [30, Lemma 4.4]

Lemma 2.40. Let T ∈ K(V ) with ρS(T ) �= ∅ and assume that f ∈ N (σS(T )∪{∞})
has a zero of order n ∈ N0 ∪ {+∞} at infinity.

(i) For any intrinsic polynomial P of degree lower than or equal to n, we have
P (T )f(T ) = (Pf)(T ).

(ii) If v ∈ D(Tm) for some m ∈ N0 ∪ {∞}, then f(T )v ∈ D(Tm+n).

Finally, we determine the slice derivatives of the S-resolvent operators. For
bounded T , this has been done in [16], but since the calculations are slightly more
delicate for unbounded operators, we give the proof again for the sake of complete-
ness. Definition 2.16 and considerations as in Remark 2.29 motivate the following
definition.

Definition 2.41. Let T ∈ K(V ). For s ∈ ρS(T ), we set

S−n
L (s, T ) :=

n∑
k=0

(
n

k

)
(−T )k(T 2 − 2Re(s)T + |s|2I)−nsn−k

and

S−n
R (s, T ) :=

n∑
k=0

(
n

k

)
sn−k(−T )k(T 2 − 2Re(s)T + |s|2)−n.

Remark 2.42. The operator Qs(T )
−n = (T 2 − 2Re(s)T + |s|2I)−n is bounded

and maps V to D(T 2n); cf. the arguments in Remark 2.29. Furthermore, by
Corollary 4.5 in [30], the operators (−T )k. Hence, the operators S−n

L (s, T ) and

S−n
R (s, T ) are bounded as D((−T )k) = D(T k) ⊃ D(T 2n) for any k ∈ {0, . . . , n}.

Lemma 2.43. Let T ∈ K(V ) with ρS(T )∩R �= ∅. The n-th slice derivatives of the
left and right S-resolvent of T for n ∈ N0 are

∂n
SS

−1
L (s, T )=(−1)nn!S

−(n+1)
L (s, T ) and ∂n

SS
−1
R (s, T )=(−1)nn!S

−(n+1)
R (s, T ).

Proof. We consider the case of the left S-resolvent operator. For p ∈ ρS(T ), let ε be
such that B(ε, p) ⊂ ρS(T ) and set Up,ε := H \ [B(ε, p)], where [B(ε, p)] denotes the

axially symmetric hull of B(ε, p). For any s ∈ [B(ε/2, p)], the map x �→ S−1
L (s, x)

is then left slice hyperholomorphic on Up,ε and also at infinity with S−1
L (s,∞) = 0.

We thus have by Theorem 2.38, Corollary 2.39 and Lemma 2.40 that

S−1
L (s, T ) = Qs(T )

−1s− TQs(T )
−1

=
1

2π

∫
∂(Up,ε∩CI)

S−1
L (s, x) dxI Qs(x)

−1s

− 1

2π

∫
∂(Up,ε∩CI)

S−1
L (s, x) dxI xQs(x)

−1

=
1

2π

∫
∂(Up,ε∩CI)

S−1
L (x, T ) dxI S

−1
L (s, x),



1062 F. COLOMBO AND J. GANTNER

where Qs(x)
−1 = (x2 − 2Re(s)x−+|s|2)−1. By induction, one can easily see that

∂n
SS

−1
L (s, x) = (−1)nn!S

−(n+1)
L (s, x)

= (−1)nn!
n+1∑
k=0

(
n+ 1

k

)
(−x)kQs(x)

−(n+1)sn+1−k,

where the second equality holds because Qs(x)
−1 and x commute. Since (−x)k is

an intrinsic polynomial, since Qs(x)
−(n+1) is also intrinsic and since s �→ S−1

L (s, T )
can be represented by the above integral on a neighborhood of p, we deduce again
from Theorem 2.38, Corollary 2.39 and Lemma 2.40 that

∂n
SS

−1
L (s, T ) =

1

2π

∫
∂(Up,ε∩CI)

S−1
L (x, T ) dxI ∂

n
SS

−1
L (s, x)

=
1

2π

∫
∂(Up,ε∩CI)

S−1
L (x, T ) dxI (−1)nn!

n+1∑
k=0

(
n+ 1

k

)
(−x)kQs(x)

−(n+1)sn+1−k

= (−1)nn!
n+1∑
k=0

(
n+ 1

k

)
(−T )kQs(T )

−(n+1)sn+1−k = (−1)nn!S
−(n+1)
L (s, T ).

�

2.3. Logarithm and fractional powers in the quaternions. In order to state
the main results we finally recall the logarithmic function in the slice hyperholo-
morphic setting. The logarithmic function on H is defined as

(2.15) log s := ln |s|+ Is arccos(s0/|s|) for s ∈ H \ {(−∞, 0]}.
Note that for s = s0 ∈ [0,∞) we have arccos(s0/|s|) = 0 and so log s = ln s.
Therefore, log s is well defined also on the positive real axis and does not depend
on the choice of the imaginary unit Is. It is

elog s = s for s ∈ H

and

log es = s for s ∈ H with |s| < π.

The logarithmic function is real differentiable on H \ (−∞, 0]. Moreover, for any
I ∈ S, the restriction of log s to the complex plane CI coincides with a branch of
the complex logarithm on CI and is therefore holomorphic on CI \ (−∞, 0]. Thus,
log s is left and right slice hyperholomorphic on H \ (−∞, 0].

Remark 2.44. Observe that there exist other definitions of the quaternionic loga-
rithm in the literature. In [37], the logarithm of a quaternion is for instance defined
as

logk,i s :=

{
ln |s|+ Ix

(
arccos s0

|s| + 2kπ
)
, |s| �= 0 or |s| = 0, s0 > 0,

ln |s|+ eiπ, |s| = 0, s0 < 0,

where k ∈ Z and ei is one of the generating units of H. This logarithm is, however,
not continuous at the real line (and therefore in particular not slice hyperholomor-
phic at the real line) unless k = 0. But in this case this definition of the logarithm
coincides with the one given in (2.15). Indeed, the identity principle implies that
(2.15) defines the maximal slice hyperholomorphic extension of the natural loga-
rithm on (0,+∞) to a subset of the quaternions.
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We define fractional powers of a quaternion for α ∈ R as

(2.16) sα := eα log s = eα(ln |s|+Is arccos(s0/|s|)), s ∈ H \ (−∞, 0].

This function is obviously also left and right slice hyperholomorphic on H\(−∞, 0].

Definition 2.45 (Argument function). Let p ∈ H \ {0}. We define arg(p) as the
unique number θ ∈ [0, π] such that p = |p|eθIp .

Again θ = arg(s) does not depend on the choice of Is if s ∈ R\{0} since p = |p|e0I
for any I ∈ S if p > 0 and p = |p|eπI for any I ∈ S if p < 0.

3. On the slice hyperholomorphicity of the S-resolvents

In this section we first give a precise proof for the slice hyperholomorphicity of
the S-resolvents and then we consider the question whether the S-resolvents could
have slice hyperholomorphic continuations to sets larger than the S-resolvent set
of the respective operator. We start with a new series expansion for the pseudo-
resolvent Qs(T )

−1. An heuristic approach to find this expansion is to consider the
immediate equation

(3.1) Qs(T )
−1 −Qp(T )

−1 = Qs(T )
−1(Qp(T ) −Qs(T ))Qp(T )

−1

and transform it to

Qs(T )
−1 = Qp(T )

−1 +Qs(T )
−1(Qp(T ) −Qs(T ))Qp(T )

−1.

Recursive application of this equation then yields the series expansion proved in
the following lemma.

Lemma 3.1. Let T ∈ K(V ) and p ∈ ρS(T ) and let s ∈ H. If the series

(3.2) J (s) =

+∞∑
n=0

(Qp(T ) −Qs(T ))
n Qp(T )

−(n+1)

converges absolutely in B(V ), then s ∈ ρS(T ) and its sum is the inverse of Qs(T ).
The series converges in particular uniformly on any of the closed axially sym-

metric neighborhoods

Cε(p) = {s ∈ H : dS(s, p) ≤ ε}
of p with

dS(s, p) = max
{
2|s0 − p0|,

∣∣|p|2 − |s|2
∣∣}

and

ε <
1

‖TQp(T )−1‖+ ‖Qp(T )−1‖ .

Proof. Let us first consider the question of convergence of the series. The sets
Cε(p) are obviously axially symmetric: if sI belongs to the sphere [s] associated
to s, then s0 = Re(s) = Re(sI) and |s|2 = |sI |2. Thus dS(sI , p) = dS(s, p) and in
turn s ∈ Cε(p) if and only if sI ∈ Cε(p). Moreover, since the map s �→ dS(s, p)
is continuous, the sets Uε(p) := {s ∈ H : dS(s, p) < ε} are open in H. Since
Uε(p) ⊂ Cε(p), the sets Cε are actually neighborhoods of p.

In order to simplify the notation, we set

D(p, s) := Qp(T ) −Qs(T ) = 2(s0 − p0)T + (|p|2 − |s|2)I.
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Since Qp(T )
−1 maps V to D(T 2) and D(p, s) commutes with Qp(T )

−1 on D(T 2),
we have for any s ∈ Cε(p)

+∞∑
n=0

∥∥∥D(p, s)nQp(T )
−(n+1)

∥∥∥
=

+∞∑
n=0

∥∥∥(D(p, s)Qp(T )
−1
)n Qp(T )

−1
∥∥∥

≤
+∞∑
n=0

∥∥D(p, s)Qp(T )
−1
∥∥n ∥∥Qp(T )

−1
∥∥ .

We further have∥∥D(p, s)Qp(T )
−1
∥∥ ≤ 2|s0 − p0|

∥∥TQp(T )
−1
∥∥+ ∣∣|p|2 − |s|2

∣∣ ∥∥Qp(T )
−1
∥∥

≤ dS(s, p)
(∥∥TQp(T )

−1
∥∥+ ∥∥Qp(T )

−1
∥∥)

≤ ε
(∥∥TQp(T )

−1
∥∥+ ∥∥Qp(T )

−1
∥∥) =: q.

Now if ε < 1/
(∥∥TQp(T )

−1
∥∥+ ∥∥Qp(T )

−1
∥∥), then 0 < q < 1 and thus

+∞∑
n=0

∥∥∥D(p, s)nQp(T )
−(n+1)

∥∥∥ ≤ ∥∥Qp(T )
−1
∥∥ +∞∑

n=0

qn < +∞

and the series converges uniformly in B(V ) on Cε(p).
Now assume that the series (3.2) converges and observe that Qs(T ), Qp(T ) and

Qp(T )
−1 commute on D(T 2) and hence we have for v ∈ D(T 2) that

J (s)Qs(T )v =

+∞∑
n=0

D(p, s)nQp(T )
−(n+1)Qs(T )v

=

+∞∑
n=0

D(p, s)nQp(T )
−(n+1) [−D(p, s) +Qp(T )] v

= −
+∞∑
n=0

D(p, s)n+1Qp(T )
−(n+1)v

+

+∞∑
n=0

D(p, s)nQp(T )
−nv = v.

On the other hand vN :=
∑N

n=0 D(p, s)nQp(T )
−(n+1)v belongs to D(T 2) for any

v ∈ V and we have

Qs(T )vN =(−D(p, s) +Qp(T ))

N∑
n=0

D(p, s)nQp(T )
−(n+1)v

=−
N∑

n=0

D(p, s)n+1Qp(T )
−(n+1)v +

N∑
n=0

D(p, s)nQp(T )
−nv

=−D(p, s)N+1Qp(T )
−(N+1)v + v.
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Now observe that D(p, s) = 2(s0 − p0)T + (|p|2 − |s|2)I is defined on D(T ) and
maps D(T 2) to D(T ). Hence D(p, s)2Qp(T )

−1 belongs to B(V ) and for N ≥ 1∥∥∥−D(p, s)N+1Qp(T )
−(N+1)v

∥∥∥
=
∥∥−D(p, s)N−1Qp(T )

−N
D(p, s)2Qp(T )

−1v
∥∥

≤
∥∥−D(p, s)N−1Qp(T )

−N
∥∥ ∥∥D(p, s)2Qp(T )

−1v
∥∥ N→∞−→ 0

because the series (3.2) converges in B(V ) by assumption. Thus Qs(T )vN → v
and vN → v∞ := J (s)v as N → ∞. Since Qs(T ) is closed, we obtain that
J (s)v ∈ D(Qs(T )) = D(T 2) and Qs(T )J (s)v = v. Hence, J (s) = Qs(T )

−1 and
in turn s ∈ ρS(T ). �

Lemma 3.2. Let T ∈ K(V ). The functions s → Qs(T )
−1 and s → TQs(T )

−1,
which are defined on ρS(T ) and take values in B(V ), are continuous.

Proof. Let p ∈ ρS(T ). Then Qs(T )
−1 can be represented by the series (3.2), which

converges uniformly on a neighborhood of p. Hence, we have

lim
s→p

Qs(T )
−1 =

+∞∑
n=0

lim
s→p

(
2(s0 − p0)T +

(
|p|2 − |s|2

)
I
)n Qp(T )

−(n+1) = Qp(T )
−1,

because each term in the sum is a polynomial in s0 and s1 with coefficients in B(V )
and thus continuous. Indeed(

(s0 − p0)T +
(
|p|2 − |s|2

)
I
)n Qp(T )

−(n+1)

=

n∑
k=0

(
n

k

)
(s0 − p0)

k
(
|p|2 − |s|2

)n−k
T kQp(T )

−(n+1)

and T kQp(T )
−(n+1) ∈ B(V ) because Qp(T )

−(n+1) maps V to D(T 2(n+1)) and k <
2(n+ 1). The function s �→ TQs(T )

−1 is continuous because (3.1) implies

lim
h→0

∥∥TQs+h(T )
−1 − TQs(T )

−1
∥∥

= lim
h→0

∥∥TQs+h(T )
−1(Qs(T ) −Qs+h(T ))Qs(T )

−1
∥∥ .

Now observe that Qs(T )
−1 maps V to D(T 2) such that

(Qs(T ) −Qs+h(T ))Qs(T )
−1 = (2h0T + (|s|2 − |s+ h|2)I)Qs(T )

−1

in turn maps V to D(T ). Since T and Qs+h(T )
−1 commute on D(T ) we thus have

lim
h→0

∥∥TQs+h(T )
−1 − TQs(T )

−1
∥∥

= lim
h→0

∥∥Qs+h(T )
−1
(
2h0T

2 +
(
|s|2 − |s+ h|2

)
T
)
Qs(T )

−1
∥∥

≤ lim
h→0

∥∥Qs+h(T )
−1
∥∥ lim

h→0

(
2h0

∥∥T 2Qs(T )
−1
∥∥+ (|s|2 − |s+ h|2

) ∥∥TQs(T )
−1
∥∥)

=0.

�

Lemma 3.3. Let T ∈ K(V ) and s ∈ ρS(T ). The pseudo-resolvent Qs(T )
−1 is

continuously real differentiable with

∂

∂s0
Qs(T )

−1 = (2T − 2s0I)Qs(T )
−2 and

∂

∂s1
Qs(T )

−1 = −2s1Qs(T )
−2.
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Proof. Let us first compute the partial derivative of Qs(T )
−1 with respect to the

real part s0. Applying equation (3.1), we have

∂

∂s0
Qs(T )

−1 = lim
R�h→0

1

h

(
Qs+h(T )

−1 −Qs(T )
−1
)

= lim
R�h→0

1

h
Qs+h(T )

−1 (Qs(T ) −Qs+h(T ))Qs(T )
−1

= lim
R�h→0

Qs+h(T )
−1 (2T − 2s0I − hI)Qs(T )

−1,

where limR�h→0 f(h) denotes the limit of a function f as h tends to 0 in R. Since
the composition and the multiplication with scalars are continuous operations on
B(V ), we further have

∂

∂s0
Qs(T )

−1 = lim
R�h→0

Qs+h(T )
−1 lim

R�h→0

(
(2T − 2s0I)Qs(T )

−1 − hQs(T )
−1
)

=Qs(T )
−1(2T − 2s0I)Qs(T )

−1 = (2T − 2s0I)Qs(T )
−2,

where the last equation holds true because Qs(T )
−1 maps V to D(T 2) ⊂ D(T ) and

T and Qs(T )
−1 commute on D(T ). Observe that the partial derivative ∂

∂s0
Qs(T )

−1

is even continuous because it is the sum and product of continuous functions by
Lemma 3.2.

If we write s = s0 + Iss1, then we can argue in a similar way to show that the
derivative of Qs(T )

−1 with respect to s1 is

∂

∂s1
Qs(T )

−1 = lim
R�h→0

1

h

(
Qs+hIs(T )

−1 −Qs(T )
−1
)

= lim
R�h→0

1

h
Qs+hIs(T )

−1 (Qs(T ) −Qs+hIs(T ))Qs(T )
−1

= lim
R�h→0

Qs+hIs(T )
−1 (−2s1 − h)Qs(T )

−1

= lim
R�h→0

Qs+hIs(T )
−1 lim

R�h→0

(
−2s1Qs(T )

−1 − hQs(T )
−1
)

= −2s1Qs(T )
−2.

Again this derivative is continuous as the product of two continuous functions by
Lemma 3.2.

Finally, we easily obtain that Qs(T )
−1 is continuously real differentiable from

the fact that Qs(T )
−1 is continuously differentiable in the variables s0 and s1: if

s = ξ0 +
∑3

i=1 ξiei, then the partial derivative with respect to ξ0 corresponds to
the partial derivative with respect to s0 and thus exists and is continuous. The
partial derivative with respect to ξi for 1 ≤ i ≤ 3 on the other hand exists and is
continuous for s1 �= 0 because Qs(T )

−1 can be considered as the composition of the
continuously differentiable functions s �→ s1 and s1 → Qs0+Iss1(T )

−1. For s1 = 0
(that is for s ∈ R), we can simply choose Is = ei and then the partial derivative
with respect to ξi corresponds to the partial derivative with respect to s1. �

Lemma 3.4. Let T ∈ K(V ) and s ∈ ρS(T ). The function s �→ TQs(T )
−1 is

continuously real differentiable with

∂

∂s0
TQs(T )

−1 = (2T 2 − 2s0T )Qs(T )
−2 and

∂

∂s1
TQs(T )

−1 = −2s1TQs(T )
−2.
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Proof. If limR�h→0 f(h) denotes again the limit of a function f as h tends to 0 in
R, then we obtain from (3.1) that

∂

∂s0
TQs(T )

−1 = lim
R�h→0

1

h

(
TQs+h(T )

−1 − TQs(T )
−1
)

= lim
R�h→0

1

h
TQs+h(T )

−1 (Qs(T ) −Qs+h(T ))Qs(T )
−1

= lim
R�h→0

1

h
TQs+h(T )

−1
(
2hT − 2hs0I − h2I

)
Qs(T )

−1

= lim
R�h→0

Qs+h(T )
−1
(
2T 2 − 2s0T − hT

)
Qs(T )

−1,

because
(
2hT − 2hs0I − h2I

)
Qs(T )

−1 maps V to D(T ) and T and Qs+h(T )
−1

commute on D(T ). Since the composition and the multiplication with scalars are
continuous operations on the space B(V ) and since the pseudo-resolvent is contin-
uous by Lemma 3.2, we get

∂

∂s0
TQs(T )

−1 = lim
R�h→0

Qs+h(T )
−1 lim

R�h→0

((
2T 2 − 2s0T

)
Qs(T )

−1 − hTQs(T )
−1
)

= Qs(T )
−1(2T 2 − 2s0T )Qs(T )

−1 = (2s0T − 2T 2)Qs(T )
−2.

This function is continuous because we can write it as the product of functions that
are continuous by Lemma 3.2.

The derivative with respect to s1 can be computed using similar arguments via

∂

∂s1
TQs(T )

−1 = lim
R�h→0

1

h

(
TQs+hIs(T )

−1 − TQs(T )
−1
)

= lim
R�h→0

1

h
TQs+hIs(T )

−1 (Qs(T ) −Qs+hIs(T ))Qs(T )
−1

= lim
R�h→0

1

h
TQs+hIs(T )

−1
(
−2hs1 − h2

)
Qs(T )

−1

= lim
R�h→0

Qs+hIs(T )
−1 lim

R�h→0

(
−2s1TQs(T )

−1 − hTQs(T )
−1
)

= −2s1TQs(T )
−2.

Also this derivative is continuous because it can be written in the form ∂
∂s1

TQs(T )
−1

= −2s1
(
TQs(T )

−1
)
Qs(T )

−1 as the product of functions that are continuous by
Lemma 3.2.

Finally, we see as in the proof of Lemma 3.3 that TQs(T )
−1 is continuously

differentiable in the four real coordinates by considering it as the composition
of the two continuously real differentiable functions s �→ (s0, s1) and (s0, s1) �→
TQs0+Is1(T )

−1, respectively by choosing Is appropriately if s ∈ R. �

Corollary 3.5. Let T ∈ K(V ) and s ∈ ρS(T ). The left and the right S-resolvent
are real continuously differentiable.

Proof. The S-resolvents are sums of functions that are continuously real differen-
tiable by Lemma 3.3 and Lemma 3.4 and hence continuously real differentiable
themselves. �

Let us now give the proof of Lemma 2.32: the left S-resolvent is right slice
hyperholomorphic and the right S-resolvent is left slice hyperholomorphic in the
scalar variable on ρS(T ).



1068 F. COLOMBO AND J. GANTNER

Proof of Lemma 2.32. We consider only the case of the left S-resolvent, the other
one works with analogous arguments. Applying Lemma 3.3 and Lemma 3.4, we
have

∂

∂s0
S−1
L (s, T ) =

∂

∂s0
Qs(T )

−1s− ∂

∂s0
TQs(T )

−1

= (2T − 2s0I)Qs(T )
−2s+Qs(T )

−1 −
(
2T 2 − 2s0T

)
Qs(T )

−2

= (2T − 2s0I)Qs(T )
−2s+

(
−T 2 + |s|2I

)
Qs(T )

−2.

Since s0 and |s|2 are real, we can commute them with Qs(T )
−2 and by applying

the identities 2s0 = s+ s and |s|2 = ss we obtain

∂

∂s0
S−1
L (s, T ) = −T 2Qs(T )

−2 + 2TQs(T )
−2s−Qs(T )

−2s2.

For the partial derivative with respect to s1, we obtain

∂

∂s1
S−1
L (s, T )

=
∂

∂s1
Qs(T )

−1s− ∂

∂s1
TQs(T )

−1

=− 2s1Qs(T )
−2s−Qs(T )

−1Is + 2s1TQs(T )
−2

=− 2s1Qs(T )
−2s− (T 2 − 2s0T + |s|2I)Qs(T )

−2Is + 2s1TQs(T )
−2.

We can now commute 2s0, 2s1 and |s|2 with Qs(T )
−1 because they are real. By

exploiting the identities 2s0 = s+ s, −2s1 = (s− s)Is and |s|2 = ss, we obtain

∂

∂s1
S−1
L (s, T ) =

(
−T 2Qs(T )

−2 + 2TQs(T )
−2s−Qs(T )

−2(T )s2
)
Is.

Hence, s �→ S−1
L (s, T ) is right slice hyperholomorphic as

1

2

(
∂

∂s0
S−1
L (s, T ) +

∂

∂s1
S−1
L (s, T )Is

)
= 0.

�

In what follows we will need the fact that the S-resolvent set is the maximal
domain of slice hyperholomorphicity of the S-resolvents such that they do not have
a slice hyperholomorphic continuation. In the complex case this is guaranteed by
the well-known estimate

(3.3) ‖R(z, A)‖ ≥ 1

dist(z, σ(A))
,

where R(z, A) denotes the resolvent and σ(A) the spectrum of the complex linear
operator A. This estimate assures that ‖R(z, A)‖ → +∞ as z approaches σ(A) and
in turn that the resolvent does not have any holomorphic continuation to a larger
domain.

In the quaternionic setting, an estimate similar to (3.3) cannot hold true: con-
sider λ = λ0 + Iλλ1 with λ1 > 0 and I ∈ S and the operator T = λI acting on
some two-sided Banach space V . Its S-spectrum σS(T ) coincides with the sphere
[λ] associated to λ and its left S-resolvent is

S−1
L (s, T ) = (λ2 − 2s0λ+ |s|2)−1(s− λ)I.
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If s ∈ CIλ , then λ and s commute and the left S-resolvent reduces to S−1
L (s, T ) =

(s − λ)−1I with ‖S−1
L (s, T )‖ = 1/|s − λ|. Thus, if s tends to λ in CIλ

, then

dist(s, σS(T )) → 0 because λ ∈ σS(T ) but at the same time ‖S−1
L (s, T )‖ →

1/|λ− λ| = 1/(2λ1) < +∞.
Nevertheless, although (3.3) does not have a counterpart in the quaternionic

setting, we can show that, under suitable assumptions, the norms of the S-resolvents
explode near the S-spectrum. As it happens often in quaternionic operator theory,
this requires that we work with spectral spheres of associated quaternions instead
of single spectral values.

Lemma 3.6. Let T ∈ K(V ) and s ∈ ρS(T ). Then

(3.4) ‖Qs(T )
−1‖+ ‖TQs(T )

−1‖ ≥ 1

dS(s, σS(T ))
,

where dS(s, σS(T ))=infp∈σS(T ) dS(s, p) and dS(s, p) is defined as in the Lemma 3.1.

Proof. Set Cs := ‖Qs(T )
−1‖+ ‖TQs(T )

−1‖. If dS(s, p) < 1/Cs, then p ∈ ρS(T ) by
Lemma 3.1. Thus, dS(s, p) ≥ 1/Cs for any p ∈ σS(T ). Taking the infimum over all
p ∈ σS(T ), this inequality still holds true such that we obtain dS(s, σS(T )) ≥ 1/Cs,
which is equivalent to (3.4). �

Lemma 3.7. Let T ∈ K(V ) and s ∈ ρS(T ). Then√
2 ‖Qs(T )−1‖ ≤

∥∥S−1
L (s, T )

∥∥+ ∥∥S−1
L (s, T )

∥∥
and in turn √

‖Qs(T )−1‖ ≤
√
2 sup
sI∈[s]

∥∥S−1
L (sI , T )

∥∥ .
Analogous estimates hold for the right S-resolvent operator.

Proof. Observe thatQs(T )
−1 = Qs(T )

−1 for s ∈ ρS(T ). Hence, because 2s0 = s+s,
we have

S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

=
(
Qs(T )

−1s− TQs(T )
−1
) (

Qs(T )
−1s− TQs(T )

−1
)

+
(
Qs(T )

−1s− TQs(T )
−1
) (

Qs(T )
−1s− TQs(T )

−1
)

=
(
Qs(T )

−1s− TQs(T )
−1
)
2 (s0I − T )Qs(T )

−1

and similarly

S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

=
(
Qs(T )

−1s− TQs(T )
−1
)
2 (s0I − T )Qs(T )

−1.

Therefore

S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

+ S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

=
(
Qs(T )

−1s− TQs(T )
−1
)
2 (s0I − T )Qs(T )

−1

+
(
Qs(T )

−1s− TQs(T )
−1
)
2 (s0I − T )Qs(T )

−1

=2 (s0I − T )Qs(T )
−12 (s0I − T )Qs(T )

−1

=4(T 2 − 2s0T + s20I)Qs(T )
−2 = 4Qs(T )

−1 − 4s21Qs(T )
−2,
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which can be rewritten as

4Qs(T )
−1 = S−1

L (s, T )S−1
L (s, T ) + S−1

L (s, T )S−1
L (s, T )

+ S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T ) + 4s21Qs(T )
−2.

Thus, we can estimate

4
∥∥Qs(T )

−1
∥∥ = ∥∥S−1

L (s, T )
∥∥∥∥S−1

L (s, T )
∥∥+ ∥∥S−1

L (s, T )
∥∥∥∥S−1

L (s, T )
∥∥

+
∥∥S−1

L (s, T )
∥∥∥∥S−1

L (s, T )
∥∥+ ∥∥S−1

L (s, T )
∥∥ ∥∥S−1

L (s, T )
∥∥

+ 4
∥∥s21Qs(T )

−2
∥∥

=
(∥∥S−1

L (s, T )
∥∥+ ∥∥S−1

L (s, T )
∥∥)2 + ∥∥2s1Qs(T )

−1
∥∥ ∥∥2s1Qs(T )

−1
∥∥ .(3.5)

Finally observe that

2Qs(T )
−1s1Is = TQs(T )

−1 −Qs(T )
−1(s0 − Iss1)

−
(
TQs(T )

−1 −Qs(T )
−1(s0 + Iss1)

)
= S−1

L (s, T )− S−1
L (s, T )

such that∥∥2s1Qs(T )
−1
∥∥ = ∥∥2Qs(T )

−1s1Is
∥∥ ≤ ∥∥S−1

L (s, T )
∥∥+ ∥∥S−1

L (s, T )
∥∥ .

Combining this estimate with (3.5), we finally obtain

2
∥∥Qs(T )

−1
∥∥ ≤ (∥∥S−1

L (s, T )
∥∥+ ∥∥S−1

L (s, T )
∥∥)2

and hence the statement for the left S-resolvent operator. The estimates for the
right S-resolvent operator can be shown with similar computations. �

Lemma 3.8. Let T ∈ K(V ). If (sn)n∈N is a bounded sequence in ρS(T ) with

lim
n→∞

dist(sn, σS(T )) = 0,

then

lim
n→∞

sup
s∈[sn]

∥∥S−1
L (s, T )

∥∥ = +∞ and lim
n→∞

sup
s∈[sn]

∥∥S−1
R (s, T )

∥∥ = +∞.

Proof. First, observe that dist(sn, σS(T )) → 0 if and only if dS(sn, σS(T )) → 0
because σS(T ) is axially symmetric. Indeed, for any n ∈ N there exists pn ∈ σS(T )
such that

|sn − pn| < dist(sn, σS(T )) + 1/n.

If dist(sn, σS(T )) → 0, then |sn − pn| → 0 and hence |sn,0 − pn,0| → 0. Since the
sequence sn is bounded, the sequence pn is bounded too and we also have∣∣|sn|2 − |pn|2

∣∣ ≤ |sn||sn − pn|+ |sn − pn||pn| → 0,

and in turn

0 < dS(sn, σS(T )) ≤ dS(sn, pn) = max
{
|sn,0 − pn,0|,

∣∣|sn|2 − |pn|2
∣∣} −→ 0.

If on the other hand dS(sn, σS(T )) tends to zero, then there exists a sequence
pn ∈ σS(T ) such that

dS(sn, pn) < dS(sn, σS(T )) + 1/n

and in turn dS(sn, pn) → 0. Since σS(T ) is axially symmetric and d(sn, pn,I) =
d(sn, pn) for any pn,I ∈ [pn], we can moreover assume that Ipn

= Isn . Then

0 ≤ |sn,0 − pn,0| ≤ dS(sn, pn) → 0.
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Since sn and in turn also pn are bounded, this implies |s2n,0−p2n,0| → 0, from which

we deduce that also |s2n,1 − p2n,1| → 0 because

0 ≤
∣∣s2n,0 − p2n,0 + s2n,1 − p2n,1

∣∣ = ∣∣|sn|2 − |pn|2
∣∣ ≤ dS(sn, pn) → 0.

Since sn,1 ≥ 0 and pn,1 ≥ 0, we conclude sn,1 − pn,1 → 0 and, since Is = Ip, also

0 < dist(sn, σS(T )) ≤ |sn − pn| =
√
(sn,0 − pn,0)2 + (sn,1 − pn,1)2 → 0.

Now assume that sn ∈ ρS(T ) with dist(sn, σS(T )) → 0. By the above consider-
ations and (3.4), we have

(3.6) ‖Qsn(T )
−1‖+ ‖TQsn(T )

−1‖ → +∞.

We show now that every subsequence (snk
)k∈N has a subsequence (snkj

)j∈N such

that

(3.7) lim
j→+∞

sup
s∈[snkj

]

‖S−1
L (s, T )‖ = +∞,

which implies limn→+∞ sups∈[sn] ‖S
−1
L (s, T )‖ = +∞. We thus consider an arbi-

trary subsequence (snk
)k∈N of (sn)n∈N. If it has a subsequence (snkj

)j∈N such that

‖Qsnkj
(T )‖ → +∞, then Lemma 3.7 implies (3.7). Otherwise ‖Qsnj

(T )−1‖ ≤ C

for some constant C > 0 and we deduce from (3.6) that ‖TQsnj
(T )−1‖ → +∞.

Observe that

TQsnk
(T )−1 = −1

2
S−1
L (snk

, T )− 1

2
S−1
L (snk

, T ) + snk,0Qsnk
(T )−1,

from which we obtain the estimate∥∥∥TQsnk
(T )−1

∥∥∥ ≤ sup
s∈[snk

]

∥∥S−1
L (snk

, T )
∥∥+ |snk,0|

∥∥∥Qsnk
(T )−1

∥∥∥
≤ sup

s∈[snk
]

∥∥S−1
L (snk

, T )
∥∥+ CM

with M = supn∈N |sn| < +∞. Since the left-hand side tends to infinity as k → +∞,

we obtain that also sups∈[snk
]

∥∥S−1
L (snk

, T )
∥∥→ +∞ and thus the statement holds

true. The case of the right S-resolvent can be shown with analogous arguments. �

Definition 3.9. Let f be a left (or right) slice hyperholomorphic function defined
on an axially symmetric open set U . A left (or right) slice hyperholomorphic func-
tion g defined on an axially symmetric open set U ′ with U � U ′ is called a slice
hyperholomorphic continuation of f if f(s) = g(s) for all s ∈ U . It is called non-
trivial if V = U ′ \U cannot be separated from U , i.e., if U ′ �= U ∪ V for some open
set V with V ∩ U = ∅.

Theorem 3.10. Let T ∈ K(V ). There does not exist any nontrivial slice hyper-
holomorphic continuation of the left or of the right S-resolvent operator.

Proof. Assume that there exists a nontrivial extension f of S−1
L (s, T ) to an axially

symmetric open set U with ρS(T ) � U . Then there exists a point s ∈ U ∩ ∂ρS(T )
and a sequence sn ∈ ρS(T ) with limn→+∞ sn = s such that

lim
n→+∞

∥∥S−1
L (sn, T )

∥∥ = lim
n→+∞

‖f(sn)‖ = ‖f(s)‖ < +∞.
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Moreover, also sn → s as n → +∞ and in turn

lim
n→+∞

∥∥S−1
L (sn, T )

∥∥ = lim
n→+∞

‖f(sn)‖ = ‖f(s)‖ < +∞.

From the representation formula, Theorem 2.20, we then deduce

lim
n→+∞

sup
s∈[sn]

∥∥S−1
L (s, T )

∥∥ ≤ lim
n→+∞

∥∥S−1
L (sn, T )

∥∥+ ∥∥S−1
L (sn, T )

∥∥ < +∞.

On the other hand the sequence sn is bounded and dist(sn, σS(T )) ≤ |sn−s| → 0.
Lemma 3.8 therefore implies limn→+∞ sups∈[sn]

∥∥S−1
L (s, T )

∥∥ = +∞, which is a

contradiction. Thus, the analytic continuation (f, U) cannot exist.
For the right S-resolvent, we argue analogously. �

Remark 3.11. We suspected that it might be possible to improve the above results
by finding an estimate of the form (3.3) for the pseudo-resolvent Qs(T )

−1 instead of
the S-resolvents. In this case Lemma 3.7 would yield an estimate of the form (3.3)
for the norm of the S-resolvents on an entire sphere instead of a single point. This
is, however, not possible as the following example shows: consider the space �p(N)
of H-valued p-summable sequences with p ∈ [1,+∞). Any sequence (λn)n∈N with
λn ∈ H does obviously define a right linear, densely defined and closed operator on
�p(N) via T (a) = (λnan)n∈N for a = (an)n∈N. If (λn)n∈N is unbounded, then T is
unbounded. Otherwise ‖T‖ = supn∈N |λn| = ‖(λn)n∈N‖∞. Indeed,

‖T (a)‖p = p

√∑
n∈N

|λnan|p ≤ ‖(λn)n∈N‖∞ p

√∑
n∈N

|an|p = ‖(λn)n∈N‖∞‖a‖p

such that ‖T‖ ≤ ‖(λn)n∈N‖∞ and, with em = (δm,n)n∈N where δm,n is the Kro-
necker delta, on the other hand

‖λm‖ = p

√∑
n∈N

|λnδm,n‖p = ‖T (em)‖ ≤ ‖T‖

for any m ∈ N such that also ‖(λn)n∈N‖∞ ≤ ‖T‖. The S-spectrum of T is

(3.8) σS(T ) =
⋃
n∈N

[λn]

as one can see easily: any λn is a right eigenvalue since for instance T (en) = enλn

and hence the relation ⊃ in (3.8) holds true by Theorem 2.31, the axial symmetry
and the closedness of the S-spectrum. If on the other hand s does not belong to
the right-hand side of (3.8), then δs = infn∈N dist(s, [λn]) = infn∈N |sIλn

− λn| > 0,
where sIλn

= s0 + Iλn
s1. As

Qs(T )(a) =
(
(λn − sIλn

)(λn − sIλn
)an
)
n∈N

and in turn

Qs(T )
−1(a) =

(
(λn − sIλn

)−1(λn − sIλn
)−1an

)
n∈N

,

we have ‖Qs(T )
−1‖ ≤ 1/δ2s < +∞ such that s ∈ ρS(T ). Thus, the relation ⊂ in

(3.8) also holds true.
Now choose a sequence (λn)n∈N such that λn,1 → +∞ as n → +∞ and consider

the respective operator T on �p(N). For simplicity, consider for instance λn = In
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with I ∈ S. By the above considerations, the sequence sN = I(N + 1/N) with
N = 2, 3, . . . does then satisfy dist(sN , σS(T )) → 0 as N → +∞ and

(3.9) ‖QsN (T )
−1‖ = sup

n∈N

1

|λn − sN ||λn − sN | =
1

|λN − sN ||λN − sN | =
1

2 + 1
N2

.

Indeed, if n < N , then some simple computations show that the inequality

1

|λn − sN ||λn − sN | =
1

N + 1
N − n

1

n+N + 1
N

<
1

2 + 1
N2

=
1

|λN − sN ||λN − sN |
is equivalent to 0 < N2 −n2, which is obviously true. Similarly, in the case n > N ,
the inequality

1

|λn − sN ||λn − sN | =
1

n−N − 1
N

1

n+N + 1
N

<
1

2 + 1
N2

=
1

|λN − sN ||λN − sN |
is equivalent to 4 + 1/N2 < n2 −N2, which holds true since 2 ≤ N < n.

From (3.9), we see that ‖QsN (T )
−1‖ ≤ 2 although dist(SN , σS(T )) → 0. Conse-

quently, the pseudo-resolvent cannot satisfy an estimate that is analogue to (3.3).
Also controlling the norm of TQs(T )

−1 by the norm of Qs(T )
−1 in order to

improve (3.4) is not possible: if we consider the operator TQsN (T )−1 in the above
example, then

TQsN (T )
−1(a) =

(
n

n−N − 1
N

1

I
(
n+N + 1

N

)an
)

n∈N

and

‖TQsN (T )
−1‖ ≤ ‖TQsN (T )

−1(eN )‖ =
N2

2N + 1
N

→ +∞

shows that ‖TQsN (T )−1‖ tends to infinity although ‖QsN (T )
−1‖ stays bounded.

4. Fractional powers of an operator

In the following we assume that T is a closed quaternionic right linear operator
such that (−∞, 0] ⊂ ρS(T ) and such that there exists a positive constant M > 0
such that

(4.1) ‖S−1
R (s, T )‖ ≤ M

1 + |s| for s ∈ (−∞, 0].

Definition 4.1. For a ∈ R and θ ∈ (0, π) we denote by Σ(θ, a) the open sector

Σ(θ, a) := {s ∈ H : arg(s− a) > θ}
and by Σ(θ, a) the closed sector

Σ(θ, a) := {s ∈ H : arg(s− a) ≥ θ}.

Lemma 4.2. There exist constants a0 > 0 and θ0 ∈ (0, π) and Mn > 0, n ∈ N,

such that the closed sector Σ(θ0, a0) is contained in ρS(T ) and such that, for n ∈ N,

(4.2) ‖S−n
R (s, T )‖ ≤ Mn

(1 + |s|)n for s ∈ Σ(θ0, a0)

and

(4.3) ‖S−n
L (s, T )‖ ≤ Mn

(1 + |s|)n for s ∈ Σ(θ0, a0).
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Proof. By Lemma 2.43, we have

(4.4) ∂k
SS

−1
R (s, T ) = (−1)kk!S

−(k+1)
R (s, T ) for k ∈ N.

Hence, by Lemma 2.32 and Corollary 2.23, the map s �→ S−n
R (s, T ) is a left slice

hyperholomorphic function on ρS(T ) with values in B(V ) for any n ∈ N. From the
identity (4.4) we deduce

∂k
SS

−n
R (s, T ) = ∂k+n−1

S

(−1)n−1

(n− 1)!
S−1
R (s, T ) =

(−1)k(k + n− 1)!

(n− 1)!
S
−(k+n)
R (s, T ).

When we apply Theorem 2.24 in order to expand S−n
R (s, T ) into a Taylor series at

a real point α ∈ ρS(T ), we therefore get

S−n
R (s, T ) =

+∞∑
k=0

1

k!
(s− α)k∂k

SS
−n
R (α, T )

=

+∞∑
k=0

1

k!
(s− α)k

(−1)k(k + n− 1)!

(n− 1)!
S
−(k+n)
R (α, T )

=

+∞∑
k=0

(−1)k
(
n+ k − 1

k

)
(s− α)kS

−(n+k)
R (α, T )

(4.5)

on any ball B(r, α) contained in ρS(T ). Since α is real, S−n
R (α, T ) =

(
S−1
R (α, T )

)n
and thus ‖S−n

R (α, T )‖ ≤ ‖S−1
R (α, T )‖n. The ratio test and the estimate (4.1) there-

fore imply that this series converges on the ball with radius (1 + |α|)/M centered
at α for α ∈ (−∞, 0]. In particular, considering the case n = 1, we deduce from
Theorem 3.10 that any such ball is contained in ρS(T ). Otherwise the above series
would give a nontrivial slice hyperholomorphic continuation of S−1

R (s, T ).

Set a0 = min
{

1
4M , 1

}
. Then the closed ball B(a0, 0) is contained in ρS(T ) and

for any s ∈ B(a0, 0), we have the estimate

∥∥S−n
R (s, T )

∥∥ ≤ ∞∑
k=0

(
n+ k − 1

k

)
|s|k‖S−(n+k)

R (0, T )‖

≤
∞∑
k=0

(
n+ k − 1

k

)
1

(4M)k
Mn+k (1 + |s|)n+k

(1 + |s|)n+k

=
2nMn

(1 + |s|)n
∞∑
k=0

(
n+ k − 1

k

)
1

2k

=
4nMn

(1 + |s|)n ,

where the last equation follows from the Taylor series expansion (1 − z)−n =∑∞
k=0

(
n+k−1

k

)
zk for |z| < 1.

Now set ϕ = π−arctan( 1
2M ) and consider the sector Σ(ϕ, 0) = {s ∈ H : arg(s) ≥

ϕ}. For any s = s0 + Iss1 ∈ Σ(ϕ, 0), we have 0 ≤ s1 ≤ |s0|/(2M) and from the
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power series expansion (4.5) of S−n
R (s, T ) at s0, we obtain

∥∥S−n
R (s, T )

∥∥ ≤ ∞∑
k=0

(
n+ k − 1

k

)
|s1|k

∥∥S−1
R (s0, T )

∥∥n+k

≤
∞∑
k=0

(
n+ k − 1

k

)(
|s0|
2M

)k (
M

1 + |s0|

)n+k

≤
(

M

1 + |s0|

)n ∞∑
k=0

(
n+ k − 1

k

)
1

2k
=

2nMn

(1 + |s0|)n
.

Since |s| ≤ |s0|+ |s1| ≤ (1 + 1
2M )|s0|, we get

‖S−n
R (s, T )‖ ≤ 2nMn(

1 +
(
1 + 1

2M

)−1 |s|
)n ≤

(
1 + 1

2M

)n
2nMn

(1 + |s|)n .

Hence, the estimate ∥∥S−n
R (s, T )

∥∥ ≤ Mn

(1 + |s|)n
with

Mn :=

(
1 +

1

2M

)n

4nMn

holds true on the entire set V = Σ(ϕ, 0) ∪B(a0, 0). Now observe that the sector

Σ(θ0, a0) with

θ0 := arctan

(
a0 sinϕ

a0(−1 + cosϕ)

)
is entirely contained in V and we obtain the statement for S−1

R (s, T ).

Since S−1
L (s, T ) = S−1

R (s, T ) for s ∈ (−∞, 0], the estimate (4.1) applies also to
the left S-resolvent. Thus we can use analogous arguments to prove (4.3). �

Definition 4.3. Let I ∈ S and let Σ(θ0, a0) be the sector obtained from Lemma 4.2.

Let θ ∈ (θ0, π) and choose a piecewise smooth path Γ in (Σ(θ0, a0) ∩CI) \ (−∞, 0]
that goes from ∞eIθ to ∞e−Iθ. For α > 0, we define

(4.6) T−α :=
1

2π

∫
Γ

s−α dsI S
−1
R (s, T ).

Theorem 4.4. For any α > 0, the operator T−α is bounded and independent of
the choice of I ∈ S, of θ ∈ (θ0, π) and of the concrete path Γ in CI and therefore
well-defined.

Proof. The estimate (4.2) assures that the integral (4.6) exists and defines a
bounded right linear operator. Since s �→ s−α is right slice hyperholomorphic
and s �→ S−1

R (s, T ) is left slice hyperholomorphic, the independence of the choice
of θ and the independence of the choice of the path Γ in the complex plane CI

follow from Cauchy’s integral theorem for operator-valued slice hyperholomorphic
functions, Theorem 2.26.

In order to show that T−α is independent of the choice of the imaginary unit
I ∈ S, consider an arbitrary imaginary unit J ∈ S with J �= I. Let θ0 < θs < θp < π

and set Us := H \ Σ(θs, 0) ∪B(a0/2, 0) and Up := H \ Σ(θp, 0) ∪B(a0/3, 0). (The
indices s and p are chosen in order to indicate the variable of integration over the
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boundary of the respective set in the following calculation.) Then Up and Us are
slice domains that contain σS(T ) and ∂(Us ∩ CI) and ∂(Up ∩ CJ ) are paths that
are admissible in Definition 4.3.

Observe that s �→ s−α is right slice hyperholomorphic on Up and that, by our
choices of Up and Us, we have s ∈ Up for any s ∈ ∂(Us ∩ CI). If we choose r > 0
large enough, then s ∈ Up ∩B(r, 0) and we obtain from Theorem 2.22 that

sα = lim
r→∞

1

2π

∫
∂(Up∩B(r,0)∩CI )

p−α dpJ S−1
R (p, s)

=
1

2π

∫
∂(Up∩CJ )

p−α dpJ S−1
R (p, s),

where the second equation holds since p−α → 0 uniformly as p → ∞ in Up. For
T−α, we thus obtain

T−α =
1

2π

∫
∂(Us∩CI)

s−α dsI S
−1
R (s, T )

=
1

(2π)2

∫
∂(Us∩CI)

(∫
∂(Up∩CJ )

p−α dpJ S−1
R (p, s)

)
dsI S

−1
R (s, T ).(4.7)

We now apply Fubini’s theorem. The estimate that justifies this is very technical
and is therefore moved to Appendix A at the end of the paper. By exchanging the
order of integration, we get

T−α =
1

2π

∫
∂(Up∩CJ )

p−α dpJ

(
1

2π

∫
∂(Us∩CI)

S−1
R (p, s) dsI S

−1
R (s, T )

)

=
1

2π

∫
∂(Up∩CJ )

p−α dpJ S−1
R (p, T ),

where the last equation follows as an application of the S-functional calculus and
Theorem 2.38 since S−1

R (p,∞) = lims→∞ S−1
R (p, s) = 0. Hence, the operator T−α

is also independent of the choice of the imaginary unit I ∈ S. �

If α ∈ N, then s−α is right slice hyperholomorphic at infinity. The following
corollary then immediately follows as an application of the S-functional calculus
and Theorem 2.38.

Corollary 4.5. If α ∈ N, then the operator T−α defined in (4.6) coincides with
the α-th inverse power of T .

If we follow the arguments of the proof of Theorem 5.27 in [26, Chapter II], we
obtain an integral representation of T−α that is almost identical to the one derived
in [26] for the complex case; the only difference is the different constant in front of
the integral. This is due to the different choice of the branch of the logarithm that is
used in [26] in order to define the fractional powers. As pointed out in Remark 2.44
it is not possible to define different branches of the logarithm in a quaternionic slice
hyperholomorphic setting.

In Corollary 4.8 we, however, obtain an integral representation that is clearly
different from any integral representation known from the classical complex setting.
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Theorem 4.6. Let n ∈ N. For α ∈ (0, n+ 1) with α /∈ N, the operator Tα defined
in (4.6) has the representation

T−α = (−1)n+1 sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

tn−αS
−(n+1)
R (−t, T ) dt.(4.8)

Proof. Let a0 and θ0 be the constants obtained from Corollary 4.2. For a ∈ (0, a0)

and θ ∈ (θ0, π), we can choose U = H \ Σ(θ, a) and integrate over the boundary
∂(U ∩ CI) of U in CI for some I ∈ S in the integral representation of T−α. The
boundary consists of the path

γ(t) =

{
a− teIθ, t ∈ (−∞, 0],

a+ te−Iθ, t ∈ (0,∞),

and hence it is

T−α =
1

2π

∫ 0

−∞
(a− teIθ)−α(−I)(−eIθ)S−1

R (a− teIθ, T ) dt

+
1

2π

∫ +∞

0

(a+ te−Iθ)−α(−I)e−IθS−1
R (a+ te−Iθ, T ) dt

=
I

2π

∫ +∞

0

(a+ teIθ)−αeIθS−1
R (a+ teIθ, T ) dt

− I

2π

∫ +∞

0

(a+ te−Iθ)−αe−IθS−1
R (a+ te−Iθ, T ) dt.

Integrating n times by parts yields

T−α =
n!

(n− α) · · · (1− α)

I

2π

∫ +∞

0

(a+ teIθ)n−αeIθS
−(n+1)
R (a+ teIθ, T ) dt

− n!

(n− α) · · · (1− α)

I

2π

∫ +∞

0

(a+ te−Iθ)n−αe−IθS
−(n+1)
R (a+ te−Iθ, T ) dt.

Because of the estimate (4.2), we can apply Lebesgue’s dominated convergence
theorem with dominating function

f(t) =

{
C(1 + tn−α) if t ≤ 1,

Ct−α−1 if t > 1,

where C > 0 is a sufficiently large constant. Taking the limit a → 0, we obtain

T−α =
n!

(n− α) · · · (1− α)

I

2π

∫ +∞

0

tn−αeIθ(n−α)eIθS
−(n+1)
R (teIθ, T ) dt

− n!

(n− α) · · · (1− α)

I

2π

∫ +∞

0

tn−αe−Iθ(n−α)e−IθS
−(n+1)
R (te−Iθ, T ) dt

(4.9)



1078 F. COLOMBO AND J. GANTNER

and then, taking the limit θ → π, we get

T−α =− n!

(n− α) · · · (1− α)

I

2π

∫ +∞

0

tn−αeIπ(n−α)S
−(n+1)
R (−t, T ) dt

+
n!

(n− α) · · · (1− α)

I

2π

∫ +∞

0

tn−αe−Iπ(n−α)S
−(n+1)
R (−t, T ) dt

=(−1)n+1 sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

tn−αS
−(n+1)
R (−t, T ) dt,

where the last equation follows from the identity −IeIπ(n−α) + Ie−Iπ(n−α) =
sin((n− α))π = (−1)n+1 sin(απ). �

Corollary 4.7. For the identity operator I, it is I−α = I for α ≥ 0.

Proof. If α ∈ N, this follows immediately from Corollary 4.5. For α /∈ N, consider
n ∈ N with α ∈ (0, n+ 1). Then, since S−1

R (s, T ) = (s− 1)−1I, it is

I−α = (−1)n+1 sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

tn−α

(−t− 1)n+1
dt I

=
sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

tn−α

(t+ 1)n+1
dt I.

By [36, 3.194], we have

(4.10)

∫ +∞

0

tn−α

(t+ 1)n+1
dt = B(n− α+ 1, α) =

(n− α) · · · (1− α)

n!

π

sin(πα)
,

where B(x, y) denotes the Beta function, and hence I−α = I. �

Corollary 4.8. Let α ∈ (0, 1). Then

T−α = − sin(απ)

π

∫ ∞

0

t−αS−1
R (−t, T ) dt.(4.11)

Corollary 4.9. For α ∈ (0, n + 1), the operators T−α are uniformly bounded by
the constant Mn+1 obtained from Lemma 4.2.

Proof. From (4.8), Lemma 4.2 and (4.10), we obtain the estimate

‖T−α‖ ≤ sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

tn−α Mn+1

(1 + t)n+1
dt = Mn+1.

�

Corollary 4.10. Assume that σS(T ) ⊂ {s ∈ H : Re(s) > 0} and that θ0 in
Lemma 4.2 can be chosen lower or equal to π/2. For α ∈ (0, 1), then

T−α =
1

π

∫ ∞

0

τ−α
(
cos
(απ

2

)
T + sin

(απ
2

)
τI
)
(T 2 + τ2)−1 dτ.

Proof. By our assumptions, we can choose n = 0 and θ = π/2 in (4.9). Since
eI

π
2 = I and e−I π

2 = −I, we then have

T−α =
I

2π

∫ ∞

0

t−αe−I α−1
2 πS−1

R (It, T ) dt− I

2π

∫ ∞

0

t−αeI
α−1
2 πS−1

R (−It, T ) dt.

Observe that
S−1
R (±tI, T ) = −(T ± tII)(T 2 + t2)−1.
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Thus,

T−α =
I

2π

∫ ∞

0

t−α
(
−e−I α−1

2 π(T + tII) + eI
α−1
2 π(T − tII)

)
(T 2 + t2)−1 dt.

Some easy simplifications show

−e−I α−1
2 π(T + tII) + eI

α−1
2 π(T − tII) = −2I

[
cos
(απ

2

)
T + 2 sin

(απ
2

)
tI
]
,

and in turn

T−α =
1

π

∫ ∞

0

t−α
(
cos
(απ

2

)
T + sin

(απ
2

)
tI
)
(T 2 + t2)−1 dt.

�
Observe that s �→ s−α is both right and left slice hyperholomorphic. Hence, we

could also use the left S-resolvent operator to define fractional powers of T . Indeed,
this yields exactly the same operator.

Proposition 4.11. Let α > 0 and let Γ be an admissible path as in Definition 4.3.
The operator T−α satisfies

(4.12) T−α =
1

2π

∫
Γ

S−1
L (s, T ) dsI s

−α.

Proof. Computations analogous to those in the proof of Theorem 4.6 show that,
for n ∈ N and α ∈ (0, n+ 1) with α /∈ N, one has

1

2π

∫
Γ

S−1
L (s, T ) dsI s

−α

=(−1)n+1 sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

S
−(n+1)
L (−t, T )tn−α dt.

But for real t one has S−1
L (−t, T ) = (−t − T )−1 = S−1

R (−t, T ), and in turn this
integral equals

(−1)n+1 sin(απ)

π

n!

(n− α) · · · (1− α)

∫ +∞

0

tn−αS
−(n+1)
R (−t, T ) dt = T−α,

where the last equation follows from Theorem 4.6.
If α ∈ N, then this follows immediately from the S-functional calculus and

Theorem 2.38 because s−α is left and right slice hyperholomorphic at infinity. �
We recall the following lemma from [4, Lemma 3.23].

Lemma 4.12. Let B ∈ B(V ). Let G be a bounded axially symmetric s-domain and
assume that f ∈ N (G). Then, for p ∈ G, we have

1

2π

∫
∂(G∩CI)

f(s)dsI(sB −Bp)(p2 − 2s0p+ |s|2)−1 = Bf(p).

Theorem 4.13. The family {T−α}α>0 has the semigroup property T−αT−β =
T−α−β.

Proof. Choose θp and θs such that max{θ0, π/2} < θp < θs < π and ap and as such
that 0 < as < ap < a0, where a0 and θ0 are the constants obtained from Lemma 4.2

and ap is sufficiently small such that Bap
(0) ⊂ Σ(θ0, a0). Then the sets

Gp = H \
(
Σ(θp, 0) ∪Bap

(0)
)

and Gs = H \
(
Σ(θs, 0) ∪Bas

(0)
)
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satisfy σS(T ) ⊂ Gp and Gp ⊂ Gs and for I ∈ S their boundaries ∂(Gp ∩ CI) and
∂(Gs ∩ CI) are admissible paths as in Definition 4.3. The subscripts p and s refer
again to the respective variables of integration in the following calculation.

The S-resolvent equation (2.10) and Proposition 4.11 imply

T−αT−β =
1

(2π)2

∫
∂(Gs∩CI)

s−α dsI S−1
R (s, T )

∫
∂(Gp∩CI )

S−1
L (p, T ) dpI p−β

=
1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

S−1
R (s, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

− 1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

− 1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

sS−1
R (s, T )(p2 − 2s0p+ |s|2)−1dpI p−β

+
1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI p−β.

But since the functions p �→ p(p2−2s0p+|s|2)−1p−β and p �→ (p2−2s0p+|s|2)−1p−β

are holomorphic on an open set that contains Gp ∩ CI and since they tend uniformly
to zeros as p → ∞ in Gp, Cauchy’s integral theorem implies

1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

S−1
R (s, T )p(p2 − 2s0p+ |s|2)−1dpI p−β = 0

and

− 1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

sS−1
R (s, T )(p2 − 2s0p+ |s|2)−1dpI p−β = 0.

It follows that

T−α T−β

= − 1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

+
1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

∫
∂(Gp∩CI)

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI p−β.

(4.13)

Quite technical estimates, which can be found in Appendix B, justify the applica-
tion of Fubini’s theorem in these integrals such that we can exchange the order of
integration and obtain

T−α T−β =
1

(2π)2

∫
∂(Gs∩CI)

s−α dsI

·
∫
∂(Gp∩CI )

[sS−1
L (p, T )− S−1

L (p, T )p](p2 − 2s0p+ |s|2)−1dpI p−β.
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Using Lemma 4.12 with B = S−1
L (p, T ), we finally get

T−α T−β =
1

2π

∫
∂(Gp∩CI)

S−1
L (p, T )dpI p−α p−β

=
1

2π

∫
∂(Gp∩CI)

S−1
L (p, T )dpI p−α−β = T−α−β .

�

Lemma 4.14. The semigroup (T−α)α≥0 is strongly continuous.

Proof. We first consider v ∈ D(T ). For α ∈ (0, 1), we have

S−1
R (t, T )v − S−1

R (t, I)v = S−1
R (t, T )S−1

R (t, I)(Tv − Iv) if t ∈ R.

Hence, we deduce from Corollary 4.8 that

T−αv − I−αv = − sin(απ)

π

∫ ∞

0

t−αS−1
R (−t, T )v dt

+
sin(απ)

π

∫ ∞

0

t−αS−1
R (−t, I)v dt

= − sin(απ)

π

∫ ∞

0

t−αS−1
R (t, T )S−1

R (t, I)(Tv − Iv) dt α→0−→ 0

because sin(απ) → 0 as α → 0 and the integral is uniformly bounded for α ∈ [0, 1/2]
due to (4.1). Since I−α = I by Corollary 4.7, we get T−αv → v as α → 0 for any
v ∈ D(T ).

For arbitrary v ∈ V and ε > 0, there exists vε ∈ D(T ) with ‖v− vε‖ < ε because
D(T ) is dense in V . Corollary 4.9 therefore implies

lim
α→0

‖Tv − v‖ ≤ lim
α→0

‖Tv − T−αvε‖+ ‖T−αvε − vε‖+ ‖vε − v‖

≤ (M1 + 1)‖v − vε‖
≤ (M1 + 1)ε.

Since ε > 0 was arbitrary, we deduce that T−αv → v as α → 0 even for arbitrary
v ∈ V . This is equivalent to the strong continuity of the semigroup (T−α)α≥0. �

Proposition 4.15. The operator T−α is injective for any α > 0.

Proof. For α > 0 choose β > 0 with n = α + β ∈ N. Then T−βT−α = T−n and in
turn TnT−βT−α = I, which implies the injectivity of T−α. �

The previous proposition allows us to define powers of T also for α > 0.

Definition 4.16. For α > 0 we define the operator Tα as the inverse of the operator
T−α, which is defined on D(Tα) = ran (T−α).

Corollary 4.17. Let α, β ∈ R. Then the operators TαT β and Tα+β agree on
D(T γ) with γ = max{α, β, α+ β}.

Proof. If α, β ≥ 0 and v ∈ D(Tα,β) then, since T−(α+β) = T−βT−α by Theo-
rem 4.13, we have

TαT βv = TαT β(T−βT−αTα+β)v = (TαT βT−βT−α)Tα+βv = Tα+βv.

The other cases follow in a similar way. �
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With these definitions it is possible to establish a theory of interpolation spaces
for strongly continuous quaternionic semigroups analogue to the one for complex
operator semigroups. Since the proofs follow the lines of this classical case, we only
state the main result and refer to [26, Chapter II] for an overview on the theory.

Definition 4.18. Let (U(t))t≥0 be a strongly continuous semigroup with growth
bound ω0 < 0. For each α ∈ (0, 1] we define the Favard space

Fα :=

{
v ∈ V : sup

t>0

∥∥∥∥ 1

tα
(U(t)v − v)

∥∥∥∥ < ∞
}

with the norm

‖v‖Fα
:= sup

t>0

∥∥∥∥ 1

tα
(U(t)v − v)

∥∥∥∥ .
The subspace

Xα := ‖v‖Fα
:= sup

t>0

∥∥∥∥ 1

tα
(U(t)v − v)

∥∥∥∥
of Fα is called the abstract Hölder space of order α.

Proposition 4.19. Let A be the generator of a strongly continuous semigroup
(U(t))t≥0 with growth bound w0 < 0 and let α, β ∈ (0, 1) such that α > β. Then

Xα ↪→ D((−A)−α) ↪→ Xβ,

where ↪→ denotes a continuous embedding.

We point out that in contrast to the classical case discussed in [26] the interpo-
lation spaces must be defined using the powers of −A instead of A. This is due
to the following fact: in the complex setting one may choose a branch of the func-
tion z → z−α that is defined and holomorphic everywhere except for the positive
real axis. Since the spectrum of the operator is then contained in the domain of
holomorphicity of z−α by assumption, one can use this branch to define fractional
powers of the operator and in turn the interpolation spaces. In the quaternionic set-
ting this is, however, not possible because the logarithm and in turn the fractional
powers s �→ s−α are single-valued. They are defined and slice hyperholomorphic
everywhere except for the negative real axis, which does not necessarily lie in ρS(A)
but in ρS(−A) since Re(s) ≤ w0 < 0 for all s ∈ σS(T ).

5. Kato’s formula and the generation of analytic semigroups

Kato showed in [44] that certain fractional powers of generators of analytic semi-
groups are again generators of analytic semigroups. Analogue results can be shown
for quaternionic linear operators, but therefore we need a modified definition of
fractional powers of an operator.

Definition 5.1. A densely defined closed operator T is of type (M,ω) with M > 0
and ω ∈ (0, π) if:

(i) the open sector Σ(ω, 0) is contained in the S-resolvent set of T and
‖sS−1

R (s, T )‖ is uniformly bounded on any smaller sector Σ(θ, 0) with θ ∈
(ω, π) and

(ii) M is the uniform bound of ‖tS−1
R (−t, T )‖ on the negative real axis, that is,

(5.1) ‖tS−1
R (t, T )‖ ≤ M for t ∈ (−∞, 0).
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Note that this definition is different from the notion of sectorial operators used
in [26]. Moreover, note that if (5.1) holds true then, as in Lemma 4.2, the power
series expansion of the right S-resolvent implies the existence of a sector Σ(θ0, 0)
and a constant M1 > 0 such that

‖S−1
R (s, T )‖ ≤ M1/|s| for s ∈ Σ(θ0, 0).

Hence, (5.1) is sufficient for T to be an operator of type (M,ω) for some ω ∈ (0, π).
In particular any operator that satisfies (4.1) is of type (M,ω) with ω ≤ θ0; cf.
Lemma 4.2.

Proposition 5.2. Let T be of type (M,ω) with M > 0 and ω ∈ (0, π). Let
0 < α < 1 and let π > φ0 > max(απ, ω). The parameter integral

(5.2) Fα(p, T ) =
sin(απ)

π

∫ +∞

0

tα(p2 − 2ptα cos(απ) + t2α)−1S−1
R (−t, T ) dt

defines a B(V )-valued function on Σ(φ0, 0) in p that is left slice hyperholomorphic.

Proof. For any compact subset K of Σ(φ0, 0), we have minp∈K arg(p) > απ and
thus there exists some δK > 0 such that

(5.3)
∣∣p2 − 2ptα cos(απ) + t2α

∣∣ = ∣∣p− tαeIpαπ
∣∣ ∣∣p− tαe−Ipαπ

∣∣ ≥ δK

for p ∈ K and t ≥ 0. For the same reason, we can find a constant CK > 0 such
that

sup
t∈[0,+∞)

p∈K

∣∣p2 − 2ptα cos(απ) + t2α
∣∣−1

t2α = sup
t∈[0,+∞)

p∈K

1∣∣ p
tα − eIpαπ

∣∣ 1∣∣ p
tα − e−Ipαπ

∣∣ < CK

and hence

(5.4)
∣∣p2 − 2ptα cos(απ) + t2α

∣∣−1 ≤ CKt−2α, t ∈ [1,∞), p ∈ K.

Now consider p ∈ Σ(φ0, 0) and let K be a compact neighborhood of p. The
integral in (5.2) converges absolutely and hence defines a bounded operator: because
of (5.1) and the above estimates, we have for s ∈ K, and thus in particular for p
itself, that

‖Fα(s, T )‖ ≤ sin(απ)

π

∫ +∞

0

tα
∣∣s2 − 2stα cos(απ) + t2α

∣∣−1 M

t
dt

≤M sin(απ)

δKπ

∫ 1

0

tα−1 dt+
M sin(απ)CK

π

∫ +∞

1

t−α−1 dt < +∞.

Using (5.3) and (5.4), one can derive analogous estimates for the partial derivatives
of the integrand p �→ tα(p2 − 2stα cos(απ) + t2α)−1S−1

R (−t, T ) with respect to p0
and p1.

Since these estimates are uniform on the neighborhood K of p, we can ex-
change differentiation and integration in order to compute the partial derivatives
∂

∂p0
Fα(p, T ) and

∂
∂p1

Fα(p, T ) of Fα(·, T ) at p. The integrand is, however, left slice

hyperholomorphic and therefore also Fα(p, T ) is left slice hyperholomorphic. �

Lemma 5.3. Let T be of type (M,ω) with M > 0, let 0 < α < 1 and ω ∈
(0, π) and assume that 0 ∈ ρS(T ). Moreover, let φ0 and Fα(p, T ) be defined as in
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Proposition 5.2. If Γ is a piecewise smooth path that goes from ∞eIθ to ∞e−Iθ in
(Σ(φ0, 0) ∩ CI) \ (−∞, 0] for some I ∈ S and some θ ∈ (φ0, π], then

(5.5) Fα(p, T ) =
1

2π

∫
Γ

S−1
R (p, sα) dsI S

−1
R (s, T ).

Proof. First, observe that the function s �→ S−1
R (p, sα) is the composition of the

intrinsic function s �→ sα defined on H \ (−∞, 0] and the right slice hyperholo-
morphic function s �→ S−1

R (p, s) defined on H \ [p]. This composition is in par-
ticular well defined on all of H \ (−∞, 0], because sα maps H \ (−∞, 0] to the
set {s ∈ H : arg(s) < απ}, which is contained in the domain of definition of
S−1
R (p, sα) because arg(p) > φ0 > απ by assumption. By Corollary 2.2, the func-

tion s �→ S−1
R (p, sα) is therefore right slice hyperholomorphic on H \ (−∞, 0].

An estimate similar to the one in the proof of Proposition 5.2 moreover assures
that the integral in (5.5) converges absolutely. It thus follows from Theorem 2.26
that the value of the integral in (5.5) is the same for any choice of Γ in (Σ(φ0, 0) ∩
CI) \ (−∞, 0] and any choice of θ. Let us denote the value of this integral by
Iα(p, T ).

Since 0 ∈ ρS(T ), the open ball B(ε, 0) is contained in ρS(T ) if ε > 0 is small

enough. For θ ∈ (φ0, π), we set U(ε, θ) = H \ (Σ(θ, 0) ∪B(ε, 0)). Then

Iα(p, T ) =
1

2π

∫
∂(U(ε,θ)∩CI )

S−1
R (p, sα) dsI S

−1
R (s, T ).

We assumed that 0 ∈ ρS(T ), and hence the right S-resolvent is bounded near 0,
which allows us to take the limit ε → 0. We obtain

Jα(p, T ) =
1

2π

∫
−∂(Σ(θ,0)∩CI)

S−1
R (p, sα) dsI S

−1
R (s, T )

=− 1

2π

∫ +∞

0

S−1
R

(
p, tαeIαθ

)
eIθ(−I)S−1

R

(
teIθ, T

)
dt

+
1

2π

∫ +∞

0

S−1
R

(
p, tαe−Iαθ

)
e−Iθ(−I)S−1

R

(
teIθ, T

)
dt

=− 1

2π

∫ +∞

0

(
p2 − 2tα cos(αθ) + t2α

)−1 (
p− tαe−Iαθ

)
eIθ(−I)S−1

R

(
teIθ, T

)
dt

+
1

2π

∫ +∞

0

(
p2 − 2tα cos(αθ) + t2α

)−1(
p− tαeIαθ

)
e−Iθ(−I)S−1

R

(
te−Iθ, T

)
dt.
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Again an estimate analogue to the one in the proof of Proposition 5.2 allows us to
take the limit as θ tends to π and we obtain

Jα(p, T ) = − 1

2π

∫ +∞

0

(
p2 − 2tα cos(απ) + t2α

)−1 (
p− tαe−Iαπ

)
× eIπ(−I)S−1

R

(
teIπ, T

)
dt

+
1

2π

∫ +∞

0

(
p2 − 2tα cos(απ) + t2α

)−1 (
p− tαeIαπ

)
× e−Iπ(−I)S−1

R

(
te−Iπ, T

)
dt

=
sin(απ)

π

∫ +∞

0

tα(p2 − 2ptα cos(απ) + t2α)−1S−1
R (−t, T ) dt

= Fα(p, T ).

�

Lemma 5.4. Let T be of type (M,ω) with M > 0 and ω ∈ (0, π). Let 0 < α < 1
and let φ0 and Fα(p, T ) be defined as in Proposition 5.2. We have

(5.6) Fα(μ, T )− Fα(λ, T ) = (λ− μ)Fα(μ, T )Fα(λ, T ) for λ, μ ∈ (−∞, 0].

Proof. Assume first that 0 ∈ ρS(T ). Any real λ commutes with S−1
R (−t, T ) and

thus we have

Fα(λ, T ) =
sin(απ)

π

∫ +∞

0

S−1
L (−t, T )(λ2 − 2λtα cos(απ) + t2α)−1tα dt

because S−1
R (−t, T ) = (−tI − T )−1 = S−1

L (−t, T ) as t is also real. Computations
analogous to those in the proof of Lemma 5.3 show that Fα(λ, T ) can thus be
represented as

(5.7) Fα(λ, T ) =
1

2π

∫
Γ

S−1
L (s, T ) dsI S

−1
L (λ, sα),

where Γ is any path as in Lemma 5.3.
Now let ε > 0 such that B(ε, 0) ⊂ ρS(T ), choose I ∈ S and set

Us := H \ Σ(θs, 0) ∪B(εs, 0) and Up := H \ Σ(θp, 0) ∪B(εp, 0)

with 0 < εs < εp < ε and φ0 < θp < θs < π. Then Up ⊂ Us and Γs = ∂(Us ∩ CI)
and Γp = ∂(Up∩CI) are paths as in Lemma 5.3. Moreover, since T is of type (M,ω)

with 0 ∈ ρS(T ), we can finde a constant C such that ‖S−1
R (s, T )‖ < C/(1 + |s|) for

s ∈ (−∞, 0]. By Lemma 4.2 we may choose εp, εs, θp and θs such that

(5.8) ‖S−1
R (s, T )‖ ≤ M1

1 + |s| , s ∈ Γs, and ‖S−1
L (p, T )‖ ≤ M1

1 + |p| , p ∈ Γp,

for some constant M1 > 0. Lemma 5.3 and (5.7) then imply

Fα(μ, T )Fα(λ, T )

=
1

(2π)2

∫
Γs

∫
Γp

S−1
R (μ, sα) dsI S

−1
R (s, T )S−1

L (p, T ) dpI S
−1
L (λ, pα).
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Applying the S-resolvent equation (2.10) yields

Fα(μ, T )Fα(λ, T )

=
1

(2π)2

∫
Γs

∫
Γp

S−1
R (μ, sα) dsI S

−1
R (s, T )p(p2 − 2s0p+ |s|2)−1 dpI S

−1
L (λ, pα)

− 1

(2π)2

∫
Γs

∫
Γp

S−1
R (μ, sα) dsI S

−1
L (p, T )p(p2 − 2s0p+ |s|2)−1 dpI S

−1
L (λ, pα)

− 1

(2π)2

∫
Γs

∫
Γp

S−1
R (μ, sα) dsI sS

−1
R (s, T )(p2 − 2s0p+ |s|2)−1 dpI S

−1
L (λ, pα)

+
1

(2π)2

∫
Γs

∫
Γp

S−1
R (μ, sα) dsI sS

−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpI S

−1
L (λ, pα).

The functions

p �→ (p2 − 2s0p+ |s|2)−1S−1
L (λ, pα)

and
p �→ p(p2 − 2s0p+ |s|2)−1S−1

L (λ, pα)

are holomorphic on Up ∩ CI and tend uniformly to zero as p tends to infinity in Up.
We therefore deduce from Cauchy’s integral theorem that the first and the third
of the above integrals equal zero. The estimate (5.8) allows us to apply Fubini’s
theorem in order to exchange the order of integration such that we are left with

(5.9) Fα(μ, T )Fα(λ, T ) =
1

2π

∫
Γp

[
1

2π

∫
Γs

S−1
R (μ, sα) dsI

·
(
sS−1

L (p, T )− S−1
L (p, T )p

)
(p2 − 2s0p+ |s|2)−1

]
dpI S

−1
L (λ, pα).

We want to apply Lemma 4.12 and thus define the set Us,r := Us∩B(r, 0) for r > 0,
which is a bounded axially symmetric slice domain. Its boundary ∂(Us,r ∩ CI) in
CI consists of Γs,r := Γs ∩ B(r, 0) and the set Cr := {reIϕ : −θs ≤ ϕ ≤ θs}. If

p ∈ Γp, then p ∈ Us,r for sufficiently large r because Up ⊂ Us. Since the function

s �→ S−1
R (μ, sα) = (μ− sα)−1 is intrinsic because μ is real, we can therefore apply

Lemma 4.12 and obtain for any such r

S−1
L (p, T )S−1

R (μ, pα)

=
1

2π

∫
∂(Us,r∩CI)

S−1
R (μ, sα) dsI

(
sS−1

L (p, T )− S−1
L (p, T )p

)
(p2 − 2s0p+ |s|2)−1

=
1

2π

∫
Γs,r

S−1
R (μ, sα) dsI

(
sS−1

L (p, T )− S−1
L (p, T )p

)
(p2 − 2s0p+ |s|2)−1

+
1

2π

∫
Cr

S−1
R (μ, sα) dsI

(
sS−1

L (p, T )− S−1
L (p, T )p

)
(p2 − 2s0p+ |s|2)−1.

As r tends to infinity the integral over Cr vanishes and hence

S−1
L (p, T )S−1

R (μ, pα)

= lim
r→+∞

1

2π

∫
Γs,r

S−1
R (μ, sα) dsI

(
sS−1

L (p, T )− S−1
L (p, T )p

)
(p2 − 2s0p+ |s|2)−1

=
1

2π

∫
Γs

S−1
R (μ, sα) dsI

(
sS−1

L (p, T )− S−1
L (p, T )p

)
(p2 − 2s0p+ |s|2)−1.



FRACTIONAL POWERS OF QUATERNIONIC OPERATORS 1087

Applying this identity in (5.9), we obtain

Fα(μ, T )Fα(λ, T ) =
1

2π

∫
Γp

S−1
L (p, T ) dpI S

−1
R (μ, pα)S−1

L (λ, pα)

because S−1
R (μ, pα) and dpI commute as μ is real. Since λ is also real, we have

S−1
R (μ, pα)S−1

L (λ, pα) =
1

μ− pα
1

λ− pα

=
1

λ− μ

(
1

μ− pα
− 1

λ− pα

)
= (λ− μ)−1

(
S−1
L (μ, pα)− S−1

L (λ, pα)
)

and thus, recalling (5.7), we obtain

Fα(μ, T )Fα(λ, T )

=(λ− μ)−1

(
1

2π

∫
Γp

S−1
L (p, T ) dpI S

−1
L (μ, pα)− 1

2π

∫
Γp

S−1
L (p, T ) dpI S

−1
L (λ, pα)

)

=(λ− μ)−1 (Fα(μ, T )−Fα(λ, T )) .

If 0 /∈ ρS(T ), then we consider the operator T+εI for small ε > 0. This operator
satisfies 0 ∈ ρS(T + εI) = ρS(T ) + ε and hence (5.6) applies. Moreover, for real t,
we have

S−1
R (−t, T + εI) = S−1

R (−(t+ ε), T ).

The estimate

‖S−1
R (−t, T + εI)‖ ≤ M

t+ ε
≤ M

t
therefore allows us to apply Lebesgue’s dominated convergence theorem to see that

Fα(p, T + εI) = sin(απ)

π

∫ +∞

0

tα(p2 − 2ptα cos(απ) + t2α)−1S−1
R (−t, T + εI) dt

ε→0−→ sin(απ)

π

∫ +∞

0

tα(p2 − 2ptα cos(απ) + t2α)−1S−1
R (−t, T ) dt = Fα(p, T ).

Consequently, we have

Fα(μ, T )− Fα(λ, T ) = lim
ε→0

Fα(μ, T + εI)− Fα(λ, T + εI)

= lim
ε→0

(λ− μ)Fα(μ, T + εI)Fα(λ, T + εI) = (λ− μ)Fα(μ, T )Fα(λ, T )

for λ, μ ∈ (−∞, 0] also in this case. �
Theorem 5.5. Let T be of type (M,ω), let α ∈ (0, 1) and let φ0 > max(απ, ω).
There exists a densely defined closed operator Bα such that

S−1
R (p,Bα) = Fα(p, T ) for p ∈ Σ(φ0, 0),

where Fα(p, T ) is the operator-valued function defined by the integral (5.5). More-
over, Bα is of type (M,αω).

Proof. From identity (5.6) it follows immediately that Fα(μ, T ) and Fα(λ, T ) com-
mute and have the same kernel. Rewriting this equation in the form

(5.10) Fα(μ, T ) = Fα(λ, T ) (I + (λ− μ)Fα(μ, T ))

shows that ran (Fα(μ, T )) ⊂ ran (Fα(λ, T )) and exchanging the roles of μ and λ
yields ran (Fα(μ, T )) = ran (Fα(λ, T )). Hence, ran (Fα(μ, T )) does not depend on
μ and so we denote it by ran (Fα( · , T )).
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We show now that

(5.11) lim
R�μ→−∞

μFα(μ, T )v = v for all v ∈ V,

where limR�μ→−∞ μFα(μ, T )v denotes the limit as μ tends to −∞ in R. From
(5.11), we easily deduce that ran (Fα( · , T )) is dense in V because

V =
⋃

μ∈(−∞,0]

ran (Fα(μ, T )) = ran (Fα( · , T )).

We consider first v ∈ D(T ). Since

(5.12)

∫ +∞

0

tα−1

μ2 − 2μtα cos(απ) + t2α
dt = − π

μ sin(απ)
for μ ≤ 0,

it is

μFα(μ, T )v − v = − sin(απ)

π

∫ +∞

0

−μtα−1

μ2 − 2μtα cos(απ) + t2α
(
tS−1

R (−t, T )v + v
)
dt.

For −μ ≥ 1 and t ∈ (0,∞), we can estimate

−μtα−1

μ2 − 2μtα cos(απ) + t2α
=

−μtα−1

μ2 sin(απ)2 + (μ cos(απ)− tα)2

≤ −μtα−1

μ2 sin(απ)2
≤ tα−1

sin(απ)2
,

and due to (5.1) we have ‖tS−1
R (−t, T )v + v‖ ≤ (M + 1)‖v‖. On the other hand,

since v ∈ D(T ), it is

(5.13) tS−1
R (−t, T )v + v = −S−1

R (−t, T )Tv

and in turn, again due to (5.1), we can also estimate ‖tS−1
R (−t, T )v+ v‖ ≤ ‖Tv‖/t

such that we can apply Lebesgue’s dominated convergence theorem with dominating
function

f(t) =

⎧⎪⎪⎨
⎪⎪⎩

K

sin(απ)2
tα−1 for t ∈ (0, 1),

K

sin(απ)2
t−α−1 for t ∈ [1,+∞),

with K > 0 large enough, in order to exchange the integral with the limit for
μ → −∞ in R. In view of (5.13), we obtain

lim
R�μ→−∞

μFα(μ, T )v − v

= − sin(απ)

π

∫ +∞

0

lim
R�μ→−∞

μtα−1

μ2 − 2μtα cos(απ) + t2α
S−1
R (−t, T )Tv dt = 0.

For arbitrary v ∈ V and ε > 0 consider a vector vε ∈ D(T ) with ‖v − vε‖ < ε.
Because of (5.1) and (5.12), we have the uniform estimate

‖μFα(μ, T )‖ ≤ −μ sin(απ)

π

∫ +∞

0

tα

μ2 − 2μtα cos(απ) + t2α
M

t
dt = M.(5.14)
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Therefore

lim
R�μ→−∞

‖μFα(μ, T )v − v‖ ≤ lim
R�μ→−∞

‖μFα(μ, T )‖‖v − vε‖

+ ‖Fα(μ, T )vε − vε‖+ ‖vε − v‖
≤ (M + 1)ε.

Since ε > 0 was arbitrary, we deduce that (5.11) also holds true for arbitrary v ∈ V .
Overall, we obtain that ran (Fα( · , T )) is dense in V . The identity (5.11) more-

over also implies ker(Fα( · , T )) = {0} because v = limR�μ→−∞ Fα(μ, T )v = 0 for
v ∈ ker(Fα( · , T )).

We consider now an arbitrary point μ0 ∈ (−∞, 0). By the above arguments,
the mapping Fα(μ0, T ) : V → ran (Fα( · , T )) is invertible. Hence, we can define
the operator Bα := μ0I − Fα(μ0, T )

−1 that maps D(Bα) = ran (Fα(μ0, T )) to V .
Apparently, Bα has dense domain and S−1

R (μ0, Bα) = Fα(μ0, Bα). For μ ∈ (−∞, 0],
we can apply (5.10) and (5.6) to obtain

(μI −Bα)Fα(μ, T ) = ((μ− μ0)I + (μ0I −Bα))Fα(μ0, T )(I + (μ0 − μ)Fα(μ, T ))

= I + (μ− μ0)
(
Fα(μ0, T ) + (μ0 − μ)Fα(μ0, T )Fα(μ, T )− Fα(μ, T )

)
= I.

A similar calculation shows that Fα(μ, T )(μI −Bα)v = v for all v ∈ D(Bα). We
conclude that S−1

R (μ,Bα) = Fα(μ, T ) for any μ ∈ (−∞, 0). Since p �→ Fα(p, T ) and

p �→ S−1
R (p,Bα) are left slice hyperholomorphic and agree on (−∞, 0), Theorem 2.19

implies S−1
R (p,Bα) = Fα(p, T ) for any p ∈ Σ(0, φ0).

Finally, in order to show that Bα is of type (M,αω), we choose an arbitrary
imaginary unit I ∈ S and consider the restriction of S−1

R ( · , Bα) to the plane CI .
This restriction is a holomorphic function with values in the left vector space B(V )
over CI . We show now that this restriction has a holomorphic continuation to the
sector Σ(αω, 0) ∩ CI . Since this sector is symmetric with respect to the real axis,
we can apply Corollary 2.21 and obtain a left slice hyperholomorphic continuation
of S−1

R (p,Bα) to the sector Σ(αω, 0). By Theorem 3.10, this implies in particular
that Σ(αω, 0) ⊂ ρS(T ).

The above considerations showed that we can represent S−1
R (p,Bα) for p ∈

Σ(ω, 0) ∩ CI using Kato’s formula (5.2). Rewriting this formula as a path inte-
gral over the path γ0(t) = teIπ, t ∈ [0,+∞), we obtain

S−1
R (p,Bα) = − sin(απ)

π

∫
γ0

zαe−Iπα

(zαe−I2απ − p)(zα − p)
S−1
R (z, T ) dz,

where z denotes a complex variable in CI and z �→ zα is a branch of a complex α-th
power of z that is holomorphic on CI \ [0,∞). To be more precise, let us choose(
reIθ

)α
= rαeIθα with θ ∈ (0, 2π). (This is, however, not the restriction of the

quaternionic function s �→ sα defined in (2.16) to the plane CI ; cf. Remark 2.44.)
Observe that for fixed p the integrand is holomorphic on D0 := Σ(ω, 0) ∩ CI .

Hence, by applying Cauchy’s integral theorem, we can exchange the path of inte-
gration γ0 by a suitable path γκ(t) = teI(π−κ), t ∈ [0,∞) and obtain

(5.15) S−1
R (p,Bα) = − sin(απ)

π

∫
γκ

zαe−Iπα

(zαe−I2απ − p)(zα − p)
S−1
R (z, T ) dz.

On the other hand, for any κ ∈ (−ω, ω), such integral defines a holomorphic func-
tion on the sector Dκ := {p ∈ CI : α(π − κ) < arg p < 2π − α(π + κ)}, where
the convergence of the integral is guaranteed because the operator T is of type
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(M,ω). The above argument showed that this function coincides with S−1
R (p,Bα)

on the common domain D0 ∩ Dκ, and hence p �→ S−1
R (p,Bα) has a holomorphic

continuation FI to

D =
⋃

κ∈(−ω,ω)

Dκ = {p ∈ CI : α(π − κ) < argCI
(p) < 2π − α(π − κ)}.

This set is symmetric with respect to the real axis and, as mentioned above, we
deduce from Corollary 2.21 that there exists a left slice hyperholomorphic contin-
uation F of FI to the axially symmetric hull [D] = Σ(αω, 0) of D. Consequently,
Σ(αω, 0) ⊂ ρS(Bα) and F coincides with S−1

R ( · , Bα) on Σ(αω, 0).
In order to show that ‖pSR(p,Bα)‖ is bounded on every sector Σ(θ, 0) with

θ ∈ (ωα, 0), we consider first a set

Dκ,δ := {p ∈ CI : δ + α(π − κ) < arg p < 2π − α(π + κ)− δ}

with κ ∈ (−ω, ω) and small δ > 0. For p ∈ Dκ,δ with φ = argCI
(p) ∈ (0, 2π), we

may represent pS−1
R (p,Bα) by means of (5.15) and estimate

‖pS−1
R (p,Bα)‖ ≤ |p| sin(απ)

π

∫ +∞

0

rα

|(rαe−I(π+κ)α − p)(rαeI(π−κ)α − p)|
× ‖S−1

R (reI(π−κ), T )‖ dr

=
|p| sin(απ)

π

∫ +∞

0

rα

|(rα − |p|eI(φ+(π+κ)α))(rα − |p|eI(φ−(π−κ)α))|
× ‖S−1

R (reI(π−κ), T )‖ dr.

The operator T is of type (ω,M) and hence exists a constant Mκ > 0 such that
‖S−1

R (reI(π−κ), T )‖ ≤ M/r. Substituting τ = rα/|p| yields

‖pS−1
R (p,Bα)‖ ≤ sin(απ)

π

∫ +∞

0

Mκ

|(τ − eI(φ+(π+κ)α))(τ − eI(φ−(π−κ)α))| dτ.

This integral is uniformly bounded for

φ ∈ (δ + α(π − κ), 2π − α(π + κ)− δ)

such that there exists a constant that depends only on κ and δ such that

‖pS(p,Bα)‖ ≤ C(κ, δ) for p ∈ Dκ,δ.

Now consider a sector Σ(θ, 0) with θ ∈ (ωα, π). Then there exist (κi, δi), i =
1, . . . , n, such that Σ(θ, 0) ∩ CI ⊂

⋃n
i=1 Dκi,δi and hence

‖pS−1
R (p,Bα)‖ ≤ C := max

1≤i≤n
C(κi, δi) for p ∈ Σ(θ, 0) ∩ CI .

For arbitrary p = p0 + Ipp1 ∈ Σ(θ, 0) ∩ CI , set pI = p0 + Ip1. Then the Represen-
tation Formula, Theorem 2.20, implies

‖pS−1
R (p, T )‖ ≤ 1

2
‖(1− IpI)pIS

−1
R (pI , Bα)‖+

1

2
‖(1 + IpI)pIS

−1
R (pI , Bα)‖ ≤ 2C.

Finally, the estimate ‖tS−1
R (−t, Bα)‖ ≤ M/t follows immediately from (5.14). �
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Definition 5.6. Let T ∈ K(V ) be of type (ω,M). For α ∈ (0, 1) we define
Tα := Bα.

Corollary 5.7. Definition 5.6 is consistent with Definition 4.16.

Proof. Let T ∈ K(V ), let α ∈ (0, 1) and let Tα be the operator obtained from
Definition 5.6. If ‖S−1

R (s, T )‖ ≤ K/(1 + |s|) for s ∈ (−∞, 0], then we can apply
Lebesgue’s dominated convergence theorem in order to pass to the limit as p tends
to 0 in Kato’s formula (5.2) for the right S-resolvent of Tα. We obtain

(Tα)−1 = −S−1
R (0, Tα) = − sin(απ)

π

∫ +∞

0

t−αS−1
R (−t, T ), dt = T−α,

where the last equality follows from Corollary 4.8. �

As an immediate consequence of [35, Theorem 5.6] and Theorem 5.5, we obtain
the following Corollary.

Corollary 5.8. Let T ∈ K(V ) be of type (ω,M). If α ∈ (0, 1) with αω < π/2,
then −Tα is the infinitesimal generator of a strongly continuous semigroup that is
analytic in time.

Appendix A. Estimate for applying Fubini’s theorem in (4.7)

We want to show that we can apply Fubini’s theorem to exchange the order of
integration in (4.7), i.e., in

T−α =
1

(2π)2

∫
∂(Us∩CI)

(∫
∂(Up∩CJ )

p−α dpJ S−1
R (p, s)

)
dsI S

−1
R (s, T ).(A.1)

In order to show that the integrand is absolutely integrable, we consider the pa-
rameterizations Γs and Γp of ∂(Us ∩ CI) and ∂(Up ∩ CJ ) that are given by

Γs(r) =

⎧⎪⎨
⎪⎩
Γ+
s (r) := re−θsI , r ∈ [a0/2,+∞),

Γ0
s(r) :=

a0

2 e−
2θs
a0

Ir, r ∈ (−a0/2, a0/2),

Γ−
s (r) := reθsI , r ∈ (−∞,−a0/2],

and

Γp(t) =

⎧⎪⎨
⎪⎩
Γ+
p (t) := te−θpJ , t ∈ [a0/3,+∞),

Γ0
p(t) :=

a0

3 e−
3θp
a0

Jt, t ∈ (−a0/3, a0/3),

Γ−
p (t) := teθpJ , t ∈ (−∞,−a0/3].

Then

1

(2π)2

∫
Γs

∫
Γp

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
=

∑
τ,ν∈{−,0,+}

∫
Γτ
s

∫
Γν
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥(A.2)
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and it is sufficient to estimate each of the terms in the sum separately. Applying
Theorem 2.8 allows us to estimate

(A.3) |S−1
R (p, s)| ≤ 1

2
|1− IJ | 1

|pI − s| +
1

2
|1 + IJ | 1

|pI − s| ≤
2

|pI − sI |
,

where pI = p0 + Ip1 for p = p0Ipp1. Hence, for τ, ν ∈ {+,−}, by applying (4.2),
we have

∫
Γτ
s

∫
Γν
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
=

∫ +∞

a0
2

∫ +∞

a0
3

t−α 2

|teθpI − reθsI |
M1

1 + r
dt dr

=

∫ +∞

a0
2

∫ +∞

a0
3

t−α∣∣t− re(θs−θp)I
∣∣ 2M1

1 + r
dt dr

=

∫ +∞

a0
2

∫ +∞

a0
3

(
t
r

)−α∣∣ t
r − e(θs−θp)I

∣∣ dt 1

r1+α

2M1

1 + r
dr

=

∫ +∞

a0
2

∫ +∞

a0
3r

μ−α∣∣μ− e(θs−θp)I
∣∣ dμ 1

rα
2M1

1 + r
dr.

The modulus of μ− e(θs−θp)I can be estimated from below by the absolute value of
its real part or by the absolute value of its imaginary part and, therefore,

∫
Γτ
s

∫
Γν
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
≤
∫ +∞

a0
2

∫ +∞

2

μ−α

μ− cos(θs − θp)
dμ

1

rα
2M1

1 + r
dr

+

∫ +∞

a0
2

∫ 2

a0
3r

μ−α

sin(θp − θs)
dμ

1

rα
2M1

1 + r
dr

=

∫ +∞

2

μ−α

μ− cos(θs − θp)
dμ︸ ︷︷ ︸

=:C1<+∞

∫ +∞

a0
2

1

rα
2M1

1 + r
dr︸ ︷︷ ︸

=:C2<+∞

+

∫ +∞

a0
2

1

sin(θp − θs)

(
21−α

1− α
− a1−α

0

(1− α)31−α

1

r1−α

)
1

rα
2M1

1 + r
dr

= C1C2 +
2M1

sin(θp − θs)

21−α

1− α

∫ +∞

a0
2

r−α

1 + r
dr

+
2M1

sin(θp − θs)

a1−α
0

(1− α)31−α

∫ +∞

a0
2

1

r(1 + r)
dμ dr

where each of these integrals is finite.



FRACTIONAL POWERS OF QUATERNIONIC OPERATORS 1093

For τ = 0 and ν = +, we can again use (A.3) to estimate

∫
Γ0
s

∫
Γ+
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
≤
∫ a0

2

− a0
2

∫ +∞

a0
3

t−α
∣∣∣S−1

R

(
teJθp ,

a0
2
e−

2θs
a0

rI
)∣∣∣ θsM1

1 + a0

2

dt dr

≤
∫ a0

2

− a0
2

∫ +∞

a0
3

t−α 2∣∣∣teIθp − a0

2 e
2θs
a0

rI
∣∣∣
θsM1

1 + a0

2

dt dr

=
2θsM1

1 + a0

2

∫ a0
2

− a0
2

∫ +∞

a0
3

t−α∣∣∣∣t− a0

2 e

(
2θs
a0

r−θp
)
I

∣∣∣∣
dt dr.

Since 0 < θs < θp < π, the distance δ of the set

{
a0
2
e

(
2θs
a0

r−θp

)
I
: −a0/2 < r < a0/2

}

to the positive real axis is greater than zero, and hence,

∫
Γ0
s

∫
Γ+
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
≤2θsM1

1 + a0

2

∫ a0
2

− a0
2

∫ a0

a0
3

t−α

δ
dt dr +

2θsM1

1 + a0

2

∫ a0
2

− a0
2

∫ +∞

a0

t−α 1

t− a0

2

dt dr

=
2θsa0M1

δ
(
1 + a0

2

) ∫ a0

a0
3

t−α dt+
2θsa0M1

1 + a0

2

∫ +∞

a0

t−α

t− a0

2

dt,

where again these integrals are finite. A similar computation can be done for the
case τ = 0 and ν = −.

For τ = + and ν = 0, we apply once more (A.3) and obtain

∫
Γ+
s

∫
Γ0
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
≤
∫ +∞

a0
2

∫ a0
3

− a0
3

(a0
3

)−α

θp

∣∣∣∣S−1
R

(
a0
3
e

−3θp
a0

Jt, re−θsI

)∣∣∣∣ M1

1 + r
dt dr

≤2
(a0
3

)−α

θpM1

∫ +∞

a0
2

∫ a0
3

− a0
3

1∣∣∣∣a0

3 e
3θp
a0

It − reθsI
∣∣∣∣

1

1 + r
dt dr

=2
(a0
3

)−α

θpM1

∫ +∞

a0
2

∫ a0
3

− a0
3

1∣∣∣∣r − a0

3 e

(
3θp
a0

t−θs
)
I

∣∣∣∣
1

1 + r
dt dr.
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Estimating the modulus of the denominator from below with the modulus of its
real part, we obtain∫

Γ+
s

∫
Γ0
p

∥∥p−α dpJ S−1
R (p, s) dsI S

−1
R (s, T )

∥∥
≤2
(a0
3

)−α

θpM1

∫ +∞

a0
2

∫ a0
3

− a0
3

1∣∣∣r − a0

3 cos
(

3θp
a0

t− θs

)∣∣∣
1

1 + r
dt dr

≤2
(a0
3

)−α

θpM1

∫ +∞

a0
2

∫ a0
3

− a0
3

1

r − a0

3

1

1 + r
dt dr

=
4a0
3

(a0
3

)−α

θpM1

∫ +∞

a0
2

1

r − a0

3

1

1 + r
dr,

and this last integral is finite. The estimate of the case τ = − and ν = 0 can be
done in a similar way.

Finally, the summand for τ = 0 and ν = 0 consists of the integral of a continuous
function over a bounded domain and is therefore finite.

Putting these pieces together, we obtain that the integrand in (A.1) is absolutely
integrable, which allows us to apply Fubini’s theorem in order to exchange the order
of integration.

Appendix B. Estimate for applying Fubini’s theorem in (4.13)

We want to show that we can apply Fubini’s theorem to

T−α T−β

=− 1

(2π)2

∫
∂(Gs∩CI )

s−α dsI

∫
∂(Gp∩CI )

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

+
1

(2π)2

∫
∂(Gs∩CI )

s−α dsI

∫
∂(Gp∩CI )

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI p−β.

(B.1)

For τ ∈ {s, p} we therefore decompose ∂(Gτ ∩ CI) = Γτ,− ∪ Γτ, ◦ ∪ Γτ,+ with

Γ−
τ =

{
−reIθτ , r ∈ (−∞,−aτ ]

}
,

Γ0
τ =

{
aτe

−Iθ, θ ∈ (−θτ , θτ )
}
,

Γ+
τ =

{
re−Iθτ , r ∈ [aτ ,+∞)

}
,

such that

T−α T−β

=
∑

u,v∈{+,o,−}
− 1

(2π)2

∫
Γu
s

s−α dsI

∫
Γv
p

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

+
∑

u,v∈{+,o,−}

1

(2π)2

∫
Γu
s

s−α dsI

∫
Γv
p

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI p−β.

(B.2)
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Since p and s commute, we have (p2− 2s0p+ |s|2)−1 = (p− s)−1(p− s)−1 and thus
for u = + and v = +

∫
Γ+
s

s−α dsI

∫
Γ+
p

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

=

∫ +∞

as

r−αeIαθse−Iθs(−I)

∫ +∞

ap

S−1
L (te−Iθp , T )

× te−Iθp
(
te−Iθp − re−Iθs

)−1 (
te−Iθp − reIθs

)−1
e−Iθp(−I)t−βeIβθp dt dr.

Using the estimate ‖S−1
L (s, T )‖ ≤ M1/(1 + |s|) obtained from Lemma 4.2 and

setting C = supt∈[0,+∞) M1t/(1 + t) < +∞, we find that the integral of the norm
of the integrand is lower or equal to

∫ +∞

as

∫ +∞

ap

r−α M1t

1 + t

1∣∣t− reI(θp−θs)
∣∣ 1∣∣t− reI(θp+θs)

∣∣ t−β dt dr

≤ C

∫ +∞

as

r−(α+β)

r2

∫ +∞

ap

1∣∣ t
r − eI(θp−θs)

∣∣ 1∣∣ t
r − eI(θp+θs)

∣∣
(
t

r

)−β

dt dr

≤ C

∫ +∞

as

r−(α+β)

r

∫ +∞

0

1∣∣ξ − eI(θp−θs)
∣∣ 1∣∣ξ − eI(θp+θs)

∣∣ξ−β dξ dr(B.3)

≤ C

(α+ β)aα+β
s

∫ +∞

0

1∣∣ξ − eI(θp−θs)
∣∣ 1∣∣ξ − eI(θp+θs)

∣∣ξ−β dξ.

We set μ0 = max cos(θp ± θs) and μ1 = min |sin(θp ∓ θs)| and observe that μ1 > 0

since we chose π/2 < θp < θs < π. Estimating
∣∣ξ − eI(θp±θs)

∣∣ from below by the
modulus of its real and imaginary part, we finally obtain that the above integral is
bounded by

C

(α+ β)aα+β
s μ1

∫ 2

0

ξ−β dξ +
C

(α+ β)aα+β
s

∫ +∞

2

ξ−β

(ξ − μ0)2
dξ < ∞

because 0 < β < 1.
The second integral in (B.2) with u = + and v = + is

∫
Γ+
s

s−α dsI

∫
Γ+
p

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpI p

−β

=

∫ +∞

as

r−αeIαθse−Iθs(−I)

∫ +∞

ap

reIθsS−1
L (teIθp , T )

×
(
te−Iθp − re−Iθs

)−1 (
te−Iθp − reIθs

)−1
e−Iθp(−I)t−βeIβθp dt dr.

Using again the estimate ‖S−1
L (s, T )‖ ≤ M1/(1 + |s|) obtained from Lemma 4.2

and setting C = supt∈[0,+∞) M1t/(1+ t) < +∞, we can estimate the integral of the



1096 F. COLOMBO AND J. GANTNER

norm of the integrand by

∫ +∞

as

∫ +∞

ap

r1−α M1

1 + t

1∣∣te−I(θp−θs) − r
∣∣ 1∣∣te−I(θp+θs) − r

∣∣ t−β dt dr

≤
∫ +∞

ap

M1t

1 + t

t−(α+β)

t2

∫ +∞

as

(r
t

)1−α 1∣∣ r
t − e−I(θp−θs)

∣∣ 1∣∣ r
t − e−I(θp+θs)

∣∣ dr dt
≤C

∫ +∞

ap

t−(α+β)

t

∫ +∞

0

ξ1−α 1∣∣ξ − e−I(θp−θs)
∣∣ 1∣∣ξ − e−I(θp+θs)

∣∣ dξ dt.
An integral of this form appeared in (B.3) and we have already seen that it is finite.
Similar estimates also hold for all terms in (B.2) with u, v ∈ {+,−}.

For u = + and v = 0, we have

∫
Γ+
s

s−α dsI

∫
Γ0
p

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1 dpI p

−β

=

∫ +∞

as

r−αeIαθse−Iθs(−I)

∫ θp

−θp

S−1
L (ape

−Iθ, T )ape
−Iθ

×
(
ape

−Iθ − re−Iθs
)−1 (

ape
−Iθ − reIθs

)−1
ape

−Iθ(−I)2a−β
p eIβθ dθ dr

and, again using the estimate ‖S−1
L (s, T )‖ ≤ M1/(1+|s|) obtained from Lemma 4.2,

we find that the integral of the absolute value of the integrand is lower or equal to

∫ +∞

as

r−α

∫ θp

−θp

M1a
2−β
p

1 + ap

1∣∣r − ape−I(θ−θs)
∣∣ 1∣∣r − ape−I(θ+θs)

∣∣ dθ dr.
Since π/2 < θp < θs < π, the distance δ between the set

(B.4)
{
ape

−I(θ+θs), θ ∈ [−θp, θp]
}
∪
{
ape

−I(θ−θs), θ ∈ [−θp, θp]
}

and the positive real axis is greater than zero and hence the above integral can be
estimated by

∫ as+2ap

as

r−α

∫ θp

−θp

M1a
2−β
p

1 + ap

1

δ2
dr dθ +

∫ +∞

as+2ap

r−α

(r − ap)2

∫ θp

−θp

M1a
2−β
p

1 + ap
dθ dr < +∞.

For the second integral in (B.2) with u = + and v = 0, we have

∫
Γ+
s

s−α dsI

∫
Γ0
p

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpI p

−β

=

∫ +∞

as

r−αeIαθse−Iθs(−I)

∫ θp

−θp

reIθsS−1
L (ape

−Iθ, T )

×
(
ape

−Iθ − re−Iθs
)−1 (

ape
−Iθ − reIθs

)−1
ape

−Iθ(−I)2a−β
p eIβθ dθ dr
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Using the estimate ‖S−1
L (s, T )‖ ≤ M1/(1 + |s|) obtained from Lemma 4.2, we can

estimate the integral of the absolute value of the integrand by∫ +∞

as

r1−α

∫ θp

−θp

a1−β
p M1

1 + ap

1∣∣ape−I(θ−θs) − r
∣∣ 1∣∣ape−I(θ+θs) − r

∣∣ dθ dr
≤
∫ as+2ap

as

r1−α

∫ θp

−θp

a1−β
p M1

1 + ap

1

δ2
dθ dr

+

∫ +∞

as+2ap

r1−α

(r − ap)2

∫ θp

−θp

a1−β
p M1

1 + ap
dθ dr < +∞,

where δ > 0 is again the distance between the set in (B.4) and the positive real
axis. Similar estimates hold true if u = − and v = 0.

If u = 0 and v = +, then∫
Γ0
s

s−α dsI

∫
Γ+
p

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI p−β

=

∫ θs

−θs

a−α
s eIαθase

−Iθ(−I)2
∫ +∞

ap

S−1
L (te−Iθp , T )te−Iθs

×
(
te−Iθp − ase

−Iθ
)−1 (

te−Iθp − ase
Iθ
)−1

e−Iθs(−I)t−βeIβθp dt dθ.

Once more the estimate ‖S−1
L (s, T )‖ ≤ M1/(1 + |s|) obtained from Lemma 4.2

allows us to estimate the integral of the absolute value of the integrand by∫ θs

−θs

a1−α
s

∫ +∞

ap

M1t

1 + t

1∣∣t− aseI(θp−θ)
∣∣ 1∣∣t− aseI(θp+θ)

∣∣ t−β dt dθ

≤C

∫ θs

−θs

a1−α
s

∫ +∞

ap

t−β

(t− as)
2 dt dθ < +∞,

where again C = supt∈[0,+∞) M1t/(1 + t) < +∞ and the second inequality follows

because as < ap. For the second integral in (B.2) with u = 0 and v = +, we
similarly have∫

Γ0
s

s−α dsI

∫
Γ+
p

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI p−β

=

∫ θs

−θs

a−α
s eIαθase

−Iθ(−I)2
∫ +∞

ap

ase
IθsS−1

L (te−Iθp , T )·

·
(
te−Iθp − ase

−Iθ
)−1 (

te−Iθp − ase
Iθ
)−1

e−Iθs(−I)t−βeIβθp dt dθ.

As above, we can estimate the integral of the absolute value of the integrand by∫ θs

−θs

a2−α
s

∫ +∞

ap

M1

1 + t

1∣∣t− aseI(θp−θ)
∣∣ 1∣∣t− aseI(θp+θ)

∣∣ t−β dt dθ

≤C

∫ θs

−θs

a2−α
s

∫ +∞

ap

t−(1+β)

(t− as)
2 dt dθ < +∞,

where the last inequality follows again because as < ap. Similar estimates hold for
the case u = 0 and v = −.
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Finally, the integrals in (B.2) with u = 0 and v = 0 are absolutely convergent
since, in this case, we integrate a continuous and hence bounded function over a
bounded domain.

Putting these pieces together, we obtain that we can actually apply Fubini’s
theorem in (4.13), respectively (B.1), to exchange the order of integration.
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