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HIGHER CHOW GROUPS WITH MODULUS
AND RELATIVE MILNOR K-THEORY

KAY RULLING AND SHUJI SAITO

ABSTRACT. Let X be a smooth variety over a field k and D an effective divisor
whose support has simple normal crossings. We construct an explicit cycle
map from the Nisnevich motivic complex Z(r) x|p,nijs of the pair (X, D) to

a shift of the relative Milnor K-sheaf Kin\D Nis ©f (X, D). We show that
this map induces an isomorphism Hj\jlrﬁ\“s()(|D7 Z(r)) = H*(Xnis, K:%X\D,Nis)’
for all ¢ > dim X. This generalizes the well-known isomorphism in the case
D = 0. We use this to prove a certain Zariski descent property for the motivic

cohomology of the pair (A}, (m + 1){0}).
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INTRODUCTION

Recently several attempts have been made to introduce a theory of motivic co-
homology with modulus. The first attempt was due to S. Bloch and H. Esnault
(IBEO3a], [BE03b]) who introduced additive higher Chow groups of a field k. It
is conceived as motivic cohomology for k[t]/(t?), or an additive version of Bloch’s
higher Chow group for a pair (A}, 2-{0}) of the affine line A} over k with modulus
2 - {0}, where {0} denotes the origin of A} regarded as a divisor. They showed
that the part given by zero-cycles of these groups coincide with the absolute dif-
ferential forms of k. The first author [Riil07] generalized this computation to the
case k[t]/(t™+1) for arbitrary m > 1 and proved that these groups give a cy-
cle theoretic description of the big de Rham-Witt complex of Hesselholt-Madsen
[HMOT] of k. Park [Par09] extended the definition of Bloch-Esnault to introduce
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additive higher Chow groups TCH" (X, n;m) for a k-scheme X. The groups stud-
ied by Bloch-Esnault and Riilling correspond to the case X = Speck and r = n.
Motivated by a work [KeS14] of Kerz and the second author, Park’s definition
is extended in [BS14] to higher Chow groups CH"(X|D,n) for a pair (X, D) of
an equidimensional k-scheme X and an effective Cartier divisor D on X. For
(X,D) = (Y x A, (m+1)- (Y x {0})), with Y an equidimensional k-scheme and
m > 1, we have

(1) CH"(X|D,n) = TCH"(Y,n + 1;m).
The definition of CH"(X|D,n) is given by
(2) CH"(X|D,n) = H,(2"(X|D, o)),

where 2" (X|D, o) is the cycle complex with modulus, which is a subcomplex of the
cubical version of Bloch’s cycle complex z" (X, ®) consisting of those cycles satisfying
a certain modulus condition. In particular we have a natural map

CH"(X|D,n) — CH"(X, n),

where CH" (X, n) = H, (2" (X, e)) is Bloch’s higher Chow group (see §Ilfor other ba-
sic properties of CH"(X|D,n)). As in the case of Bloch’s cycle complex, 2" (X |D, o)
gives rise to a complex 2" (—|D, o) of étale sheaves on X . In case X is smooth over k
we define the r-th motivic complex of (X, D) to be the following complex of Zariski
sheaves on X:
Z(r)x|p = 2" (=|D,2r — e).
We denote by
Z(T)X\D,Nis

the corresponding complex on Xyis. The motivic cohomology of (X, D) is by defi-
nition (see [BS14] Def. 2.10])

(3) Hj\(X|D,Z(r)) := H'(Xzar, Z(r) x|D)-

If D = 0 we get back Bloch’s definition of the motivic complex and motivic
cohomology. We simply write Z(r)x and Hj,(X,Z(r)) instead of Z(r)x|o and
H'(X|0,Z(r)). We define the motivic Nisnevich cohomology of (X, D) to be

Hj nis(X|D, Z(r)) := H'(Xnis, Z(r) x| D).

An important property of the classical motivic complex is the cycle map to the
Milnor K-sheaf:

(4) O T Z(r)x — KMy [-1],

which is a map in D®(X7.,), the derived category of bounded complexes of Zariski
sheaves on X (see ZIT] for the definition of the Milnor K-sheaf KMy). By the
Gersten resolution for higher Chow groups, one knows that ¢’ is actually an iso-
morphism. In fact one can realize ¢’y as an explicit morphism of actual complexes
from 7>,Z(r) x to the Gersten complex of IC%X [—r]. This construction is well known
to the experts, but due to the lack of a reference, we include its review in §3.11 The
first main result of this paper is a construction of the relative version of ({):

(5) Oxip i = Z(r)x1p = KMy p[=7],

where IC% p is the relative Milnor K-sheaf for (X, D), which is a subsheaf of ICfY[X

(see Definition Z4]). Unfortunately we can construct it as a morphism in D®(Xza,)
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only assuming Dyeq is smooth. If D,eq is a simple normal crossing divisor (SNCD)
on X, we can construct a natural map in Db(XNis):

T . M
(6) ¢X\D,Nis : TZTZ(T)X\D,Nis - ’CT,X|D,Nis[_ﬂ
fitting into the following commutative diagram:

XD, Nis
7>+ Z(T) x| D,Nis —> ¥X|D,Nis[_r]

o

7> Z(7) X Nis KM nisl =71,

% Nis

where ¢’y v 1s the Nisnevich sheafification of ¢'y. In fact we show that the Cousin
complex of IC%X‘ D .Nis 18 a resolution (see Corollary [2.224]) and we can realize qﬁg(l D Nis
as an explicit morphism of complexes from 7>,Z(r) x|p nis to the Cousin complex
of Ki\,/IX|D,Nis[_T]' The inclusion Ki\,/IX|D,Nis
the Cousin complex of IC%X‘D?Nis to the Gersten complex of ICi‘)/[XNiS, and there is
a diagram of morphisms between actual complexes underlying the above diagram.
We will prove the following.

M .
<= K'x Nis induces a natural map from

Theorem 1 (Theorem B). Let X be a smooth equidimensional scheme of di-
mension d = dim X and D an effective divisor such that Dieq is a simple normal
crossing divisor. Then:

(i) H\(X|D,Z(r))=0= H}‘VLNiS(X\D, Z(r)) fori>d+r.

.. ¢ | D, Nis )
(ii) The cycle map Z(r) x| p,Nis — T>rZ(T) x| D,Nis R, K7J~\,/IX|D,Nis[_T] induces

an isomorphism
d, . ryd ~ d
¢XTD,Nis : HA/J{,TI;Iis(X‘DvZ(T)) — H (XNisv’Ci\,/[X\D,Nis)-

If moreover Dyeq is smooth, then all maps in the following commutative dia-
gram are isomorphisms:

H.(/{/Jlrr(X‘D7 Z(T)) — H.(/tlr&is(X|D7 Z(T))
‘i’ffDlN Nl¢§5TD,Nis
Hd(XZarvIC%X\D) —— H*(Xnis, ’Cy{v,IX|D,Nis)'

As an application of Theorem [Il we will prove the Zariski descent property for
additive higher Chow groups (see Theorem [3 below). From (@) and @) we have a
natural map

(7 CH"(X|D,n) — Hyy "(X|D,Z(r)).

In the classical case where D = 0, () is an isomorphism, which is known as the
Zariski descent property for Bloch’s higher Chow groups. It is a consequence of
the Mayer-Vietoris property of Bloch’s cycle complex 2" (X, o), which follows from
the localization theorem for the complex. In case D # 0, it is not clear whether
2"(X|D, ) has some reasonable localization property at all. On the other hand,
the higher dimensional class field theory with wild ramification suggests that the
Nisnevich descent property for higher Chow groups with modulus is related to some
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deep arithmetic questions. As a consequence of [KeS14, Theorem III], we have the
following result.

Theorem 2. Let X be a smooth projective variety of dimension d over a finite field
k and U C X be the open complement of an SNCD on X. Write CHY(X|D) =
CHY(X|D,n) for n = 0. Then the natural map

(8) lim CHY(X|D) = fim H3 i (X1, 2(0)

is an isomorphism, where the limit is taken over all effective divisors D on X
supported on X —U.

Indeed, by [BS14, Theorem 3.3] the group CH?(X|D) is equal to the Chow group
of zero-cycles with modulus denoted by C(X, D) in [KeSl4] and by Theorem [I]
the group Hf\flt’Nis(X|D,Z(d)) is isomorphic to HZ; (X, ICdX‘D Nis)» Which is the
idele class group used in the class field theory of Kato-Saito [KS86]. We have a
commutative diagram

lim C(X, D) —= lim H, (X, K}y p i)

— —
D D
KaS
Pu
i |

where 7#P(U) is the abelian fundamental group of U and p&¢S (resp. p

the reciprocity map from [KeST4] (resp. [KS86]). The rempromty maps pgy
and pfeS were shown to be bijections onto the subgroup of 7 (U) consisting of
those elements whose images in 3" (Speck) are integral powers of the Frobenius
substitution of k. These clearly imply Theorem On the other hand, one can
deduce [KeS14] Theorem III] from the Kato-Saito class field theory assuming (8) is
an isomorphism.

KeS KaS)

is
KeS

Using Theorem [I] one can find examples where the map (@) and its Nisnevich
version

(9) CH"(X|D,n) = Hy i (X|D, Z(r))

are not isomorphisms; see Remark B.I3 These examples however arise from the
fact that if r < dim X and n = r — dim X, the right-hand side of the above map
does not necessarily vanish. At this moment we don’t have any definitive idea on
what to expect for n > 0. In this paper we present only the following special case.

Theorem 3 (Theorem AI2)). Let k be a field of characteristic # 2. The natural
maps

(10)  CH"(AL|(m + 1){0},r —n) = Hi{"(Agl(m+ {0}, Z(r)), n>1,
are isomorphisms.

Notice that the right-hand side of (IT) is isomorphic to the Nisnevich motivic
cohomology H i (AL|(m 4 1){0},Z(r)) by Theorem Il Notice also that the left-
hand side of () is TCH"(k,r —n+ 1;m) (cf. (), which is clearly zero for n > 2
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and the right-hand side is zero by Theorem [l We prove the isomorphism (I0]) for
n = 1 by constructing the following commutative diagram for all r,m > 1:

CH" (AL|(m + 1){0}, 7 — 1) — 2 H (AL (m + 1){0}, Z(r))

.|~ 7 =|s

W, Q7 UK (k((T))) /UM (k((T)),

where « is up to sign the isomorphism from [Ril07], 8 is an isomorphism deduced by
using Theorem[I] and ~ is an isomorphism following from a comparison isomorphism
between the big de Rham-Witt sheaves and relative Milnor K-sheaves established
in Theorem[£.8] which is reminiscent of Bloch’s original construction of the p-typical
de Rham-Witt complex in [Blo77].

The following theorem was suggested by the referee.

Theorem 4 (Theorem B.)). Let k be a field, let X be a smooth equidimensional
k-scheme of dimension d, and let D be an effective Cartier divisor on X such that
Dyeq is a simple normal crossing divisor. Then we have, for all n > 2 and all
non-negative integers my, ..., My,

HG (X xx ARI(p™D + Y mi - g7 {0}), Z(r)) = 0,
i=1
where q; + X xi A} — A}C denotes the projection to the i-th factor of A} and
p: X X5 A} — X is the projection.

This gives another example where (@) is an isomorphism, since the vanishing
CH"(X x, A|(p*D + X1 my; - ¢;{0}),r — (d+n)) =0, for n > 2, was proven in
[KPT5, Thm. 5.11].

Conventions. A k-scheme is a separated scheme of finite type over a field k. A
simple normal crossing divisor (SNCD) on a smooth k-scheme X is by definition a

reduced effective Cartier divisor E on X such that if 4, ..., E, are the irreducible
components of E, then the intersections E;, N---N E; are smooth over k and have
codimension r in X, for all € [1,n] and (i1, ...,4,) € [1,n]".

1. CYCLE COMPLEX WITH MODULUS

We recall the definition of Chow groups with modulus from [BS14] 2.]. In this
section k is a field, X an equidimensional k-scheme and D an effective Cartier
divisor on X with complement U = X \ |D|.

1.1. Set P! = Proj k[Yp, Y1] and let y = Y1 /Y be the standard coordinate function
on PL. We set
O=P'\ {1}, O"=(P"\{1)", n>1.
By convention we set [(1° = Speck. Let ¢; : (P')" — P* be the projection onto the
i-th factor. We use the coordinate system (yi,...,¥,) on (P!)" with y; = y o ¢;.
Let F* C (P*)™ be the Cartier divisor defined by {y; = 1} and put F,, = > I | F}".
A face of O" is a subscheme F' defined by equations of the form

Yi, = €1, Yi, = &, 1€ [L,n], (i1,...,4,) € [1,n]", &, € {0,00}.
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We denote by 1y : F' < " the closed immersion. For e = 0,00 and i € [1,n], let
i O On
be the inclusion of the face of codimension 1 given by y; = e.

Definition 1.1. For r,n > 0 we denote by C"(X|D, n) the set of all integral closed
subschemes Z C U x 0" of codimension r which satisfy the following conditions:

(1) Z intersects U x F properly for all faces F C O".

(2) The case n = 0: The closure of Z in X does not meet D.

(3) The case n > 1: Denote by Z C X x (P!)" the closure of Z and by
Vgt Z — X x (PY)™ the composition of the normalization Z — Z followed
by the closed immersion Z — X x (PY)". Then the following inequality
between Cartier divisors holds:

(1.1.1) ve(D x (P1)") < ve(X x Fy).

An element of C"(X|D,n) is called an integral relative cycle of codimension r for
(X, D).

Lemma 1.2. Let Z' C Z be integral closed subschemes in X x (P1)" intersecting
the Cartier divisors D x (P1)" and X x F,, properly. Let vz : Z — X x (PY)™ be the
composition of the normalization Z — Z with the natural inclusion Z < X x (P1)"
and similarly with vz : Z' — X x (PY)". Then the inequality v (D x (P1)") <
vy (X x F,) implies the corresponding inequality with vz replaced by vz .

Proof. This is essentially [KP12| Prop. 2.4]; see [BS14, Lem. 2.1] for the version we
need here. ]

1.2. Chow groups with modulus. Denote by 2" (X|D,n) the free abelian group
on the set C"(X|D,n). By Lemma there is a well-defined pullback map
(idx x vp)* :2"(X|D,n) — 2" (X|D, m) for any m-dimensional face O™ = F' C J".
We obtain a cubical object of abelian groups (see e.g. [Lev(9, 1.1]):

n— 2" (X|D,n) (n={0,0}",n=0,1,2,3,...).

For each n we have the subgroup 2" (X|D,n)degn of degenerate cycles, i.e. those
cycles which come from 2" (X|D,n — 1) via pullback along one of the n projections
UxO" = Ux O We set

2"(X|D,n) :=

The n-th boundary operator 9 : 2" (X|D,n

n

0= (1" - ),

where 0f = (idx x ¢}'.)* : 2" (X[D,n) = 2"(X|D,n — 1) is the pullback along the
face {y; = e¢}. We get a complex 2" (X|D,e), which is the complex associated to
the cubical object n +— 2"(X|D,n). The higher Chow groups of (X, D) are defined
to be

— 2"(X|D,n — 1) is given by

CH"(X|D,n) := H,(2"(X|D,n)), mn,r>0;
see [BS14l Def. 2.5]. If D = 0 we get back Bloch’s classical definition of the cycle

complex and higher Chow groups. We simply write z"(X, ¢) and CH" (X, n) instead
of 2"(X0,e) and CH" (X0, n), respectively.
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1.3. Motivic cohomology with modulus. For an étale map V' — X we denote
by Dy the pullback of D to V. Then the presheaves

2" (=|D,n): Xt 3 (V = X) — 2"(V|Dy,n)

are sheaves for the étale topology, a fortiori for the Zariski and the Nisnevich
topology. In case X is smooth over k the r-th motivic complex of (X, D) is defined
to be the complex of Zariski sheaves on X,

Z(r)x|p := 2" (—=|D,2r — o).
We denote by
Z(r) x|p,Nis

the corresponding complex on Xyis. The motivic cohomology (X, D) is by definition
H\(X|D,Z(r)) == H (Xzar, Z(r) x|p);

see [BS14, Def. 2.10]. If D = 0 we get back Bloch’s definition of the motivic
complex and motivic cohomology. We simply write Z(r)x and H',(X,Z(r)) instead
of Z(r) x| and H'(X10,Z(r)). We define the motivic Nisnevich cohomology of
(X, D) to be

Hjy nis(X|D, Z(r)) == H' (Xnis, Z(r) x| D)

1.4. We give a list of properties and results:

(1) The modulus condition (LIT)) implies that any Z € C™(X|D,n) is already
closed in X x (0". Therefore there is a natural map

CH"(X|D,n) — CH"(X, n),

where the right-hand side is (the cubical version of) Bloch’s higher Chow
groups.

(2) The above definition generalizes the additive higher Chow groups defined by
Bloch-Esnault and Park. In the case (X, D) = (Y x A}, (m+1)-(Y x{0})),
with Y an equidimensional k-scheme and m > 1, we have

CH"(X|D,n) =TCH"(Y,n + 1;m).
(3) There is a natural isomorphism
CH"(X|D,0) = CH"(X|D),

where the right-hand side is the group of r-codimensional cycles on U mod-
ulo “rational equivalence with modulus D”; see [BS14, 3].
(4) Assume X is normal. Then there is a natural quasi-isomorphism

ZX\D(]-) =~ Ker(O)X( — OB)[—].],

see [BS14], 1.5, Thm. 4.3].

(5) If X is smooth and D,eq is a simple normal crossing divisor, then there is
a cycle map ¢x|p : Z(r)x|p — Q)Z(?Z(log D) ®0, Ox(—D) in the derived
category D~ (X) of bounded above complexes of Zariski sheaves; see [BS14],
7.3]. For k = C, there are regulator maps from the motivic cohomology of

(X, D) to a relative version of Deligne cohomology, Betti cohomology and
a relative Abel-Jacobi map; see [BS14l 8, 9].
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2. RELATIVE MILNOR K-SHEAVES

In this section k is a field and X a smooth connected k-scheme. We denote by
X () the set of codimension ¢ points in X and by 7 the generic point of X.

2.1. The Gersten complex of Milnor K-sheaves.

2.1.1. For r € Z we denote by IC%X the r-th Milnor K-sheaf on X. By definition
it is the Zariski sheaf which on an open V' C X is given by

KM (V) = Ker(KM (k(n) 225 @@ KM, (k(2))),
zeXMNV

where 9, : KM (k(n)) — KM, (k(z)) denotes the tame symbol from [BT73, §4]. In
particular ICiV[X =0 for r <0, IC(])YIX = Z and IC{\{X = O%. There is a canonical
resolution IC%X — C7 x by flasque sheaves called the Gersten resolution (see e.g.
[Ros96, Thm. 6.1)),

(2.0.1)
0= KM = i K () = @D in K@) > @) M @) = .
reX ) e X (2)
=C7 x

where i, : © — X denotes the inclusion.
By [Ker10l Prop. 10, (8) and Thm. 13] the stalk of IC%X at € X is the subgroup

of KM (k(n)) generated by symbols of the form {ai,...,a,}, a; € O;?w ie.
(2.0.2) KM o ={0% 20+, 0% o} € KM (k(n)).

If k is an infinite field, then by [Ker09, Thm. 1.3 and Def. 2.1]

(2.0.3) KMy = (07" R,

where R C (O*)®2" is the subsheaf of abelian groups which is generated by local
sections of the form by ® -+ ® b1 ®a® (1 — a) ® bjy2 @ - -+ ® by, where a € O%
with 1 —a € O% and b; € O%.

In case X is not connected and X = | ; X 1s its decomposition into connected
components with corresponding immersions 4; : X; — X, we set

ICT,X T @zJ*KT,Xi‘
i

2.1.2. By [Kerl0l Prop. 10(11)] we have an isomorphism of Zariski sheaves
KMy =1 (Z(r)x).

In particular Y — HO(Y, IC%,) defines a homotopy invariant presheaf with transfers
on the category of smooth k-schemes in the sense of [VoeOOb, 3]. Hence by [Voe00b,
Thm. 3.1.12] it restricts to a sheaf on the Nisnevich site Xyjs, which we continue
to denote by IC%X or if we want to stress that we are on Xnis by ICi‘)/[XNiS.
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2.2. Milnor K-sheaf of a complement of an SNCD.

2.2.1. Let Y be a scheme and F a sheaf of abelian groups on Y. Let Z C Y
be a closed subscheme and denote by j : V =Y \ Z < Y the inclusion of the
complement. We denote by I',(F) the sheaf on Y of sections of F with supports
in Z and by H%(F) = R'T',(F) the i-th cohomology sheaf with support in Z. For
a scheme point y € Y, we also define
H;(}—) = H%(]:)y = hﬂHémU(Uaf)v
yeu
where § denotes the closure of y in Y and the limit is over all open neighborhoods
of y. We have isomorphisms
i (F , 4
eog) I sg) and RO 2 HYF), iz
Assume that the ideal sheaf 7 of Z C X is generated by a regular sequence of global
sections t1,...,t. € I'(Y,Oy). Then we can use the Zariski cover ¥ = {V; =Y \
V(t;),i=1,...,c} of V to build the Cech complex C*(0, F), which is a complex of
sheaves on V' resolving Fj;. We obtain a natural map Hi(j.C* (T, F)) — R"j*]-"‘v.
For an element a € F(V3 N...NV,) we denote by

(205) } & T(Y, H5(F))

a
ty oo te
the image of @ under the composition

Fin...nV,) =T, H(j.C* (T, F)))
ST, R (F) B 1y, 1y (F)).

Lemma 2.1. Let E C X be a simple normal crossing divisor and denote by j :
V < X the inclusion of the complement.
Then ’H};(IC%X) =0 for all i # 1. Furthermore, forr >1 and z € E,

(2.1.1) k) = {Ox 5D (Oxa[3) ) € KM (k(m)),
where [ € Ox , is a local equation for E.

Proof. First of all, notice that for a smooth closed subscheme Z C X of pure
codimension ¢, we have L', (Cp ) = Cr_,, ,[—c]. Hence Hi(KMy) =0 for all i # ¢
and M5 (K2) = K,

Now for the lemma write E = U?Zl FE;, where the F; are the irreducible com-
ponents of £. We do induction on n. If n = 1, i.e. F C X is a smooth integral
subscheme of codimension 1, the first statement follows directly from the remark
above. For the second statement observe that we obtain the following exact se-
quence from the long exact localization sequence

(2.1.2) 0= KMy — G M, 25 5 kM p 0,

where i : F < X denotes the closed immersion and dg is induced by the symbol
0e : KM(Kk(n)) — KM, (k(e)), with e € E the generic point. Clearly the right-hand
side of (ZI.T) is contained in the left-hand side. Therefore it suffices to show that
the left-hand side is contained in

(0% 0%} +{0% o+, O 1 [} € KM (k(n)).
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This follows from the short exact sequence above and the description ([2.0.2]) for
KMy and KM 5.
In general, set E' = J,,, ;. Thus £ = E’U E,, and the vanishing assertion fol-
lows by induction from the long exact sequence --- — Hp (KYy) = Hi(KMy) —
%\En(leX) — -+ . Denote by j, : V<= X\ FE and ip, : B, \(E,NE") = X\ F’
the inclusions. The second statement follows by induction from the exact sequence
0= KMo\ = dne Y = KX o\ (0 = O
and a similar argument as in the case n = 1. ]

Corollary 2.2. Let EC X and j:V < X be as in Lemma 211

(1) We have Rij*lC%V =0, foralli>1, and

3Ky = {508, ..., 0%} € KM (k(n)).
(2) ForT C X a closed subscheme of pure codimension c, we have
Ho(j.KM) =0, fori<ec

Proof. By the long exact localization sequence Rij*lC%V = HQIIC%X for i > 1.
Hence () follows directly from Lemma 2.l It follows that j.Cy, is a flasque
resolution of j*IC%/, which directly implies (2)). O

Corollary 2.3. Let z € X be a point of codimension c > 1 and t1,...,t. € Ox .
a regular system of parameters. We set t :=t1---t. and by o=ty ty - te. (By
convention if c =1 we set t; :=1.) Then with the notation from 221

{(Ox:[3D)%, -, (Ox:[1)"}
S (O[] (Ox (2]
where on the left the quotient is between two subgroups of KM (k(n)). Moreover
with the notation from ZO0), the isomorphism KM (k(z)) = HZC(ICyX) is given
by

=~ HO(KCYy) = KM (k(2)),

(b, ... byerty, ...t}

2.3.1 b
(2.3.1) CERRRRL A e te

)

where b; € (Ox..)* is any lift of b; € k(2)*.

Proof. Since the question is local around z we can assume that the sequence
t1,...,t. is a regular sequence of global sections of Ox and that Z = @ is glob-
ally defined by their vanishing. We denote by j : V := X \ Z < X the open
embedding. For n > 0 denote by S™ C N"*! the set of tuples (i, i1, .. .,%,) with
1<ig< - <ip<ec Forie€l[l,csetV;:=X\V(¢t)and for I = (ig,...,in) € S™
set Vi :=V;,N---NV;, . Denote by j; : Vi = V the open embeddings. By Corollary
22([), we have

Rj(jrejy 'KM) = RiRin Ky, = jujrdly,
where for the first and second equality, we use that the inclusions V; — V and
Vi < X are complements of an SNCD. It follows that the Cech complex C* (7, IC,{‘,/IV)
is acyclic for j., where ¥ = {Vq,...,V.}. Therefore Rj*(lC,{‘,/IV) = j.C* (7, IC%V).
Now the first isomorphism from the statement of the corollary follows from (2.0.4)
and Corollary Z2|[I). The second isomorphism in the statement is an immediate
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consequence of the fact that j.C?y, is a flasque resolution of j*]C (see Corollary

It remains to prove the explicit formula ([Z31). We can assume X = Spec A

with A := Ox_,. Then for an abelian sheaf 7 on V the stalk of j.C*(U,F) at z is
the following complex of abelian groups (starting in degree 0):

@ rvn L @Frv L IS @ Fv,

IeSO IeS?t JeSe—1
with
n+1
(0™(an)resn)s = > (=1 (asg)vis
j=0

where J(j) equals the tuple J with the j-th entry omitted. Let C’V be the Gersten
complex from (0] and set C* := j.Cyy,. Then the sections of C* over Vi form
the following complex:

C.(V]) = F(V[,j*C;V) :
aK 1 3K c—2

B K@) LD @ K k) LD L @y KM (k)

zev? zevV zevie
Let T be the total complex associated to the double complex G*(C*®); its differen-
tials are given by
Ot = (9" + (=10 i, T — T
Then the natural maps G*(K},) = G*(C°) and C*(V) — G°(C*) induce quasi-
isomorphisms
G (KM,) =T+ C*(V).
For i € [0, ¢] the vanishing loci V (t.—i41,...,t.) C X = Spec A are integral closed
subschemes which are regular; we denote by z; their unique generic points, i.e.
{22} = V(tC,iJrl, . ,tc).
In particular, z; € X, z, = z and 2z is the generic point of X. Take by, ..., b,_. €
k(z)* and let by,...,b.—. € A* be lifts. (By abuse of notation we will also write
b; (resp. t;) for the image of b; (resp. t;) under any ring homomorphism A — R.)
For i € [0, ¢ — 1] set
e1—i = {b1, .. b by, i} € KMy (R(ze1-4)), i€ [0,c—1],
and define
o = ((ai’l’z)re\/}(0717”)IGSI S GZ c 1= Z @ Cc 1=i V]
Iest
by
Ae—1—7, if I = (1,,’L+1) ELIldI:ZC_l_IL'7
O [ x =
0, else.
By definition
{bl, cesbp_eyty, .o te > e under Gc_l(lCi\f[V) — Tt
and

bl,... e t1} = ap under KM k(ze—1)) — CH(V) — T L.
r—c+1
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Further, under the composition
KM 1 (k(zem1)) = C7HV) = (R 1K)

& H(KN) =T.0 x = K (k@)
the element {51, .. .,BT_C,tl} is sent to {b1,...,b,_}. Altogether it remains to
show that for ¢ > 2 we have
(2.3.2) o = ae_1 mod §¢2T¢72,

To this end we define for ¢ € [0, ¢ — 2],
Bi = ((Bira)revie—2-0)iesi € G(CT2T)

by

Ge—9—q, fI=(1,...;i+1)and x = z._o_,

Bi,],z =

0, else.

We have
9'(Bi) = (—I)ZH%‘H-
One checks this easily using that for J € S**! and j € [1,i + 2], we have
JG) =@,...;i+1)and z. o ; €Vi > = J=(1,...,i+2) and j =i + 2.
On the other hand,
8K’C_2_i(ﬂi) = q;.

This directly follows from

T € m(l) NVa,..i+1) and 9x(ac—2-3) # 0 = o = 2._1-,.
Thus
OTe72(B;) = 9'(Bi) + (1) 2 7(Bi) = (1) (@i — i)
Altogether
ap=a; = =a.; moddc2Te2,
This shows (232 and hence finishes the proof. O

2.3. The relative Milnor K-sheaf.

Definition 2.4. Let D be an effective divisor on X. Denote by j : U := X\D — X
the inclusion of the complement.

(1) We define the Zariski sheaf IC%XlD for r € Z to be the image of the map
Ker(O% = OF) @z 4. KM 1 v = 3. KMy, a@{by,....bp—1} = {a,b1,... . by_1}.
In particular Iq\,/lxm =0 for r <0 and ’Ci\flx\D =Ker(Ox — O)).

(2) We have a presheaf on the small Nisnevich site of X:
Xnis — (abelian groups), (v:V — X)+— H°(V, IC%/‘U*D) =: IC%XlD(V).

We denote by leYIX‘ pis the Nisnevich sheaf on Xyjs associated to this
functor. If w: X’ — X is étale and 2’ € X' is a point we set

(2.4.1) Ko p e = lim HO(V KM oy )
(v,y)
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where the limit is over the filtered category of pairs (v,y), where v : V. — X’
is étale and y € V is a point such that v induces an isomorphism k(z’) =
k(y)-
Remark 2.5. If v : V' — X is an étale map that factors through the open immersion
j: U < X, then by §2.1.2
HO(V ICr X |D, le) ]C%J(V) = HO(V, iC%)-

Assume D,.q is an SNCD. For = E D, set A := Ox , and denote by A" its henseliza-
tion. Then ICTX‘D ., (resp. ICT X|p,2) 18 by Lemma 211 the subgroup of K (k(n))
(resp. KM (Frac(A™"))) generated by symbols of the form {1 + fa,bi,...,b._1},
where f € A is a local equation for D, a € A (resp. A") and b; € A[%]X (resp.
AP,

The stalk of the sheaf Ki\jfxl p at a generic point of the effective divisor D looks
as follows.

2.3.1. Let A be a discrete valuation ring with its maximal ideal m and K the field
of fractions. We set UI((O) = A* and UI(?) =14+ m", for m > 1. We denote by
UYKM(K) the image of the natural map (A*)®" — KM (K) and by U"KM (K),
n > 1, the image of the multiplication map Ul((n) ®z KM, (K) - KM (K).

The following two lemmas are well known.

Lemma 2.6. Let (A, K,m) be as above and denote by K the fraction field of the
completion of A along m. Then for all n > 1 the natural map

KM (K)/U"KM(K) = KM(K) /UK M(K)
is an isomorphism.

Proof. We define an inverse map. Clearly there is a well-defined map (k x)®zr
M(K)/U"KM(K) which sends an element a1 ®. ..®a,. to the class of {by,...,b.},
where we take any b; € K* with b; = a; mod 1 + m™. This map also kills the

Steinberg relations. Indeed if we take a € K* \UI(;) and b € K* with b = a
mod UI(A("), then 1 —b=1—a mod UI(»("). Hence a ® (1 — a) is sent to the class of
{b,1 = b} = 0. If we take a € Ug) and b € K* with b = 1 — a mod UI(;), then

1—b=amod U}{n) and a ® (1 — a) is sent to the class of {1 —b,b} = 0. It follows
that this map factors to give a well-defined map inverse to the natural map from
the statement. 0

Lemma 2.7. Let A be an integral local ring with its mazximal ideal m and the
fraction field K = Frac(A). For elements a,b,c € A and s,t € m, the following
equalities hold in K} (K):

(1) {1+as,1+bt} =—{1+ 1+as st,—as(1+bt)}.

(2) {1+ fﬂltct 1-— fjcfts} {1 + est, s}.

Proof. (1) is straightforward, and (2) follows from (1) by setting
1+ect c(s—1)

1+ cst’  l4et
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Proposition 2.8. Let D be an effective divisor on X whose support has simple
normal crossings. Let x € D be a point and Dy, ..., D, all the irreducible compo-
nents of D passing through x. Let t; € Ox , be a local equation for D; around x
and assume that around x the divisor D is given by the vanishing of t7"* -+ -t
with m; > 1.
(1) Assume either there ewxists an ig € [1,n] with m;, > 2 or n > r. Then
]C%X\D,z is equal to the subgroup of KM (k(n)), which is generated by ele-
ments of the form

(2.8.1) {1+a.Ht;m-—1, H L urtyy o L Ugti, Usy 1, - U b

i€l i€[1,n]\ I
where s € [0,min(r — 1,n)], Iy = {i1,...,is} C [1,n], a € Ox, and u; €
O% o
(2) Assume my = -+ =my =1 and n < r. Then ICyXle is equal to the

subgroup of KM (k(n)), which is generated by elements of the form (281
for s < n —1 together with elements of the form

(2.8.2) {T+wty, .. T4 untn, Ungrs oo ur ), u € Ox

Proof. Set A = Ox , and denote by m its maximal ideal. The statement holds for
r = 1 by definition. For r > 2 denote by L, the subgroup of K (k(n)), which in
case (1) is generated by the elements (2.8.1)) and in case (2) is generated by the
elements (28] for s < n — 1 and the elements ([282). In both cases the inclusion
L, C /Ci\jIXl D, follows directly from Lemma 2.7(1) and Remark For the other

inclusion it suffices to show (in both cases)
{1 + CLtTI o 'tzl",tiw. .. atis} S Ls+1

fora € A, {i1,...,is} C[1,n]. If one of the m;’s is > 2 or n > s this follows directly
from Lemma 27(2). If my = --- = m, = 1 and s = n, then we can use Lemma
277(2) to reduce to the case n = 1. Setting ¢ := ¢; it therefore remains to show

(2.8.3) {1+at,t} € Ly, ac A.

To this end notice that 14 tA is multiplicatively generated by elements in 1+tA*.
Indeed if b € m we can write

14 th=(1+¢ Y1+ t(b—1)).

1
1+t(b—1)

Therefore we can assume in (Z83]) that a € A*. Then the statement follows from
0 ={1+ta,—ta} = {1 +ta,t} + {1 + ta, —a}. This finishes the proof. O

Corollary 2.9. Let Dy and D4 be effective divisors on X whose supports are simple
normal crossing divisors. Assume D1 < Dy. Then we have the inclusion of sheaves

M M M
ICT,X‘DQ C IC’I‘,X‘Dl C ’C’I‘,X on Xzar

and

M M M
K x s nis € Kixpynis © Kix o Xnis.

Proof. This follows directly from Proposition 2.8 O
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2.4. The structure of relative Milnor K-sheaves. In this subsection we as-
sume that D is an effective divisor on X whose support has simple normal cross-
ings. We denote by ¢ : Dyeq < X the corresponding closed immersion, by j :
U =X\ D — X the inclusion of the complement and by {Dx}ca the irreducible
components of D. We write Q% = ngzv etc.

2.4.1. We write N = {0,1,2,...} and endow N* with a semi-order by
(ma)aea < (ma)rea © my <ny, forall X e€A.
For m = (my)aen € N, we set
Dy = Z mxDy.
AEA
For v € A, we set

v A
0, =(0,...,1,...,0) e N
and we define the following sheaves for r > 1:
grm,ulcy ICT X|Dw /]CyXIDersV on Xygar
and
M M
" VICT X ,Nis = ’CT7X|Dm,Nis/’CT,X\Dm+5U ,Nis on XNis-
Notice that thls makes sense by Corollary and that these sheaves have support
in D,,. We remark that grm’”ICffIX’Nis is also the Nisnevich sheaf associated to the
presheaf
(2.9.1)
Xnis 3 (02 V = X) = H (Vaar, K2 (e oo /K e D, ) =5 88™ K (V).

For an étale map v : V' — X we can write v*Dy = Dy 1U...UDy ;,, with Dy ; CV
irreducible smooth divisors. For a subset S C A set

v*Si={(\i) A e S, i€ (1,4}
and for i € [1, j,],

M0y = (M(x,5)) (\j)evs (A\{v}h) T (i),

with
(v.3)

v .
M(\,5) = Mx and 5(%1-):(0,..., 1 ,...,O)ENU A,
Then {Dy}xecp=a are the irreducible components of v* Dyoq and

M Jv
(2 9 2) ,Cr VoD @ r V|Dm(,,,z') by defn @ rm(u,i)v(y7i)’CM
J. ICM M - g V-
r,V|v*Dmys, i=1 TV\Dm(,, A+ i=1

Proposition 2.10. We keep the notation from above. Let m = (my)xea be an
element in N* and take v € A, r > 1. Denote by i, : D, — X the closed
immersion. Assume m, = 0 and set

Dym = Z mx(D, N Dy).
AeA\{rv}

Then there is a natural surjection

(2.10.1) g™ Kl = 1Ko, b, -
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If the ty’s are local equations for the D)y ’s around a point x € X, then the compo-

sition of this map with K%X‘Dm — gr""”lC%X is given by

(2.10.2) {14+ t™a,by,...,bp_1} = {1+t™a,by,...,b._1},

where a € Ox, b € (’)X\‘D |
= H)\GA t\"*. This map induces an isomorphism between sheaves on Xnis:

with @ € Op,, b; € (’)D \|Dyom| 95 their images and

(2.10.3) g™V KM N = i KYp, ) Dy Nis-
Furthermore, if Dyeq is smooth, then [2I01)) is already an isomorphism.

Proof. Assume t, € I'(X, Ox) is an equation for D,. Then we have the following
map at our disposal:

IC — ICTD , a5 (a):=0p,(a-{t,}),

where Jp,, KTH(k;(X)) — KM (k(D,)) denotes the tame symbol defined by the
valuation corresponding to D,. One directly checks that

st, ({a1,...,a.}) ={a1,...,a.},

where a; € (’)X and a; € (’)X is its image. This also shows that s;, does not depend
on the ch01ce of the equatlon t,. Therefore we can write sp, instead of s;,. In
particular, in case D, is not given by a global equation we can locally define maps
as above and glue them to obtain a morphism

Sp, IC —>IC

Restricting along the open immersion j : X \ |Dm| — X we obtain an induced map
M oM $Dy . oM
K x1Dw = J:Ke 5\ 1Dw) = 3+KD N\ ID, -

It is immediate to check that the image of this map is ICTJ,"/IDV‘ Do and that it factors
to give the map (ZIOJ) from the statement. (Use Proposition to check that
ICT X|Duss, is mapped to zero.)

If D,cq is smooth, then (ZI0.T]) is an isomorphism. Indeed, it suffices to consider
the case in which D is connected. Then ([ZI0.1)) is a map ’CTX/’Crx\D — KMy,

and it is easy to see that the assignment {ai,...,a,} — {a1,...,a,} mod ICTX‘D,
in Which the a; € O% are lifts of the a; € O}, induces a well-defined map IC%D —

M /KM "x|p» which is inverse to (ZI0.1)).
Let v:V — X be étale. With the notation from (Z9.2)) we have

Jv

M _ M
KDyt Dy = @ Krbis IDwiymy, i)

i=1
Here D, ), i € [1, j,], are the irreducible components of [v*D, | and

Diiymg.y = > mx(Dxj) N D)
(g)evr (A}
It follows that the map (ZI0T) induces a map from the presheaf (ZO.1]) to the
presheaf
Xnis 2 (v:V = X) = H'(V,i. K p, ) = Kb p, . (v Dy),

where we use the notation from Definition Z4I2)). We obtain the map ([210.3)
by Nisnevich sheafification. The surjectivity of (ZI0.3]) follows from the surjectivity
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of 2I01). To prove the injectivity, it suffices to show the following (for all
(X,D)): Let z € D, be a point, let V.C X be an open neighborhood of = and
let v € HO(V, gr™” Ky ) be an element which under 2I0.) is mapped to zero in
H(V N D,,,ICiV[DV‘DU ). Then there exists an étale morphism v : V' — V and a
point 2/ € V' such that v induces an isomorphism k(z) = k(z') with the property
that v*a =0 in grm"’Ki\leD(V’).

To this end, we can assume, after shrinking V' around z, that we have a cartesian
diagram

D,v:=D,N Ve——V

| |

Api g,
in which the vertical arrows are étale, the bottom horizontal arrow is induced by
Elti,...,tn] = k[t1,...,tn]/(ts,) and the pullback of the coordinate ty to Oy is a
local equation for Dy. We choose a splitting A} — AZA of the bottom map; in
this way V becomes an Az_l—scheme and we set

V1 =V XAzfl D%\/.

We have a diagonal embedding D,y < Vi. The projection vy : Vi3 — V is étale,
and hence we can write v{(D, v) = D,y U E for some smooth divisor E C ;.
We set V' := V; \ E and denote by v : V/ — V the map induced by v;. Then
v: V' — V is étale, v induces an isomorphism v='(D, ) = D, v and there is a
natural map induced by the projection 7 : V' — D, y which splits the inclusion
D, v — V’'. We obtain a commutative diagram

(2.10.4) g™ I (V')

T ()

g™ KM (V) —= KD 1, (Do)

It suffices to show that () in (2.I0.4) is injective. Denote by Dy v, Dmys,.v and
Dy, v the pullback along the open immersion V' < X of Dy, Diys,,v and Dy ,,
respectively. We consider the composition

KMo, == KM = KM /KN,

Dy v [v*Dmgs,,v"

M

The restriction of this map to K., D v

induces a map

M M M
KD, v1Dwny = Ko Doy e v Do, v
Taking global sections we obtain a map
(2.10.5) Kb, 1Dw (Do) = g™ I (V7).

Using the explicit description [2I0.2)) of the map (x) in ([ZI04) it is straightforward
to check that (ZI0.3) and (%) are inverse to each other. This finishes the proof of
the proposition. ([l

Remark 2.11. The proof of the injectivity of (ZI0.3]) is the only place where we
need the Nisnevich topology.
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2.4.2. We denote by X, (resp. Xy;,) the topos of sheaves of sets on the site Xz,
(resp. Xnis) and by € = (671, e,) : Xyis — Xga, the natural morphism of topoi.
Then e, is left exact when restricted to the category of abelian sheaves and right
derives to a functor
Re, : Dt (XNis) — DT (XZar)

between the derived categories of bounded below complex of abelian sheaves on Xy
and Xz.,,, respectively. Since the cohomological dimension of Xyjs is < dim X (see
e.g. [Nis89, 1.32]) this functor restricts to a functor between the derived category
of complexes with bounded cohomology

Re, : D*(Xnis) = DP(Xnis)-
Corollary 2.12. In the situation of Proposition 2101 we have a distinguished tri-
angle in D°(Xzar):

. (1]
RE*(’C%X\DM% ,Nis) - Re*(’C%X|Dm7Nis) — R(eo Zu)*(’C%DV\Dy,m,Nis) —

Proof. This follows directly from Proposition 210 together with the observation
Reyiys = RexRiyw = R(€01,)x. O
2.4.3. We keep the notation from §24TI1 For v € A and ¢ > 0 we define the
following sheaf on Xz, (with support in D, ):
(2.12.1) WX|Dymy = wfmy = (9% (log D)(—Dm))‘Dy,
where we use the shorthand notation

Q% (log D)(—Dy) := Ox(—Dn) ®0, Q2% (log D).
It is immediate to check that the differential d? : Qf, — Q?]H restricts to a differ-
ential d4 : Q% (log D)(—Dw) — Q%" (log D)(—Dy,), which induces a differential

d*:wh, — wgfl,l.
If tn € Ox are local parameters of the D, then this differential is explicitly given
by
(2.12.2) A" Qw) =t ® <dw +> " my - dlog (ta) A w),
AEA

where we write t™ := [, t3*. We set

q q—1
(2.12.3) 78, = Ker(wl, T witl), B, = Im(wi} T— ol ).

Proposition 2.13. We keep the notation from above. Set M := j,.(Op)NOx and
denote by MEP the sheaf of groups on X associated to the monoid M. Then there
is a surjective morphism of Op, -modules

q
Ox(=Dw)|p, ®Z/\ MEP — Wl a®xi A Axg = a® dlog (x1) A+ - A dlog ().

With the notation from [2I22) the kernel is the Op, -module which is locally gen-
erated by elements of the form
t“‘a®an2A---qu—Ztma@ui/\ng---/\xq,
i
for all a,z; € M and u; € O% satisfying a = >, u; in Ox and where a,u; denote
the images in Op,, .
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Proof. This follows directly from the definition of wd , and the description of log-
arithmic differentials given in [Kat89, (1.7), p. 196]. O

Proposition 2.14. We keep the notation from above. Let m = (my)xea be an
element in N® and take v € A, v > 1. Assume m, > 1. Then there is a natural
surjection

(2.14.1) w:;,l/B;TVl — grm’”lC%X
given by
class of (a ® dlogzy A--- A dlogz,_1) — class of {1+ a,z1,..., 21},
where x; € M8, a € Ox(—=Dw)|p, and a € Ox(—Dy) is a lift of a.
Proof. For a € Ox(—Dn)p, and z = (z1,...,2,-1) € H::ll MEP define
o(a,z) == class of {1 +a,z} ingr™"K}Yy,

where a € Ox(—Dy,) is some lift of a. Since (1 4+ a)(1+b) = (1 4+ a +b) mod
14+ Ox(—Dmnys, ), for all a,b € Ox(—Dy,), this element is well-defined and induces
a multilinear map ¢ : Ox(—Dun)|p, @ @:711 MeEP — gr™VICM - This also implies
that if one of the z;’s equals —1, then ¢(a,z) = 0. Since {z, x} {z,—1} in IC2 X
the map ¢ induces a surjective homomorphlsm

Ox(—Dw)p, ®z /\ MEP s gp™ VICM
Forae M and y = (y2,...,yr) € [[;Z ~7 M we have
(2.142)  p(t"a,a,y) = —p(t"a, 1", y) = —p(t"a, 17, y) — p(t"a, ~1,y)
- —<P(tma7 tmv Q)
For a =Y, u;, with u; € O%, we get
p(t™a, a,y) = —p(t™a,t™,y) = > —(t™ i, t™,y) = > o(t™ i, ui, y)
- .
Hence by Proposition 213, ¢ factors through w?}. It remains to show that ¢
vanishes on By, }. It suffices to check this locally. Therefore it suffices to show that
the boundary of a form (with the obvious abuse of notation) ¢t™a dlog y, with either

a€ O orl+ae Ok, is mapped to zero under ¢. Using the formula (ZI22) for
the differential, we see that it suffices to show

_Jet™a,a,y) + 30, p(mat™a, ty,y), if a € O%,
e(t™(1+a),(1+a),y) + >, e(mrt™a,ty,y), ifl4+aecO%.

In case a € O%, this vanishing follows directly from 2I4.2). In case 1 +a € Oy
we observe that ¢(t™,t™,y) = 0 and hence

@(tm(l + CL), (1 + a)vg) = —(p(tm(l + CL), tmvg) = _(p(tm7tmag) - @(tm@a tmvg)
= —p(t"a,t™,y),
which yields the promised vanishing in this case. O

Proposition 2.15. Assume m, > 1 and that k has either characteristic O or prime
to m,. Then the map ZI4T) is an isomorphism.
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Proof. For r = 1 the statement holds by definition. For r» > 2 we have

(2.15.1) By =2

by [BS14, Lem. 6.2] (here we use that either char(k) = 0 or (char(k),m,) =1). We
have a well-defined map

KM(k(n)) — Qi {a1,-.. ar} = dlog(ar) A--- A dlog (ar).

This clearly induces a map IC%X| b, — % (log Drea)(—Dwm). We obtain a well-
defined map

95 (log Dyed)(—Dwm) — W
Q&(log Drcd)(_Dm+5u) e

(2.15.2) gr™V KM —

The composition

(2.15.3) Wi 21, gr™V KMy LD, W

is equal to the differential (ZI22]). Indeed, under this composition a local section

t™adlogz € wy,} is sent to
m
dlog (1 +t™a) dlogz = 1_l_w(da + z}\: myadlogty) A dlog (z)

=t"(1 —t"a)(da + kaa dlogty) A dlog (z)
A
=t"(da + ZmAadlog ta) A dlog (z).
A

Hence the statement follows from (ZI5.T). O

Theorem 2.16. Assume k has characteristic p > 0. Let the notation be as above
and let m'" € N» be the smallest tuple with p - m' > m. Assume plm,. Then the
inverse Cartier operator induces an isomorphism

-1 ., 4 = qa(.,®
C(m,l/ . wm’,y — H (wm,l/)5

a® dlogzi A... A dlogzy — o ® dlogzi A ... A dlogzg,
where a € Ox(=Dw/)|p, and x; € M.

Proof. This is proven in [KSS, Thm. 3.2] (in a slightly different situation). For
the reader’s convenience we give the proof. By [BS14, Lem. 6.2] (which is [KSS,
Lem. 3.4]) wy , is acyclic if (ny,p) = 1, for all n = (ny) € NA and y € A. By the
special choice of m’ we see that the natural inclusion

(2.16.1) Q% (log D)(=Dpm') — Q% (log D)(—Dy)

is a quasi-isomorphism. Indeed we can refine this inclusion to a filtration whose
graded pieces are of the form wy , as above. We have p - (m' +46,) >m+4,, and
since p|m, the tuple m’ + 4, is minimal with this property. Thus if we replace in
@I61) w' by m’ + 6, and m by m 4 J,, we again get a quasi-isomorphism. This
yields a distinguished triangle in D®(Xz,,):

Q% (10g D) (— Dy +5,)) — Q% (log D) (= Dy) = wh ) 1 .

m,v
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Let F': X — X be the absolute Frobenius. The classical Cartier isomorphism (see
g. [Kat70, Thm. 7.2]) gives an isomorphism of Ox-modules

C~1: Q% (log Dyea) — HY(F.Q% (log D)).
Twisting this with Ox (—Dy,) yields an isomorphism
Q% (log D)(=Duw) = HI(F.(2% (log D)(—Dym)))-
Using the triangle from above we get the following commutative diagram of abelian
sheaves for all ¢ > 0:

q q q
- > _— B — B —
0 Qxp, ‘s, Qxp,. Yy 0

:lc-l :lc—l l

.._>7_[q(Qo )—>Hq(93(|D )—>’H‘1( my)_>...

X|Dp(m’+5,)

)
pm/

where we use the shorthand notation Q% , == Q% (log(D))(—Dm). The statement
follows. O

2.4.4. With the notation above write m, = p®-m,, with s > 0 and (p,m,) = 1. We
inductively define sheaves of subgroups on D,,,

Bl Zlw, Cwih o, forre[l,s+1],¢2>0,
by the formulas
q _ q _
Blmu‘ Bg‘tlﬂ Zlmu' Zg‘l,lj
and
c-1 c-1
q m,v q m,v
Brm’ ~ Br-l-lmV/Bmw Z’rm’ ~ ? Zr-i-lmV/Bmw € [173}~
We obtain a chain of inclusions
_ nq q q _
Bg‘t, - Bl m,v - C Bs—i—l,mm C Zs+17m,u - C Zl m,v Zgi,l/ - Wg't,u

Proposition 2.17. Form e N* v e A, withm, > 1, ¢ >0 and T C D,, a closed
subset of codimension ¢ we have

Hip(wh ,/BY,) = 0 = Hin(wh,/28.,),  for alli < c.

Furthermore if k has characteristic p > 0 and m, = p*m/.,, with s > 0 and (m!,,p) =
1, then also
(2.17.1)

Hop (Wl /Bl ) =0=Hp (W ,/Z80,), foralli<candrel[l,s+1].

Proof. First we observe that wg, , is a locally free sheaf on the regular scheme D,,.
Hence Hi(wih ) = 0, for all i < ¢ and ¢ > 0. Set p := char(k). Now assume either
p=0orp>0and (m,,p) =1. By [BS14 Lem. 6.2] we have B} , = Z, ,, for all
q > 0. Therefore the exact sequence

(2.17.2) 0= wh ,/Z4, = Wiy — Wiy /B =0
yields for all 7 < ¢,
7 (WE/ZE) = Hp (Wi /BEY) = M (wh /28 ) = Hip(wh /B L)

Smce wih ., = 0 for ¢ > 0 we get by descending induction over ¢ that
M (Who/Z8,) = (Wi, /Bh,) =0, forallg>0,i<c.
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In particular the statement is proven if p = 0. Furthermore, if p > 0, then (2I7.0)
is proven in the case s = 0. To finish the proof we assume p > 0 and s > 1. Let
m' € NA be the smallest tuple such that p - m’ > m. By induction on s we have

Hip (Wi o/ Br o ) = Hip(wiy /28 0 ,) = 0, for all 7 € [1,5], ¢ > 0 and i < c. An
apphcamon of the Cartier operator ylelds
(2.17.3)

Hz( mv/BrJrlmu)* ( mu/ +1mu):0ﬂ forallre[l,s],qzo,i<c.

Now assume that the vanishing ([ZI71]) holds for ¢ + 1; we want to show that it
also holds for ¢. The exact sequence ([2.I7.2) gives the vanishing H'(wih ,/Z& ) for
all i < ¢. Therefore the exact sequence

0— Zgi,y/Bngl,m,u

together with (m yields
( ml// 7"+1mu):05 forallz’<c,r€[1,s].

— w&)u/Bq

q q
r4+1m,v - c’um,u/Zm v —0

Similarly we also get
Hop (Wi /281 m,) =0, foralli<e rell,s).

Finally the exact sequence
-1

m,v

C
0—wl, , ——wh, /B, —wk, /Z%, =0
yields Hi(wih o /Bh) =0, for all i < c. This finishes the proof. a

Remark 2.18. One can show that wih ,/Bf w., and wih /21w, are locally free Op, -
modules, where the Op, -module structure is induced by the one from F§ wd ,,
where F'x : X — X is the absolute Frobenius (cf. [[I79, 0, Prop. 2.2.8]). This

immediately implies (2I7.1)).

Theorem 2.19. Assume k has characteristic p > 0 and m, = p*m!,, with s > 0
and (m),,p) = 1. Then the map ZI4LI) factors to give an isomorphism

(2.19.1) o /By = gr™ Ny

s+lmu

Proof. For s = 0 this is Proposition 215l Now assume s > 1 and take m € N*
minimal with p-m’ > m. Clearly the multiplication with p on IC%X induces maps

M P, oM M
Klxipa = Kixipw:  Kixipu s, =% Ko Dy s, -
It is direct to check that we obtain a commutative diagram

0 B~ 1 wr— (PRES

m’ v M
s,m’ v m’,v gr ’C’I‘,X 0

o e

OﬁBZ-&-llmu/Bg‘;Vl—)w /Bmuﬁgrm#’cy)(%o'
By induction on s, the upper horizontal sequence is exact, and we have to show that
so is the lower one. Clearly, the lower sequence is exact on the left and on the right.
The exactness of the upper sequence implies that the lower is a complex. It remains
to show that the induced map (ZI9.]) is injective. By Proposition [ZT7it suffices to
check this at the generic point 7, of D,,. Since the composition CI53) is equal to
the differential, the kernel of wi ! /By )} — gr™ "IC is contained in Z}!/Bl
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and therefore lies in the image of anvl,j. Thus it remains to show that the map
(grml’”ICi‘f[X)nV 2, (grm’VICﬂf[X)nV is injective. Set A := Ox,, , K = Frac(A) and
write m, = pm. Then A is a DVR which is essentially smooth over k, and we have
to show that the map

(2.19.2) UmKM(K) /Ut KM(K) 2 urm kM (K) /o KM (K)

induced by multiplication with p is injective (here we use the notation of Z3.1]). To
this end we may replace A and K by their completions, where now A is formally
smooth over k; see Lemma [Z.6l Denote by Ky the residue field of A; it is separable
over k (since D, is smooth over k). By [EGAIVI, Thm. 19.6.4] there is an isomor-
phism of k-algebras A = Ky[[t]]; hence K = Ky((t)). Therefore the injectivity of
[2I92)) follows from Corollary L10], proven later independently. This finishes the
proof. O

Corollary 2.20. Let k be a field of characteristic p > 0 and assume m,, > 1. Set

0, ifp=0,
s = )
Up(ml/)v pr > 07

where v, : Q = 7Z is the p-adic valuation. Then there is a distinguished triangle in
DY(Xza:) (with the notation from §2.4.2)

(1]
Re, (K¥X|Dm+5V,Nis) - Re*(’C%X\Dm,Nis) /Bs+1 my 7

Furthermore, the canonical map
gr'™ ”lC — Re,gr™ VIC,, X Nis
s an tsomorphism.

Proof. The assignment
Xnis 3 (v:V = X) = HY(V,v*iy,0 )

defines a sheaf on Xyis which we denote by w? We define sheaves on Xyjs by

m,v,Nis*

Zq

— q—1 -
m,v,Nis T Im(w i wm v, le)

. q+1 q
w. )’ B m,v,Nis

m,v,Nis m,v,Nis

:= Ker(w?

m v,Nis
Furthermore, if p > 0, then the Cartier isomorphism from Theorem [2.16] induces
an isomorphism Cm v Nis * Wi Nis = HI(w? WawNis)» and we can define the sheaves
z1 and B? as in §2.4.4 Proposition 2.15] and Theorem 2.19 yield an

r,m,v,Nis r,m,v,Nis
1somorphlsm between sheaves on Xyjs,

r— m,v
wm v le/Berl m,v,Nis —_> gr ICT X,Nis*

Therefore it suffices to show that the natural map

(2201) /Berl m,v - RE*( m v le/Berl m,v, le)

is an isomorphism. To this end we note that for a quasi-coherent sheaf E on X
we have Re,FEnis = E, where Exjs is the Nisnevich sheaf Xyis 2 (v:V — X) —
HY(V,v*E) (cf. [Mil80 I11, Prop. 3.7]). If p > 0 and Fx denotes the absolute

Frobemus on X, then w, )}/ B} 1.m,» 18 a quotient of the quasi-coherent O x-module
F;Q:l —1 and hence is qua51 coherent. We get 220.J) in this case. If p = 0 we

m 14
have the natural isomorphism wdh, = Re.w! Wi Nis» for all ¢ > 0. Furthermore,
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z1 ~ Bl

m,v,Nis m,u, Nis?
sequence on XNlb

e (2I50). Hence descending induction on ¢ and the exact

0— th vNis wm vNis 7 BerJrz/lNla =0
give
Re* m v,Nis — = Zgw,u = Br%l, = Re* m v,Nis*
The isomorphism (220.1]) follows. O

Corollary 2.21. Assume that Dyeq is smooth (D = 0 is allowed). Then the natural
map

M =~ M
(2.21.1) Krxip = ReKx b nis
is an isomorphism.

Proof. By 2T 21and [Voe00b, Thm. 5.1, 2] the natural map ICT Doy _)RG*ICi\j[Drcd,Nis
is an isomorphism. Thus by Prop031t1on 210/ and Corollary IZQIIL the natural maps
gr™ ”ICNX — Re*grm*”lC%KNiS are isomorphisms for all m, v, r. Hence the state-
ment. (]

2.5. The Cousin resolution of relative Milnor K-sheaves.

Theorem 2.22. Let D be an effective divisor on X and assume that Dyeq is a sim-
ple normal crossing divisor. Then for all closed subschemes T C X of codimension
¢, and for all i < ¢, we have

HZ (R€*K:r ,X|D, le) = 0.

Proof. Corollary 229 and Corollary [Z21] (for D = 0) give a distinguished triangle
in D*(Xyz.,):

RE*’C%XW,Nis - ’Cy{V[X — Re.(K rX/’CrX\D Nis) 4,
By the exactness of the Gersten resolution Z.0.I) we have i (KM ) = 0, for all
i < c. Hence it suffices to show that 4 ! (Re.. (IC L JKM, XD, Nis)) = 0, for all i < c.
With the notation from §2.4.1] we have

H (Re*grm UICT X, le) H’é‘?ﬁlD (RG*gI‘m V,Cr X, le)

Since c—1 < codim(T'N D, D,) it follows from Corollary [Z12 together with induc-
tion on the dimension of X, Corollary 2.20] and Proposition 2.17] that these groups
vanish for ¢ < ¢. Now the theorem follows since IC%X /Kﬂ”x‘ D.Nis 18 @ successive

: m,v M
extension of the sheaves gr™" K"y \i. O

2.5.1. The Cousin complex. Let D be an effective divisor on X. We denote by
C? xp the Cousin complex of ICvjﬂwX|D (see [Har66l IV, 2]). It has the following

7"7

shape (with the notation from §22.1)):

0(
CP x|p (K rX|D @ 28: rX|D) o
xeX @)

- @ iaxH, rX|D)_>"'

e X ()



HIGHER CHOW GROUPS AND RELATIVE MILNOR K-THEORY 1011

Here i, : © — X denotes the immersion. Similarly, we denote by C’f’;(l p the Cousin

M .
complex of Re, ’Cr,x D Nis*

h,e . 0 M .
C’I‘X‘D ZW*H’U(RG*’CT,X‘DJ\TE) — @ Zw* (RG*’C’I‘X‘D Nlb) —
zeX @)

- @ 1e: RE* rX|Dle)_>“.'
zeX @
In particular these are complexes of flasque sheaves. The restriction of C? x|p to
U = X \ D equals the Gersten resolution of IC v by Corollary 2.3t

(2.22.1) (Crxip)w = OT,U-

If furthermore D,eq has simple normal crossings, then by Corollary 22211 (for (X, D)
= (U,0)) we also have
h,e .
(Cr,x\p)\U = CnU'
The natural map Ki\,/IX|D — R€*IC£,/IX|D,Nis
XZar:

(2.22.2) Crxip = CTX\D

induces a natural map of complexes on

Finally we give an alternative description of the terms appearing in C’r X|p If
Z C X is closed we have Re,RI', = RI' , Re, by [SGA4II V, Prop. 4.9, Prop. 4.11].
Hence for z € X(©) we have
Hi(RG*’C%X\D,Nis) = hg H%HV(VNisvlci\,dX\D,Nis)’
zeV

where the limit ranges over all Zariski open neighborhoods V' C X of x. Let
X (z) = Spec OX ., be the henselization of X at x and denote by 4" : X(hz) — X the

canonical map. Then the above together with [Nis89 1.27 and 1.29.3] yields
HE(RG*’C%X\D,NE) = Hi(X(hgn),Niy (ig)_llc%xw,ms)'
Corollary 2.23. Assume that Dyeq has simple normal crossings. Then there is an
isomorphism
Re. KMy 1pnis — CTX‘D in DY(Xzar).
Furthermore if Dyeq is smooth the natural morphisms

M C222)  h,e
’CT,X\D - Cy X|D ? CTX\D

are quasi-isomorphisms of complexes.

Proof. The first part follows from Theorem and [Har66l IV, Prop. 3.1]; the
second part from the first and Corollary 2211 O

2.5.2. The Cousin complex in the Nisnevich topology. Consider the presheaf of com-
plexes

Xnis 2 (v:V = X) = T(V,CF "VieD)-
The explicit description of CT')’;‘ p in §2.5.T above and excision for local Nisnevich
cohomology (see [Nis89l 1.27 Thm.]) imply that this presheaf is a sheaf of complexes
on Xnis, which we denote by

L[]
r,X|D,Nis"
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By construction there are natural maps of complexes leXlD(V) — C;X‘D_NiS(V)
where we use the notation from Definition 2.412]). This yields a morphism

(2.23.1) K pis = Crxipis o0 Xnis.

Corollary 2.24. Assume Dyeq has simple normal crossings. Then [2231) is a
quasi-isomorphism.

Proof. 1t suffices to show that for all étale maps v : V — X and all points y € V

the Nisnevich stalk H( ;X\D,Nis)z}; (defined as in ([24.1))) vanishes for ¢ > 1 and is

isomorphic to ICiwxhl Doy for ¢ = 0. This follows directly from Corollary [2.23] |

2.6. Pushforward for projections from projective space.

2.6.1. Let f:Y — Z be a proper morphism between equidimensional finite type
k-schemes. Set e = dimY — dim Z. Then there is a morphism of complexes

fe i [iClieylel = CF .
See e.g. [Ros96, Prop. 4.6(1)]. (Also notice that the complexes C7 - are defined

if Y is not smooth; see e.g. [Ros96l 5].) If Y and Z are smooth, then this map
induces a morphism in the derived category

for REKY . yle] = Ky
2.6.2. Let Y be a smooth scheme and denote by 7 : PY¥ — Y the projection. Denote
» c1(0(1)) € Rlﬂ*OI;{Y
the first Chern class of Opy (1) and by
c1(0(1)' e RimlC%w, i €[0,N],
its i-fold cup-product (by convention ¢;(O(1))° = 1 € Z). Finally,
dlog (c1(0(1)))" € R'm Sy /y, i € [0, N],
denotes the image of ¢1(O(1))? under the map dlog : RiW*K%¥ — R"ﬂ'*wa/Y.
Lemma 2.25. Let D be an effective Cartier divisor on X and assume that Dieq
is a simple normal crossing divisor. Let {Dx}xea be the union of the irreducible
components of D. For a scheme Y set Py :=PY and denote by my : Py — Y the

projection. For m € N and v € A and with the notation from [ZI21)) we have the
sheaves w()1<|D m.w on Dy at our disposal together with the subsheaves B§(|D s JOT

r > 1, as defined in A4 (In characteristic 0, we set ng‘D_rm L= B?(\D oy Jor

allr>1.) Then for all ¢ > 0 and r > 1 we have on Xza,,
RiﬂDV*(w;}JX|PD,m,V/B;13X|PD,T,m,u) =0= RiTrX*ICZII\f[PX’ fO’f‘ alli> N,

and for i € [0, N] there are natural isomorphisms

(2.25.1) —Ua(0)': Kol x = Rimx.Kylp,

and
—u leg (01(0(1))>Z : Wg(_uz:)m,u Bg(_\z)w,m,l/ — RiﬂDu*(w(IZDX|PD,m7V/B?3x\PD,T,mﬂ/)’

induced by the cup product with (c1(O(1)))" and dlog (c1(O(1)))?, respectively. Fur-
thermore the corresponding statement on Xnis equally holds.
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Proof. We have the exact sequence (see ([2.1.2))
0— KM

where Hx C Px is a hyperplane with complement j : Ay < Px. Therefore the
statement for IC(]IV[ follows by induction from the isomorphism

= K = KV e =0,

q,Px q,Ax

= R?TX*j*’CM

K)x = R(mx 04).K) s

0,Ax

where the first isomorphlsm is homotopy invariance (see [Voe00b, Thm. 3.1.12]
together with §2Z.T.2) and the second comes from Corollary

Now we prove the statement for wp . Let F' C k be the prime subfield. We

have
N

q _ —1¢,9—J —-10)J
Wpy|Ppmuy = @WD,, (wX|D,m,z/) QF p QPF/F7
=0
where p : Pp, = D, xp Pp — Pr is the projection. This decomposition is com-
patible with the differential and the Cartier operator in the obvious sense. We
get
N

~1
wPX|PDmu/ Px,Pp,rym,v — @T‘-D wX|Dmv/BX|D r,m, l/) ®Fp ( Pp/F/BPF, )
7=0
where B?;F,r is defined as in §4LT.3] below. In the following we write P := Pp
and Q7 := QF, s and Bl = B!, , etc. By the Kiinneth formula (see [EGAIIIZ,
L o F . . .
Thm. 6.7.8]) it suffices to show that H*'(P,Q7/BJ) = 0, for ¢ # j, and that the
cup product with dlog (¢;(O(1)))’ induces an isomorphism F =» Hz(P, Q1/BY),
for i € [0, N]. This statement holds in the case r = 0, where we set B} := 0 (see
e.g. [SGATIL Exp XI]). Hence it suffices to show
HY(P,B})=0 for alli,j,.

If char(k) > 0, the vanishing for » = 1 holds by [III90, Prop. 1. 4] For r > 2
the vanishing follows by induction from the isomorphism BY = BN Y /BY which
is induced by the inverse Cartier operator. In characterlstlc zero the statement
follows from Lemma below.

Finally the Nisnevich case. In view of the definition of the corresponding Nis-
nevich sheaves (see §2.1.2 and the proof of Corollary [Z20)) the statement for the
Nisnevich sheaves follows from the two facts which hold for any smooth k-scheme:

(1) Hi(XNis,Ki\jIX) =H' (XZar,lCrX) (see §2.T.2  and [VoeOOb, Thm. 3.1.12]).
(2) HY(Xnis, Fnis) = H*(Xzar, F), where F is any quasi-coherent sheaf and
Fnis its associated Nisnevich sheaf (cf. [Mil80, ITI, Prop. 3.7]).

This finishes the proof of the lemma. O
Lemma 2.26. Let k be a field of characteristic zero. Set P :=PY. Then
H'(P,H Q) =0, i #j,
and the cup product with dlog (c1(O(1)))* induces an isomorphism
k= H'(P,H'(Q%))), i€0,N].
Furthermore for B7 :=Im(d : Q9= — Q9) and Z' := Ker(d : O — Q'+ we have
HY(P,BY)=0Vi,j, HY(P,Z%)=0Vi#j H(P,Z")=FkVicl0,N].
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Proof. By [BOT4, (4.2) Thm. and (2.2)] the Cousin complex of 'Hj(Q;D/k) is a
resolution. Since de Rham cohomology in characteristic zero satisfies purity we get
that for H C P a hyperplane the complex EH(Cousin(’Hj(Q;,/k))) is isomorphic to

the complex Cousin(Hj_l(Q;{/k)) shifted by —1; i.e. we have an isomorphism

RLyH () = H7H Q) [=1] in D (Prar).

Hence the long exact localization sequence looks like
(2.26.1) ‘ A ‘ _ _
= HTHH AT QY ) = HA(PH Q) — HI(AH (%)) = -

where A = P\ H. Furthermore the presheaf X — H’(X, Q% ;) on Smy, is a homo-
topy invariant pretheory (see [VoeO0Oal, 3.4]) and hence so is its Zariski sheafification
X — (X, Hj(Qg(/k)) (see [VoeO0a, Prop. 4.26]). Hence [VoeOOal Thm. 4.27] im-
plies

HY (A, H Q%)) =0, forall (i,5) #(0,0), and H°(A,H(Q ) = k-

The first two statements of the lemma are direct consequences of this, the exact
sequence (226.1) and induction.

We prove the last statement. Observe that the natural maps H'(P,Z7) —
HY(P,QY) and H*(P,H7(Q*)) are surjective for all 4,j. (Clearly for i # j and
for i = j it follows from the fact that the isomorphism k = H*(P,Q¢) and k =
H(P,H%(Q*)) both given by the cup product with dlog(c;(O(1)))? factor over
Hi(P,Z").) We obtain short exact sequences for all i, j:

0— HY(P,B’) — H'(P,Z7) — H'(X,H(Q*)) = 0

and
0— HY(P,B"™) — H'TY(P,Z7) - HT(P,Q%) = 0.

The last statement of the lemma follows directly from this via descending induction
over 1. ]

Lemma 2.27. We keep the notation from above and set m := wx. Then the
pushforward m, : RW*IC%_N’PX [N] = KM, from §2.6.1] is equal to the composition
of the canonical map R KM y p [N] — RNm.KM y p with the inverse of the

isomorphism [2251)) (for (i,q) = (N,r+ N)).

Proof. Notice that there is a canonical map Rm. KM v p [N] = RNm KM b by
the vanishing statement of Lemma We have to show that the pushforward
Tyt RNW*IC%_N,PX — IC%X is the inverse of the isomorphism [Z251]). Let i : X —
Px be a section of m and consider the pushforward i, : i*IC,{"/IX[—N] — KﬁN,PX'
The composition

RN (i .
foMy BTy RN M, T M
is the identity. Hence it suffices to show that RV, (i.) is the equal to (Z25.1).
Further it suffices to check this in the generic point n € X. The statement

~

now follows directly from the explicit description of the isomorphism KM (k(n)) =
H;;V(’C%-N,Px) given in ([Z3)). O
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Theorem 2.28. Let D be an effective Cartier divisor on X and assume that Dieq
is a simple mormal crossing divisor. For a scheme Y set Py = PY¥. Denote by
7w : Px — X the projection. Then for r > 0 we have on Xyis,

(2.28.1) RiW*ICi\jIPX|PD,Nis =0, foralli> N,

and for i € [0, N] the cup product with c;(O(1))" € Ri’]T*ICiVPX’NiS induces an iso-
morphism

(2.28.2) —Uer(0W)' = KL, xipovis = BImklpy oy s

If Dyeq is smooth the same is true on Xyga, with IC%X‘DJ\HS replaced by K¥X|D'

Proof. This follows immediately by induction on the dimension of X, Proposition
210, Proposition 215 Theorem 219 and Lemma [Z.25] O

Definition 2.29. In the situation of Theorem .28 above we define the pushforward

. M M
Ty - RW*/CT+NVPX|pD7NiS[N] - ICr,X|D,Nis

to be the composition

] can. (2281)

M N M ~@2282) .
RW*’CT+N,PX|PD,N15[N R 7T*’CrJrN,lePD,Nis - ’CT,X\D,NiS'

Notice that by Lemma [Z27] this definition of the pushforward is compatible (in the
obvious sense) with the pushforward 7, : Rm, M N.py [N = IC%X from §26.11

3. CYCLE MAP TO COHOMOLOGY OF RELATIVE MILNOR K-SHEAVES
Let k£ be a field and X an equidimensional scheme of finite type over k.

3.1. The classical cycle map. Everything in this subsection is well known to the
experts. We give the proofs for lack of references.

3.1.1. Recall the notation from §Il In particular for n > 1 we have 0" C (P!)" D
(P \ {oo})™ = Speckly1,--.,yn]. By convention (I = Speck. Denote by m, :
X x O™ — X the projection. Recall that for » > 0, n € [0,7] and Z C X x O"
an integral closed subscheme of codimension r, the dimension formula (see e.g.
[EGAIV2, Prop. 5.6.5]) yields

codim(m,(Z), X) > r — n,

where 7,(Z) denotes the closure of 7,(Z) in X, and equality holds if and only if Z
is generically finite over m,(Z). We can therefore define the group homomorphism

P2 (Xon) — @ K (k(x))
reX(r—n)
by

eyM(2) =

€ K, (k(ma(2))),

where Z C X x " is an integral closed subscheme of codimension r which meets
all the faces properly and has generic point z € Z, y;(z) denotes the residue class
of yi € Oxxom,» and Nm, /(o) + KM (k(2)) = K} (k(mn(2))) denotes the norm
map on Milnor K-theory. (By convention it equals multiplication with the degree

{(-Um Ny /im0 (2), - y1(2) ), i k(2)/k(mn(2)) is finite,
0, else
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[k(2) : k(mn(2))] if n = 0.) Clearly ¢7." sends degenerate cycles to 0 and hence it
induces a map
oY (X)) = D K (k()
zeX (r—m)
For n & [0, 7] we define ¢y to be the zero map.

Lemma 3.1. For r > 0 the collection of maps (<p§(2T YNiez induces a morphism of

complezes
O 2N (X, 2r —e) = CT"X(X)[—T],
where C? x is the Gersten complex; see 2111 (1t is defined for general X (see e.g.

[Ros96, 5]), but if X is not smooth it does not need to be a resolution.) Furthermore
this map is compatible with restrictions to open subsets of X in the obvious sense.

Proof. The second assertion is clear. For the first assertion we have to show that
forn € [1,7+ 1], Z C X x O™ an integral closed subscheme of codimension r with
generic point z € Z intersecting all the faces properly and z € {m,(z)} N X("—"+1)
we have the following equality in KM , (k(z)):

(3.1.1) (1) M (. )(2)) = L0 (2)),

where we denote by ¢%", the composition of ¢y with the projection to the -
summand and OM : KM(k(r,(2))) — KM, (k(z)) and 0% : 2"(X,n) —
z"(X,n — 1) denote the boundary maps in Cr x and 2"(X,2r — ), respectively.
Notice that the factor (—1)" appears on the left-hand side in the equation (B.1.1)
since by convention the shifting operation [—r] on complexes multiplies the bound-
ary maps by this factor. We consider two cases.

First case: k(2)/k(mn(2)) is finite. Set Zo = m,(Z). We have x € Z( ). Denote
by Z C X x (PY)™ the closures of Z. We have a commutative diagram

= 17
# J———7 T

in which the horizontal maps are the normalizations, j and j are open immersions
and the other vertical maps are induced by the projection X x (P')" — X. Notice

that Z, Z and Z; are finite over a neighborhood of any point of Zél). We compute:

aM(‘PX m(z)(Z)) = (_1)m Z Nmio/r(a’%onZ/wn(Z){yn(z)7 e 7y1(2)})
Foev, (x)
=) > > Nmg(0:{yn(2), - 11(2)})
Zo€vy H(z) zem ' (do)

== > > Nmae@a{yn(2), . 11(2)}).

Focvy H(z) TERT(Z0)
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Here the first equality holds by definition of 9}; for the second see e. -8 [Ros96, (1.1),

R3b and Thm. 1.4]. The third equality holds since a point & € Z \ Z has one of
the y; coordinates equal to 1, and therefore 0z {yn(2),...,y1(2)} = 0 in this case.
In particular we can assume x € Zél) Nm,(Z). Since Z intersects all faces properly
only the two following cases can occur:
(1) « is not contained in any of the subsets m,(95(Z)), i =1,...,n, e =0, 00.
(2) There exists exactly one ig € {1,...,n} and one ¢ € {0,00} such that
v € m, (050 (Z)).
In case () we get

64\/[(90;’(77%(2)(2)) =0= <P§<nm 1(acyc(Z))-
In case [2)) we set €, :=11if ¢g = 0 and ¢}, := —1 if ¢y = 0o and get

8M(@Xﬂ (Z)(Z))

— (_1)nr+i0—1 Z Z yzo

z'Enyt(x) TEVT (D)

—

N/, (V {yn ('), -y (27), oy (2)})
= (=)™ > (=D orda (i (2))

z'eny (x)
—_—

: Nmm’/z{yl(x/)’ - Yig (J’J)’ Tt 7yn(x/)}
= (-1)"e¥, (0%(2)).

Here the first equality holds by definition of the tame symbol, the second by the
projection formula for the norm map and [Ful98, Ex. 1.2.3] and the third by the
definition of the maps involved. This proves (BI)) in this case.

Second case: k(z)/k(mn(2)) has positive transcendence degree. In this case we
have to show

(3.1.2) PR (0 (2)) = .

This is clearly the case if there is no point in Z(") which is finite over z. Otherwise
if such a point exists and we denote by W C X x " its closure, then the dimension
formula yields

r+1—n = codim(r, (W), X) = codim(rm, (W), 7, (Z)) + codim(r7,(Z), X).

By assumption codim(m,(Z), X) > r — n. Hence m,(W) = 7,(Z), and since z is
the generic point of 7, (W) we obtain:
(1) The base change Z, = Z X x xgn (x x[J") is an affine integral 1-dimensional
scheme of finite type over x.
(2) The natural map z — Z factors uniquely through the projection Z, — Z.

Thus Z, C x x 0" is an integral closed subscheme of dimension 1 which intersects
all the faces properly, and we have

PN (09(2)) = it N0V (Za)),

where the maps on the right are 9%¢ : 2"~ (z,n) — 2" (x,n — 1) and J 11
2" Yz,n — 1) - KM (k(x)). Denote by Z, the closure of Z, in (PL)" and by
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v: C — Z, the normalization. Then by definition

n

oz =Y (X (X wbe) )

i=1 ' €Z,N(y;=o00) Tev—1(x')
(X (T wwma)-s))
' €Z,N(y;=0) ZTev—1(z’)

Applying ¢y, Ln=1 and using that Z, intersects all faces properly we obtain by a
similar calculation as in the first case

Pr OV Z)) = (1) Y Nmg (05 ({ya (2), -, 11(2)})).
zel

This is zero by the reciprocity law for the tame symbol (see e.g. [Ros96l (2.4)]).
Hence the vanishing ([B.1.2]). O

Corollary 3.2. Let X be a smooth equidimensional k-scheme and r > 0. Then
the maps {¢f; }ucx, where U ranges over all open subsets of X, induces a quasi-
isomorphism of complexes of Zariski sheaves on Xy :

O T2 Z(r)x 5 Chx[-1]

Here Z(r)x 1is the complex of Zariski sheaves U — 2" (U, 2r — o). In particular we
have an isomorphism in D°(Xz.,) (also denoted by ¢ )

O T L(r) x = IC%[—T}.

Proof. By the Gersten resolution for higher Chow groups (see [Blo86, Thm. 10.1])
we have H'(Z(r)x) = 0 for all 4 > r. Thus it suffices to show that ¢% induces an
isomorphism H"(Z(r)x) = H°(Cp ). This follows directly from the definition of
@5, [Blo86, Thm. 10.1] and the construction of the isomorphism CH" (k(X),r) =»
KM(k(X)) in [Tot92, 3]. O

3.2. The relative cycle map.

3.2.1. Let D be an effective Cartier divisor on X and denote by j : U := X\ D — X

the inclusion of the complement. For r > 0 let C; X|D be the Cousin complex of
ICiwxlD and CrX|D the Cousin complex of RG*IC%X\DNis; see 2511 For n € [0, 7]
we define a morphism

iy 2 (X|D,m) — Ch(X)

7, X|D
as the precomposition of the natural map C} |, (X) ——— C:f;qg( ) with
(3.2.1) 2"(X|D,n) = "(X,n)y — @ Ky (k m — O xpX );

zeU(r—n)

where 2"(X,n)y C z"(X,n) is the subgroup of cycles on X x 0" supported in
U x O" (i.e. cycles on X x 0" whose support is contained in U x O"; cf. [[4))
and the first map is the natural inclusion from [[4Y[]). For n & [0, 7] we define SO?(TD
to be the zero map.
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Proposition 3.3. Let X be a smooth equidimensional scheme and D an effective
divisor such that Dyeq 1s a simple normal crossing divisor. For r > 0 the collection
of maps (<p§f‘rDﬂ)ieZ induces a morphism of complezxes

Pxip 27 (XD, 2r — ) = Oy (X)) [=7].

Furthermore, this map is compatible with restriction to open subsets of X in the
obvious sense and hence induces a morphism between complexes of sheaves on Xz, :
O p : T>rZ(r)x|p = C’TX‘D[ 7).

If Dyeq is a smooth divisor ¢7"X‘D factors as a morphism of complexes
7> Z(r)x|p = O} xp[-1] —— £z3, Cf;qp[ rl,
where the first map is induced by B21]).

Proof. Once we know that <p§(| p is a map of complexes it is clear that it induces a
map between complexes of sheaves ¢TX‘ p- For the first statement we have to show
the following: For n € [1,r + 1], Z € C"(X|D,n) (see Definition [[.T)) with generic
point z € Z and for all points = € {m,(z)} N X"+ the following equality holds
in H, " (Re, KM, X |D Nis)?

r r,n—1 cyc
(3~3-1) ( ) aC(@X‘D ﬂ"(z)(Z)) ‘Px\D z(ay (Z))a
where we denote by 90)5|D , the composition of apX‘D with the projection to the
z-summand and by 9 : H! (Z)(Re*IChX‘D) HI~ ”*1(RE*IC£74X|D) and 99V :
2"(X|D,n) — z"(X|D,n — 1) the boundary maps in CT}’L,,).(‘D and z"(X|D,2r — ),
respectively.

Notice that the restriction of <pX| ' to U equals the map ¢;" from §3II1 In
particular, for z € U the equality B3] follows from Lemma Bl Thus we can
assume = € D. Therefore we have to show the vanishing of the left-hand side in
(33J). By definition of gpgg‘lD we can further assume that k(z)/k(m,(z)) is finite.
Taking the definition of the boundary maps in the Cousin complex C:f’;(l p into
account we see that it remains to show the following: B

Denote by Zy C X the closure of 7,(Z) and by zp = m,(2) € Zy its generic
point. Assume k(z)/k(z) is finite and 2 € DN Zy N X"~+Y. Then we have to
show

(3.3.2) O D2 (Z) € Im(H%;”(Re*/c%Xw)z — H " (Re.K)x p))-
Observe that under the above assumptions we have z € Z Zt . Denote the com-
position of the map (B2.1]) with the projection to the zo- summand by
Yy 2 27 (X|D,n) — H;;"(IC%X‘D).
Notice that ([B:3:2) holds if
(3.3.3) sy (2) € Im(H " (K p)e = HI" (K p)-

Also, in case ([333]) holds for all Z, we actually get that (21 induces a morphism
of complexes.

In the following we will show that ([3.3.3) is satisfied if Z is normal or if D;q is
smooth and that (332]) holds in general. This will prove the proposition.
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First case: Zy is normal. In this case Z; is regular at z. Hence we find a regular
sequence t1,...,tr—p € Ox 4 with Ox /(1. .., tr—p) = Oio,x' Let f € Ox , be
a local equation for D and denote by Dy = D\Zo the pullback of D to Zy. The
image of f in (970@ is still denoted by f. We claim that in order to prove (3.3.3)
it suffices to show

(3.3.4) Nmk(z)/k(ZO){yn(z), c. ,yl(z)} S ICQ/’IEO‘DO’I.

Indeed set v := Nmy(.)/k(z20){1¥n(2), ..., v1(2)}. If the claim (B.3.4) holds we can
lift v to an element o € IC;V[ X|D.z (using the explicit description from Remark 2.3]).
We obtain an element (see (Z0.5))

U{t1y. . trnt M
et € (Hz) (Kyx1p))=
which by Corollary 3 maps under restriction to the generic point of Zy to the
clement o, (Z) € HZ ™ (KMy ) 2 KM (k(0)).

We have (’)70’1,[%] = k(z0). Therefore (’Cﬁdzo‘po

the form {1+ fa,k1,... K, }, where a € Oz  and k; € k(z9)* (see Remark Z35]).
Denote by A the completion of O3z, . along the maximal ideal and by K its fraction
field; it is a complete discrete valuation field with A as its ring of integers. Let m be
the valuation of f € A. Then by Lemma[Z.8lthe natural map K (k(z0)) — KM (K)
induces an isomorphism

KM (k(20))/ (KM Ve — KM (1) /U™ KM (K).

)e is generated by symbols of

Therefore it suffices to show that the pullback of Nmy, .y /k(z0){¥n(2), ..., y1(2)} to
KM(K) lies in UK} (K). We have k(z) ®(») K = [1; Li, where each L; equals
the completion of k(z) along a point in the normalization of the closure of Z in
X x (P')", which lies above x. Now we fix i and set L := L;. Denote by B the
normalization of A in L, by m its maximal ideal and by ¢ : k(z) — L the natural
inclusion. We set

. {wyj(z)) —1, ifuy(z) € B,
T () — 1 i)Y € B.

By the compatibility of the norm map with pullback we are reduced to showing

(3.3.5) Nmp, g{l+ai,...,1+a,} € UMK} (K).
The modulus condition (LIT]) which the integral cycle Z satisfies translates into
ay---ap/f € B.
Up to permuting the factors a; (and therefore changing the element in (3.31) by
a sign) we can assume that there is an integer p € [1,n] such that ai1,...,a, € m
and ayy1,...,a, € B*. A fortiori we have
ap---a,/f € B.

Then we can apply Lemma 27(), repeatedly (starting from s = a1, t = ag, a =
b=1) to obtain

{I4+ai,....14+a,} ={14+war---auXa,..., \n}, uwe€B* )\ €L
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In particular, {1+ay,...,1+a,} € U™ KM(L), where e denotes the ramification
index of L/K. Therefore (333) follows from Nmp, /(U™ K} (L)) c U"KM(K);
see [Kat83l Prop. 2] (also [Mori2, Thm. 1.1]).

Second case: Zy is arbitrary. We denote by v : ZO — Z, the normalization. It
is a finite map and hence factors as a closed immersion Zy < PY := Px followed
by the projection Px — X. There is a generic point of Z x7_ Zy which maps to the
generic point of Z, and we denote by Z' C Z XZ, Zy its closure. We can view Z’ as
a closed subscheme of Px x [0". By construction the projection Px x O0" — X x["
induces a finite and surjective morphism Z’ — Z. It follows that Z’ has codimension
N +rin Px x (", intersects all faces properly and satisfies the modulus condition
(CII) with respect to the effective divisor Pp C Px. Furthermore the closure of
the image of Z’ in Px equals Zo, which has generic point zg. Thus we can apply
the first case to obtain

(3:3.6)  9x(2') € I(HGT (I N pyipp)ar = HETV YN pipy)s
where 7’ is any point in Zél) N Pp. A fortiori
+N,
(33.7) ol (2)
€ Im(HTZjN_"(Rf*ICﬁN,PX\PD)x’ —= HIPV ™ (Re KM N py pp))-

Let z € DN 7((31) be as in ([33:2). Then there exists an open neighborhood V of
x X P in Px such that V N Z; contains all 1-codimensional points of Zy lying over

x and such that gp;t‘\ggz .o (Z') comes from an element in

r+N—n /Y7 M _ r+N—n /Y5 . M
HZOQV (VaRG*’CrJrN,PX\PD)—HZDm; (VNis, K24 v Py P Nis)-

(This follows from ([B.3.7) and the fact that the Cousin complex is a resolution; see
Corollary 2.23) After possibly shrinking V' we find an open neighborhood V' C X
of x such that V' C Py and the complement of ZoNV C ZyN Py has codimension 2

in Zy. It follows from Theorem 222 that @;t\vﬁz ZO(Z’ ) spreads out to an element
of

r+N—n . M
HZOF]PV (PV7NIS’ ’CT+N,PX|PD,Nis)'

Now the pushforward from Definition 2.29] induces a commutative diagram

r+N—n . M
HZomPV (Pvxis, ’CT+N7Px|PD,Nis)

r+N—n

R M
(ZonV)x v Py (PV’NIS’ ’CT+N’PX|PDsNi5)

ml

r—n X M
HEOOV(VNIS’ ’Cr,X\D,Nis)

r+N-—n M
HZO (KrJrN,PX\PD,Nis)

— M
H»;O n(K:r,X|D,Nis)'

For the equality on the right notice that both groups are equal to KM (k(z)).
By definition of ¢ it is also immediate that np;i]‘\[];g,ZO(Z’) = ©¥|p ., (Z). Hence
B32) also holds in the second case. If D,q is smooth the above proof goes through
if we drop the ‘Nis’; hence [83.3)) also holds in the second case. This finishes the

proof of the proposition. O
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Corollary 3.4. Let X and D be as in Proposition B3] and denote by j : U :=
X\ D — X the inclusion of the complement of D. Then for all r > 1 we have the
following commutative diagram in D*(Xzar):

XD
T>rZ(r)x|p —> RE*’C%(\D,NE[_T]

l

T>rZ(T) x ¢—§T> IC%X[—T],
X

in which the lower horizontal map is an isomorphism. Here the horizontal maps
are induced by the maps ¢ and @'y, from Corollary and Proposition 3.3],
respectively, the left vertical map is induced by the natural inclusion and the right
vertical map s induced by the natural inclusion InylD Nis = IC%KNiS and the

isomorphism Re. KMy o = KMy from Corollary Z2I.  Furthermore if Dyeq is
smooth we can replace Re*lexlD Nis =71 by ICan[XlD[—r].

Proof. This follows directly from Corollary 3.2] §2.1.11 Proposition and Corol-
lary O

Remark 3.5.
(1) The dlog map induces a natural map
dlog : KMy p = Q% (log Dyea)(—D);

see the proof of Proposition[2.15l Clearly it also induces a map of complexes
le}/[X‘D — Q)Z(T(log Dycq)(—D). The composition in Db(Xz,,),

o
Z(r)x|p = T Z(r) x|p —— Re. KMy xis

dlo r r

—=5 R'f*(Q)Z(,Nis(lOg Dieq)(—D)) = Q)Z( (log Dyea)(—D),

is the regulator map defined in [BS14l (7.10)], at least up to sign.

(2) Assume that k is a perfect field of positive characteristic. Denote by
W,Q% (log D) the logarithmic de Rham-Witt complex for the log scheme
(X, 705 NOx); see [HK94, 4]. It defines a differential graded algebra, and
we denote by

WTLQB( (log D)(_D) - WTLQB( (log D)
the differential graded ideal generated by
Wn(OX(—D)) = KGY(WOX — WOD)
Then it is not hard to see that there is a natural map

dlog : IC%X‘D — W% (log D)(—D), {a1,...,ar}+— dloglai]--- dlog[a,],

where [—] : Ox — W,,Ox denotes the Teichmiiller lift. Since the sheaf
W% (log D)(—D) can be viewed as a coherent sheaf on W, X =
Spec WQOx, its Zariski and its Nisnevich cohomologies coincide, and as
in (1) we obtain a cycle map

Z(r)x|p — WaQ% (log D)(—D).
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Corollary 3.6. Assume that D,cq has simple normal crossings. Then the family
{Sﬁ’ﬁv*p}v, where v runs through all étale maps v : V. — X, induces a morphism
of complexes of Nisnevich sheaves

¢S(|D,Nis : 7>+ Z(r) XD Nis — C;,X|D,Nis[_r];
see 1.3 and §2.5.2] for the notation. By Corollary 2241 we get an induced map
(still denoted by the same symbol) ¢'|p nis © T>rZ(r) x|D,Nis — K%X‘D,Nis[—r] in
Db(Xnis) fitting into the following commutative diagram:

%D, Nis
T>rZ(T) x| D,Nis —> K¥X|D,Nis[_r}

o

7> Z(T) X Nis e KM nisl=71,

in which the lower horizontal map is an isomorphism.

Proof. Tt suffices to prove the existence of ¢;q pNis- That is, we have to see that
for a map V' — V between étale X-schemes the following diagram commutes:

-
Pyrr
V/IDy h,e

ZT(V/‘DVU 2r — .) - CT‘,V"D‘// (V/)[_r]
. LPT‘;‘DV h,e T
z (V|Dv, 2r — ‘) —— C’r‘,’V|DV (V)[_T]a

where the vertical arrows are the restriction maps. By definition of P I 32111t

suffices to check this over U = X \ D. Hence we can assume D = 0. In this case the
statement follows from the definition of ¢™" in §3.1.7] and the compatibility of the
norm on Milnor K-theory with pullback; see e.g. [Ros96, Rlc and (1.4) Thm.]. O

Proposition 3.7. Let X be a smooth equidimensional scheme and D an effective
divisor such that Dyeq is a simple normal crossing divisor. Then the map on Xnis,

HT(Z(T)X|D,Nis) - ’C%X\D,Nisa

induced by the cycle map ¢S(\D,Nis’ 18 surjective for all r > 1. Furthermore, if Dy eq
is smooth, with Nis replaced by Zar, the same statement holds.

Proof. It suffices to show that for V' — X étale and elements a € IC{WXlD(V) and
b, € Oy (Uy)* (where Uy =V xx U) there exists a cycle a € 2" (V|Dy,r) with
d(a) =01in 2"(V|Dy,r — 1) that satisfies

(3.7.1) WYy (@) = {a,br,. .. b1} € K2y p(V) € KM (K(V)).

We can assume that none of the elements a, b; are equal to 1. Denote by 'y 5,,... 5
the graph of the map Uy — (P!)" defined by a, b, ...,b._1 and set
7 = Fa,bl,...,b . N (UV X DT)

Notice that Z is isomorphic to Uy, it has empty intersection with all faces and its
closure Z C V x (PY)" is smooth and satisfies (with the notation from L)

(D x (PHY")-Z < F] - Z;

r—1

r—
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thus in particular it satisfies the modulus condition (LIT). It is immediate to check
r(r+1)

that o := (=1)" 2 - [Z] satisfies (B7Z.1]). This proves the proposition. O

Theorem 3.8. Let X be a smooth equidimensional scheme of dimension d = dim X
and D an effective divisor such that D,eq s a simple normal crossing divisor. Then:

(1) Hig(X|D,Z(r)) = 0 = Hiy nio(X|D, Z(r)) fori>d+r,

¢T ,Nis .
(2) The cycle map Z(r)x|pNis — T>rZ(T)x|D,Nis REILLLN K%X‘D,Nis[—r] n-

duces an isomorphism
d, . yd =~ ry7d M
QSXTD,Nis : H/\;(F,vln\lis(X‘DaZ(r)) — H (XNisJCr,X\D,Nis)-
If moreover Diyeq is smooth, then all maps in the following commutative
diagram are isomorphisms:

(3.8.1) H(X|D, Z(r)) —= HY Lo (X|D, Z(r))
¢§5TD\LN Nld)i’rD,Nis

HY(Xzar, ’C%X\D) —— H(Xnis, ’C%X|D,Nis)'

@211

We need the following two lemmas in the proof of the theorem. In the following
we will freely use basic properties of local cohomology of Nisnevich sheaves; for
details see [Nis89].

Lemma 3.9. Let k, (X, D) be as in Theorem B8 above. Then on Xz,,,
0, ifn<r,
HY(H™(Z(r)x|p)), i n>randn#r+1,
and for n =1+ 1 there is a natural exact sequence

0= Hp(H (Z(r)x|p)) = Hp " (r2rZ(r)xp) = Hp(H 1 (Z(r)x|p)) — 0.

Furthermore, the same statements hold when we replace Xz, and Z(T‘)X|D by Xnis
and Z(r) x|p,Nis, Tespectively.

Hp(m>rZ(1)x|D) = {

Proof. We do the proof for Z(r) x|p; it works the same way for Z(r) x|p nis. Con-
sidering the spectral sequence
B3 = Hb(H' (r2,Z(r)x)p)) = Hp (T2, Z(r) x| )
we see that it suffices to prove the following claim:
(3.9.1)  HLHH (r5Z(r)xp)) =0, for all (a,b) & {(1,7)} U ({0} x [r,2r]).

Clearly we have the vanishing for all (a,b) € (Z X (—oo,r —1])U(Z x [2r + 1, 00]) U
((—o0,—1] x Z). For a > 1 and b > r we have surjections (which are isomorphisms
for a > 2)
R H (Z(r)v) — Hp(H(Z(r) xp)),

where j : U = X \ D — X is the inclusion of the complement. Hence the claim
B30) follows from HP(Z(r)y) = 0 for b > r, H"(Z(r)y) = IC%U (see Corollary
B2) and R*~1j. K}, =0, for a > 2 (by Corollary 22). (For last vanishing in the
Nisnevich case use that R*~! j*le,\’/IU’NiS is the sheaf associated to

Vs H7H(V xx U)Nisylcrj’\,/IU) = H'"((V xx U)ZanK%U)‘) .
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Lemma 3.10. Let k, (X, D) be as in Theorem B8 above. Then
Hp(Xzar, T>rZ(r)xp) =0, ifi>d+r,
and the natural map
H* M (Xzar, Hp(H'(Z(r) x|p))) = HB" (Xzar, > Z(r) x| D)

is surjective. Furthermore the same statements hold when we replace Xz., and
Z(r)x|p by Xnis and Z(r) x|p Nis, Tespectively.

Proof. We do the proof for Z(r) x|p; it works the same way for Z(r) x|p nis. Con-
sidering the spectral sequence

Eg’b = H(X, HbD(TZTZ(T)X\D)) = Hp (X, 7>+Z(r)x|D)
we see that by Lemma [3.9] it suffices to show

(3.10.1) HY (X, HHH (Z(r)xp))) =0, forb>randa+b>r+d
and
(3.10.2) H(X, Hp(H"(Z(r)x|p))) =0, fora>d.

For a closed immersion i4 : A < X denote by 4, : (abelian sheaves on X) —
(abelian sheaves on A) the unique functor which satisfies i4.iy = Ly = HY; see
[SGA2, Exp. I, 1]. (For the Nisnevich case, see [Nis89, 1.23].) We obtain

H(X, Hp(H"(Z(r)x|p))) = H*(D,ipHp(H"(Z(r)x|p)))-
Hence the vanishing (8:10.2) follows directly from Grothendieck’s general vanishing
theorem [Tohokul Thm. 3.6.5] by which the cohomological dimension of a noether-
ian scheme is less than or equal to its Krull dimension. (For the Nisnevich case, see
[Nis89l 1.32].)

Next we prove (BI01]). Denote by ®% | the family of supports on X consisting
of all closed subschemes A C X of dimension dim(A) < n which intersect D prop-
erly. Denote by @}l p N D the smallest family of supports which contains all closed
subsets of the form AN D, with A € <I>’;(|D. Notice that

(3.10.3) dim(A) <n -1, for A€ @%,ND.
If Z C U x[0%"~" is an integral closed subscheme of codimension r, then the closure

Zy C X of its image under the projection to U lies in @glilg*b. Since H°(Z(r)x|p)

is the sheaf on Xz,, associated to V +— CH"(V|Dy,2r — b) we obtain
HY(Z(r)x|p) = ng (H*(Z(r)xp))

AT
and
Hy(H(Z(r)x1p)) = Hggg—me(Hb(Z(T)X\D)) = lim iaxity (HP(Z(r) x|D))-
Aeef ' nD
Thus
HY (X, Hp(H'(Z(r)xp))) = lim  H*(Aiy(H(Z(r)x|p))),
Aeeit ' nD

which is zero for a+b > d+r since the cohomological dimension of A is < d+r—b—1
by BI0.3) and [Tohokul Thm. 3.6.5]. (For the Nisnevich case, use [Nis89, 1.24] to
get the equality above and then apply [Nis89, 1.32] to obtain the vanishing.) O
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Proof of Theorem B8 In the following, the subscript o € {Zar, Nis} indicates in
which topology we are. Denote by j : U = X \ D < X the inclusion of the
complement of D. First notice that each abelian sheaf F on X, has a I'(X,, —)-
acyclic resolution of length d. (Take 7<4 of the Godement resolution of F; it is
I'(X,, —)-acyclic by [Tohoku, Thm. 3.6.5] (resp. [Nis89, 1.32]); see [Nis89| 2.18] for
the Godement resolution in case ¢ = Nis.) This shows that H*(X,, 7, Z(r) x|p) =
0, for all i > d + r, and hence

Hjy o(X|D,Z(r)) = H (X4, 727 Z(r)x|p,s), fori>d+r.
We have an exact sequence
Hy " (Xo, 75 Z(r) x Do) = H T (X0, 757 Z(r)x Do) = H (Up, 57 Z(1)U,0)-

For ¢ > d the left-hand side vanishes by Lemma 310l and the right-hand side is
isomorphic to H*(U,, IC%U,U) and hence also vanishes. This yields the first part of
the theorem.

It remains to prove that (bgl(’erJ is an isomorphism for ¢ = Nis and if Dyeq is
smooth also for ¢ = Zar. In the following o0 = Zar is allowed only in the case
where Dieq is smooth. By Corollary .4 and Corollary we have a commutative
diagram

dew*l(Ug,ZU) . H%+T(XU,Z)(\D) — Hd+r(XmZX|D) — Hd+T(Ua,ZU)

d—1,r d,r d,r dyr
zl%,a’ l(’bDCX,U l‘b)ﬂD,a zl%ﬂa

Hdil(UUa’CU) —_— H%(XOWIC)QD) —_— Hd(XovlCX|D) —_— Hd(UU7]CU)7

where we use the shorthand notation Zy = 75,Z(r)ve, Zx|p = T>+Z(")x|D,0>
Ky = IC%UJ and Kx|p = ICiV'[X‘ p .o the rows are the localization exact sequences

and the maps qﬁ?}’ra are isomorphisms (see Corollary B.2]). Since HdD”“(XU, Zx\p)
= 0 by LemmaBI0the map H*"(X,, Zx|p) — H™"(U,, Zy) is surjective. Hence
it suffices to show that gbcll)’rc ¥, 18 an isomorphism. For b > 2 we have by Corollary

22
HI)D(ICZ“\,/IX|D,J) = Rb_lj*K:i\,/IU,a =0.
Also 'HOD(IC%X‘DJ) = 0, since ICZ«\,/[X\D,U is by definition a subsheaf of j*IC,{‘,/[UJ. Thus

HY(Xo, KMy p o) = H7HXo, Hp (KM p ). We have a commutative diagram

Hd_l(XUa ,HlD(,HT(Z(T)X\D,U))) - H%JFT(X«:, TZTZ(T)X\D,U)

l l¢géxﬁ

Hdil(XmH}i)(Ki\,4X|D,g)) — H%(XU’ K¥X|D,o’)7

in which the top horizontal map is surjective by Lemma B.I0l Thus it suffices to
show that the map

(3.10.4) Hp(H(Z(r)x|p.0)) = Hp(K)Y Do)
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induced by qbg(l Do is an isomorphism. To this end, consider the following commu-
tative diagram:

H™(Z(r) xp,0) — j+H"(Z(r)v,e) —= Hp(H"(Z(r)x|p,0)) —=0
id);{D,a quﬁ{r,a lm

0—K

M M 1 (M
- ey - .
rX|D,o J+K3 0o D(’Cr,X|D,a) 0.

Here the rows are the localization exact sequences, the map ¢f; , is an isomorphism
(see Corollary [3.2) and O |p,, is surjective by Proposition B7 It follows that
(BI03) is an isomorphism. This finishes the proof of the theorem. O

Remark 3.11.

(1) Tt follows from Corollary B.6land Lemma[3:9 that the obstruction for the cy-
cle map gzﬁ’)"qD Nis | T>rZ(T) x| D Nis —* ICT{VIX‘D Nis|—7] to be an isomorphism
is the non-vanishing of

HOD(Hn(Z(T)X|D’NiS)) = KGT(HH(Z(T))QD’NB) — j*HH(Z(T)[LNiS)), fOI' n 2 T.

Indeed, if this vanishing holds, then H}(Z(r)x|pnis) = 0, for all n > r
and n # r 4+ 1, and HTD+1(Z(7‘)X|D,N15) = HE (HT(Z(T)X\D7Nis)) by Lemma
Hence H"(Z(r) x|p,nis) = H" (Rj+Z(r)uNis) = 0, for all n > r+2. For
n = r we obtain a commutative diagram

0 —= H"(Z(r) x|p,Nis) — Jx H"(Z(r)u,Nis) —= Hp(H"(Z(r) x|p,Nnis)) —= 0

| -

KM, — 4K

0 r,X|D,Nis

M
r,U,Nis*

Here the rows are exact, the left vertical map is surjective by Proposi-
tion B.7 and the right vertical map is bijective by the Nisnevich version
of Corollary It follows that the left vertical map is an isomorphism.
Furthermore the right exactness of the top row yields that the natural
map HTD'H(Z(T)X‘D)NE) — ’H,T“(Z(T)X‘RMS) is the zero map and hence
HHZ(r) x 1 p,Nis) © HTHRLZ(r)uNis) = 0.

If we assume that D,eq is smooth, then a similar remark applies for the
corresponding Zariski statement.

(2) Going back through the proofs, one easily checks that the commutative
diagram (B8] of isomorphisms exists for all divisors D whose support has
simple normal crossings and which satisfies that (2.10.]) is an isomorphism
(for all (m,v)).

Corollary 3.12. Let X be a smooth curve over k and D an effective divisor on
X. Then we have isomorphisms

H/2\/(,Nis(X|Da Z(l)) = Hl(XZar, OX

Xp) = CH'(X|D,0).
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Proof. The first isomorphism follows from Theorem and Hilbert 90. The second
isomorphism is classical and follows from the fact that the two term complex

EX= P iwlK*/05)® @ iwe(K*/(1+mie))
ze(X\|D|)™ x€|D|©

. . . %
is the Cousin resolution of OX|D' O

Remark 3.13. Let (X, D) be as in Theorem B8 with d = dim X. We have a natural
map

(3.13.1) CH'(X|D,1—d) — Hi{ \o(X|D,Z(1)).

If d = 1, this is an isomorphism by Corollary .12 But Theorem [3.8] implies that
it is in general not an isomorphism for d > 2. Indeed, assume d = 2; then the
left-hand side vanishes, whereas the right-hand side is equal to H 2(XNiS, (’))Xq D).
The short exact sequence of Nisnevich sheaves 0 — O;q p — 0% = .05 =0
induces an isomorphism of H?(Xnis, O)X(|D) with the cokernel of Pic(X) — Pic(D).
But in general, this cokernel will not be zero, since not every line bundle on D lifts
to a line bundle on X. Note that this non-vanishing already occurs for reduced
and irreducible D. In particular, also the Zariski version of (BI31]) is not an
isomorphism in general. For further counterexamples in this spirit see Theorem

BE.IK).

4. MOTIVIC COHOMOLOGY OF (Al (m + 1) -{0})

4.1. Big de Rham-Witt complex. A truncation set S is a subset of the positive
integers with the property that a positive integer s is an element of S if and only
if all positive divisors of s are contained in S. Examples are the sets {1,2,...,m}
and P = {1,p,p?,...}, for p a prime number. For a truncation set S and n € N
we define the new truncation set S/n := {s € S|ns € S}. Notice that S/n is
the empty set if and only if n € S. We denote by J the category of truncation
sets, where the morphisms are inclusions. We denote by (dgayz) the category of
differential graded Z-algebras in the sense of [III79, 0, 3.1].

Let R be a ring containing a field. Recall (see e.g. [Hesl5l 4]) that the big
de Rham-Witt complex of R is a functor

JP — (dgaz), S WgQpy

that takes limits to colimits and which is equipped with graded ring homomor-
phisms, called Frobenius morphisms,

F, : WSQR — WS/nQRv SeJneN,
and homomorphisms of graded groups, called Verschiebung morphisms,
Va ZWS/HQ'R%WSQR, SeJneN.

These maps are in fact natural transformations between functors on J (in the
obvious sense) and satisfy various relations; see [Hesl5l Def. 4.1]. Notice that
since R is defined over a field we have dlog[—1] = 0 € WgQk for all S (see
[Hes15, Rmk. 4.2(c)]) and WgQp is a quotient of Qi (ryjz- This implies that
Wsp, is really a differential graded algebra in this case; in particular the relation
x - x = 0 for a homogeneous element x € WgQ)5 of odd degree holds.
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Some facts: WpQ = 0, WgQ% = Wg(R) = the ring of big Witt vectors,
Wi Qg = Q'R/Z =: %, and for a finite truncation set S the dga WgsQp, is a quo-
tient of by, ) /7. It follows that the restriction maps W@, — WrQjp (T'cS)
are surjective. Finally if R is defined over a field of positive characteristic p, we
have Wiy ), pn-13Qp = W, Q5 the p-typical de Rham-Witt complex of length n
of Bloch-Deligne-Illusie. When working with the p-typical de Rham-Witt complex
we write F'° = Fps and V® = Vps. We set W, Qp = Wpy o 01 Q5.

Lemma 4.1. Let k be a field and (R;)icr a direct system of k-algebras. Set R =
ligﬂiel R;. Then for all finite truncation sets S we have

Wl = @WSQ%-
icl
Proof. For a finite truncation set .S, we put Ey := Equo ligiel WSQ}%. We have
a natural map of graded rings Ey — WgQy. Furthermore for a general truncation
set S we define Eg := lim_, _ . E7, where the limit is over all finite truncation sets 7'
contained in S and the transition maps are induced by the obvious restriction maps.
It is then straightforward to check that S +— Ej is a Witt complex over R (in the
sense of [HesIH| Def. 4.1]). Since W_Q, is the initial object in the category of Witt
complexes, we obtain a morphism of graded rings WsQ2n — Ej for all truncation
sets S. For a finite truncation set this map is clearly inverse to the natural map
above. |

4.1.1. Relation big - and p-typical de Rham-Witt. Let R be a ring containing a field
of characteristic exponent p > 1 and S € J be a finite truncation set. Set

€5 = H (1-1Vy(1)) € Wg(R),
primes £€S
LF#p

where the product is over all primes ¢ € S different from p. Then for all ¢ > 0 there
is an isomorphism of abelian groups

WsQh = [ WspjnpQ%h o= (Fj(@)s/inp)i,
Jjes
@G,p)=1

where P = {1,p,p?, ...}, with inverse map given by

~ 1 .
(411) H WS/jﬁPQ?{ — WSQ%, (aj) —> Z —,‘/}'(Es/jaj),
52 Y
where &; € Wg,,Q% is some lift of o; € Wg,;npQ%. These isomorphisms are
functorial in S in the obvious sense. (See [HMO1], 1.2] or [Ril07, Thm. 1.11].)

4.1.2. Let X be a scheme over a field and S a truncation set. Then there is a unique
sheaf of groups WsQ% on X such that for any open affine U = Spec R C X we
have I'(X, WgQ?) = WgQ%,. Indeed, this is true for the p-typical de Rham-Witt,
and therefore if S is a finite truncation set we have to set

ngq = H WS/jﬁng(
(jG)S
J,p)=1
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and if S is infinite then WgQ% := @Tcs WrQ%, where the limit is over all finite

subsets. Clearly all the structure maps sheafify. Notice that WsQ% = WsOyx is
the sheaf of big Witt vectors over X.

Remark 4.2. In case p = 1 the isomorphism from §4T.7] above has the shape
W, Q% = H;’l:l Q%. Tt is direct to check that under this isomorphism the restriction
W, Q% — W,,_1Q% is given by projecting to the first m — 1-components. In
particular we have an exact sequence

1
0— Q% = m Vm W, Q% — W,,,_1Q% — 0.

4.1.3. Let k be a perfect field of characteristic p > 0 and R an essentially smooth
k-algebra. Let C~' : Q% — Q% /B} be the inverse Cartier operator, where B} =
dQ% ', Recall that it is injective with image Z¢/BY, where Z¢ = Ker(d : Q% —
Q?l). We obtain a chain of subgroups (see e.g. [BK86, (1.3)])

0=BicBl{c---cBlcBl ,C---Cczl,czlc---CZ{cCZj:=Qf,
where by definition C~*(BY) = B!, ,/Bf and C~(Z}) = Z} ,/B{, for i > 0.
Notice that we can iterate the inverse Cartier operator n tlmes to obtain a morphism

c: Q% — Q% /Bl

which is injective and has image equal to Z4/B2. By convention C~° = id.

Let m > 1 be an integer and write m = myp® with (mq,p) = 1 and s > 0.
Following [BK86, (4.7)] we define

0:Q%5 " — (Q%4/BY) @ (% /BITY), aw (C5(da), (1) 'mi0~*(a))
and
grd (R) := Coker(d : Q%' — (Q%/BY) @ (2% ' /BI7Y)).
(This is the group denoted by ™G%™! in [BKS86, (4.7)], for n > s.)
Proposition 4.3 (cf. [III79, I, Cor. 3.9], [HK94, Thm. 4.4]). In the above situation
let m be a positive integer and write m = mqp® with (my,p) =1 and s > 0. Then
there is an eract sequence of groups
0— grd (R) - W,,,Q% - W,,,_1Q% — 0,
where the map on the right is given by restriction and the map on the left is induced
by
QF Q% = Wb, (a,8) = Via(a) + (=1)7dVi(B).
Proof. For j € {1,2,...,m} with (j,p) = 1 denote by n(j, m) the unique integer
> 1 satisfying _ _
G M=l <y < jpnm),

. s+ 1, if j =my,
n(j,m) = :
n(j,m—1), else.

Hence under the isomorphism from §LT.T] the restriction W,,Q% — W,,_1Q% be-
comes

We get

q q q q
I WagmQh | x Wea % — II WugmQ% | x W.0%,
1<j<m 1<j<m
j#my,(j,p)=1 i#my,(j,p)=1
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which is the identity on the first component and the restriction Wyy; — Wy on
the second. (Here W,Q% = 0 for s = 0, by convention.) Thus the kernel of
W, Q% — W,,_1Q% is given by the image of

gr'WQy = Ker(W,11Q% — W,Q%)
under the isomorphism of §LT1l By [MII79, I, Cor. 3.9] there is a surjection

0L Q!
v Blg ’ Z§+1 =g W, (@, f) = miV(a) + (=1)7dV*(6)

with

B-g-i-l Zs s qg—1 s
Kert = {(0,) € Tl & 2 jmav(0) = (17 av ()

It follows that for any (o, 8) € Ker v there exist elements o/, 8’ € QqR_l with
(o, B) = (C™*(da’), C™*(8")).
Now take any o, 8" € Ws+1Q(II%_1 lifting ’, 5’. Then by [III79, I, Prop. 3.3]
a=C"*(do/) = F*(do") mod B!, B=C"*(8")=F*(8") mod 2.
Now m1V*(a) = (—=1)?71dV*(B) yields
mipda” = (=1)7 'p*dB"  in Wy1Q%.

Since the map Q‘}’{l — Ws“Qqul given by lifting and multiplying with p® is
injective by [II79, I, Prop. 3.4], we obtain

B =my (1)1 mod Z¢7".
Define
0 Q5 = (Q4/BY) @ (1/2050),  am (07 (da), mi(~1)1 C ().
We obtain
Kery =Im@'.
There is a natural surjection

gr? (R) = Coker 6 — Coker 6'.

This map is in fact an isomorphism, as follows directly from the observation Ker §' =
Zf_l and the Snake Lemma. Altogether we see that 1 induces an isomorphism

grd (R) = griWw QY. Finally the composition of ¢ with the isomorphism IT)
sends (o, B) € Q% @ Q%4 to
lele (ES/TnlrranvpS (Oé)) + lele (65'/’#11(_1)(16“/17S (6))
=Vin,ps (Fps (GS/ml)O‘) + (_1)qdvm1ps (Fps (GS/ml)B)
=Vm(a) + (=1)%dVi(B),

where we set S := {1,...,m} and view Vjs as map W1y = W/, ps — Wg/p,,
This finishes the proof. O



1032 KAY RULLING AND SHUJI SAITO

Proposition 4.4 (cf. [HK94, Prop. 4.6]). Let k be a field, X a regular scheme
over k and S a finite truncation set. Then there is a surjective morphism

q—1

q
(4.4.1) (WsOx @z \ O%) ® (WsOx @7 \ 0%) — WsQ,
Z Z

which on local sections is defined by
(w®ai1 A---ANag,0) = wdlog [a1] - - - dlog [ag]

and
O, w®ai A---ANag—1) — dwdlog [a1] - - - dlog [ag_1],
where [—] : O% — WsO% denotes the Teichmiiller lift. Furthermore, if F C k is

the prime field of k, the kernel of this map is the sheaf of Wg(F)-modules generated
by the local sections

(4.4.2) (Vi(Ja1])®ai A---Nag,0) —n(0, Vo(lar]) @azA---Aag), a; € O%,n € S.

Proof. Denote by Eg the sheaf on the left-hand side of (£4.1]) and by Kg the sheaf of
W (F)-modules generated by the elements (£.4.2]). Clearly there is a well-defined
and unique morphism Eg — WgQ% as in the statement. Further the relations
dWs(F) =0, ndV,, = V,d and V,,(adlog [a]) = V;,(«) dlog [a] imply that Kg lies in
the kernel of this map. The rest of the statement is local. Hence we may assume
that X is the spectrum of a regular local k-algebra R. By [Pop86], (2.7) Cor.] R
is a filtered direct limit of local rings which are essentially smooth over F'. Hence
by Lemma [A] we can assume that R is essentially smooth over F'. Consider the
group homomorphism

(4.4.3) II Es/jnr — Es
it

given by
(25 @ aj,y; ®bs)y = > (%Vj(ES/jfj) ® aj, 7Vj(es/i9;) @ bj>7
J

where 2;,y; € Wg/inp(R), ;,7; € Wgy;(R) are lifts of z;, y; and a; € A" R*, b; €
/\q_1 R*, the €g/;’s are the ones from §4.T.T and p is the characteristic exponent

of F. The isomorphism [@II) for ¢ = 0 immediately gives that [@Z3) is an
isomorphism. We obtain a commutative square

Eg W0,
m]~ ~T<m>
I1

In case p = 1 it is straightforward to check that the bottom horizontal map is
surjective with kernel equal to [[; Kgyjnp. (It suffices to show E%l}/K{ll} ~ Ok,

q
JES ES/jﬂP%H J€S WS/jﬂPQR‘
(G,p)=1 (J,p)=1

which is easily done using the universal property of Q%.) In case p > 1, this follows
from [HK94, Prop. 4.6]. (Notice that Wg/;np(IF,) is a quotient of Z and hence
Kg/jnp is equal to the group generated by the elements (£4.2]).) Hence the top
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map is surjective. It is a direct computation that the vertical arrow on the left-
hand side maps [[; Ks/jnp into Ks (use %Vj(:ty) = J%V}(:E)Vj(y)) This finishes
the proof. O

Remark 4.5. Let S be a finite truncation set and p > 1 the characteristic exponent
of the perfect field F. The Wg(F)-submodule of (WsOx @z A% O%)® (WsOx ®z

%71 0% ) generated by the elements ([.Z4.2)) is actually equal to the group generated
by the elements

(4.5.1) (Va([Aa]) @ a1 A -+ - ANag,0) —n(0, Vo ([Aar]) @ ag A -+ A ag),

for a; € O%,\€ F,neS.

Indeed, take n,r € S, A € F, a € O and write n = n/p* with (n’,p) = 1 and
r = r'p® with (r',p) = 1 and ¢ := ged(r’,n) = ged(r’,n"). Notice [A] = Fp:[\] €
Wg(F). Then on the one hand we get

On the other hand we have
(Valal) @ 0, ~n¥i(raD) ) = Vi () - (Vala) @ ~a¥a(a) )
4.2. De Rham-Witt and relative Milnor K-sheaves.

4.2.1. L. et Rbe anoetherian local domain containing a field. We denote R((T)) :=
R[[T]][#]. By definition the r-th Milnor K group of R((T)) is the quotient of
R((T))®z" by the subgroup generated by the elements

b1 @ ®b_1®a®(1—-a)@big2® - @b,

b, € R((T))*, a,1 —a € R((T))*. Notice that R((T")) is a local ring containing
an infinite field. Hence the relations {a,—a} = 0 and {a,b} = —{b,a} hold; see
e.g. [Ker09, Lem. 2.2]. In particular our definition of KM (R((T))) coincides with
the one from [BKS86, 4] and also with KM (R((T))) defined in [Ker09]. Let K be
the fraction field of R. Then the natural map KM (R((T))) — KM(K((T))) is
injective; see [Ker09, Prop. 10].
We denote by
U KM (R((T)))
the subgroup of KM (R((T))) generated by symbols of the form
{1+2T™, y1,...,yr—1}, 2z € R[[T]], vi € R(T))*.

Notation 4.6. Let X be a regular connected scheme over a field and A' =
SpecZ[T]. For m > 0 we set

Ax|m:= (X xz Al,m - (X x {0})).

We define ’C%XxAl as in §2.TT1 (there for a smooth scheme) and IC%AX‘m
Definition 241

as in
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Lemma 4.7. We keep the notation from above. Let j : X x (Al\ {0}) — X x Al
be the open immersion and © € X a point. Set R := Ox . Then for allm > 1
there is a natural isomorphism

(KM anyfopy /KM ) = M (R((T))) /U™ KM (R((T))),
where we view x via X 2 X x {0} — X x Al as a point on X x Al.

Proof. Set A := Ox 1 zxfo} and K = Frac(A). As in Lemma 2Tl and Remark 2.5]
we have the following equalities of subgroups of KM (K (T)):

(KM e an o) )ax oy = LALFED - (AlFD
[

K%Ax\m,xx{o} ={1+T™A, (A[E])*, ..., (A[£])*}.
Since under the natural map K (T) < K((T)) the ring A[] is mapped into R((T))
and (1+7™A) is mapped into (1 4+ T™RJ[[T]]), we obtain a natural map as in the
statement. The inverse map is constructed in the same way as in Lemma (Il

4.2.2. We recall (see e.g. [Hesl5, Ex. 1.16]) that for all m > 1 and all rings R,
there is an isomorphism of groups

~ 1+TR[T < M .

n=1
There are different conventions for this 1som0rphlsm (see [Hes1H, before Add. 1.15));
we pick the one which is compatible with [BK86].
The following theorem generalizes the above isomorphism to higher degree and is
reminiscent of Bloch’s original construction of the p-typical de Rham-Witt complex
in [Blo77].

Theorem 4.8. Let X be a regular scheme over a field. Forr >0 and m > 1 there

is an isomorphism of sheaves of abelian groups on X,

M
IC’I‘Jrl,AXu

M )
lCrJrl Ax|(m+1)

(4.8.1) W,, Q% =

which sends
wdlog [aq] - - - dlog [a,] = {y(w),a1,...,a,}
and
dwdlog [aq] - - - dlog [ar—1] = (= 1) {~(w),a1,...,ar—1,T},
where w € W,,,0x,a; € O%

Proof. Denote by F' C Ox the prime field and by p > 1 its characteristic exponent.
We will need the following lemma.

Lemma 4.9. With the above notation we have in ICH_1 AX|1/’C
{1+G1T ,A;a2a"'aar}:0,
foralla; e O¢, Ne F,1<n<m andr > 1.

r+1,Ax|(m+1)"

Proof of Lemma L3l If p > 1, then F' = F, and the statement follows directly from
A=\ for A € F, and s > 0. Thus we assume p =1,ie. F=Q. Forallv >1
we have the map

dlog : IC%LAXIV — Qg?(log{o}X)(_V{O}X)a
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where {0} x = X x {0}, at our disposal; see the proof of Proposition 215 By
Proposition 218 (ZI50]) and the fact that the composition (ZI5.3)) is equal to the
differential, the dlog map induces injective maps on the graded pieces

KM A o Q@l(log{o}x)(—l/{o}x) e
KM asiory L (og{0h)(—(v + D{0}x)" =

Hence also the induced map

dlog .1 : Kl Q1 (log{0}x) (—{0}x)
m+1 * -
KM Ay 2t (og{0}x) (= (m + 1{0}x)
is injective. Since dlog,,,;({14+a1T", A, az,...,a,}) = 0 the lemma is proven. [

We resume with the proof of Theorem .8 By the above lemma the following

equality holds in Kﬁl,Axll/lcﬁl,Axl(mH)’ for all a; € (Q)X(7 AeEFand1l1<n<m:

{1+ Xa1T", ay,a9,...,a.}
={14+Xa1T", Aay,as,...,arF — {1+ X1 T", = a1 T",as,...,a,}

=(-1)"n-{1+ Xa1T" az,...,a,,T}.

This together with Proposition 4] and Remark directly implies that there is a
well-defined map as in the statement. To show that it is an isomorphism, we may
assume that X is the spectrum of a regular local ring and by [Pop86} (2.7) Cor.]
and Lemma [£.J] we may further assume that X = Spec R, with R a local ring which
is essentially smooth over F'.

We first assume p > 1. In view of Lemma 7 the map defined above has the
shape

W — UMK (R((T))) /U™ LK (R((T))) 2= U /U™

This map clearly induces a morphism from the exact sequence from Proposition 43|
to the exact sequence

0—uUm™/um™tt 5 ut/jumtt S Ut/u™ = o.
The map on the kernels gré (R) — U™/U™*! precomposed with the natural sur-
jection QF, @ Q71 — grd (R) is given by
(adlogby A --- A dlogb,.,0) = {14+ aT™, by,...,b.}
and
(0,adlogby A--- A dloghy—1) = {14+ aT™,by,...,bp—1,T},

where a € R, b; € R*. This is the map p,, from [BK86, (4.3)], which by [BKS86,

Rmk. 4.8] induces an isomorphism grd (R) = U™/U™*+! for all m > 1. Hence
(X)) is an isomorphism by induction on m.

Now assume p = 1, i.e. F = Q. In this case the map (L81]) induces a morphism
from the exact sequence of Remark to the exact sequence

K K K
K

M M M
r+1,Ar|m r+1,Ag|1 r+1,Ag|1

0— — 0,

K K

M M M
r+1,Ar|(m+1) r+1,Ar|(m+1) r+1,Ar|lm
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where we abuse notation and write R instead of Spec R. The map on the kernels
is given by
(4.9.1) Qp — Kﬁ17AR|m/’Cﬁ1,AR‘(m+1)

adlogb; A ... A dlogb, — {1+ %aTm,bl, sy b}y

a € R, b; € R*, and it suffices to show that this map is an isomorphism. With the
notation from (ZIZT) the global sections over Spec R of the sheaf Wi pmm,1 AT€

T R®p (@ (U5 ' A dlogT)),

. . =1 r . .
and the differential d : Wy almom,1 ™ W mom, 18 given by

d(T™ @ (a, B A dlogT)) = T™ @ (de, ((=1)""'ma + dB) A dlogT).
It is direct to check that Q% — w;xR\m,m,l/B;xmm,m,l’ o T" @ (La,0) is an

isomorphism. Hence, by Proposition [Z15] the map (@9.1) is an isomorphism as
well. This finishes the proof. (]

Corollary 4.10. Let p be a prime number and R be a reqular local Fp,-algebra. Then
the multiplication with p on KM (R((T))) induces an injective homomorphism

U KM (R(T) /U™ KM (R(T))) = UP" KM (R((T))) /UM KM (R((T))),
for allr,m > 1.
Proof. As above, using Lemma .7 and [Pop86), (2.7) Cor.] we reduce to the case
where R is local and essentially smooth over [F,,. In this case, lifting and multiplying

with p induces an injective map p : W, Q" — W, Q5 ", by [[II79, I, Prop. 3.4]
and §4.1.01 Hence the statement follows directly from Theorem a

4.3. Motivic cohomology of (A!,(m + 1) -{0}) and additive Chow groups.
Let k be a field of characteristic # 2. We write A} = Spec k[T].

4.3.1. Recall from [Ril07, Thm. 3.20] that with the notation from Notation
there is an isomorphism for all m,r > 1,

(4.10.1) 0 : CH"(Ag|(m+1),r — 1) = W, Q1
which sends the class of a closed point P € (A} \ {0}) x (P! \ {0,1,00})" 7! to
1
0(1P) = Toacoye iy dlowlon (P)]-++ diog 1 (P)])

N '
where Try(p) /i WmQ;(_;) — Wsz_l is the trace map from [Ril07, Thm. 2.6].
Let f € 1+ Tk[T] be an irreducible polynomial of degree < m and denote by
w(f) € W,,, (k) the corresponding Witt vector; see §4.2.20 Let P,Q € (A!\ {0}) x
(P*\ {0,1,00})"! be two closed points defined by the following vanishing sets:

(4102) P:V(f,yl —bl,...,yrfl—brfl), b; € kx,
(4103) Q: V(f,l —Tyl,yg —b1,...,yr,1 —br,2)7 b; € k*.
Then

0(P) = w(f)dlog[b1]--- dlog [b,—1] € W,,, Q"
and
0(Q) = dw(f)dlog [by] - - - dlog [b_2] € W,,, Q5 .
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(Indeed, set L := k[T]/(f) and denote by ¢t € L the residue class of T. Then the
above formulas follow immediately from the fact that Trp,/, : W,,Q7 — W,,,Q} is
a map of differential graded W,,Q7-modules (see [Rill07, Thm. 2.6]) and the fact
that Try,/x (1/[t]) = w(f); see[Rill07, (3.7.3)].)

Lemma 4.11. The cycle map ¢Z‘k|(m+1) D Te(T) A (m1) — ]CT]‘\j[Akl(erl) (see
Corollary B4 in the case where Diyeq is smooth) induces an isomorphism
(4.11.1) H (Al (m+ 1), Z(r)) = UMK M (k((T))) /U™ LG (R((T))),
for allr,m > 1.
Proof. By Theorem [B.8] the cycle map induces an isomorphism
HH (Al (m+ 1), Z(r)) = H' (A, KXy, (men))-
Set Q := ICT Al /KM

AR |(m1)" We obtain an exact sequence

HO(AkvlCrAl) - HO(A}C’ Q) — H' (Ak’ICrAk\(m—H)) - H' (Ak”CrAl)

Now the term on the very right vanishes by homotopy invariance, and for the same
reason the term on the very left equals K (k). Furthermore Q is supported at the
: - _ M M
closed point = := {0} € A} and therefore H(A}, Q) = KT,A}C,w/ICT,Ak\(erl),m' We

obtain an isomorphism

(411.2) HY ALK ) 2 KM M iy + B (R)).
The statement follows from Lemma 7] and the observation that the right-hand
side is canonically isomorphic to ICT AL m/]CyAH(mH) .- For the latter it suffices

rAl, /ICTA,C|1 " = lC%c7 which is a
special case of Proposition 210 O

to show that 7" — 0 induces an isomorphism K

Theorem 4.12. Let k be a field of characteristic # 2. The following diagram is
commutative for all r,m > 1:

CHY (A} (m + 1){0}, 7 — 1) — 2 B (AL (m + 1){0}, Z(r))
(—1>T<T1>/2-ml~ ~lm
{EZD 1M m+1 M
= UK (R((T))) /U™ K2 (R(T)))-

W,, Q5!
In particular the natural maps
CH' (Aj|(m + 1){0},r —n) = HG" (ALl (m + 1){0}, Z(r)), n>1,

are isomorphisms. (Notice that for n > 2 the left-hand side is clearly zero and the
right-hand side is zero by Theorem [B.8.)

Proof. We show that the two compositions
o s CH(Ag|(m + 1), 7 = 1) 2255 H™ AL Z(r) ay 1))

1,r
¢Ak|('m.+l)
——— H

Ay K Ak\(m+1))
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and

B :CH (Ag|(m+1),r— 1) —— WmQ;_l

BED, 1 kM k(1)) /U K (k(T)) = U O

via(m)
———— H'(A}, ]Cvjﬂ\,/[AH(erl))
coincide. By Proposition 4] and §4.3.1] it suffices to show
a(P)=p(P), a(Q)=pB(Q),

where P and @ are the points defined in (I10.2)) and [@I03), respectively. In the
following we fix the elements f € 1 + Tk[T] and b; € k* defining P and Q. Using
the Cousin resolution of K:%Aﬂ(erl) (see §2.5.7]), we get a surjection

Hipy (AL KMy (i) ® @ KM (k(x) —» H (AL KM, ni1))-

xzeA\{0}
Set L = k[T]/(f) and denote by ¢ € L the residue class of T. We denote by
i, 2 KM (L) — Hl(A,lc,lCiV[Ak'(mH)) the map induced by the above surjection.

Then by definition of ¢, |,y (see §8.2Tand §31.T), we have

Q(P) :ZL({brfla"'abl}) and Q(Q) :ZL({bT72,"';bla%})'
On the other hand the images of P and Q in U!/U™*! under the composition
EED o ((-1)r-H72. (@EI0T)) equal
P {b,_1,...,b1, f} mod U™
and
Q — —{br_z, R ,bl,T,f} mod Um+1.

We have to compute the images of these elements under the connecting homomor-
phism

(4.12.1) UHJ U™ — HY (AL, Ky man)-

To this end, let C* := T'(Al, Cr.Ai) and Cp, = T(AL C? A |(m+1)) be the global

sections of the Cousin complexes of ICiwAl and ICiV[Akl(mH), respectively, and v :
A :

Cp,.1 — C* the natural map between them. Notice that C° = KM (k(t)) = C9, ;.
Set D® = cone(Cp, .1 — C*®); i.e. D*® is the complex sitting in degrees [—1, 1],

m
0 d ' o 1 d® 1
Coy1 —C"®C,y — C

with d=Y(a) = (a, —docm+1(a)) and d°(b,c) = d%(b) + v(c). Then D*® is quasi-
isomorphic to U /U™ (see after (I1.2))). The boundary map ([{LIZ.]]) is given
by:
1. Lift an element from U*/U™*! to Ker(d’) c C°® C}, ;.
2. Apply —m, with 7: C° @ C,ln_H — C},H_l the projection.
3. Consider the class of the resulting element modulo the image of dOCerl :
Cop1 = Cgr-
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The boundary d% is given by the tame symbols 9, along the various points z € A}..

We have
Ou({by—r,-- b1, f}) = {{b”"“’bl} € KMA(L), ifw=V(f),

0, else,

and

{br—17"'7bla%}eK7j‘\{1(L)7 lfI:V(f),
0, else.

O (—{br_1,...,01,T, f}) = {

All together we obtain B(P) =11, ({by—1,...,b1}) and B(Q) = 1 ({br—2,...,b1, 11}).
This finishes the proof. |

5. A VANISHING RESULT

Theorem 5.1. Let k be a field and X a smooth equidimensional k-scheme of di-
mension d, D an effective Cartier divisor on X such that Deq is a simple nor-
mal crossing divisor. For n > 1 and m = (mq,...,m,) € N define the divisor
Ew =1 mi-q;{0} on A , where g; : A} — A} denotes the projection to the

7

i-th factor. Denote by p : X x A™ — X the projection map and set Ey x = X X Ey,.
Then:

(1)
. 0, if m =0,
Hﬁj X x AYE(ni1),x, Z(r)) = { /

HY (X, W, ), ifm>1
(2) For alln > 2 and all m € N¢,
HGNM (X x A|(p"D + En x), Z(r)) = 0.

Proof. By Theorem B8[2), it suffices to prove the corresponding Nisnevich state-
ment of (). Therefore, we will work in the Nisnevich topology and with the
Nisnevich sheafification of the relative Milnor K-theory for the rest of the proof
and drop the index Nis everywhere. Set

Qp*D+E, = IC%A} /’C%Ag(|(p*D+Em,X)-
We have
(5.1.1) HI(AY, ’C%Aawl,x) =0, forallj.
Indeed, by Proposition 210 Qr, = i*leX, where i : X x {0} < X x Al is the
closed immersion. Therefore, the natural map

HJ(A‘I}OK:%A%() - HJ(A‘IX7QE1)
is an isomorphism for all j by homotopy invariance. Hence (B.I.1]) follows from the
long exact cohomology sequence induced by
M M

0— ’CnAﬁf\El,x — ICTM( - Qg, —0.
This gives the vanishing for m = 0 in ({J), by Theorem B8 By Theorem [LJ| we
have an exact sequence

M M - r—1
0— KT,A; — ’Cr,Ai(\El,x — W0 " — 0.

‘E(7n+1),X

Hence the statement for m > 1 in () follows from Theorem B8 and (EI.T]).
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Next we prove ([2). Notice that the general case is implied by the case n = 2.
For m € N? we have an exact sequence

HdH(IC%Ag() - Hd+1(Qp*D+Em) - Hd+2(’C%&§(|(p*D+Em,X)) - Hd+2(’C£j[A§()7

where we abbreviate H7(A%,—) by H7(—). Here, the two outer terms vanish by

homotopy invariance and the Nisnevich version of Grothendieck’s general vanishing
theorem. By Theorem B.8 we therefore have to show

d
H™ (A%, Qpp1p,) = 0.
We have an exact sequence

ICMQ ]CM2
7,A2% |(p* Drea+t B X e A
0 T Bt g g

TvAil(p*D+Em,X) TvAg(Kp*Dred‘f’Em,X,red)

Thus the statement follows from the two claims:

d+1 [ a2 ’C%Ai
(5.1.2) H % o —0.
7,A% |(p* Drea+Fm, X red)
M
5.1.3 Hd+1 A2 ICT>A§(I(p*Drcd+Em,X,rcd) —0
(5.1.3) 3, o o
TvA%{l(p*D+Em,X)

We prove the vanishing (51.2]). We do induction on the number of irreducible
components of D. First assume D = 0. If m = (0,0), there is nothing to prove. If
m = (1,0) or (0,1), then the term in (.1.2)) is equal to H4 (AL, IC%%(), by Propo-
sition 2.T0F hence it vanishes by homotopy invariance and the Nisnevich version of
Grothendieck’s general vanishing theorem. If m = (1,1), we have by Proposition
210 an exact sequence

KM,
A, Kl — 0.
T’Ag(‘E(l,l),X
Hence the vanishing of H4*1(A%, —) of the middle part follows from (EI) and
homotopy invariance as before. If D # 0, let D1 be one of its irreducible components

and write D,oq = D1 + D’, where D’ is reduced and effective. By Proposition 210
Ic]V[

2
’I‘,ADI

KM ’

TA%I [(p*(D'ND1)red+Em,Dy red)

M
0— ’Cr,Aﬁg\El,x —

M
Knz, |p* D'+ Ew x,.4

ICM

7,A% |(p* Drea+Fm, X red)

(5.1.4)

= il*

where i1 : A2 < A% is the closed immersion. We have H1(AZ KM, ) =
1 1

T,A%
1
: : d+2( A2 M _
0 by homotopy invariance and H (AD17ICTaA%)l‘(p*(D/le)redJl‘Em,Dl,red)) = 0 for

dimension reasons. This implies the vanishing H41 (A%, (5.1.4)) = 0. Hence we
are reduced to proving the vanishing (51.2]) with D replaced by D’. We conclude
by induction.

We prove the vanishing (B.1.3). Consider the sheaf

r—1._ wrfl
’ A%{l(p*D‘FEm‘X))“;V’

n,v

with the notation from §2.4.3] and define Bg;ll’n’y as in §2.4.4] with s = 0, in case
k has characteristic 0. If (p*D + Ew x). is one of the irreducible components of
p*D, set X, := D, x A'; if it is an irreducible component of En x set X, = X.

w
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Then w,’;fyl is a locally free sheaf on X, x A' and B! is a subsheaf. By Propo-

s+1n,v
.. 5 M M
sition 215 and Theorem 2.19 the sheaf IC"'yAg(I(p*Drcd"FEm,X,rcd)/IC'ﬂA%(‘(p*DJFEm,X)

is a successive extension of the sheaves w!,'/B7 | for certain s,n,v. Since

s+1ln,vo
H**2(X, x A", Bl {, ) =0, for dimension reasons, it suffices to show
(5.1.5) HYX, x AYwi ) =0.

Denote by a : X, x A' = X, and by b: X, x Al — A! the projection maps. Since
Q5.1 (log{0})(—m - {0}) = Oy, it follows directly from the definition of w ! in
4243 that there exist locally free sheaves w™! and w”~2 on X,,, possibly of rank
0, such that

r—1 ~ % r—1 * r—2

Wy oy a w Daw

We have for i =r —1,r — 2,
HH (X, x Al a*w’) = HO(AY, R¥D, (a*w?)) = k[t] @p HTH(X,,w') =0,

where the first equality follows from the Leray spectral sequence, the second from
flat base change and the vanishing holds for dimension reasons. This yields the
vanishing (510 and finishes the proof. O

Remark 5.2. Let X be an equidimensional k-scheme of dimension d and D an
effective Cartier divisor on X. By [KP15, Thm. 5.11] we have the vanishing
CH"(X x A"|(p*D + Ew),r — (d+n)) =0, for all r, all n > 2, and all m € (N>1)™.
In particular, if the assumptions of Theorem [5.1] are satisfied, the natural map

CH"(X x A™|(p*D + En),7r — (d+n)) — Hj\jjl\lﬁs"(X x A"|(p*D 4+ Ew), Z(r))
is bijective.
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