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HECKE ALGEBRA CORRESPONDENCES

FOR THE METAPLECTIC GROUP

SHUICHIRO TAKEDA AND AARON WOOD

Abstract. Over a p-adic field of odd residual characteristic, Gan and Savin
proved a correspondence between the Bernstein components of the even and
odd Weil representations of the metaplectic group and the components of the
trivial representation of the equal rank odd orthogonal groups. In this paper,
we extend their result to the case of even residual characteristic.

Introduction

Fix a non-archimedean local field k of residue characteristic p and characteristic
different from 2. Let W be a non-degenerate symplectic space over k of dimension

2n and S̃p(W ) the 2-fold metaplectic cover of Sp(W ). For an additive character

ψ of k, let ωψ be the Weil representation of S̃p(W ), which decomposes into its

even and odd constituents, ωψ = ω+
ψ ⊕ ω−

ψ . In the category of genuine, smooth

representations of S̃p(W ), let G±
ψ be the Bernstein component containing ω±

ψ .

Consider quadratic spaces V ± of dimension 2n + 1 with trivial discriminant,
where V + has the trivial Hasse invariant and V − the non-trivial one. Then SO(V +)
is the split adjoint group of type Bn and SO(V −) is its unique non-split inner form.
In the category of smooth representations of SO(V ±), let S±

0 be the Bernstein
component containing the trivial representation of SO(V ±).

Let ε be + or –. In [GS2], Gan and Savin proved an equivalence of categories
between Gε

ψ and Sε
0 assuming that p �= 2. The aim of this paper is to extend their

result to the case of even residual characteristic. We follow their general strategy
of exploiting minimal types of the Weil representation to define a Hecke algebra
Hε

ψ, showing that the category Gε
ψ is equivalent to the category of Hε

ψ-modules,
and giving an isomorphism between Hε

ψ and the standard Iwahori-Hecke algebra of

SO(V ε).
A key ingredient for extending their result is an analysis of the K-types of the

Weil representation in arbitrary residual characteristic which was carried out by
Savin and the second-named author in [SW]. We also employ the machinery of
Bushnell, Henniart, and Kutzko in [BHK] to compare the Plancherel measures
induced from the respective Hecke algebras. More explicitly, the layout of the
paper is as follows.

§1. We introduce notation and summarize some relevant background material.
§2. We describe a minimal type for an open compact subgroup and compute

the corresponding spherical Hecke algebra Hε
ψ. We give an isomorphism
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between Hε
ψ and the standard Iwahori-Hecke algebra Hε of SO(V ε). We

show that the isomorphism Hε
ψ
∼= Hε is, in fact, an isomorphism of Hilbert

algebras with involution, thus giving a coincidence of induced Plancherel
measures under suitable normalization. A corollary of this result is that
the correspondence of Hecke algebra modules preserves formal degree.

§3. We prove that the category of Hε
ψ-modules is equivalent to the category

Gε
ψ, thus giving the desired equivalence of categories Gε

ψ
∼= Sε

0. From the
theory of Plancherel measures, we deduce that this equivalence preserves
the temperedness and square-integrability of representations.

1. Preliminaries

Throughout the paper, k is a non-archimedean local field with residual charac-
teristic p; we allow for arbitrary residual characteristic but assume that the char-
acteristic of k is different from 2. Let O be the ring of integers and � a chosen
uniformizer. Denote by q the cardinality of the residue field and by e the valuation
of 2 in k. If p = 2, then e is the ramification index of 2; otherwise e = 0. Let
ψ be a non-trivial additive character of k; for convenience, we assume that ψ has
conductor 2e, i.e., that 4O is the largest additive subgroup of O on which ψ acts
trivially.

For a vector space V over k, we denote by S(V ) the Schwartz space of smooth,
compactly supported, C-valued functions on V . We denote the subspaces of even
and odd functions in S(V ) by S(V )+ and S(V )−, respectively.

1.1. The symplectic group Sp(W ). Let W be a non-degenerate symplectic space
over k of dimension 2n with basis {e1, . . . , en, f1, . . . , fn}, where 〈ei, ej〉 = 0 =
〈fi, fj〉 for all i, j and 〈ei, fj〉 = δi,j . The symplectic group Sp(W ) is the group of
invertible transformations of W which preserve the symplectic form. The decom-
position W = X + Y , where X is the span of the ei and Y is the span of the fi, is
a polarization of W .

Let WC be the C-span of the symplectic basis and sp(WC) the symplectic Lie
algebra, consisting of endomorphisms T : WC → WC such that 〈Tu, v〉+〈u, Tv〉 = 0
for all u, v ∈ WC. Let h be the diagonal Cartan subalgebra relative to the symplectic
basis and h∗ = HomC(h,C) its linear dual. The roots of sp(WC) form a root system
of type Cn, defined by

Σ = {±εi ± εj : 1 ≤ i < j ≤ n} ∪ {±2εi : 1 ≤ i ≤ n} ⊂ h∗,

where εi : h → C is given by

H =

(
a

−a

)
�→ εi(H) = ai.

We take Δ = {α1, . . . , αn} as the set of simple roots, where αn = 2εn and αi =
εi − εi+1 otherwise. This choice of simple roots decomposes Σ into positive roots
Σ+ and negative roots Σ−.

Each root α ∈ h∗ has a corresponding coroot α̌ ∈ h such that α(α̌) = 2; the
coroots form a root system of type Bn. Denote by hR the real span of the coroots.

Let Σa = {α +m : α ∈ Σ,m ∈ Z} be the set of affine roots, where α+m is the
affine functional on hR given by (α+m)(H) = α(H) +m. We take Δa = Δ∪ {α0}
to be the set of simple affine roots, where α0 = −2ε1 + 1.
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For each affine root α + m, define sα+m to be the reflection across the affine
hyperplane Pα+m = {x ∈ hR : α(x) + m = 0}. We write si = sαi

for the simple
affine reflections across the affine hyperplanes Pi = Pαi

. The affine space hR is an
apartment for Sp(W ). The chambers of the apartment are the connected compo-
nents of hR �

⋃
Pα+m. For n = 2, the root system, coroot system, and apartment

are sketched below:

h∗

α1

α2 P1

P2

P0hR

α̌1

α̌2

The Weyl group Ω is the group generated by the simple reflections s1, . . . , sn.
The affine Weyl group Ωa is the group generated by the affine simple reflections
s0, s1, . . . , sn; it is the semi-direct product Ωa = DΩ of a translation group D and
the Weyl group. Both Ω and Ωa are Coxeter groups whose braid relations are given
according to the following Coxeter diagram:

s0 s1 s2 sn
· · ·

For each root α ∈ Σ, we fix a map Φα : SL2(k) → Sp(W ) such that the images of
the unipotent upper and lower triangular matrices in SL2(k) are the root subgroups
of Sp(W ) corresponding to α and −α, respectively. For α+m ∈ Σa, we define the
map Φα+m : SL2(k) → Sp(W ) by

Φα+m

(
a b
c d

)
= Φα

(
a �mb

�−mc d

)
;

we write

xα+m(t) = Φα+m

(
1 t
0 1

)
= xα(�

mt) (t ∈ k),

wα+m(t) = Φα+m

(
0 t

−t−1 0

)
= wα(�

mt) (t ∈ k×),

hα+m(t) = Φα+m

(
t 0
0 t−1

)
= hα(t) (t ∈ k×).

We take the element wαi
(1) as a representative in Sp(W ) of the simple affine

reflection si. We will frequently use the same notation to refer to an element
w = si1 · · · sir in Ωa and its representative w = wαi1

(1) · · ·wαir
(1) in Sp(W ).

1.2. Open compact subgroups of Sp(W ). For 0 ≤ i ≤ n, we define the lattice

Li = SpanO{e1, . . . , en, �f1, . . . , �fi, fi+1, . . . , fn}.

The stabilizer Ki = {g ∈ Sp(W ) : gLi ⊆ Li} is a maximal open compact subgroup
of Sp(W ); it is the group generated by those Φαj

(O) for which j �= i; it is also the
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stabilizer of the point zi in the apartment, where

z0 = (0, 0, . . . , 0), z1 = ( 12 , 0, . . . , 0), . . . , zn = ( 12 ,
1
2 , . . . ,

1
2 ).

In this way, each Ki corresponds to the vertex zi in the ‘standard’ apartment;
hence, every maximal open compact subgroup of Sp(W ) is conjugate to one of the
Ki; cf. [Ti, §3.2].

The intersection of K0, . . . ,Kn is an Iwahori subgroup I. The unipotent radical
of I is generated by the simple affine root groups Φαi

(SL2(O)). In this way, the
Iwahori subgroup I corresponds to the chamber in the apartment which is bounded
by the hyperplanes P0, . . . , Pn; in addition, the vertices of the chamber are precisely
z0, . . . , zn. The rank 2 picture is as follows:

z0
z1

z2

P2

P1P0

The double cosets in I \Sp(W )/I are parameterized by the affine Weyl group;
namely, each I-double coset is of the form IwI for some w ∈ Ωa. The number of
I-single cosets in IwI is

[IwI : I] = q�(w),

where � is the length function on Ωa.

1.3. Metaplectic group and the Weil representation. For a polarizationW =
X + Y , the Schwartz space S(Y ) realizes the unique (up to isomorphism) repre-
sentation ρψ of the Heisenberg group with the central character ψ. Via the action
of Sp(W ) on the Heisenberg group, ρψ gives a projective representation of Sp(W )
which lifts to a linear representation ωψ, called the Weil representation, of the
central extension Sp′(W ) of Sp(W ) given by

1 → C× → Sp′(W ) → Sp(W ) → 1.

It is a theorem of Weil that the derived group of Sp′(W ) is a 2-fold cover S̃p(W )

of Sp(W ) and that ωψ is a faithful representation of S̃p(W ); cf. [We, IV.42-43],
[MVW, 2.II.1].

For a subgroup H ⊆ Sp(W ), we denote its preimage in S̃p(W ) by H̃ . For each

root α, the element xα(t) canonically lifts to an element x̃α(t) in S̃p(W ). We may
therefore define lifts of wα(t) and hα(t) via the formulas

w̃α(t) = x̃α(t)x̃−α(−t−1)x̃α(t),

h̃α(t) = w̃α(t)w̃α(−1).

We will take w̃αi
(1) for a representative in S̃p(W ) of the affine simple reflection

si. We will continue to abuse notation when referring to an element of Ωa or its

representatives in either Sp(W ) or S̃p(W ).
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Explicitly, the Weil representation on S(Y ) is given by[
x̃(a)φ

]
(y) = ψ(tyay)φ(y),[

h̃(a)φ
]
(y) = βa| det a|1/2φ(ty),[

w̃φ
]
(y) = γ1φ̂(y).

Here, x̃(a), h̃(a), and w̃ are respective lifts of(
1 a
0 1

)
,

(
a 0
0 ta−1

)
, and

(
0 1
−1 0

)
;

the Fourier transform of φ is defined by

φ̂(y) =

∫
Y

ψ(2 tuy)φ(u)du;

and βa and γ1 are specific 8th roots of unity, whose precise value plays no role in
the current investigation.

Under the Weil representation ωψ, the (positive) root groups act as follows:[
x̃εi−εj (t)φ

]
(y) = φ(y + tyifj),[

x̃εi+εj (t)φ
]
(y) = ψ(2tyiyj)φ(y),[

x̃2εi(t)φ
]
(y) = ψ(ty2i )φ(y).

1.4. Minimal types of the Weil representation. Realized as a representation
of S(Y ), the Weil representation ωψ decomposes into the sum of even and odd
functions, ω+

ψ ⊕ ω−
ψ . We consider the lattices Li = Li ∩ Y . As computed in [SW],

K̃i acts on τi = S(L0/2Li), viewed naturally as a subspace of S(Y ). The space τ0
consists entirely of even functions and is an irreducible K̃0-module. Otherwise, as a

K̃i-module, τi decomposes as τ+i ⊕ τ−i . Each τ±i admits a tensor product structure,

τ±i = S(Of1/2�Of1)
± ⊗ · · · ⊗ S(Ofi/2�Ofi)

±

⊗ S(Ofi+1/2Ofi+1)⊗ · · · ⊗ S(Ofn/2Ofn),

hence the dimension of τ±i is 1
2q

en(qi ± 1). We note that τi ⊆ τi+1 for 0 ≤ i < n.
We also note that, for 1 ≤ i ≤ n − 1, the simple affine reflection si essentially

acts on φ ∈ S(Y ) by interchanging the ith and (i+1)th components; the reflection
sn acts essentially via Fourier transform on the nth component; the reflection s0
acts on the first component φ1 of φ as[

s0φ1

]
(y1) = cφ̂1(�

−1y1),

for some constant c.
Lastly, we note that the Iwahori group Ĩ = K̃0 ∩ · · · ∩ K̃n is contained in each

K̃i, hence it preserves each of the minimal types τ±i . Similarly, the group J̃ =

K̃1 ∩ · · · ∩ K̃n is contained in K̃i for i �= 0, so it preserves the minimal type τ±i for
i �= 0.

We record these observations in the following lemma.

Lemma 1.1. The Iwahori group Ĩ preserves τ±i for 0 ≤ i ≤ n, and the group J̃
preserves τ±i for 1 ≤ i ≤ n. Moreover,

(1) the elements s1, . . . , sn preserve τ0 while s0 inflates τ0 to τ+1 ;
(2) the elements s2, . . . , sn preserve τ−1 while s1 inflates τ−1 to τ−2 .



1106 SHUICHIRO TAKEDA AND AARON WOOD

1.5. Spherical Hecke algebras. We summarize some generalities on Hecke alge-
bras, most of which may be found in [GS2].

Let G be a totally disconnected topological group and K ⊆ G an open compact
subgroup; fix a Haar measure dg on G. For an irreducible, finite-dimensional repre-
sentation (σ, Vσ) of K, let (σ∗, V ∗

σ ) be its contragredient representation and define
the σ-spherical Hecke algebra by

H(G�K;σ)

=

{
f : G → End(V ∗

σ ) :
f is smooth and compactly supported,
f(k1gk2) = σ∗(k1)f(g)σ

∗(k2), for ki ∈ K, g ∈ G

}
;

it is an algebra under convolution with an identity element which we denote 1σ.
For a smooth representation (π, Vπ) of G, consider the space (Vπ ⊗ V ∗

σ )
K of

K-fixed vectors in Vπ ⊗ V ∗
σ ; this space admits a natural action of H(G�K;σ) by

π(f)(v ⊗ e) =

∫
G

π(g)v ⊗ f(g)e dg,

where v ⊗ e ∈ (Vπ ⊗ V ∗
σ )

K and f ∈ H(G�K;σ).
Let Γ be an open compact subgroup of G containing K; assume that the index

[Γ : K] is finite. We consider H(Γ�K;σ) as a finite-dimensional subalgebra of
H(G�K;σ) via

H(Γ�K;σ) = {f ∈ H(G�K;σ) : supp(f) ⊆ Γ}.

We have a natural isomorphism L : H(Γ�K;σ)
∼ ��EndΓ(Ind

Γ
K(σ∗)) given by

(L(f)φ)(g) =

∫
Γ

f(h)φ(h−1g) dh

for f ∈ H(Γ�K;σ), φ ∈ IndΓK(σ∗), and g ∈ Γ.
Suppose that (π, Vπ) is an irreducible, smooth, finite-dimensional representation

of Γ such that (Vπ⊗V ∗
σ )

K �= 0. Then (Vπ⊗V ∗
σ )

K is a simple H(Γ�K;σ)-module via
the action ofH(G�K;σ). Now assumeH(Γ�K;σ) is commutative. Then (Vπ⊗V ∗

σ )
K

is 1-dimensional, and the action of H(Γ�K;σ) factors through a maximal ideal
m ⊆ H(Γ�K;σ). Moreover

IndΓK(σ∗)/
(
L(m) · IndΓK(σ∗)

)
∼= π∗.

Therefore if (π1, V1), . . . , (πl, Vr) are the irreducible representations (up to isomor-
phism) of Γ such that (Vi ⊗ V ∗

σ )
K �= 0, then we have

IndΓK(σ∗) ∼= π∗
1 ⊕ · · · ⊕ π∗

r .

For each f ∈ H(Γ�K;σ), the trace of L(f) is λ1d1 + · · ·+ λrdr, where di = dimVi

and λi = πi(f). If f is not supported on K, then the trace of L(f) is 0. The case
of r = 2 is summarized by the following lemma.

Lemma 1.2. Suppose that dimH(Γ�K;σ) = 2 with T ∈ H(Γ�K;σ) not supported
on K. Let (πi, Vi), for i = 1, 2, be the two irreducible representations (up to iso-
morphism) of Γ such that (Vi ⊗ V ∗

σ )
K �= 0. Write di = dimVi and λi = πi(T ).

Then

(1) λ1d1 + λ2d2 = 0;

(2) the dimension of IndΓK(σ∗) is d = d1 + d2;
(3) the minimal polynomial of T is (T − λ1)(T − λ2) = 0.
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For the groups and representations we will consider (specifically, representations
on C-vector spaces of connected reductive k-groups and their central extensions),
there is additional structure on H(G�K;σ), namely the ∗-operation, f∗(g) =

f(g−1), and the trace operation, tr(f) = f(1). Following [BHK, §4.1], H(G�K;σ)
is a normalized Hilbert algebra with involution f �→ f∗ and scalar product

[f1, f2] =
vol(K)

dim σ
tr(f∗

1 f2).

This structure yields a Plancherel formula on H(G�K;σ): there is a positive Borel
measure μσ on the C∗-algebra completion C∗(K,σ) of H(G�K;σ) such that

[f, 1σ] =

∫
̂C∗(K,σ)

trπ(f) dμ̂σ(π).

Note that μσ depends on the chosen Haar measure of G.
We now consider this situation for two such groups, G1, G2. For i = 1, 2, fix

an open compact subgroup Ki ⊆ Gi, an irreducible smooth representation σi of

Ki, and a Haar measure μi of Gi. Let μ̂i be the Plancherel measure on Ĝi with
respect to the Haar measure μi; following the notation of [BHK] we denote by

rĜi the support of μ̂i. We write rĜi(σi) for the subspace of rĜi consisting of the
representations π for which (π ⊗ σ∗

i )
Ki �= 0.

From [BHK, §5.2], if we have an isomorphism of Hecke algebras

α : H(G1�K1;σ1) → H(G2�K2;σ2)

such that, for all f ∈ H(G1�K1;σ1),

(1) α(f∗) = α(f)∗, and
(2) tr(f) = 0 implies tr

(
α(f)

)
= 0,

then it is an isomorphism of Hilbert algebras. We then apply [BHK, Cor. C, p. 57].

Lemma 1.3. An isomorphism

α : H(G1�K1;σ1) → H(G2�K2;σ2)

of Hilbert algebras induces a homeomorphsim

α̂ : rĜ2(σ2) → rĜ1(σ1)

such that
μ1(K1)

dim σ1
μ̂1(α̂(S)) =

μ2(K2)

dimσ2
μ̂2(S)

for any Borel subset S of rĜ2(σ2).

In the later sections, we will apply this lemma with G1 = S̃p(W ). Strictly speak-
ing, the groups considered in [BHK] are connected, reductive k-groups; however,
there is no obstruction in extending this result to the metaplectic group.

2. Hecke algebra isomorphisms

In this section, we define our Hecke algebras H±
ψ of S̃p(W ) and show that they

are isomorphic to the affine Hecke algebras H± of SO(V ±).
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2.1. Hecke algebra of SO(V +). Let V + be a quadratic space of dimension 2n+1
with trivial discriminant and trivial Hasse invariant; then SO(V +) is a split, adjoint,
orthogonal group of type Bn. Let I

+ and Ω+
a denote its Iwahori subgroup and affine

Weyl group, respectively. The standard Iwahori-Hecke algebra is the set of smooth,
compactly-supported I+-bi-invariant functions on SO(V +),

H+ = H(SO(V +)�I+;1).

For each w ∈ Ω+
a , take Uw to be the characteristic function on the double coset

I+wI+. The collection {Uw} forms a basis of H+ as a vector space. As an algebra,
H+ is generated by elements U0, . . . , Un, and σ, where Ui = Uwi

for wi a simple
affine reflection in Ω+

a , and σ is the outer automorphism which exchanges the nodes
on the Coxeter diagram corresponding to U0 and U1. The quadratic relations for
the Ui are

(Ui + 1)(Ui − q) = 0,

and the braid relations are given by the affine diagram of type Bn:

U0

U1

U2 Un

· · ·σ

For details, see [IM, §3].
Noting that σ2 = 1 and σU1σ = U0, we see that U0 is abstractly unnecessary

as a generator. Hence, H+ is generated by σ, U1, . . . , Un subject to the quadratic
relations,

(σ + 1)(σ − 1) = 0 and (Ui + 1)(Ui − q) = 0,

and the braid relations given by the affine diagram of type Cn:

σ U1 U2 Un

· · ·

2.2. τ0-spherical Hecke algebra of S̃p(W ). The restriction of the minimal type

τ0 from K̃0 to the Iwahori subgroup Ĩ remains irreducible, as shown in [SW]. In
this section, we compute the τ0-spherical Hecke algebra

H+
ψ = H(S̃p(W )�Ĩ; τ0).

Theorem 2.1. The Hecke algebra H+
ψ is generated by invertible elements T0, T1, . . . ,

Tn, satisfying the quadratic relations

(T0 + 1)(T0 − 1) = 0 and (Ti + 1)(Ti − q) = 0 for i �= 0,

and the braid relations of the affine diagram of type Cn:

T0 T1 T2 Tn

· · ·

In particular, H+
ψ is abstractly isomorphic to H+.

Furthermore, this isomorphism is an isomorphism of Hilbert algebras; and, if the

Haar measures on S̃p(W ) and SO(V +) are respectively normalized by

vol(Ĩ) = dim(τ0) = qen = |2|−n and vol(I+) = 1,

then the Plancherel measures on H+
ψ and H+ coincide.
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Proof. We prove this theorem by investigating the structure of some 2-dimensional
Hecke subalgebras. For 0 ≤ i ≤ n, we define

Ĩi = Ĩ ∪ ĨsiĨ =
⋂
j �=i

K̃j .

In the apartment, Ĩi corresponds to the wall which separates the fundamental cham-
ber I from the chamber siIs

−1
i or, equivalently, to the wall whose vertices are Kj

with j �= i. The rank 2 picture is as follows:

s2Is
−1
2

s1Is
−1
1 s0Is

−1
0

I
K0

K1

K2

We take H+
ψ,i to be the subalgebra consisting of elements supported on Ĩi; that

is,

H+
ψ,i = H(Ĩi�Ĩ; τ0).

This subalgebra is at most 2-dimensional and is isomorphic to End
˜Ii

(
Ind

˜Ii
˜I
(τ∗0 )

)
; it

is exactly 2-dimensional if and only if the induced representation is reducible.

We define τ0,i to be the subspace of S(Y ) generated by the action of Ĩi on τ0;
by Lemma 1.1,

τ0,i =

{
τ0 if i �= 0,

τ+1 if i = 0.

Working in the dual setting, Frobenius reciprocity guarantees that τ0,i may be

realized as a submodule of Ind
˜Ii
˜I
(τ0), so it suffices to verify that it is a submodule

of strictly smaller dimension. We note that

d = dim
(
Ind

˜Ii
˜I
(τ0)

)
= dim(τ0) · [Ĩi : Ĩ] = qen(q + 1)

and

d1 = dim(τ0,i) =

{
qen if i �= 0,
1
2q

en(q + 1) if i = 0,

hence Ind
˜Ii
˜I
(τ∗0 ) is indeed reducible.

SinceH+
ψ,i is 2-dimensional, it contains an element Ti which is supported precisely

on ĨsiĨ. In order to normalize Ti and to compute its quadratic relation, we consider
the decomposition

Ind
˜Ii
˜I
(τ∗0 ) = π∗

1 ⊕ π∗
2 ,
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where π∗
1 = τ∗0,i has dimension d1 and π∗

2 has dimension

d2 = d− d1 =

{
qen+1 if i �= 0,
1
2q

en(q + 1) if i = 0.

We normalize Ti to act by λ2 = −1 on π∗
2 and by λ1 on π∗

1 . Using Lemma 1.2, we
have

λ1 =
d2
d1

=

{
q if i �= 0,

1 if i = 0,

giving the desired quadratic relation (Ti + 1)(Ti − λ1) = 0. The invertibility of Ti

follows from its quadratic relation; explicitly,

T−1
0 = T0 and T−1

i = q−1(Ti − q + 1) for i �= 0.

Suppose that we have a braid relation

sisj · · · = sjsi · · ·
in Ωa. Then each of the Hecke algebra elements TiTj . . . and TjTi . . . is supported

on the same Ĩ-double coset. From the normalization of the Ti, each of these elements

must act on (τ0 ⊗ τ∗0 )
˜I in the same way. Whence

TiTj · · · = TjTi · · · .
Therefore, the braid relations for the Ti are the same as those for the si, so any
minimal expression w = si1 · · · sir defines a Hecke algebra element Tw = Ti1 · · ·Tir

supported on ĨwĨ. From the quadratic and braid relations, we have an explicit
isomorphism H+

ψ → H+ given by

T0 �→ σ and Ti �→ Ui for i �= 0.

We now show that H+
ψ

∼= H+ is an isomorphism of Hilbert algebras. As each
Hecke algebra is supported on its respective affine Weyl group, we have that

tr(Tw) =

{
1 if w = 1,

0 if w �= 1,
and tr(Uw) =

{
1 if w = 1,

0 if w �= 1,

so the trace-zero property is clearly preserved. For w ∈ Ω+
a , the I+-double cosets

of w and w−1 are equal, so the ∗-operation in H+ satisfies U∗
i = Ui, and hence,

U∗
w = Uw−1 . In H+

ψ , we have that T ∗
i and Ti are both supported on ĨsiĨ, so T ∗

i

acts on τ∗0 by a constant. For φ ∈ τ∗0 , [φ, T
∗
i φ] = [Tiφ, φ], so T ∗

i and Ti must act
by the same constant. Thus, T ∗

i = Ti and T ∗
w = Tw−1 , so the ∗-operation is also

preserved.
From the normalization given in the statement of the theorem, the preservation

of the Plancherel measures follows immediately from Lemma 1.3. �

Corollary 2.2. The isomorphism H+
ψ

∼= H+ preserves the formal degrees of the
Steinberg representations of the respective Hecke algebras.

Remark. If p �= 2, then the proof for the isomorphism H+
ψ

∼= H+ is essentially

the one given in [GS2]. One notable difference is in the specific normalization of
Hecke operators, which is always a delicate issue. In [GS2], they work in the central

extension S̃p(W )8 of Sp(W ) by the 8th roots of unity and normalize the generating
Hecke operators to act on certain lifts of affine reflections in a specified way. We
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have opted to normalize the generating Hecke operator Ti to act by −1 on the
irreducible representation not containing the minimal type τ∗0 .

Remark. The Steinberg representation of a Hecke algebra is defined by having
each of the generating Hecke operators act by −1. In [GS2], they show directly
that the formal degrees of the respective Steinberg representations coincide. This
computation is avoided here because it follows from the more general coincidence
of the induced Plancherel measures. Indeed, the implementation of the theory of
induced Plancherel measures is the other notable difference between this proof and
that of [GS2].

Remark. Assuming k = Q2, an isomorphic Hecke algebra is constructed in [Wo]

by finding a 1-dimensional type for a subgroup of Ĩ. This construction extends to
the case where k is an unramified extension of Q2 but does not appear to work for
ramified extensions.

2.3. Hecke algebra of SO(V −). For the remainder of the section, we suppose that
n ≥ 2. Let V − be a quadratic space of dimension 2n+ 1 with trivial discriminant
and non-trivial Hasse invariant; then SO(V −) is the non-split inner form of SO(V +).
Let I− be the Iwahori subgroup of SO(V −), which is the pointwise stabilizer of a
fundamental chamber in its Bruhat-Tits building, and Ω−

a its affine Weyl group,
which is generated by reflections s−1 , . . . , s

−
n subject to the braid relations of the

affine diagram of type Cn−1:

s−1 s−2 s−3 s−n

· · ·

The standard Iwahori-Hecke algebra is the set of smooth, compactly-supported
I−-bi-invariant functions on SO(V −),

H− = H(SO(V −)�I−;1).

For each w ∈ Ω−
a , let Uw be the characteristic function on the double coset

I−wI−. The collection {Uw} forms a basis of H− as a vector space. As an algebra,
H− is generated by U1, . . . , Un, where Ui = Us−i

. These generators satisfy the

quadratic relations,

(U1 + 1)(U1 − q2) = 0 and (Ui + 1)(Ui − q) = 0 for i �= 1,

and the same braid relations as the s−i . See [GS2] or [Ti] for details.

2.4. τ−1 -spherical Hecke algebra of S̃p(W ). We define the open compact sub-

group J̃ ⊆ S̃p(W ) to be the full inverse image of

J =
⋂
j �=0

Kj = I ∪ Is0I,

and consider the restriction of τ−1 to J̃ . The group J̃ contains the metaplectic
preimage of the subgroup

Φ−2ε1+1

(
SL2(O)

)
× In−1,

where In−1 is an Iwahori subgroup of the symplectic group of type Cn−1. From
[SW], each component of this direct product acts irreducibly on the corresponding
component of the tensor product

τ−1 = S(O/2�O)− ⊗ S(On−1/2On−1),
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hence the restriction of τ−1 to J̃ must remain irreducible. In this section, we compute
the τ−1 -spherical Hecke algebra

H−
ψ = H(S̃p(W )�J̃ ; τ−1 ).

We define Ω′
a = 〈s′1, . . . , s′n〉 ⊆ Ωa, where

s′i =

{
si if i �= 1,

s1s0s1 if i = 1.

The reflection s′1 corresponds to the affine reflection s−2ε2+1, hence Ω
′
a is isomorphic

to the affine Weyl group of type Cn−1, i.e., to Ω−
a ; explicitly, Ω

′
a acts as the affine

Weyl group of type Cn−1 on the hyperplane P0.
The proof of the following lemma is a slight variation on that of [GS2, Lemma

10].

Lemma 2.3. The support of H−
ψ is contained in J̃Ω′

aJ̃ .

Proof. Fix f ∈ H−
ψ and σ ∈ Ωa. Write σ = as, where s ∈ Ω and a is translation by

(a1, . . . , an). As J = I ∪ Is0I, we have that σ and s0σ represent the same J̃-double
coset, so it suffices to show that f(σ) �= 0 implies that either σ or s0σ is in Ω′

a.
The element σ conjugates the root group of α0 to the root group of β+m, where

β = s−1(−2ε1) is a long root and m = 1−2a1; in particular, σ−1x̃α0
(4)σ = x̃β+m(t)

for some t ∈ 4O.
From the description of the Weil representation in section 1.3, we derive the

following criteria for long roots α:

x̃α(u) ∈ ker τ−1 if and only if

{
u ∈ 4O if α �= −2ε1,

u ∈ 4�2O if α = −2ε1.

Therefore, σ or s0σ is in Ω′
a if and only if β +m �= ±α0.

Let t ∈ 4O be such that

σ−1x̃α0
(4)σ = x̃β+m(t).

First suppose that m > −1 and β �= −2ε1 or that m > 1 and β = −2ε1. Then
x̃β+m(t) ∈ ker τ−1 and x̃α0

(4) /∈ ker τ−1 , hence

f(σ) = f(σ)(τ−1 )∗
(
x̃β+m(t)

)
= f

(
σx̃β+m(t)

)
= f

(
x̃α0

(4)σ
)
= (τ−1 )∗

(
x̃α0

(4)
)
f(σ),

giving that f(σ) = 0.
Now suppose that m < 1 and β �= 2ε1 or that m < −1 and β = 2ε1. Then

x̃−β−m(t) ∈ ker τ−1 and x̃−α0
(4) /∈ ker τ−1 , hence

f(σ) = f(σ)(τ−1 )∗
(
x̃−β−m(t)

)
= f

(
σx̃−β−m(t)

)
= f

(
x̃−α0

(4)σ
)
= (τ−1 )∗

(
x̃−α0

(4)
)
f(σ),

giving that f(σ) = 0.
In sum, if f(w) �= 0, then β +m must equal ±α0, and the lemma is proved. �

Theorem 2.4. The Hecke algebra H−
ψ is generated by invertible elements T1, . . . , Tn,

satisfying the quadratic relations

(T1 + 1)(T1 − q2) = 0 and (Tn + 1)(Tn − q) = 0 for i �= 0,
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and the braid relations of the affine diagram of type Cn−1 :

T1 T2 T3 Tn

· · ·

In particular, H−
ψ is abstractly isomorphic to H−.

Furthermore, this isomorphism is an isomorphism of Hilbert algebras and, if the

Haar measures on S̃p(W ) and SO(V −) are respectively normalized by

vol(J̃) = dim τ−1 = 1
2q

en(q − 1) and vol(I−) = 1,

then the Plancherel measures on H−
ψ and H− coincide.

Proof. This proof is similar to the proof of Theorem 2.1. We investigate the struc-
ture of some 2-dimensional Hecke subalgebras in order to see that H−

ψ is supported

exactly on J̃Ω′
aJ̃ . For 1 ≤ i ≤ n, we define J̃i to be the group generated by J̃ and

J̃s′iJ̃ ; in particular, J̃i is the full inverse image of

Ji =
⋂

j �=0,i

Kj .

The group J corresponds to the facet of the fundamental chamber with vertices
K1, . . . ,Kn, i.e., the facet that lies in the hyperplane P0. The conjugate s′iJ(s

′
i)

−1

corresponds to a facet in the same hyperplane. The figure on the left depicts the
apartment in rank 2; the figure on the right depicts the hyperplane P0 in the rank
3 case.

K0

K1

K2

J

s2Js
−1
2

s′1J(s
′
1)

−1

P0

s3Js
−1
3

s2Js
−1
2 s′1J(s

′
1)

−1

J
K1

K2

K3

If i �= 1, then J̃i = J̃ ∪ J̃siJ̃ , hence [J̃i : J̃ ] = q + 1; for the case i = 1, we note

that J̃1 is the union of those ĨwĨ for which w is in the group generated by s0 and
s1, hence

[J̃1 : J̃ ] =
[J̃1 : Ĩ]

[J̃ : Ĩ]
=

1 + 2q + 2q2 + 2q3 + q4

1 + q
= 1 + q + q2 + q3.

We take H−
ψ,i to be the subalgebra of H−

ψ consisting of elements supported on

J̃i; that is,

H−
ψ,i = H(J̃i�J̃ ; τ−1 ).

This subalgebra is at most 2-dimensional and is isomorphic to End
˜Ji

(
Ind

˜Ji

˜J
(τ−1 )∗

)
.

Let τ−1,i be the subspace of S(Y ) generated by the action of J̃i on τ−1 . We use

Lemma 1.1 repeatedly to compute τ1,i. First, we note that J̃ preserves τ−i for
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1 ≤ i ≤ n, so it suffices to consider the action of s′i on τ−1 . Next, if i ≥ 2, then
s′i = si preserves τ

−
1 , hence τ−1,i = τ−1 .

Lastly, we claim that τ−1,1 = τ−2 . Since s′1 = s1s0s1, we need to consider the

action of s1 and s0. By the same lemma, s1 inflates τ−1 to τ−2 . Hence, it remains
to show that, if φ ∈ τ−2 , then s0φ ∈ τ−2 . For such φ, we recall from section 1.3 that
the first component φ1 is in S(O/2�O)− and that s0 acts on φ1 via[

s0φ1

]
(y1) = cφ̂1(�

−1y1).

Since the Fourier transform maps S(O/2�O)− to S(�−1O/2O)−, the first com-
ponent of s0φ remains in S(O/2�O)− and the claim is proved.

To see that H−
ψ,i is exactly 2-dimensional, we again work in the dual setting and

note that

d1 = dim τ−1,i =

⎧⎨⎩dim(τ−1 ) if i �= 1,

dim(τ−2 ) if i = 1,
=

⎧⎨⎩
1
2q

en(q − 1) if i �= 1,

1
2q

en(q2 − 1) if i = 1,

is strictly smaller than

d = dim
(
Ind

˜Ji

˜J
(τ−1 )

)
= dim(τ−1 ) · [J̃i : J̃ ] =

⎧⎨⎩
1
2q

en(q2 − 1) if i �= 1,

1
2q

en(q4 − 1) if i = 1.

Hence, for 1 ≤ i ≤ n, there exists Ti ∈ H−
ψ supported precisely on J̃siJ̃ . We

consider the decomposition

Ind
˜Ji

˜J
(τ−1 )∗ = π∗

1 ⊕ π∗
2 ,

where π∗
1 = (τ−1,i)

∗ has dimension d1 and π∗
2 has dimension

d2 = d− d1 =

⎧⎨⎩
1
2q

en(q2 − q) if i �= 1,

1
2q

en(q4 − q2) if i = 1.

We normalize Ti to act by λ2 = −1 on π∗
2 and by λ1 on π∗

1 . Using Lemma 1.2, we
have

λ1 =
d2
d1

=

{
q if i �= 1,

q2 if i = 1,

giving the desired quadratic relation (Ti + 1)(Ti − λ1) = 0. The invertibility of Ti

follows from its quadratic relation; explicitly, T−1
i = λ−1

1 (T − λ1 + 1).

The proof of the braid relations mimics the proof of Theorem 2.1 with J̃ instead

of Ĩ, τ−1 instead of τ0, and Ω′
a instead of Ωa. We note that computations involving

J̃-double cosets involve a weighted length function �′ on Ω′
a, defined by setting

�′(s′1) = 3 and �′(s′i) = 1 if i �= 1. The details of this length function are contained
in [GS2, Prop. 1]; it suffices to mention here that

(1) [JwJ : J ] = q�
′(w) for all w ∈ Ω′

a.
(2) If w1, w2 ∈ Ω′

a satisfy �′(w1) + �′(w2) = �′(w1w2), then Jw1J · Jw2J =
Jw1w2J .
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For a minimal expression w = s′i1 · · · s
′
ir

in Ω′
a, the braid relations in H−

ψ allow
us to define a canonical Hecke operator Tw = Ti1 · · ·Tir supported precisely on the

double coset J̃wJ̃ . From the quadratic and braid relations, we have the explicit
isomorphism H−

ψ → H− given by Ti �→ Ui.

As in the proof of Theorem 2.1, one can show that H−
ψ

∼= H− as Hilbert alge-
bras, hence Lemma 1.3 will give the coincidence of Plancherel measures, under the
prescribed normalization. �

Corollary 2.5. The isomorphism H−
ψ

∼= H− preserves the formal degrees of the
Steinberg representations of the respective Hecke algebras.

Remark. Let ε be + or −. Even for a fixed character ψ, the isomorphism Hε
ψ
∼= Hε

constructed in these two sections is far from unique: the Hecke algebras admit
many inner automorphisms which preserve the quadratic and braid relations of the
generators.

Remark. These two Hecke algebra isomorphims may be constructed using additive
characters of any conductor; we chose the conductor 2e for its convenience. For an
even conductor, the method of construction would essentially go unchanged. For
an odd conductor, different minimal types from [SW] would be employed. What
follows is a very brief summary of the relevant details.

Consider an additive character ψ′ given by ψ′(t) = ψ(�−ct). This new character
has conductor 2e + c; that is, 4�cO is the largest subgroup of k on which ψ′ acts
trivially. The parity of c is important, so we write c = 2k + δ, where δ is 0 or 1,
and we define the diagonal matrix gc to have �k+δ in the first n entries and �−k

in the last n entries.
The conjugation, x �→ xc = g−1

c xgc, is an automorphism of Sp(W ). If δ = 0, gc is
an element of the affine Weyl group and conjugation by gc is an inner automorphism.
If δ = 1, gc is not an element of the affine Weyl group (or even of the symplectic
group!) and conjugation by gc is an outer automorphism. We write Gc = g−1

c Ggc
for any subgroup G of Sp(W ) and G̃c for its inverse image in S̃p(W ). In the
apartment, conjugation by gc corresponds to translation by czn, so the fundamental
chamber I with vertices K0, . . . ,Kn is translated to the chamber Ic with vertices
K0,c, . . . ,Kn,c. If δ = 0, then Ki,c is conjugate in Sp(W ) to Ki. If δ = 1, then Ki,c

is conjugate in Sp(W ) to Kn−i. For any δ, Ic is conjugate in Sp(W ) to I. The rank
2 picture is as follows:

I

I1

I2

K0

K2

K1

K0,1

K2,1

K1,1

K0,2

K2,2

K1,2
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If we follow conjugation by the Weil representation ωψ, we get a Weil represen-
tation ωψ,c; in particular,

ωψ,c

(
x̃(a)

)
= ωψ

(
x̃(�−ca)

)
,

ωψ,c

(
h̃(a)

)
= ωψ

(
h̃(a)

)
,

ωψ,c

(
w̃
)
= ωψ

(
w̃(�c)

)
,

where w̃(�c) is a lift of g−1
c wgc. Some straightforward computations reveal that

ωψ,c = ωψ′ :

S̃p(W ) S̃p(W )

GL(S(Y ))

gc

ωψ′ ωψ,c

We note that x ∈ Sp(W ) stabilizes a lattice L if and only if xc stabilizes g−1
c L.

For convenience, we write Li,c = g−1
c Li and Li,c = Li,c ∩ Y .

For δ = 0, the space τi,c = S(L0,c/2Li,c) is a type for K̃i,c. It is easily checked
that τi,c is isomorphic to τi. The group Jc = K1,c ∩ · · · ∩ Kn,c is isomorphic to
J = K1 ∩ · · · ∩Kn.

For δ = 1, the space τi,c = S(Li,c/2�L0,c) is a type for K̃i,c. It is easily checked
that τi,c is isomorphic to τn−i. The group Jc = K1,c ∩ · · · ∩Kn,c is isomorphic to
K0 ∩ · · · ∩Kn−1.

In either case, we build the two Hecke algebras

H+
ψ,c = H(S̃p(W )�Ĩc; τ0,c) and H−

ψ,c = H(S̃p(W )�J̃c; τ
−
1,c).

The same sort of geometry of the apartment employed in the previous sections
will yield the existence of generators of H±

ψ,c with the same quadratic and braid

relations as H±
ψ .

The curious reader is referred to [GS2], where Gan and Savin use an odd con-
ductor in their computation of H−

ψ under the assumption that p �= 2.

3. Equivalence of categories between G±
ψ and S±

0

In the category of smooth genuine representations of S̃p(W ), let G±
ψ be the Bern-

stein component containing the even/odd Weil representation ω±
ψ . In the category

of smooth representations of SO(V ±), let S±
0 be the Bernstein component contain-

ing the trivial representation.
We will prove our main theorem, namely that there is an equivalence of categories

between Gε
ψ and Sε

0, where ε is + or −. Our proof essentially follows that of [GS2].

3.1. Equivalence between G+
ψ and S+

0 . Let U (resp. U−) be the unipotent

radical in Sp(W ) generated by positive (resp. negative) root groups. Let B̃ =

T̃U ⊆ S̃p(W ) be the preimage of the Borel subgroup B = TU of Sp(W ). (Recall

that the unipotent radical U splits in S̃p(W ).)
An element t of the maximal torus T may be expressed uniquely as

t = (t1, . . . , tn) = h2ε1(t1) · · ·h2εn(tn),
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hence we have a canonical lift of t given by

t̃ = h̃2ε1(t1) · · · h̃2εn(tn).

With this convention, multiplication in T̃ is given by

t̃ · ũ = (t, u) t̃u =
n∏

i=1

(ti, ui) h̃2εi(tiui),

where the cocycle (t, u) ∈ {±1} is the product of Hilbert symbols (ti, ui) on k. Note
that multiplication in T is commutative.

Recalling the action of T on Y by ty = (t1y1, . . . , tnyn), the action of t̃ on S(Y )
is given by

t̃φ(y) = βt| det t|
1/2φ(ty),

where βt is a 4th root of unity satisfying βtβu = (t, u)βtu.

Given a character χ = (χ1, . . . , χn) on T , we define a genuine character χ̃ on T̃
by

χ̃( t̃ ) = χ(t)βt.

We extend this character trivially to all of B̃ and define I(χ̃) to be the normalized

induced representation Ind
˜Sp(W )
˜B

χ̃. By Frobenius reciprocity,

(3.1) Hom
˜Sp(W )

(π, I(χ̃)) ∼= Hom
˜T (πU , χ̃),

where π is any smooth representation of S̃p(W ) and πU is the normalized Jacquet

module with respect to the Borel B̃.

Lemma 3.2. The Bernstein component G+
ψ is precisely the component whose irre-

ducible representations are submodules of I(χ̃) for some unramified character χ.

Proof. The functional l : S(Y )+ → C defined by l(φ) = φ(0) factors through
the Jacquet module (ω+

ψ )U and gives a non-trivial element in Hom
˜T ((ω

+
ψ )U , χ̃) for

some unramified χ, which in turn gives an embedding ω+
ψ ⊆ I(χ̃) via Frobenius

reciprocity. �

The Iwahori subgroup Ĩ admits a factorization

Ĩ = IU− ĨT IU ,

where IU− = Ĩ ∩ U−, ĨT = Ĩ ∩ T̃ , and IU = Ĩ ∩ U . (Note that IU and IU− split in

the central extension S̃p(W ).)
Now let us define the “Jacquet module” (τ0)U of τ0 with respect to IU ; that is,

(τ0)U is the quotient of τ0 = S(L0/2L0) by〈
τ0(u)φ− φ : u ∈ IU , φ ∈ τ0

〉
,

which may be viewed as a representation of ĨT .

Lemma 3.3. The space (τ0)U is 1-dimensional and spanned by the image of the

characteristic function of 2L0. Moreover each element t̃ ∈ ĨT acts by βt on (τ0)U .

Proof. Suppose that φ ∈ τ0 is supported on a + 2L0 for a ∈ L0 � 2L0, and let i
be such that ai ∈ O×. The element x̃2εi(1) acts on φ by the constant ψ(a2i ) �= 1.
Therefore, the image of φ in (τ0)U is trivial.

On the other hand, let φ be the characteristic function on 2L0. Using the
formulas in section 1.3 for the action of the positive root groups, it is simple
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to check that IU acts trivially on φ. Moreover, we know that t̃ ∈ ĨT acts by
t̃φ(y) = βtφ(ty) = βtφ(y). �

Theorem 3.4. The functor from the category G+
ψ to the category of H+

ψ -modules,
given by

π �→ (π ⊗ τ∗0 )
˜I ,

is an equivalence of categories. In particular, there is an equivalence of categories
between G+

ψ and S+
0 given by the isomorphism H+

ψ
∼= H+ of Hecke algebras. Fur-

thermore, this equivalence preserves the temperedness and square integrability of
representations.

Proof. We have the natural surjection

r : (π ⊗ τ∗0 )
˜I → (πU ⊗ (τ∗0 )U )

˜IT ,

which is a slight variant of what is called “Jacquet’s Lemma” in [B2, 64-65]. (To
prove our version, one can follow the argument there. Also, see [B1, Prop. 3.5.2].)

We first show that r is an isomorphism. Suppose that v ∈ ker r, i.e., that there
exists an open compact subgroup Uv of U such that

∫
Uv

π(u)v du = 0.

For a translation λ = (λ1, . . . , λn) in D ⊆ Ωa, we write

λ = h̃2ε1(�
λ1) · · · h̃2εn(�

λn)

as its representative in T̃ . Take λ ∈ D such that λ1 ≥ . . . ≥ λn ≥ 0 and λ−1IUλ ⊇
Uv. Then

ĨλĨ =

q�(λ)⋃
i=1

λuiĨ

where the ui are representatives of the ĨU -cosets in λ−1IUλ. Let Tλ be the Hecke

algebra element supported on ĨλĨ obtained by using a minimal expression for λ ∈
Ωa as in Theorem 2.1. Then

π(Tλ)v = π(λ)

q�(λ)∑
i=1

π(ui)v = π(λ)

∫
λ−1˜IUλ

π(u)v du = 0.

The element Tλ is invertible, as it is the product of invertible elements, hence v = 0
and r is injective.

Let π be an irreducible representation of S̃p(W ) such that (π⊗ τ∗0 )
˜I �= 0. As r is

an isomorphism, (πU ⊗ (τ∗0 )U )
˜IT �= 0. This implies that Hom

˜T (πU , χ̃) �= 0 for some

unramified χ, since t̃ ∈ ĨT acts by βt on (τ0)U . Therefore, by Frobenius reciprocity,
we have that π is a subrepresentation of I(χ̃).

Conversely, let π be an irreducible submodule of I(χ̃) for some unramified χ. By
Frobenius reciprocity, we have that

0 �= (πU ⊗ (τ∗0 )U )
˜IT ∼= (π ⊗ τ∗0 )

˜I .

Thus, condition (iii) of [BK, 3.11] is satisfied, which proves the equivalence of
categories.

To complete the proof, we note that, as categories,

S+
0

∼= H+-modules ∼= H+
ψ-modules ∼= G+

ψ ;
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moreover, the trivial representation of SO(V +) corresponds to the trivial module
of H+ ∼= H+

ψ , and hence to the even Weil representation ω+
ψ .

Finally, to show that the equivalence preserves temperedness and square inte-

grability, let us note that the equivalence H+
ψ-modules ∼= G+

ψ implies that (Ĩ , τ0) is

an s-type in the sense of [BHK, 1.6]. (To see this, let e ∈ H+
ψ be the idempotent

corresponding to τ0 and Re(S̃p(W )) the full subcategory of the category of smooth

genuine representations of S̃p(W ) as defined in [BHK, 1.4]. Then we have the

functor Re(S̃p(W )) → H+
ψ-modules given by π �→ (π ⊗ τ∗0 )

˜I . Clearly this functor

composed with the equivalence H+
ψ-modules ∼= G+

ψ is the identity, which implies

Re(S̃p(W )) = G+
ψ . Hence (Ĩ, τ0) is an s-type with s being the inertial equiva-

lence class representanted by (B̃,1).) Hence by the first paragraph of [BHK, 0.6],

one can see that all the irreducible tempered representations in G+
ψ are in rĜ(τ0)

with G = S̃p(W ). The same applies to the group SO(V +). Furthermore, from
[BHK, 5.1], the equivalence S+

0
∼= G+

ψ restricts to the homeomorphism α̂ of Lemma

1.3 with G1 = S̃p(W ), σ1 = τ0, G2 = SO(V +), σ2 = 1. Hence, we see that the
equivalence preserves temperedness and square integrability. �

Remark. In [GS2], the preservation of temperedness and square integrability is
shown by using Casselman’s criterion. In this paper, however, we invoke the theory
of [BHK], which can be applied once the Hecke algebra isomorphism H+

ψ
∼= H+ is

shown to be an isomorphism of Hilbert algebras. Indeed, this is one of the benefits
of showing that H+

ψ
∼= H+ is not just an algebra isomorphism but a Hilbert algebra

isomorphism.

3.2. Equivalence between G−
ψ and S−

0 . Consider the partial flag

Xn ⊆ Xn−1 ⊆ · · · ⊆ X2

where Xi is the k-span of ei, . . . , en. Let P = MN be the parabolic subgroup which
is the stabilizer of this partial flag. Let W1 be the symplectic subspace spanned
by {e1, f1} so that Sp(W1) = SL2(k). Define ωψ,1 to be the Weil representation

of S̃p(W1), realized as a representation in the space S(kf1). This representation
decomposes into even and odd parts; the odd part ω−

ψ,1 is supercuspidal.

Let P̃ = M̃N be the preimage of P in S̃p(W ). Each element m ∈ M̃ is uniquely
written as

m = m1 · h̃2ε2(t2) · · · h̃2εn(tn)

where ti ∈ k× and m1 ∈ S̃p(W1). Given a character χ = (χ2, . . . , χn), we define a

genuine representation ω−
ψ,1 ⊗ χ̃ of M̃ by

[
ω−
ψ,1 ⊗ χ̃

]
(m) = ω−

ψ,1(m1)

n∏
i=2

χi(ti)βti .

We set

I(ω−
ψ,1 ⊗ χ̃) = Ind

˜Sp(W )
˜P

(ω−
ψ,1 ⊗ χ̃)

to be the normalized induced representation. For a smooth representation π of

S̃p(W ) and πN its normalized Jacquet module, we have Frobenius reciprocity:

Hom
˜Sp(W )

(π, I(ω−
ψ,1 ⊗ χ̃)) ∼= Hom

˜M
(πN , ω−

ψ,1 ⊗ χ̃).
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Lemma 3.5. The Bernstein component G−
ψ is precisely the component whose irre-

ducible representations are submodules of I(ω−
ψ,1 ⊗ χ̃) for an unramified character

χ.

Proof. The functional l : S(Y )− → S(kf1)
−, defined by restriction of functions

from Y to kf1, factors through the Jacquet module (ω−
ψ )N . Therefore, there is a

non-trivial element in Hom
˜M
((ω−

ψ )N , ω−
ψ,1 ⊗ χ̃) for some unramified χ, which gives

an embedding ω−
ψ ⊆ I(ω−

ψ ⊗ χ̃) via Frobenius reciprocity. �

Theorem 3.6. The functor from the category G−
ψ to the category of H−

ψ -modules,
given by

π �→ (π ⊗ (τ−1 )∗)
˜J ,

is an equivalence of categories. In particular, there is an equivalence of categories
between G−

ψ and S−
0 given by the isomorphism H−

ψ
∼= H− of Hecke algebras. Fur-

thermore, this equivalence preserves the temperedness and square integrability of
representations.

Proof. Let J̃M = J̃ ∩ M̃ and J̃N = J̃ ∩N . As in the previous subsection, we define

the “Jacquet module” (τ−1 )N with respect to J̃N , which we view as a representation

of J̃M . Recall that

τ−1 = S(O/2�O)− ⊗ S(On−1/2On−1),

and hence,

(τ−1 )N = S(O/2�O)− ⊗ (τ0,n−1)Un−1
,

where the second factor is the Jacquet module from the previous subsection in rank

n− 1. Therefore, (τ−1 )N is an irreducible representation of J̃M .
We have the natural surjection

r : (π ⊗ (τ−1 )∗)
˜J → (πN ⊗ (τ−1 )∗N )

˜JM .

Just as in Theorem 3.4, one can show that r is injective, which together with

Frobenius reciprocity shows that (π ⊗ (τ−1 )∗)
˜J �= 0 if and only if π is a submodule

of I(ω−
ψ,1 ⊗ χ̃) for some unramified χ. Hence [BK, (3.11)] implies the equivalence

of the categories.

Finally, this equivalence implies that (J̃ , τ−1 ) is an s-type in the sense of [BHK],
from which one can deduce the preservation of temperedness and square integra-
bility just as in the previous section. �

Remark. As a final remark, let us mention that in [GS2, Sec. 15 and 16] it is shown
that the theta correspondence preserves unramified Langlands parameters, which
relies on another work [GS1] of Gan and Savin. The only obstruction to remove the
p �= 2 assumption from [GS1], however, is the Howe duality conjecture, which was
recently proven by Gan and the first-named author in [GT] for the case at hand.
Hence, everything discussed in [GS2, Sec. 15 and 16] holds without the assumption
p �= 2.
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