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ON THE IWASAWA THEORY OF CM FIELDS

FOR SUPERSINGULAR PRIMES

KÂZIM BÜYÜKBODUK

Abstract. The goal of this article is two-fold: First, to prove a (two-variable)
main conjecture for a CM field F without assuming the p-ordinary hypothesis
of Katz, making use of what we call the Rubin-Stark L-restricted Kolyvagin
systems, which is constructed out of the conjectural Rubin-Stark Euler system
of rank g. (We are also able to obtain weaker unconditional results in this
direction.) The second objective is to prove the Park-Shahabi plus/minus
main conjecture for a CM elliptic curve E defined over a general totally real
field again using (a twist of the) Rubin-Stark Kolyvagin system. This latter
result has consequences towards the Birch and Swinnerton-Dyer conjecture for
E.
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1. Introduction

Let F be a CM field and suppose [F : Q] = 2g. In the particular case when
F is an imaginary quadratic field, the main conjectures of Iwasawa theory over F
have been settled in [Rub91] using elliptic units. For a general CM field F , all
major work related to Iwasawa’s main conjecture utilized congruences of modular
forms (and have relied on the CM-form method in [HT93,HT94] or the Eisenstein
ideal technique in [Mai08,Hsi12]) as the main tool. That approach required that
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the following p-ordinary condition (1.1) of Katz holds true. Fix an embedding
ιp : Q ↪→ Qp.

There exists a CM-type Σ such that the embeddings Σp := {ιp ◦ σ}σ∈Σ(1.1)

induce exactly half of the places of F over p.

Let F̃∞ denote the maximal Zp-power extension of F and set Γ̃ = Gal(F̃∞)/F . Let

Λ̃ = W [[Γ̃]], where W is the valuation ring of Q̂p. Assuming (1.1), the relevant

Iwasawa module X̃Σ is Λ̃-torsion, and Katz in [Kat78] has constructed a p-adic L-

function LΣ ∈ Λ̃. In this case, Hsieh in [Hsi12] proved that the characteristic ideal

of X̃Σ is generated by LΣ under a suitable hypothesis, thereby proving the Iwasawa
main conjecture for F . The author has also obtained results along these lines
in [Büy14] using the conjectural Rubin-Stark elements. The approach in [Büy14] is
based on a refinement of the rank-g Euler/Kolyvagin system machinery and relies
crucially on the assumption (1.1) for an analysis of the local cohomology groups
above p.

All these techniques towards the proof of main conjectures for a general CM
field F alluded to above fall apart when the p-ordinary condition (1.1) fails. One
difficulty is that in the absence of (1.1), neither the relevant Iwasawa module is

Λ̃-torsion nor do we have a p-adic L-function available in this setup (in any case,

it is not expected to belong to Λ̃). Beyond the case g = 1, nothing substantial
along these lines was known; when g = 1 Rubin has proved the two-variable main
conjecture in [Rub91]. Furthermore (still when g = 1), if A/Q is an elliptic curve
that has CM by the ring of integers OF of F , Kobayashi in [Kob03] formulated a
pair of conjectures which are both equivalent to the cyclotomic main conjectures
of Perrin-Riou and Kato [PR93,Kat04] for A. Pollack and Rubin in [PR04] proved
Kobayashi’s conjectures using Rubin’s proof of the two-variable main conjecture
in [Rub91] and incorporating Kobayashi’s theory of plus/minus Selmer groups with
the elliptic unit Euler system.

The goal of this article is to appropriately modify and extend the methods of
[Büy14] so as to prove (conditional on some standard conjectures):

• a two-variable main conjecture for a general CM field F in the absence of
the hypothesis (1.1) using the (conjectural) Rubin-Stark elements (this is
Theorem A below);

• a divisibility in the (one-variable) cyclotomic main conjecture for a p-
supersingular CM elliptic curve defined over a general totally real field
(this is Theorem B below);

• prove that the divisibility in the previous item may be upgraded to an
equality using the structure of the module of Λ-adic Kolyvagin systems,
as described in [Büy16] (we provide a detailed account of this in Section 4
below).

Notation. Before we explain our results in greater detail, we set some notation.
Let E be an elliptic curve defined over a totally real field F+, which has CM by an
order O of an imaginary quadratic field K. Let g := [F+ : K] and let F = F+K
be the composite CM field. Fix once and for all an odd prime p that is coprime to
the index [OK : O] of O inside the maximal order OK and which is inert in K/Q.
We denote the unique prime of K above p also by p and we denote the completion
Kp by Φ. We let O denote the ring of integers of Φ.
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Let K∞ denote the unique Z2
p-extension of K and Kcyc the cyclotomic Zp-

extension. Let F∞ = FK∞ and F cyc = FKcyc. Let Γ = Gal(F∞/F ) and Γcyc =
Gal(F cyc/F ). We define the two-variable (resp., one-variable) Iwasawa algebra Λ :=
O[[Γ]] (resp., Λcyc := O[[Γcyc]]). For a Dirichlet character χ : Gal(F/F ) → O×, let
L denote the extension of F cut by χ and let U denote the inverse limit of the χ-
isotypic part of the local units up the tower of finite extensions contained in LF∞/L.
Let Q denote a certain quotient of U (see Definition 2.17) and let Λ · loc/V (εχF∞

)
denote the submodule of ∧g Q generated by the image of the tower of Rubin-Stark

elements (defined as in Definition 5.8). Let X̂∞ be a certain Iwasawa module
(denoted by H1

F∗
tr
(F,T∗)∨ in the main text, which is given as in Definition 2.20).

Assume the truth of Rubin-Stark conjectures and Leopoldt’s conjecture for Theorems
A, B and C below. See Remarks 1.1 and 1.2 below for the portion of the results in
this article that we are able to prove unconditionally.

Statements of the results. The first main result in this article is the (two-
variable)1 Iwasawa main conjecture for F∞/F . Let char(M) denote the character-
istic ideal of a finitely generated torsion Λ-module.

Theorem A (See Theorems 5.6 and 5.9). The Λ-module X̂∞ is torsion and

char(X̂∞) divides char
(
∧g Q/Λ · loc/V

(
εχF∞

))
. These two ideals are equal if we

further assume a strong version of the Rubin-Stark Conjecture (Conjecture 3.6 be-
low).

This statement was proved by Rubin [Rub91, §11] when F+ = Q, using elliptic
units. To obtain the generalization above we make use of the Rubin-Stark elements.
To do so, the CM rank-g Euler/Kolyvagin system machinery developed by the
author in [Büy14] (relying crucially on the p-ordinary hypothesis (1.1)) requires a
non-trivial refinement. This is one of the major tasks we carry out in this article.

For the rest of our results, we assume that the prime p splits completely in
F+/Q. This assumption could be removed (but allowing also only weaker results);
see Remark 1.3 below. Thanks to this assumption we may adopt the (local) methods
of Kobayashi [Kob03] and define the signed Selmer groups Sel±p (E/F cyc). In this
situation, we are led to formulate a (conjectural) explicit reciprocity law for the
Rubin-Stark elements; see Conjecture 6.16. This conjecture on one hand proposes
a natural extension of the Coates-Wiles explicit reciprocity law and, on the other,
it furnishes us with a link between the tower of Rubin-Stark elements and the
Park-Shahabi signed p-adic L-functions L±

p (E/F+).
Theorem B gives a proof of the cyclotomic main conjecture for E for a supersin-

gular prime p under our running assumptions.

Theorem B (Theorem 6.26). Assuming the Explicit Reciprocity Conjecture 6.16
for Rubin-Stark elements, the divisibility

char
(
Sel±(E/F cyc)∨

)
| L±

p (E/F+) Λcyc

in the signed main conjecture holds true, with equality if we assume a strong version
of the Rubin-Stark Conjecture (Conjecture 3.6 below).

1Since our sights are mainly set on the proof of the cyclotomic main conjecture for CM elliptic
curves over F+ (that is, Theorem B below), we content ourselves to prove only a two-variable
supersingular main conjecture over F . However, the methods of this article seem flexible enough
to treat the more general case and prove a more general main conjecture (e.g., over the maximal

Zp-power extension ˜F∞/F ).
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We remark that we do not descend from the two-variable main conjecture in order
to deduce Theorem B (as done so in [PR04]), but instead, we rely further on the
author’s results on the structure of the module of Λ-adic Kolyvagin systems. This
alternative approach has the advantage that we need not worry about pseudo-null
submodules of various Iwasawa modules.

Remark 1.1. Although the existence of the Rubin-Stark elements is highly conjec-
tural, one may prove (Theorem 4.1 below) that the Kolyvagin systems that they
descend from do exist unconditionally. Notice also that the Kolyvagin systems
which descend from the conjectural Rubin-Stark elements are non-trivial, since we
assumed Leopoldt’s conjecture (cf. Proposition 4.9). One may work with these
Kolyvagin systems for the most part to prove statements which lead to Theorems
A and B (Theorem 4.2 and Proposition 4.4). However, the Reciprocity Conjec-
ture 6.16 that links the Kolyvagin systems we construct with the L-values could be
stated most naturally in terms of the conjectural Rubin-Stark elements.

Theorem B has the following important consequence towards the conjecture of
Birch and Swinnerton-Dyer for the CM elliptic curve E/F+ .

Theorem C (Theorem 6.27 below).

(1) If L(E/F+, 1) �= 0, then E(F+) is finite.
(2) Assuming the strong form of the Rubin-Stark Conjecture as well as that

L(E/F+, 1) = 0, then Selp(E/F+) is infinite.

Remark 1.2. It seems very plausible that the methods of this paper would allow
us to deduce Theorems A, B and C above unconditionally under the additional
hypothesis that F+(E[p])/K is abelian. The idea goes roughly as follows (we hope
to provide the details in a future note): Firstly, by the assumption that F+(E[p])/K
is abelian, one may use elliptic units to construct classes in H1(F, Tp(E)⊗Λ). We
may use the main theorem of [Büy11] to lift these classes to a Λ-adic Kolyvagin
system (for certain modified Selmer structures which are defined in Section 2 below)
for the GF -representation Tp(E), so as to view these classes (obtained from elliptic
units) as the initial terms of this Λ-adic Kolyvagin system. Using this Λ-adic
Kolyvagin system (whose initial term is explicitly given in terms of elliptic units),
one could deduce Theorems A, B and C unconditionally.

Remark 1.3. The first version of this article was circulated among experts back in
early 2013, and it later became the main motivation and the groundwork for our
forthcoming joint work with Antonio Lei [BL15]. In [BL15], we are able extend some
of the results of this paper to treat a CM abelian variety of arbitrary dimension.
This work in part relies on the techniques developed here, as well as a general theory
of plus/minus Coleman maps we develop in [BL17]. Although in [BL15], the authors
are able to lift the hypotheses on Theorems B and C that p splits completely in
F+/Q, they are able to deduce only one of the signed main conjectures (whereas we
prove both main conjectures simultaneously here). Note that we could have also
formulated 2g signed main conjectures (as opposed to a single plus/minus main
conjecture) here as well by assigning one of the “plus” or “minus local conditions”
at each prime lying above p (as opposed to assigning the “plus” or “minus local
condition” everywhere above p uniformly) and prove each of them.
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One further advantage of the more explicit approach we take here (namely,
through Kobayashi’s interpretation of signed Coleman maps, which in turn rely
on his explicit local elements) is that it allows us to state our explicit reciprocity
conjectures in a much more concrete form. We hope that this will allow us to
verify the explicit reciprocity conjectures (and therefore deduce our main results
here unconditionally) in the situation of Remark 1.2, namely, when F+(E[p])/K
is abelian. For the time being, this does not seem tractable in the rather abstract
setup of [BL15].

Overview of the methods and layout of the paper. We briefly outline the
basic technical ingredients that go into the proofs of Theorems A, B and C.

In order to prove the two-variable main conjecture (Theorem A) we use the
Rubin-Stark element Euler system of rank g. This requires us to refine the rank-g
Euler/Kolyvagin system machinery in the supersingular setting where the assump-
tion (1.1) is no longer valid. The first step is to introduce various modified Selmer
structures (Section 2) that produce Selmer groups that compare well with their
classical counterparts. We construct and study in Section 4 the Kolyvagin systems
associated to these modified Selmer structures. We in fact do this first uncon-
ditionally, then in Section 4.1 using the Rubin-Stark elements (recalled briefly in
Section 3). These Kolyvagin systems are then used in Section 5 (along with the
arguments of Section 2.5 to compare the modified Selmer groups (that we control
by the Rubin-Stark Kolyvagin systems) to the classical Selmer groups) to prove the
divisibility statement in Theorem A. We then show that this divisibility may be
upgraded to an equality by exploiting our results in Section 4 on the structure of
Λ-adic Kolyvagin systems.

To deduce Theorem B (the cyclotomic main conjecture for a CM elliptic curve
E for a supersingular prime p) we appeal to Kobayashi’s local theory, with which
we directly apply the Kolyvagin system machinery developed in Section 4. This is
one of the main differences with the approach in [PR04], which ultimately relies
on various explicit calculations with elliptic units which are not at our disposal.
We get around this issue by systematically utilizing our results on the modules of
Kolyvagin systems. Kobayashi’s plus/minus Selmer groups (and the corresponding
pair of p-adic L-functions of Park-Shahabi) are recalled in Sections 6.1 and 6.2.
The Explicit Reciprocity Conjecture we formulate in Section 6.3 relates the tower
of Rubin-Stark elements (along F∞) to the special values of (twisted) L-functions
attached to E at s = 1. This conjecture should be thought of as an extension of
Coates-Wiles explicit reciprocity law [CW77,Wil78] for elliptic units, and we believe
that Conjecture 6.16 should be of independent interest for future investigation.

The proof of Theorem C follows from Theorem B easily. A key ingredient is a
result of [NQD̄84] on the psuedo-null submodules of a natural Iwasawa module.

1.1. Notation and hypotheses. For any field k, let k denote a fixed separable
closure of k and let Gk = Gal(k/k) denote its absolute Galois group.

Throughout we fix a rational odd prime p and embeddings Q ↪→ C and Q ↪→ Cp

where Cp is the p-adic completion of Qp. We normalize the valuation valp and the

absolute value | · |p on Cp by assuming valp(p) = 1 and |p|p = p−1. For any positive
integer n, let μμμn denote the nth roots of unity and μμμp∞ = lim−→μμμpm .

Let F be a CM field and let F+ be its maximal real subfield as in the Introduc-
tion. Let χ : GF → O× be any Dirichlet character whose order is prime to p and
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which has the property that

(1.2) χ(℘) �= 1 for any prime ℘ of F above p

and that

(1.3) χ �= ω,

where ω is the Teichmüller character giving the action of GF on μμμp. Later in
Section 6, we will work with a particular character χ attached to a CM elliptic

curve E. We let L := F
kerχ

denote the abelian extension of F cut out by χ.
Let R be the set of primes of F that does not contain any prime above p nor any

prime at which χ is ramified. Define N (R) to be the square free products of primes
chosen from R. For 	 ∈ R, let F (	) be the maximal p-extension inside the ray class
field of F modulo 	, and for η = 	1 · · · 	s ∈ N (R), set F (η) = F (	1) · · ·F (	s). We
write L(η) = L ·F (η) for the composite field. We consider the following collections
of finite abelian extensions of F (resp., of L):

(i) T = {F (η) : η ∈ N (R)},
(ii) T0 = {L(η) : η ∈ N (R)},
(iii) E = {M · F (η) : η ∈ N (R);M ⊂ F∞ is a finite extension of F},
(iv) E0 = {M · L(η) : η ∈ N (R);M ⊂ F∞ is a finite extension of F}.

Let K0(X) = lim−→
N∈X0

N and K(X) = lim−→
N∈X

N for X = T or E. We finally set G(X) =

Gal(X/F ) and write O[[G(X)]] := lim←−O[G(X)/U ], where the inverse limit is over

the open subgroups U of G(X), for the completed group ring of G(X).
For any non-archimedean prime λ of F , fix a decomposition group Dλ and the

inertia subgroup Iλ ⊂ Dλ. Let (−)
∨

= Hom(−,Qp/Zp) denote the Pontryagin

duality functor. Observe that (−)
∨ ⊗ O = Hom(−,Φ/O). Bearing this relation

in mind, we will write X∨ for Hom(X,Φ/O) when X is an O-module. We let
X∗ := Hom(X,μμμp∞) denote the Cartier dual of X.

Let F∞ and F cyc be as above. Let Fn denote the unique subextension of F cyc/F
which has degree pn and set Γn = Gal(Fn/F ).

We let GF act on Λ (resp., Λcyc) via the tautological surjection GF → Γ (resp.,
GF → Γcyc). For an O-module X of finite type which is endowed with a continuous
action of GF , we let GF act on the Λ-module X ⊗O Λ by acting on both factors.

2. Selmer structures and comparing Selmer groups

2.1. Structure of the semi-local cohomology groups. Let M = M0 · F (η)
be a member of the collection E, where M0 is a finite subextension of F∞/F . Set
ΔM = Gal(M/F ), δM = |ΔM | and ΛM = O[ΔM ].

Let X be any O[[GF ]]-module which is free of rank d as an O-module. Suppose
in addition that X satisfies the following hypothesis:

(H.p1) H2(F℘, X)=0=H2 (F℘,HomO(X,O(1))) , for any prime ℘ of F above p.

Lemma 2.1. Suppose X is as above. Let M ∈ E be an extension of F and let P
be a prime of M lying above p. Then

H2(MP, X) = 0 = H2 (MP,HomO(X,O(1))) .
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Proof. Let ℘ be the prime of F lying below P and set DP = Gal(MP/F℘). Then
either DP is trivial, and in this case Lemma 2.1 follows from (H.p1), or otherwise
DP is a non-trivial p-group. Then,

#H0(MP, X∗[
])=#H0
(
DP, (H0(MP, X∗[
]))

)
≡ #H0(F℘, X

∗[
]) ≡ 1 mod p

where the last equality holds thanks to (H.p1) and local duality. This shows that
H0(MP, X

∗) = 0 and thus by local duality that H2(MP, X) = 0, as desired. The
second assertion is proved in an identical manner. �

Definition 2.2. For j = 0, 1, 2 define the semi-local cohomology groups

Hj(Mp, X) :=
s⊕

i=1

⊕
q|p

Hj(Mq, X),

and let

locp : H1(M,X) −→ H1(Mp, X)

denote the localization map.

Proposition 2.3. Suppose (H.p1) holds true.

(i) The corestriction map

cor : H1(Mp, X) −→ H1(Fp, X)

is surjective.
(ii) The ΛM -module H1(Mp, X) is free of rank 2g · d.
(iii) The Λ-module H1(Fp, X ⊗ Λ) is free of rank 2g · d.
(iv) The O[[G(X)]]-module lim←−

M∈E

H1(Mp, X) is free of rank 2g · d, where the in-

verse limits are with respect to corestriction maps.

Proof. (iii) and (iv) follow at once from (i) and (ii). Both (i) and (ii) are essentially
proved in [Büy14, §2.1]. �

Remark 2.4. Observe that for T = O⊗ χ−1, the hypothesis (H.p1) is verified for
X = T since we assumed (1.2) and (1.3) as well as for X = T (E), the p-adic Tate
module of an elliptic curve E/F+ with supersingular reduction at every prime of
F+ above p. In particular, the conclusions of Proposition 2.3 hold true for both
choices of GF -representations.

2.2. Modified Selmer structures for Gm. The constructions in this subsection
and the next will be needed only for sharpening the divisibility in the cyclotomic
main conjecture for the CM elliptic curve E, which we shall prove later. The
reader who is content with one divisibility in the main conjecture may skip these
two subsections.

Definition 2.5. Let R be any ring and M be any R-module. For any submodule
N ⊂ M , the R-saturation of N in M is the submodule N sat = φ−1φ(N) ⊂ M ,
where φ : M → M ⊗ Frac(R) is the natural map and Frac(R) is the total ring of
fractions of R.

Lemma 2.6. The O-module O×,χ
L is free of rank g.

Proof. This follows from [NSW08, §8.6.12], along with our assumption that χ is
different from the Teichmüller character ω. �
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Definition 2.7.

(i) Let V+
F := locp(O×,χ

L )sat be the O-saturation of locp(O×,χ
L ) in H1(Fp, T ).

Note that the O-module V+
F is a direct summand of the free module

H1(Fp, T ). Let the rank of the O-module V+
F be g− d with d ≥ 0. Observe

that d = 0 if Leopoldt’s conjecture holds true for L.
(ii) Let V−

F be any free submodule of H1(Fp, T ) which complements V+
F .

Note that H1(F, T ) may be naturally identified by L×,χ by Kummer theory, and

this is how we make sense of locp(O×,χ
L ). Furthermore, if Leopoldt’s conjecture

holds true for L, then V+
F is the unique direct summand of H1(Fp, T ) of rank g,

containing locp(O×,χ
L ).

Definition 2.8.

(i) Let V±
K(T) be the direct summand of lim←−

M∈T

H1(Mp, T ) which maps onto V±
F

under the natural (surjective) corestriction map. Note that such a direct
summand exists thanks to Proposition 2.3(i) and Nakayama’s lemma. Note
further that we have the direct sum decomposition

lim←−
M∈T

H1(Mp, T ) = V+
K(T) ⊕ V−

K(T).

.
(ii) For M ∈ T, let V±

M ⊂ H1(Mp, T ) be the image of V±
K(T) under the natural

projection.

Definition 2.9.

(i) Let L be any free, rank one O[[G(K(T))]]-direct summand of V+
K(T).

(ii) For M ∈ T, let lM ⊂ V+
M be the image of L under the natural projection

lim←−N
H1(Np, T ) � H1(Mp, T ). We write l instead of lF .

We will make use of the following Selmer structures on the GF -representation T
while proving a Gras-style conjecture in Section 5 below.

Definition 2.10. By Kummer theory, we may identify H1(F, T ) with L×,χ and
similarly for any prime q of F , the local cohomology group H1(Fq, T ) with

(L⊗F Fq)
×,χ =

(⊕
Q|q L×

Q

)χ

.

• The canonical Selmer structure Fcan is given by the choice of local condi-
tions

H1
Fcan

(Fq, T ) =

⎛⎝⊕
Q|q

O×
LQ

⎞⎠χ

⊂ H1(Fq, T )

for all primes q of F .
• The L-restricted Selmer structure Fl is given by the local conditions

– H1
Fl
(Fq, T ) = H1

Fcan
(Fq, T ) for every prime q � p, and

– H1
Fl
(Fp, T ) = V−

F ⊕ l.
• The p-transversal-Selmer structure Ftr is given by the local conditions

– H1
Ftr

(Fq, T ) = H1
Fcan

(Fq, T ) for every prime q � p, and

– H1
Ftr

(Fp, T ) = V−
F .

We refer the reader to [MR04, §2.1] for the definition of a Selmer structure in its
most general form.
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Definition 2.11. Given a Selmer structure F on T , we define the dual Selmer
structure F∗ on T ∗ using local Tate duality (as in [MR04, Definition 2.3.1]).

Recall the finite set Σ of primes of F which consists of all primes that ramify in
L/F , all archimedean primes of F and all primes of F above p. Let FΣ denote the
maximal extension of F contained in F̄ which is unramified outside Σ, and let GΣ

denote the Galois group Gal(FΣ/F ).

Definition 2.12. For F = Fcan , Fl , or Ftr , we define the F-Selmer group on the
quotient T of T by setting

H1
F (F, T ) = ker

⎛⎝H1(GΣ, T ) −→
⊕
q∈Σ

H1(Fq, T )/H
1
F (Fq, T )

⎞⎠ .

Example 2.13. We have H1
Fcan

(F, T ) = O×,χ
L and H1

F∗
can

(F, T ∗)∨ ∼= Cl(L)χ. See

[MR04, §6.1] for details.

2.3. Modified Selmer structures for Gm along F cyc and F∞. We set Tcyc :=
T ⊗ Λcyc and T = T ⊗ Λ (with diagonal GF -action). The definitions we give in
this section will be used to prove various forms of CM main conjectures, which will
in turn be used to turn the divisibilities in the cyclotomic (supersingular) main
conjecture for CM elliptic curves into equalities.

Definition 2.14. The canonical Selmer structure Fcan on X (where X = Tcyc,T)
is given by the choice of local conditions H1

Fcan
(Fq, X) = H1

Fcan
(Fq, X), for all

primes q of F . Note that the associated Selmer group H1
Fcan

(F,X) is simply the

module H1(F,X).

Lemma 2.15. Suppose that the weak Leopoldt conjecture holds true for the number
field L. Then the Λcyc-module H1

Fcan
(F,Tcyc) is free of rank g.

Proof. A form of weak Leopoldt’s conjecture is that the dual (canonical) Selmer
group H1

F∗
can

(F,T∗
cyc) is Λcyc-cotorsion. It follows from the hypothesis (1.2) that

the Λcyc-module H1
Fcan

(F,Tcyc) is torsion-free and by Poitou-Tate global duality
that it is of rank g. Let γ be a topological generator of Γcyc. To see that the
module H1

Fcan
(F,Tcyc) is in fact free, observe that the augmentation map induces

an injective map

H1
Fcan

(F,Tcyc)/(γ − 1) ↪→ H1
Fcan

(F, T )

by the discussion in §1.6.C, Proposition B.3.3 along with the proof of Proposition
3.2.6 of [Rub00]. Note that in order to compare local conditions at p, we rely
on our assumption (1.2). This and Lemma 2.6 show by Nakamaya’s lemma that
the Λcyc-module H1

Fcan
(F,Tcyc) may be generated by at most g elements. If this

set of generators satisfied a non-trivial Λcyc-linear relation, it would follow that
the dimension of the Frac(Λ) vector space H1

Fcan
(F,Tcyc) ⊗Λcyc

Frac(Λcyc) (where
Frac(Λcyc) is the field of fractions of Λcyc) is strictly smaller than g, and this would
contradict the fact that H1

Fcan
(F,Tcyc) is a Λcyc-module of rank g. �

Remark 2.16. One may use Nekovář’s theory of Selmer complexes to give a more
conceptual proof of Lemma 2.15 (in fact, along the way, to prove also that the Λ-
module H1

Fcan
(F,T) is free of rank g, which is what we explain in what follows). Let

R̃Γf,Iw(F∞/F, T ) be Nekovář’s Selmer complex associated to T, which is given by
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the Greenberg local conditions determined by the choice U+
v = T for every prime

v of F above p. As we have assumed (1.2), it follows from [Nek06, Lemma 9.6.3]
(and [Nek06, Proposition 8.8.6] used in order to pass to limit) that

H̃1
f (FΣ/F∞, T )

∼−→ H1
Fcan

(F,T)

where H̃1
f denotes the cohomology of the Selmer complex in degree 1. Under the

hypothesis (1.2), Nekovář proved that the Selmer complex may be represented by
a perfect complex concentrated in degrees 1 and 2. In particular, its cohomology
in degree 1 is a projective (hence free) Λ-module. The fact that it is of rank g may
also be deduced from Nekovář’s control and duality theorems: We have

coker
(
H̃1

f (FΣ/F∞, T ) −→ H̃1
f (FΣ/F

cyc, T )
)
∼= H̃2

f (FΣ/F∞, T )[γ∗ − 1](2.1)

∼= H1
F∗

can
(F,T∗)∨[γ∗ − 1]

where γ∗ is a topological generator of Γ/Γcyc and the first isomorphism follows from
Nekovář’s control theorem [Nek06, 8.10.1] ; the second from his duality theorem
[Nek06, 8.9.6.2]. One may identifyH1

F∗
can

(F,T∗)∨ with lim←−
L⊂M⊂LF∞

Cl(M)χ and argue

using classical Iwasawa theory that the cokernel (2.1) is Λcyc-torsion and the Λ-
module H1

Fcan
(F,T) cannot be generated by less than g elements. On the other

hand, the proof of Lemma 2.15 shows that it may be generated by at most g
elements as well.

Definition 2.17. Let V−
F be as in Definition 2.7 and let Vcyc be any rank-g direct

summand of (the free, rank-2g Λcyc-module) H1(Fp,Tcyc) which lifts V−
F under the

surjection H1(Fp,Tcyc) � H1(Fp, T ) . Likewise, once Vcyc is chosen, let V be any
rank-g direct summand of (the free, rank-2g Λ-module) H1(Fp,T) which lifts Vcyc

under the surjection H1(Fp,T) � H1(Fp,Tcyc) . Such lifts exist by Nakayama’s
lemma. Set Q := H1(Fp,T)/V and similarly define Qcyc.

Let L ⊂ H1(Fp,T) be any rank-one direct summand of H1(Fp,T) such that
L ∩ V = 0 and L+ V is a free rank g + 1 direct summand of H1(Fp,T). Let Lcyc

be its image in H1(Fp,Tcyc). The existence of such a direct summand follows once
again from Nakayama’s lemma. It is also easy to observe that Lcyc ∩ Vcyc = 0 and
Lcyc + Vcyc is a free rank g + 1 direct summand of H1(Fp,Tcyc).

Proposition 2.18. The intersection of Vcyc and the image of H1
Fcan

(F,Tcyc) (under
the localization map at p) is trivial. Likewise, the intersection of V and the image
of H1

Fcan
(F,T) is trivial as well.

Proof. Consider the commutative diagram:

H1
Fcan

(F,Tcyc)
Locp

��

��

H1(Fp,Tcyc)/Vcyc

����

H1
Fcan

(F, T ) �
�

locp

�� H1(Fp, T )/V−
F

Suppose for u ∈ H1
Fcan

(F,Tcyc) we have Locp(u) = 0 and let ū denote its image
under the left vertical map. The diagram above shows that ū = 0, thence

u ∈ ker
(
H1

Fcan
(F,Tcyc) → H1(F, T )

)
= (γ − 1)H1

Fcan
(F,Tcyc),
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where γ is any topological generator of Γcyc. Write u = (γ − 1)u0. We therefore
have (γ−1)Locp(u0) = 0 by the choice of u. Since the quotient H1(Fp,Tcyc)/Vcyc is
Λcyc-torsion free, it follows that Locp(u0) = 0, and repeating the argument above we
conclude that u = (γ − 1)u1 with u1 ∈ H1

Fcan
(F,Tcyc). On running this procedure

k times, we conclude that u ∈ (γ − 1)kH1
Fcan

(F,Tcyc) for every k and thence u = 0
and the map Locp is injective, proving the first assertion. The proof of the second
follows from the first in a similar manner. �

Definition 2.19.

(i) Let VK(E) be the direct summand (of rank g) of lim←−
M∈E

H1(Mp, T ) which

maps onto V under the natural (surjective) corestriction map.
(ii) For M ∈ E, let VM ⊂ H1(Mp, T ) be the image of VK(E) under the natural

projection.
(iii) Let L be any free, rank-oneO[[G(K(E))]]-direct summand of lim←−

M∈E

H1(Mp, T )

such that
– L is not contained in VK(E) ,

– L+ VK(E) is also a direct summand of lim←−
M∈E

H1(Mp, T ) ,

– L maps onto L under the natural projection .
(Such L exists thanks to Nakayama’s lemma again.)

(iv) For M ∈ E, let LM ⊂ H1(Mp, T ) be the image of L under the natural

projection lim←−
N

H1(Np, T ) � H1(Mp, T ).

We will make use of the following auxiliary Selmer structures on the GF -
representation T while proving various main conjectures for the field F in Sections 5
and 6 below. These results will in turn be utilized in sharpening the divisibility in
the supersingular main conjecture for a CM elliptic curve E.

Definition 2.20.

• The L-restricted Selmer structure FL on T is given by the local conditions
– H1

FL
(Fq,T) = H1

Fcan
(Fq,T) for every prime q � p, and

– H1
FL

(Fp,T) = Vcyc ⊕ L.
• The p-transversal-Selmer structure Ftr is given by the local conditions

– H1
Ftr

(Fq,T) = H1
Fcan

(Fq,T) for every prime q � p, and

– H1
Ftr

(Fp,T) = V .

As in Definition 2.12, all these Selmer structures give rise to a Selmer group (as
well as a dual Selmer group, attached to the dual Selmer structure).

Remark 2.21. Any of the Selmer structures above propagate (see [MR04, Example
2.1.7]) to give rise to Selmer structures on any subquotient of T. The propagated
Selmer structure will still be denoted by the same symbol F .

Remark 2.22. The Selmer structure Ftr on T propagates to recover the Selmer
structure Ftr on T , given as in Definition 2.10. Likewise, if the rank-1 direct
summand L is chosen to lift l (which was given in Definition 2.9), then the Selmer
structure FL on T propagates to recover the Selmer structure Fl on T .
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2.4. Modified Selmer structures for E. We set T(E) = T (E)⊗Λ and Tcyc(E) =
T (E)⊗Λcyc. The goal in this section is to define various Selmer structures for these
representations, which we shall study with the aid of the (conjectural) Rubin-Stark
elements. Note that in order to do so, we will exploit the fact that T(E) is closely
related to the representation T for an appropriately chosen Dirichlet character χ.

2.4.1. Preliminaries. As above, let E be an elliptic curve defined over F+ which
has CM by K. We shall assume that p is inert in K/Q. We denote the unique
prime of K above p also by p and the completion Kp by Φ. By slight abuse, we let
O denote the ring of integers of Φ and let

ρ : GF −→ Aut(E[p∞]) ∼= O
×

be the associated p-adic Hecke character. For any GF -module Y , we define its twist
by ρ by setting Y (ρ) := Y ⊗Hom(E[p∞],Φ/O). Theory of complex multiplication
allows one to identify Tp(E) with O(ρ), the free O-module of rank 1 on which GF

acts via ρ. We will implicitly identify the Cartier dual Tp(E)∗ with E[p∞] via the
Weil pairing.

Definition 2.23. Let ωE : GF → O× denote the character which gives the action
of GF on E[p] and let 〈ρ〉 := ρ ⊗ ω−1

E . Note then that the character 〈ρ〉 factors
through Γ.

Throughout this section we will set the character χ = ωE so that T = O(1)⊗ω−1
E .

Definition 2.24. Let tw : T → T (E) (the twisting map) denote the compositum
of the maps

T −→ T ⊗ 〈ρ〉−1 W−→ T (E)

where W is induced from Weil pairing. The twisting map induces isomorphisms

tw : H1(F,T)
∼−→ H1(F,T(E)),

and for every place v of F ,

tw : H1(Fv,T)
∼−→ H1(Fv,T(E)) .

2.4.2. Selmer structures. We set M = tw
(
locp

(
H1

Fcan
(F,T)

))
⊂ H1(Fp,T(E))

and let Mcyc ⊂ H1(Fp,Tcyc(E)) be its projection. Note that M is a free Λ-module
and Mcyc a free Λcyc-module, and both have rank g.

Lemma 2.25. If the Λcyc-module H1
F∗

can
(F,Tcyc(E)∗)∨ is torsion, then so is the

quotient
locp

(
H1(F,Tcyc(E))

)
/Mcyc .

Remark 2.26. The statement that H1
F∗

can
(F,Tcyc(E)∗)∨ is Λcyc-torsion is a form of

the weak Leopoldt conjecture for the elliptic curve E. See Corollary 4.3 and The-
orem 6.22 below, where we verify the weak Leopoldt conjecture for E (at primes p
which split completely in F+/F ) assuming the Explicit Reciprocity Conjecture 6.16
for the Rubin-Stark elements.

Proof of Lemma 2.25. Let γ∗ be any lift of a topological generator of Γ/Γcyc. Proof
follows, as in the discussion of Remark 2.16 (particularly, using Nekovář’s control
theorem as in (2.1)), once we verify that

coker
(
H̃1

f (FΣ/F∞, T (E)) −→ H̃1
f (FΣ/F

cyc, T (E))
)
∼= H̃2

f (FΣ/F∞,T(E))[γ∗ − 1]
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is Λcyc-torsion. (This is because the quotient locp
(
H1(F,Tcyc(E))

)
/Mcyc is a

homomorphic image of the quotient

H1(F,Tcyc(E))/im
(
H1(F,T(E))

) ∼= H̃1
f (FΣ/Fcyc, T )/im

(
H̃1

f (FΣ/F∞, T )
)
.)

Note that we have

H̃2
f (FΣ/F∞,T(E)) ∼= H1

F∗
can

(F,T(E)∗)∨

by [Nek06, 8.9.6.2]. Furthermore,

H1
F∗

can
(F,T(E)∗)∨/(γ∗ − 1) ∼=

(
H1

F∗
can

(F,T(E)∗)[γ∗ − 1]
)∨ ∼= H1

F∗
can

(F,Tcyc(E)∗)∨

where the second isomorphism is by [MR04, Lemma 3.5.3], and hence we conclude
thanks to our assumption that H1

F∗
can

(F,T(E)∗)∨/(γ∗ − 1) is Λcyc-torsion.

We now conclude by [PR84, Lemme I.3.4(ii)] that

H1
F∗

can
(F,T(E)∗)∨[γ∗ − 1] ∼= H̃2

f (FΣ/F∞,T(E))[γ∗ − 1]

is Λcyc-torsion as well. �

Definition 2.27. Let Vcyc
E ⊂ H1(Fp,Tcyc(E)) be a free rank-g direct summand

with the property that Vcyc
E ∩Mcyc = 0. Note that such a direct summand exists

by rank considerations. Let VE ⊂ H1(Fp,T(E)) be any rank-g direct summand
which maps onto Vcyc

E under the surjection H1(Fp,T(E)) → H1(Fp,Tcyc(E)) .

See Remark 6.19 below for a natural choice of Vcyc
E under the additional hy-

pothesis that p splits completely in F+/Q, using Kobayashi’s plus/minus Iwasawa
theory. We will use these choices in order to prove the main theorems of this article.

Remark 2.28. The proof of Proposition 2.18 may be modified to prove that VE ∩
M = 0 as well.

Definition 2.29. Let V := tw−1 (VE) ⊂ H1(Fp,T). Let L ⊂ H1(Fp,T) be a rank-
one direct summand of H1(Fp,T) such that L ∩ V = 0 and L+V is a free rank g+1
direct summand of H1(Fp,T). As before, the existence of such a direct summand
follows from Nakayama’s lemma. Let LE ⊂ H1(Fp,T(E)) denote its isomorphic
image and Lcyc

E its image under the projection map to H1(Fp,Tcyc(E)).

Note that V ∩ locp
(
H1

Fcan
(F,T)

)
= 0 by the observation in Remark 2.28.

Definition 2.30.

• The canonical Selmer structure Fcan is given by the choice of local condi-
tions H1

Fcan
(Fq,T(E)) = H1(Fq,T(E)), for all primes q of F .

• The L-restricted Selmer structure is given by the local conditions
– H1

FL
(Fq,T(E)) = H1

Fcan
(Fq,T(E)) for every prime q � p, and

– H1
FL

(Fp,T(E)) = VE ⊕ LE.
• The Kobayashi Selmer structure FKob is given by the local conditions

– H1
FKob

(Fq,T(E)) = H1
Fcan

(Fq,T(E)) for every prime q � p, and

– H1
FKob

(Fp,T(E)) = VE .

Given a Selmer structure F on T(E), we can talk about the dual Selmer structure
F∗ on T∗, the Selmer group attached to it and its propagations to the various
subquotients of T(E) (most important of which are Tcyc(E) and T (E) for our
purposes), as we have done so previously. Via the twisting isomorphism tw, we also
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obtain a Selmer structure (by a slight abuse, which we still denote by FL or FKob)
on T (and on its various subquotients).

2.5. Global duality and comparison of Selmer groups. Let R be a complete
local noetherian domain with maximal ideal M. Let X be an R-module of finite
type. We will write X := X ⊗R R/M for its reduction modulo the maximal ideal
of R. Note that

T = Tcyc = T = μμμp ⊗ χ−1

and
T(E) = Tcyc(E) = T (E) = E[p]

as GF -representations. In particular, when χ is chosen to be ω−1
E , it follows thanks

to the Weil pairing that all the six residual representations we consider above agree.
Let k denote the residue field of O.

Lemma 2.31. Assume the truth of Leopoldt’s conjecture for the number field L.
We have

dimk H1
F (F, T ) = dimk H1

F∗(F, T
∗
)

for F = Ftr,Ftr or FKob and

dimk H1
G(F, T ) = dimk H1

G∗(F, T
∗
) + 1

for G = Fl,FL or FL . (Note that when F = FKob or G = FL we only consider the
case χ = ωE .)

Proof. As explained in Example 2.13 we have H1
Fcan

(F, T ) ∼= O×,χ
Lχ

, and hence

Lemma 2.6 shows that theO-moduleH1
Fcan

(F, T ) is free of rank g under the running

assumptions. On the other hand, H1
F∗

can
(F, T ∗) ∼= CL(L)χ is finite, and it follows

from the discussion in Section 5.2 of [MR04] that

dimk H1
Fcan

(F, T )− dimk H1
F∗

can
(F, T

∗
)

= rankO H1
Fcan

(F, T )− corankO H1
F∗

can
(F, T ∗) = g.(2.2)

Observe that we have by the choices we have made that

dimk H1
Fcan

(Fp, T )− dimk H1
F (Fp, T ) = g

for F = Ftr,Ftr or FKob and

dimk H1
Fcan

(Fp, T )− dimk H1
G(Fp, T ) = g − 1

for G = Fl,FL or FL . Proposition 1.6 of [Wil95] shows that(
dimk H1

Fcan
(F, T )− dimk H1

F∗
can

(F, T
∗
)
)
−

(
dimk H1

F (F, T )− dimk H1
F∗(F, T

∗
)
)

= dimk H1
Fcan

(Fp, T )− dimk H1
F (Fp, T )

= g .

The first part of the proposition follows from (2.2), and the second part may also
be deduced by replacing F ’s by G’s. �

Remark 2.32. Throughout this paragraph, F will stand for any of Fl,FL or FL,
with the convention that if F = FL the χ = ωE . Corollary 4.5.2 of [MR04] asserts
that the module of Kolyvagin systems KS(F , T ) is a k-vector space of dimension
one, thanks to the second part of Lemma 2.31. On the other hand, it follows from
the main theorem of [Büy16] that these residual Kolyvagin systems deform to X
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(whereX = T,T(E),Tcyc or Tcyc(E)) and that the moduleKS(F , X) is free of rank
one over the corresponding coefficient ring. The elements of these modules (namely,
Kolyvagin systems) are used to bound the characteristic ideal of H1

F∗(F,X)∨. The
generators of the module of Kolyvagin systems are characterized by the property
that the bounds they give on the characteristic ideal of H1

F∗(F,X)∨ are sharp.
We will later use the (conjectural) Rubin-Stark elements to construct these Koly-

vagin systems and exploit facts recalled above in order to verify the sharpness of
the bounds we shall obtain on the Kobayashi Selmer groups for the CM elliptic
curve E.

Proposition 2.33. Assume that Leopoldt’s conjecture holds for L. Then,

H1
Ftr

(F, T ) = H1
Ftr

(F,Tcyc) = H1
Ftr

(F,T) = 0,

and if H1
F∗

can
(F,Tcyc(E)∗)∨ is Λcyc-torsion, then

H1
FKob

(F,Tcyc(E)) = H1
FKob

(F,T(E)) = 0.

Proof. The first group of assertions follows from the definitions. Let Mcyc be
as at the start of Section 2.4.2. The quotient locp

(
H1(F,Tcyc(E))

)
/Mcyc is a

torsion Λcyc-module by Lemma 2.25 (under our assumption of the weak Leopoldt
conjecture for T (E)). Since Mcyc ∩ Vcyc

E = 0 by our very choice of Vcyc
E and since

H1(Fp,Tcyc)/V
cyc
E is torsion free, it follows that locp

(
H1(F,Tcyc(E))

)
∩ Vcyc

E = 0.
This means

H1
FKob

(F,Tcyc(E)) := ker

(
H1(F,Tcyc(E))

locp−→ Vcyc
E

)
= 0 .

Let γ∗ ∈ Γ be any lift of a topological generator of Γ/Γcyc. The exact sequence

0 −→ T
γ∗−1−→ T −→ Tcyc −→ 0

yields an injection

H1
FKob

(F,T)
/
(γ∗ − 1) ↪→ H1

FKob
(F,Tcyc) = 0,

and we conclude by Nakayama’s lemma that H1
FKob

(F,T) = 0 as well. �
Proposition 2.34. Assume that Leopoldt’s conjecture holds for L and the weak
Leopoldt conjecture for T (E). Let (F ,G,D, X) be any of the following quadruples:

{(Ftr,Fl, l, T ), (Ftr,FL,Lcyc,Tcyc), (Ftr,FL, L,T),
(FKob,FL, Lcyc,Tcyc(E)), (FKob,FL,L,T)}.

Then the following sequence is exact:

0 −→ H1
G(F,X)

locp−→ D−→H1
F∗(F,X∗)∨ −→ H1

G∗(F,X∗)∨ −→ 0.

Proof. This follows from Poitou-Tate global duality, used with Proposition 2.33. �

3. Rubin-Stark Euler system of rank r

We review Rubin’s [Rub96] integral refinement of Stark’s conjectures, which we
will later use to construct Kolyvagin systems for the modified Selmer structure FL
on T. For the rest of this paper, we assume that the Rubin-Stark Conjecture [Rub96,
Conjecture B′] holds true for the fields which appear in this article.

Let χ, fχ and L be as above, and recall the definitions of the collections of
extensions E0 and E from §1.1. Fix forever a finite set S of places of F that does
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not contain any prime above p, but contains the set of infinite places S∞ and all
primes λ � p at which χ is ramified. Assume that |S| ≥ g+1. For each M ∈ E0, let

SM = {places of M lying above the places in S} ∪ {places of M at which

M/F is ramified}

be a set of places of M. Let O×
M,SM

denote the SM-units of M, and ΔM (resp.,

δM) denote Gal(M/F ) (resp., |Gal(M/F )|).

Definition 3.1. Let G be any finite group and let X be any O[G]-module which
is of finite type over O. Following [Rub96], we define for any integer r ≥ 0 the
submodule

∧r
0 X ⊂ Φ⊗

∧r X by setting

r∧
0

X =

{
x ∈ Φ⊗

r∧
X : (ϕ1 ∧ · · · ∧ ϕr) (x) ∈ O[G]

for every ϕ1, · · · , ϕr ∈ Hom(X,O[G])} .

We also let
∧r X denote the isomorphic image of

∧r X under the map j :
∧r X →

Φ⊗
∧r X.

Example 3.2. If X is a free O[G]-module, then
∧r

0 X =
∧r

X. In general, |G| ·∧r
0 X ⊂

∧r
X.

Rubin in [Rub96, Conjecture B′] predicts the existence of certain elements

ε̃M,SM ∈
g∧
0

O×
M,SM

linked via a regulator map to the value of the corresponding Artin L-function at
s = 0.

Remark 3.3. Rubin’s conjecture predicts that the elements ε̃M,SM should in fact
lie inside the module

∧g
0 O

×
M,SM,T where T is a finite set of primes disjoint from

SM, chosen in a way that the group O×
M,SM,T of SM-units which are congruent

to 1 modulo all the primes in T is torsion-free. As explained in [Büy09b, Remark
3.1], one can safely ignore T as far as we are concerned in this paper.

As further explained in [Büy14, §3.1], the Rubin-Stark elements may be used to
construct an Euler system of rank g for T (in the sense of [PR98], as appropriately
generalized in [Büy10] so as to allow denominators). We omit the details here and

refer the reader to [Büy14]. This Euler system of rank g is a collection C(g)
R-S =

{εχK}K∈E
where εχK ∈

∧g
0 H1(K, T ). The collection C(g)

R-S will be called the Rubin-
Stark Euler system of rank g for T .

3.1. Strong Rubin-Stark conjectures. Let F† ⊂ F∞ be any Zp-extension of F
disjoint from F cyc over F and let Γ† = Gal(F†/F ) so that we have Γ = Γ† × Γcyc.
Let γ† be a topological generator of Γ† and let γcyc denote a fixed topological
generator of Γcyc.

Given positive integers m,n we let Fcyc ⊂ F †
n ⊂ F∞ denote the fixed field

of Γpn

† (so that we have Gal(F †
n/F ) = Γcyc × Γ

(n)
† with Γ

(n)
† = Γ†/Γ

pn

† ) and let

F ⊂ Fm,n ⊂ F †
n be the fixed field of Γpm

cyc (so that Gal(Fm,n/F ) = Γ(m) × Γ(n) with

Γ(m) = Γcyc/Γ
pm

cyc). We write F(m) = Fm,0 ⊂ F cyc and F (n) = F0,n ⊂ F†. Observe
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that Fm,n is the joint of F(m) and F (n). The following diagram summarizes the
definitions in this subsection:

F∞
Γpn

†

���
���

���
���

��

Γcyc

��
��
��
��
��
��
��
��
��
�

F ∗
n

Γ
(n)
† :=Γ†/Γ

pn

†

Γpm

cyc

��
��
��
��
��
��
��
��
��
�

F∗

Γpn

†

F cyc

Γpm

cyc
Fm,n

Γ(m)

���
���

���
���

�

Γ
(n)
† ���

���
���

���
�

F (n)

Γ
(n)
† ���

���
���

���
�� F(m)

Γ(m):=Γcyc/Γ
pm

cyc���
���

���
���

��

F

Proposition 3.4. Let m,n be arbitrary positive integers. Then:

(i) coker
(
H1(F,Tcyc) → H1

Fcan
(F(m), T )

)
is finite.

(ii) The O[Γ(m)]-module H1
Fcan

(F(m), T ) is free of rank g.

(iii) The O[Γ(m) × Γ(n)]-module H1
Fcan

(F(m,n), T ) is free of rank g.

Proof. We argue as in Remark 2.16. By Nekovář’s control theorem

coker
(
H1(F,Tcyc) → H1

Fcan
(F(m), T )

) ∼= H̃2
f (FΣ/F, T )[γ

pm

cyc − 1]

and H̃2
f (FΣ/F(m), T ) ∼= H1

F∗
can

(F,T∗
cyc)

∨. Since

H1
F∗

can
(F,T∗

cyc)
∨/(γpm

cyc − 1) ∼= H1
F∗

can
(F(m), T

∗)∨ ∼= Cl(LF(m))
χ

is finite, the characteristic ideal of the torsion Λcyc-module H1
F∗

can
(F,T∗

cyc)
∨ is prime

to γpm

cyc − 1, and by the structure theorem for finitely generated Λcyc-modules we

see that H1
F∗

can
(F,T∗

cyc)
∨[γpm

cyc − 1] is finite, concluding the proof of (i).

This argument may be used to prove that coker
(
H1(F,Tcyc) → H1

Fcan
(F, T )

)
is finite, which in turn implies that coker

(
H1(F(m), T )

pr−→ H1
Fcan

(F, T )
)

is fi-

nite as well. Thence the image of the map pr (induced by projection modulo
γcyc − 1) is a free O-module of rank g. It follows by Nakayama’s lemma that
the O[Γ(m)]-module H1(F(m), T ) may be generated by at most g elements, say by

{v1, · · · , vg}. On the other hand, it follows from the first part that H1(F(m), T )
contains a free O[Γ(m)]-module of rank g (isomorphic image of the free module

H1(F,Tcyc)/(γ
pm

cyc−1)), say with basis {y1, · · · , yg}. One may easily verify that any
non-trivial O[Γ(m)]-linear relation {v1, · · · , vg} would yield a non-trivial O[Γ(m)]-
linear relation of {y1, · · · , yg}, which is impossible. This shows that {v1, · · · , vg} is
indeed a basis and (ii) follows.

The proof of (iii) follows similarly. We indicate the main steps. First, we verify
that the O[[Γ(m)×Γ†]]-module H1

Fcan
(F(m), T⊗Λ†) is free of rank g. Next, we check
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that the map H1
Fcan

(F(m), T ⊗ Λ†) → H1
Fcan

(Fm,n, T ) has finite cokernel, thence

H1
Fcan

(Fm,n, T ) contains a free O[Γ(m) × Γ(n)]-module of rank g (with finite index

in H1
Fcan

(Fm,n, T )), say again with basis {y1, · · · , yg}. Furthermore, it follows by

Nakayama’s lemma that H1
Fcan

(Fm,n, T ) may be generated by at most g elements,
say by {v1, · · · , vg}. It is easy to check as above that a non-trivial linear relation of
{v1, · · · , vg} would yield a non-trivial relation among {y1, · · · , yg}, concluding the
proof that {v1, · · · , vg} is a basis of H1

Fcan
(Fm,n, T ). �

Remark 3.5. By Proposition 3.4(iii) it follows that

εχFm,n
∈

g∧
H1

Fcan
(Fm,n, T ) ,

since we have
∧g

0 H
1
Fcan

(Fm,n, T ) =
∧g H1

Fcan
(Fm,n, T ) by Example 3.2.

Inspired by [PR98, Definition 1.2.2], we propose the following strengthening
(along the tower F∞/F ) of the Rubin-Stark conjectures:

Conjecture 3.6 (Strong Rubin-Stark Conjecture). There exists an element

S∞ = S∞,1 ∧ · · · ∧S∞,g ∈
g∧
H1(F,T)

(where the exterior product is evaluated in the category of Λ-modules) such that
for every subextension F ⊂ M = Fm,n ⊂ F∞ as above, the image of S∞ under
the natural projection to

∧g H1
Fcan

(M,T ) is εχM , the χ-isotypic component of the
Rubin-Stark element.

Assuming the truth of the Strong Rubin-Stark Conjecture, we set

Scyc = Scyc,1 ∧ · · · ∧Scyc,g ∈
g∧
H1(F,Tcyc)

to denote the image of S∞.

Remark 3.7. If we knew that neither the Λ-module lim←−L⊂M⊂LF∞
Cl(M)χ nor the

Λcyc-module lim←−L⊂M⊂LF cyc
Cl(M)χ has pseudo-null submodules, the Strong Rubin-

Stark Conjecture would have been trivial. Indeed in that case, it follows that the
maps

H1
Fcan

(Fm,n, T ) −→ H1
Fcan

(Fm′,n′ , T )

(for positive integers m ≥ m′ and n ≥ n′) are surjective and using Proposition 3.4
that

lim←−

g∧
H1

Fcan
(Fm,n, T ) =

g∧
lim←−H1

Fcan
(Fm,n, T ) =

g∧
H1(F,T) .

4. Kolyvagin systems for Gm and E

Until the end of this paper, we assume the truth of Leopoldt’s conjecture for L.
This in particular shows that d = 0. Let P be the set of all primes of F that
complements the set of primes F at which T is ramified and the set of primes above
p. Let

KS(T,FL,P) := lim←−
k,ᾱ

⎛⎜⎜⎝ lim−→
k′≥k,
β̄
ᾱ

KS(Tk,ᾱ,FL,Pk′,β̄)

⎞⎟⎟⎠
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denote the module of L-restricted Kolyvagin systems for the triple (T,FL,P). Here
we borrowed notation from [Büy14, Appendix A]; we note for the convenience of
the reader that

• we have r = 3 in this portion of the current article,
• ᾱ and β̄ stand for triples of positive integers, and
• our FL corresponds to FL∞ in [Büy14].

We similarly define the modules KS(X,F ,P) where (X,F) is one of the pairs
(Tcyc,FL), (T,FL), (T(E),FL) or (Tcyc(E),FL).

It follows from [MR04, Theorem 5.1.1] and Lemma 2.31 that the k-vector space
KS(T ,F ,P) has dimension one (F = FL or FL). The following theorem asserts
that these Kolyvagin systems may be lifted to various deformations of T .

Theorem 4.1.

(i) Both Λ-modules of KS(T,FL,P) and KS(T(E),FL,P), as well as the
Λcyc-modules KS(T,FL,P) and KS(Tcyc(E),FL,P) and the O-module

KS(T,FL,P) are free of rank one.
(ii) All five free modules in (i) are generated by a primitive Kolyvagin system

κκκ, namely by a Kolyvagin system whose image κκκ ∈ KS(T ,F ,P) (where
F = FL or FL depending on which module of Kolyvagin systems we are
talking about) is non-zero.

Proof. The assertions in (i) and (ii) over O are [MR04, Theorem 5.2.10], and over
Λ or Λcyc, they both follow from [Büy14, Theorem A.14]. �

The following theorem summarizes the main applications of the Kolyvagin sys-
tems, whose existence is guaranteed by the previous theorem. Let (R,X,F) be any
one of the five triples (O, T,FL), (Λcyc,Tcyc,FL), (Λ,T,FL), (Λcyc,Tcyc(E),FL) or
(Λ,T(E),FL).

Theorem 4.2. Suppose that κκκ ∈ KS(X,F ,P) is a Kolyvagin system whose initial
term κ1 ∈ H1

F (F,X) is non-zero.

(i) The R-module H1
F∗(F,X∗)∨ is R-torsion, and the R-module H1

F (F,X) has
rank one.

(ii) If R = O, then #H1
F∗(F,X∗)∨ | #

(
H1

F (F,X)/R · κ1

)
. If R = Λ or Λcyc,

then
char

(
H1

F∗(F,X∗)∨
)
| char

(
H1

F (F,X)/R · κ1

)
.

(iii) When R = O or R = Λcyc, we have equality in the divisibilities of (ii) if
and only if the Kolyvagin system κκκ is primitive.

Proof. When R = O all assertions follow from [MR04, §5.2]. The arguments of
[MR04, §5.3] essentially verify all three assertions when R = Λcyc as well. Here we
provide a sketch of their proof in that case.

For (i), we may choose a height one prime ideal ℘ = (γcyc − 1 + pN ) of Λcyc

(where N ∈ Z+) such that

• Λcyc/(γcyc − 1) ∼= Λcyc/℘,
• the image κ℘

1 ∈ H1
F (F,X ⊗ Λ/℘) of κ1 is non-zero.

Note that κ℘
1 is the initial term of the Kolyvagin system κκκ℘ ∈ KS(X ⊗Λ/P,F ,P)

and it follows from (i) applied with R = Λ/℘ ∼= O that the Λ/℘-module

H1
F∗

(
F, (X ⊗ Λ/℘)∗

)∨
= H1

F∗ (F,X∗[℘])∨ ∼= H1
F∗ (F,X∗)∨ /℘H1

F∗ (F,X∗)∨
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is finite. This shows by the structure theorem for finitely generated Λcyc-modules

that the Λcyc-module H1
F∗ (F,X∗)∨ is torsion. Since the module

H1
F∗

(
F, (X ⊗ Λ/℘)

∗)∨
is finite, it follows from Lemma 2.31 that H1

F (F,X ⊗ Λ/℘) has Λ/℘-rank one.
Furthermore, as we have a natural injection

H1
F (F,X) /℘H1

F (F,X) ↪→ H1
F (F,X ⊗ Λ/℘) ,

it follows by Nakayama’s lemma that the Λcyc-module H1
F (F,X) is cyclic. On

the other hand, since κ1 is a non-zero element of the Λcyc-torsion free module
H1

F (F,X), it follows that H1
F (F,X) has positive Λcyc-rank. This concludes the

proof of (i) when R = Λcyc.
We next sketch a proof of (ii) when R = Λcyc. Fix a pseudo-isomorphism

H1
F∗(F,X∗)∨ −→

⊕
i

Λcyc/P
mi ⊕

⎛⎝⊕
j

Λcyc/fjΛcyc

⎞⎠
where P is any height one prime dividing char

(
H1

F∗(F,X∗)∨
)
and where each fj

is prime to P. We are content to prove that

(4.1)
∑
i

mi ≤ ordP char
(
H1

F (F,X)/Λcyc · κ1

)
,

from which (ii) follows. We will assume that p /∈ P and therefore P is generated by
a distinguished polynomial P ∈ Λcyc = O[[γcyc−1]]. For a general height one prime
Q of Λcyc , let SQ denote the integral closure of Λcyc/Q. Note that [SQ : Λcyc/Q] is
finite. Set PN = (P + πN ), where N is a positive integer (chosen sufficiently large
to ensure that PN is a prime ideal). Write XN = (X ⊗ Λcyc/P)⊗ SPN

. It follows
from our assumption (1.2) that we have injections

ι : H1(GΣ, X ⊗ Λcyc/PN ) ↪→ H1(GΣ, XN )

and

ιp : H1(Fp, X ⊗ Λcyc/PN ) ↪→ H1(Fp, XN )

with finite cokernels (whose size depends only on [SP : Λcyc/P]). Define the Selmer
structure F on XN by setting

H1
F (Fλ, XN ) = ker

(
H1(Fλ, XN ) −→ H1(F ur

λ , XN ⊗Qp)
)

for λ � p (this would be the local condition denoted byH1
Fcan

(Fλ, XN ) in the notation

of [MR04]) and by defining H1
F (Fp, XN ) as the SPN

-saturation of

ιp
(
H1

F (Fp, X ⊗ Λcyc/PN )
)
.

As explained in the proof of Theorem 5.3.10 of [MR04], for every sufficiently
large positive integer N we have:

(1) Λcyc/PN
∼= Λcyc/P ,

(2) the image κPN

1 ∈ H1
F (F,XN) of κ1 is non-zero,

(3) coker
(
H1

F (F,X)/PNH1
F (F,X) ↪→H1

F (F,XN)
)
is finite with order bounded

by a constant independent of N ,
(4) PN is prime to fj for every j.
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Only the verification of (3) requires a slight enhancement of [MR04, Proposition
5.3.14] (so as to apply with the Selmer structure F in place of the Selmer structure
FΛ in [MR04]). This shows, proceeding as in the proof of Theorem 5.3.10 of [MR04]
(essentially, by only making use of the Kolyvagin system κκκPN ∈ KS(XN ,F ,P) over
the one-dimensional ring SPN

) that

Nr
∑
i

mi +O(1) = lengthZp
H1

F∗(F,X∗)[PN ] = lengthZp
H1

F∗
(
F, (X/PN )∗

)
≤ lengthZp

H1
F∗(F,X∗

N) +O(1)

≤ lengthZp

(
H1

F (F,XN )/SPN
· κPN

1

)
+O(1)

= lengthZp

((
H1

F (F,X)/Λcyc · κ1

)
⊗ Λcyc/PN

)
+O(1)

= Nr ordP char
(
H1

F (F,X)/Λcyc · κ1

)
+O(1)

where r = rankZp
SP. (4.1) now follows (for characteristic zero primes P) taking N

sufficiently large in the inequality above. In case p ∈ P, we proceed by considering
the ideals PN = (π + (γcyc − 1)N ) and conclude the proof.

When R = Λ, we may make use of the arguments of Ochiai in [Och05, §3] in order
to reduce the assertions in (i) and (ii) to the case of a dimension-two regular ring.
As details pertaining to this point will soon be available (in much greater generality)
as part of our forthcoming joint work with T. Ochiai, we indicate here only the key
points. We follow the terminology of [Och05, §3]. First of all, our argument above
when R = Λcyc shows that for all but finitely many linear elements l ∈ Λ, we
have (i) and (ii) for the Λ/(l)-module T ⊗ Λ/(l). As the second step, one makes
use of this input together with control theorems for the FL-Selmer groups (which
are in fact easier than those relevant to considerations in [Och05], due to the fact
that T = T ⊗ Λ is a rather simple Galois deformation) as well [Och05, Proposition
3.6] (which characterizes the characteristic ideal of a torsion Λ-module M in terms
of the characteristic ideals of the quotients M/lM as Λ/(l)-modules) to finish the
proof. �

Corollary 4.3. Suppose κκκ ∈ KS(Tcyc(E),FL,P) is a Kolyvagin system with non-
vanishing initial term κ1 ∈ H1

FL
(F,Tcyc(E)). Then H1

F∗
can

(F,Tcyc(E)∗)∨ is a tor-

sion Λcyc-module, and the weak Leopoldt conjecture for E holds true.

Proof. This follows from Theorem 4.2(i) and the obvious injection

H1
F∗

can
(F,Tcyc(E)∗) ↪→ H1

F∗
L

(F,Tcyc(E)∗) .

�

Proposition 4.4. Let κκκ ∈ KS(T,FL,P) be a Kolyvagin system with initial term
0 �= κ1 ∈ H1

FL
(F,T) and let κ̃κκ ∈ KS(T(E),FL,P) with initial term tw(κ1) ∈

H1
FL

(F,T(E)). Suppose that

char
(
H1

F∗
L

(F,T∗)∨
)
= char

(
H1

FL
(F,T)/Λ · κ1

)
.

Then,

(i) char
(
H1

F∗
L

(F,T(E)∗)∨
)
= char

(
H1

FL
(F,T(E))/Λ · tw (κ1)

)
.

(ii) The Kolyvagin system κ̃κκ and its image πcyc (κ̃κκ) ∈ KS(Tcyc(E),FL,P) are
both primitive.
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(iii) Let K1 ∈ H1
FL

(F,Tcyc(E)) be the initial term of the Kolyvagin system
πcyc (κ̃κκ). Then

char
(
H1

F∗
L

(F,Tcyc(E)∗)∨
)
= char

(
H1

FL
(F,Tcyc(E))/Λcyc · K1

)
.

Proof. (i) follows using a formal twisting argument; cf. Lemma VI.1.2 and Theorem
VI.4.1 of [Rub00].

Let g ∈ KS(T(E),FL,P) be a generator and let g1 be its initial term. Write
κ̃κκ = r·g (where r ∈ Λ) so that tw (κ1) = r·g1 . It follows from (i) and Theorem 4.2(ii)
that

char
(
H1

FL
(F,T(E))/Λ · rg1

)
= char

(
H1

FL
(F,T(E))/Λ · tw (κ1)

)
| char

(
H1

FL
(F,T(E))/Λ · g1

)
,

which shows that r ∈ Λ×, proving the first assertion in (ii). It now follows from
Theorem 4.1(ii) that the image κκκ ∈ KS(T (E),FL,P) of κ̃κκ is non-zero, and the
second assertion in (ii) holds true by the commutative diagram

KS(T(E),FL,P)

����
���

���
���

πcyc
�� KS(Tcyc(E),FL,P)

�����
���

���
���

KS(T (E),FL,P)

and by Theorem 4.1(ii). The final portion of the proposition follows now from (ii)
and Theorem 4.2(iii). �

4.1. Rubin-Stark L-restricted Kolyvagin systems. The purpose of this sec-
tion is to construct the L-restricted Kolyvagin systems T (we proved they exist
unconditionally in the previous section) out of the Rubin-Stark elements. In order
to do so, we will first construct an Euler system of rank one (namely, an Euler
system in the sense of [Rub00]) that enjoys additional local properties at p. We
will then apply Kolyvagin’s descent on this Euler system.

Definition 4.5.

(i) For X = T or T (E), let ES(X) = ES(X,E) denote the collection of Euler
systems for X in the sense of [Rub00, §2].

(ii) Let L ⊂ V+
K(E) be a O[[G(K(E))]]-direct summand as in Definition 2.9. An

Euler system c = {cK} ∈ ES(T ) is called an L-restricted Euler system if

locp(cK) ∈ V−
K ⊕ lK

for every K ∈ E. The module of L-restricted Euler systems for T is denoted
by ESL(T ). We similarly define the module of L-restricted Euler systems
ESL(T (E)) for T (E).

Theorem 4.6 (Mazur-Rubin). For X = T or T (E), there is a canonical map

ES(X) −→ KS(X ⊗ Λ,Fcan,P),

with the property that if c = {cK}K∈E
∈ ES(X) maps to κκκ ∈ KS(X ⊗ Λ,Fcan,P),

then
κ1 = {cM} ∈ lim←−

M

H1(M,X) = H1(F,X ⊗ Λ),

where the inverse limit is over the finite subextensions M of F∞/F .
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For any field K ∈ E, recall that ΔK := Gal(K/F ) and write δK = |ΔK|. Let Φ =

{ϕK} be any element of lim←−K∈E

∧r−1
HomO[ΔK]

(
H1(K, T ),O[ΔK ]

)
. As explained

in [Rub96, §1.2], there is a natural map

r−1∧
HomO[ΔK]

(
H1(K, T ),O[ΔK ]

)
−→ HomO[ΔK]

(
g∧
H1(K, T ), H1(K, T )

)
.

We denote the image of ϕK under this map still by ϕK. Given a collection Φ = {ϕK}
as above, we obtain an element ϕK(ε

χ
K) ∈ H1(K, T ) by the defining (integrality)

property of the elements εχK ∈ 1
δK

∧g H1(K, T ). In other words, the denominators
δK disappear once we apply the homomorphisms ϕK.

Theorem 4.7 (Perrin-Riou, Rubin). cχΦ := {ϕK(ε
χ
K)} ∈ ES(T ).

Proof. This is proved in [PR98, §1.2.3]; see also [Rub96, §6]. �

Localization followed by projection to V+
K induces a canonical homomorphism

(4.2)

lim←−
K∈E

r−1∧
HomO[ΔK]

(
V+
K ,O[ΔK]

)
−→ lim←−

K∈E

r−1∧
HomO[ΔK]

(
H1(K, Tχ),O[ΔK]

)
.

If Φ is an element of the left side of (4.2), its image under this homomorphism will
still be denoted by the same symbol.

The following theorem tells us how to obtain L-restricted Euler systems (and

L-restricted Kolyvagin systems) starting with the Rubin-Stark Euler system C(g)
R-S

of rank g.

Theorem 4.8. Recall the quotients Q=H1(Fp,T)/V, Qcyc=H1(Fp,Tcyc)/Vcyc .

(i) There exists an element Ψ = {ψK} ∈ lim←−K∈E

∧r−1 HomO[ΔK]

(
V+
K ,O[ΔK]

)
such that ψK maps

∧g V+
K isomorphically onto LK (likewise,

∧g Qcyc to
Lcyc and

∧g Q to L).
(ii) For Ψ as in (i), cχΨ := {ψK(ε

χ
K)} ∈ ESL(T ).

(iii) Let κκκR-S ∈ KS(T,Fcan,P) be the image of cχΨ under the Euler systems to

the Kolyvagin systems map of Theorem 4.6. Then κκκR-S ∈ KS(T,FL,P);
i.e., κκκR-S is an L-restricted Kolyvagin system.

Proof. (i) may be proved mimicking the arguments of [Büy10, §3.3.1]. To prove (ii)
and (iii), one makes use of Proposition 2.3 and adapts (completely formally) the
proof of Theorem 3.25 of [Büy10]. �

Let cχF,Ψ := ψF (ε
χ
F ) ∈ H1

FL
(F, T ) denote the initial term of the L-restricted

Euler system cχΨ. Similarly, define cχFcyc,Ψ
= {cχM,Ψ} ∈ lim←−M⊂Fcyc

H1(M,T ) =

H1(F,Tcyc) and cχF∞,Ψ = {cχM,Ψ} ∈ lim←−M⊂F∞
H1(M,T ) = H1(F,T), where the

inverse limit is over the finite subextensions M of F∞/F .

Proposition 4.9. cχF,Ψ �= 0.

Proof. This follows from the proof of Proposition 6.6 in [Rub96] since we assumed
Leopoldt’s conjecture. �

Remark 4.10. Definition VI.3.1 [Rub00] equips us with a twisting morphism ES(T )
→ ES(T (E)), which then evidently restricts to a map ESL(T ) → ESL(T (E)) on
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the L-restricted Euler systems. Let cΨ(E) ∈ ESL(T (E)) denote the image of cχΨ.
Then the image κκκR-S(E) of cΨ(E) under the map of Theorem 4.6 (applied with
X = T (E)) lies in KS(T(E),FL,P). The initial term κE

1 ∈ H1
FL

(F,T(E)) of

the Kolyvagin system κκκR-S(E) may be explicitly described: κE
1 = tw

(
cχF∞,Ψ

)
. In

particular, it follows from Proposition 4.9 that κE
1 �= 0.

5. Gras’ conjecture and CM main conjectures over F

Although our sights are set ultimately on the arithmetic of CM elliptic curves
defined over F+, we present the following results for Gm, first of which may be
thought of as a generalization of Gras’ conjecture and second and third as the one-
and two-variable main conjectures for the CM field F . We will later use these results
to promote all inequalities we shall obtain using the Rubin-Stark Euler/Kolyvagin
systems for T (E) of Remark 4.10 into equalities.

We assume until the end of this article that the following hypothesis on S holds
true (recall as well that we assume the truth of the Rubin-Stark conjectures and
Leopoldt’s conjecture for L):

(H.S) The set S that appears in the definition of Rubin-Stark elements (see the
start of Section 3) contains no non-archimedean prime of F that splits in L/F .

Definition 5.1. Let Aχ
cyc = lim←−

M⊂LFcyc

Cl(M)χ and similarly Aχ
∞ = lim←−

M⊂LF∞

Cl(M)χ .

We have the identifications (by class field theory)

Aχ
cyc = H1

F∗
can

(F,T∗
cyc)

∨ and Aχ
∞ = H1

F∗
can

(F,T∗)∨ .

Theorem 5.2.

(i) #Cl(L)χ = [
∧g O×,χ

L : O·εχF ], and the Rubin-Stark L-restricted Kolyvagin

system κκκR-S ∈ KS(T,FL,P) is primitive.

If in addition the Strong Rubin-Stark Conjecture holds true, then

(ii) char
(
Aχ

cyc

)
= char

(∧g
H1

Fcan
(F,Tcyc)/Λcyc ·Scyc

)
.

(iii) char (Aχ
∞) = char

(∧g
H1

Fcan
(F,T)/Λ ·S∞

)
.

Proof. It follows from Theorem 4.2(i) and Proposition 4.9 that H1
F∗

L
(F, T ∗) is fi-

nite, the Λcyc-module H1
F∗

L
(F,T∗

cyc)
∨ and the Λ-module H1

F∗
L
(F,T∗)∨ are torsion.

Furthermore, by Theorem 4.2(ii) we have

Fitt(H1
F∗

L
(F, T ∗)∨) | Fitt(H1

FL(F, T )/O · cχF,Ψ) ,

(5.1) char
(
H1

F∗
L
(F,T∗

cyc)
∨
)
| char

(
H1

FL(F,Tcyc)/R · cχFcyc,Ψ

)
,

char
(
H1

F∗
L
(F,T∗)∨

)
| char

(
H1

FL(F,T)/Λ · cχF∞,Ψ

)
.

It is these divisibilities we shall upgrade to equalities (and conclude with the proof
of the theorem) with the aid of an analytic class number formula. In order to save
space, we shall do this simultaneously. To that end, let R denote any of the coeffi-
cient rings O,Λcyc or Λ. Correspondingly, let X stand for one of the representations
T,Tcyc or T ; V for one of the submodules V+

F ,Vcyc, or V (of H1(Fp, X)) ; D for
one of the R-lines l,Lcyc or L ; c for one of the elements cχF,Ψ, c

χ
Fcyc,Ψ

or cχF∞,Ψ and

ε for εχF (when we assume the Strong Rubin-Stark Conjecture, for one of Scyc and
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S∞ as well). Let Q = H1(Fp, X)/V , a free R-module of rank g. Define the map
loc/V to be the compositum of the maps

loc/V : H1
Fcan

(F,X) −→ H1(Fp, X) −→ Q .

Note that this map is injective by our choice of U . By slight abuse, we denote
the isomorphic image of D inside Q also by D. Note with this convention that the
map loc/V induces an injection loc/V : H1

FL
(F,X) → D . Henceforth, whenever the

element ε is used with a coefficient ring R other than O, we implicitly assume the
Strong Rubin-Stark Conjecture. When R = O, we mean by the characteristic ideal
of a torsion R-module its initial Fitting ideal.

As we have indicated in the statement of Theorem 4.8, Ψ induces an isomorphism
Ψ :

∧g
Q → D and furthermore verifies that loc/V (c) = Ψ(loc/V (ε)) (in fact by its

very choice). We therefore have

(5.2) R · loc/V (c) = Fitt

(
g∧
Q/R · loc/V (ε)

)
D = char

(
g∧
Q/R · loc/V (ε)

)
D.

Furthermore, the following sequences are exact:

0 −→ H1
FL(F,X) −→ H1

Fcan
(F,X)

loc/V−→ Q/D,

0 −→ H1
F∗

can
(F,X∗) −→ H1

F∗
L
(F,X∗)

loc∗/V−→ H1
F∗

L
(Fp, X

∗)/H1
F∗

can
(Fp, X

∗).

Global duality states that the images of loc/V and loc∗/V are orthogonal comple-
ments. Hence
(5.3)

char

(
H1

F∗
L
(F,X∗)∨

H1
F∗

can
(F,X∗)∨

)
= char(coker(loc/V )) = char

(
Q

D + loc/V (H
1
Fcan

(F, T ))

)
.

Observe further that

Q

D + loc/V (H
1
Fcan

(F, T ))
∼=

Q/loc/V (H
1
Fcan

(F, T ))

(D + loc/V (H
1
Fcan

(F, T )))/loc/V (H
1
Fcan

(F, T ))

∼=
Q/loc/V (H

1
Fcan

(F, T ))

D/
(
loc/V (H

1
Fcan

(F, T )) ∩D
)

∼=
Q/loc/V (H

1
Fcan

(F, T ))

D/loc/V (H
1
FL

(F, T ))
.

This together with (5.3) and (5.1) proves that

char(H1
F∗

can
(F,X∗)∨) = char(H1

F∗
L
(F,X∗)∨) ·

char
(
D/loc/V (H

1
FL

(F,X))
)

char
(
Q/loc/V (H

1
Fcan

(F,X))
)

∣∣∣ char (H1
FL(F, T )/R · c

)
·
char

(
D/loc/V (H

1
FL

(F,X))
)

char
(
Q/loc/V (H

1
Fcan

(F,X))
)(5.4)

=
char

(
D/R · loc/V (c)

)
char

(
Q/loc/V (H

1
Fcan

(F,X))
) ,
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where the final equality is because loc/V is injective. (5.2) shows further that

char(H1
F∗

can
(F,X∗)∨) |

char
(∧g Q/R · loc/V (ε)

)
char

(
Q/loc/V (H

1
Fcan

(F,X))
)

=
char

(∧g
Q/R · loc/V (ε)

)
char

(∧g
Q/

∧g
loc/V (H

1
Fcan

(F,X))
)

= char

(
g∧

H1
Fcan

(F,X)/R · ε
)
.(5.5)

This concludes when R = O so that #Cl(L)χ = [
∧g O×,χ

L : O · εχF ]. Choosing
the auxiliary set of primes T that appears in the definition of Rubin-Stark ele-
ments carefully (as in [Büy09a, §2.1]; see also the discussion preceding Theorem
3.11 in [Büy09a]), one may use the analytic class number formula (together with an
inclusion-exclusion argument) for all fields between L and F to convert the inequal-
ity of Theorem 5.2(i) into an equality, concluding the proof of the first assertion in
(i). See [Rub92, §5], [Rub96, Corollary 5.4] and [Pop04, §4.2] for details. Tracing
back the inequalities above, we see that we in fact have an equality in the divisibility

Fitt(H1
F∗

L
(F, T ∗)∨) | Fitt(H1

FL(F, T )/O · cχF,Ψ)

of (5.1), and it follows from Theorem 4.2(iii) that the Kolyvagin system κκκR-S(T ) ∈
KS(T,FL,P) (which is the image of κκκR-S) is primitive. The second assertion in (i)
now follows from Theorem 4.1(ii).

Theorem 4.1(ii) shows that the image κκκR-S(Tcyc) ∈ KS(Tcyc,FL,P) of κκκR-S is
primitive as well. Hence we have equality in the divisibility

char
(
H1

F∗
L
(F,T∗

cyc)
∨
)
| char

(
H1

FL(F,Tcyc)/R · cχFcyc,Ψ

)
of (5.1) and therefore also in (5.5) when R = Λcyc. This is exactly the statement
of (ii).

When R = Λ, the divisibility (5.5) reads

(5.6) char(Aχ
∞) | char

(
g∧
H1

Fcan
(F,T)/Λ ·S∞

)
.

Let πcyc : Λ � Λcyc denote the obvious projection. We will check below in
Lemma 5.4 that

πcyc(charΛ(Aχ
∞)) = charΛcyc

(Aχ
cyc) �= 0

and in Lemma 5.5 that

πcyc(char

(
g∧
H1

Fcan
(F,T)/Λ ·S∞

)
) = char

(
g∧
H1

Fcan
(F,Tcyc)/Λ ·Scyc

)
.

All this shows (along with (5.6) and (ii)) that there are generators f (resp., g) of
charΛ(Aχ

∞) (resp., of char
(∧g H1

Fcan
(F,T)/Λ · εχF∞

)
) such that f /∈ kerπcyc, f−g ∈

kerπcyc and f divides g. We conclude using Lemma 5.3 that g/f ∈ Λ×, concluding
the proof of (iii). �

Lemma 5.3. Suppose f, g ∈ Λ are such that f | g, f−g ∈ kerπcyc and f /∈ kerπcyc.
Then g/f ∈ Λ×.
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Proof. Write g = f · h with h ∈ Λ, so that f − g = f(1 − h) ∈ kerπcyc. Since
f /∈ kerπcyc, it follows that 1− h ∈ kerπcyc ⊂ mΛ, where mΛ is the maximal ideal.
Hence h is indeed a unit. �

Lemma 5.4. πcyc(charΛ(Aχ
∞)) = charΛcyc

(Aχ
cyc) �= 0 .

Proof. Observe that kerπcyc = (γ∗ − 1)Λ where γ∗ ∈ Γ is any lift of a topological
generator of Γ/Γcyc. By the control theorem,

Aχ
∞/(γ∗ − 1) = H1

F∗
can

(F,T∗)∨/(γ∗ − 1) ∼= H1
F∗

can
(F,T∗

cyc)
∨ = Aχ

cyc .

As the Λcyc-module Aχ
cyc is torsion, it follows from Lemme 4 of [PR84, §1.1.3]

that charΛ(Aχ
∞) is prime to (γ∗ − 1) and πcyc (charΛ(Aχ

∞)) = charΛcyc
(Aχ

cyc), as
desired. �

Lemma 5.5.

πcyc(char

(
g∧
H1

Fcan
(F,T)/Λ ·S∞

)
) = char

(
g∧
H1

Fcan
(F,Tcyc)/Λ ·Scyc

)
.

Proof. It suffices to verify that the Λcyc-module

coker(H1
Fcan

(F,T)
πcyc−→ H1

Fcan
(F,Tcyc))

is pseudo-null. It follows from Nekovář’s control theorem (as used in Remark 2.16)
that coker(πcyc) ∼= Aχ

∞[γ∗ − 1]. This module is pseudo-null by Lemme 4 of [PR84,
§1.1.3]. �

5.1. A two-variable CM main conjecture. The goal in this section is to prove
a somewhat less precise version of Theorem 5.2(iii) assuming only the Rubin-Stark
Conjecture (but not the Strong Rubin-Stark Conjecture). Hypotheses from the
previous section are in effect. Recall the map loc/V defined as in the proof of
Theorem 5.2.

Theorem 5.6. We have

(5.7) char
(
L
/
Λ · loc/V

(
cχF∞,Ψ

))
⊆ char

(
H1

F∗
tr
(F,T∗)∨

)
.

In particular, the module H1
F∗

tr
(F,T∗) is Λ-cotorsion. Furthermore, the containment

in (5.7) may be promoted to an equality if the Strong Rubin-Stark Conjecture holds
true.

Proof. The first part may be deduced from Proposition 2.34 (used with F = Ftr

and G = FL) and Theorem 4.2(ii) (used with FL). The second assertion follows
from Proposition 4.9, the fact that loc/V is injective (see the proof of Theorem 5.2)
and the containment (5.7). Finally, the third portion follows from the proof of
Theorem 5.2. �

Remark 5.7. Let K be any field contained in the collection C. The defining prop-

erty of the Rubin-Stark elements and Example 3.2 show that loc/V (ε
χ
K) ∈

∧g
QK

where QK := H1(Kp, T )/V−
K and the exterior product is taken in the category of

O[Gal(K/F )]-modules. We will simply write loc/V (ε
χ
K) in place of j−1(loc/V (ε

χ
K)) ∈∧g QK.
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Definition 5.8. Recall the free-module Q = H1(Fp,T)/V of rank g. Define

loc/V (ε
χ
F∞

) = {loc/V (εχM )} ∈ lim←−

g∧
QM =

g∧
lim←− QM =

g∧
Q

to be the tower of Rubin-Stark elements along F∞. Here the inverse limit is taken
over all finite subextensions of F∞/F , and the second equality holds thanks to the
fact that each module QM is free as an O[Gal(M/F )]-module and the transition
maps QM → QM ′ (F ⊂ M ′ ⊂ M ⊂ F∞) are all surjective (because all the maps
Q → QM are).

Theorem 5.9. The ideal char
(
H1

F∗
tr
(F,T∗)∨

)
divides char

(∧g Q/Λ · loc/V
(
εχF∞

))
,

with equality if we further assume the Strong Rubin-Stark Conjecture.

Proof. Thanks to our choice of Ψ we have

char
(
L/Λ · locp

(
cχF∞,Ψ

))
= char

(
g∧

Q/Λ · loc/V
(
εχF∞

))
,

and the proof follows from Theorem 5.6. �
Remark 5.10. The Iwasawa module H1

F∗
tr
(F,T∗)∨ should be compared to the mod-

ule X̂ of [Rub91, §11] and Theorems 5.2 and 5.9 to Rubin’s main conjecture [Rub91,
Theorem 4.1(ii)], generalized to the setting where the base field F is now a general
CM field.

6. The cyclotomic (supersingular) main conjecture

for CM elliptic curves

The goal of this section is to apply results from Section 4 to study the cyclotomic
Iwasawa theory of a CM elliptic curve at a supersingular prime.

Recall that F cyc ⊂ F∞ denotes the cyclotomic Zp-extension of F and Fn its nth
layer. Further notation from Section 2.4.1 is also still in effect. In particular, recall
the characters ρ, 〈ρ〉 and ωE . Also until the end, the Dirichlet character χ is chosen
to be ωE .

Throughout Section 6 we assume that p splits completely in F+/Q. As before,
let T (E) = Tp(E) denote the p-adic Tate module of E. Let Sp = {℘1, · · · , ℘g}
denote the set of primes of F+ lying above p. Note that each ℘i remains inert in
the quadratic extension F/F+. We denote the unique prime of F above ℘i by pi.
By a slight abuse, we denote the unique prime of Fn (and of F cyc) above pi by the
same symbol pi.

6.1. Preliminaries. In this subsection we recall some classical results (due mostly
to Coates and Wiles) in the Iwasawa theory of CM elliptic curves. We shall ini-
tially record them being faithful to the original notions and notation, and later in
Remark 6.5 we explain which objects we have introduced in the previous sections
they correspond to.

Let M be the maximal abelian pro-p extension of F := F (E[p∞]) unramified
outside primes above p. Set X := Gal(M/F) and ΛF := O[[Gal(F/F )]]. For any
extension M of F (finite or infinite), consider the relaxed Selmer group

Sel′p(E/M) = ker

⎛⎝H1(M,E[p∞]) −→
∏
v�p

H1(Mv, E[p∞])

E(Mv)⊗Qp/Zp

⎞⎠ .
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Lemma 6.1 (Rubin). For any infinite extension M∞ of F contained in F,

Sel′p(E/M∞) = Selp(E/M∞).

Proof. This follows from [Rub85, Lemma 2.2]. �

Definition 6.2. Given a ΛF-module Y and a continuous character ψ : Gal(F/F ) →
O×, we define Y (ψ) := Y ⊗ Oψ−1 where Oψ−1 is the cyclic O-module on which
Gal(F/F ) acts via ψ−1.

Definition 6.3. Given a ΛF-module Y , we define Y ρ
∞ := Y (ρ−1) ⊗ΛF

Λ (resp.,
Y ρ
cyc := Y (ρ−1)⊗ΛF

Λcyc), the F∞-coinvariants (resp., F cyc-coinvariants) of Y (ρ−1).

Lemma 6.4.

(i) Sel′p(E/F) ∼= HomO(X, E[p∞]).
(ii) Selp(E/F∞)∨ ∼= Xρ

∞ and Selp(E/F cyc)∨ ∼= Xρ
cyc.

Proof. Proof of (i) is essentially due to Coates and Wiles and follows from the
criterion of Néron-Ogg-Shafarevich utilized as in the proof of [CW77, Theorem 2].
Proposition 1.2 of [Rub85] shows (for M∞ = F cyc or F∞) that

Sel′p(E/M∞) = Sel′p(E/F)Gal(F/M∞) .

(In fact, the case M∞ = F∞ is a straightforward consequence of the inflation
restriction sequence, as p � [F : F∞].) It follows from Lemma 6.1 and (i) that

Selp(E/M∞) ∼= HomO (X, E[p∞])
Gal(F/M∞)

∼= HomO

(
X(ρ−1),Φ/O

)Gal(F/M∞) ∼= HomO (Xρ
? ,Φ/O)

where ? = cyc or ∞ (depending on whether M∞ = F cyc or F∞). �

For every prime pi of F above p, we denote the prime of F above pi also by the
symbol pi. Let Ui = lim←−UM be the inverse limit (with respect to norm maps) of

the local units (at pi), where M varies over finite subextensions of Fpi
/Fpi

. The
compositum of the maps

E(Fpi
)⊗Qp/Zp→Hom(GFpi

, E[p∞])→Hom(Ui, E[p∞])
∼→HomO(Ui(ρ

−1),Φ/O)

(where the first map comes from the identification

H1(Fpi
, E[p∞])

∼→ Hom(GFpi
, E[p∞])

and the second map by the inclusion Ui ↪→ GFpi
of local class field theory) induces

a non-degenerate (cf. [Rub87, Prop. 5.2]), O-linear Kummer pairing

〈 , 〉 :
(
E(F cyc

pi
)⊗Qp/Zp

)
× U

ρ
i,cyc −→ Φ/O.

Remark 6.5. Let Fstr denote the strict Selmer structure on Z (where Z = T or
T(E)) given by the local conditions:

• H1
Fstr

(Fq, Z) = H1
Fcan

(Fq, Z) for every prime q � p,

• H1
Fstr

(Fp, Z) = 0.

It follows easily using the inflation-restriction sequence that

(6.1) H1
F∗

str
(F,T∗)∨ = X(ω−1

E )⊗ΛF
Λ =: XωE

∞ .
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By Lemma 6.4, we conclude that

5Selp(E/F∞)∨ = Xρ
∞ = X(ρ−1)⊗ΛF

Λ(6.2)

= H1
F∗

str
(F,T∗)∨ ⊗ 〈ρ〉 ∼= H1

F∗
str
(F,T(E)∗)∨,

and on tensoring with Λcyc (and using once again the perfect control theorem)

Selp(E/Fcyc)
∨ = Xρ

cyc = Xρ
∞ ⊗Λ Λcyc(6.3)

∼= H1
F∗

str
(F,Tcyc(E)∗)∨.

Furthermore, we have

H1(Fpi
,T(E))

∼←−
tw

H1(Fpi
,T)⊗ 〈ρ−1〉 = U

ρ
i,∞ ,(6.4)

and on applying
⊗

Λ Λcyc to both sides,

H1(Fpi
,Tcyc(E))

∼←−U
ρ
i,cyc .

Here tw : H1(Fpi
,T) → H1(Fpi

,T(E)) is the twisting morphism which factors
through the Λ-isomorphism (that we still denote by tw)

H1(Fpi
,T)⊗ 〈ρ−1〉 ∼−→ H1(Fpi

,T(E)) .

6.2. Plus/minus Selmer groups and p-adic L-functions. Following [Kob03]
(see also [IP06]), we define the ±-subgroups as follows:

Definition 6.6. For every positive integer n, set

E+(Fn,pi
) := {x ∈ E(Fn,pi

) : Trn/m(x) ∈ E(Fm−1,pi
) for 0 < m ≤ n,m : odd},

E−(Fn,pi
) := {x ∈ E(Fn,pi

) : Trn/m(x) ∈ E(Fm−1,pi
) for 0 < m ≤ n,m : even},

where Trn/m(x) : E(Fn,pi
) −→ E(Fm,pi

) is the trace map. We also set

E±(F cyc
pi

) = lim−→E±(Fn,pi
).

Definition 6.7. Let Selp(E/Fn) denote the classical Selmer group attached to E
and set Selp(E/F cyc) = lim−→ Selp(E/Fn). Define the ±-Selmer groups by setting

Sel±p (E/Fn) := ker

(
Selp(E/Fn) −→

g⊕
i=1

H1(Fn,pi
, E[p∞])

Kumi (E±(Fn,pi
)⊗Qp/Zp)

)
.

Let Sel±p (E/F cyc) = lim−→Sel±p (E/Fn).

We note that these two Selmer groups actually correspond to the cases (+, · · · ,+)
and (−, · · · ,−)-Selmer groups among 2g possible options.

Definition 6.8. For a fixed topological generator γ of Γcyc and n ≥ 1, we define

the element νn =
∑p−1

i=0 γipn−1 ∈ Λcyc and set

ω+
n =

∏
1≤i≤n
i: even

νi , ω−
n =

∏
1≤i≤n
i: odd

νi .

At the analytic end of things, Park and Shahabi [PS11] have constructed a
pair of signed (bounded) p-adic L-functions L±

p (E/F+) ∈ Λcyc ⊗ Qp whose basic

properties are outlined in the following theorem. For each prime P of F+ above p,
we let α = α(P) denote a distinguished roof of the Hecke polynomial for E at P.
As the prime P is inert in F/F+, it follows that α(P)2 = −p, and our convention
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is that we always pick the same square root α of −p (other choices would alter the
bounded p-adic L-functions of Park and Shahabi by only ±1).

Theorem 6.9 (Park-Shahabi). There exists a pair of elements L+
p (E/F+),

L−
p (E/F+) ∈ Λcyc⊗Qp which are characterized by the following interpolation prop-

erties: For every non-trivial character χ of Γcyc of finite order pn,

• for odd n, we have

χ
(
L+
p (E/F+)

)
= (−1)

n+1
2 gp

n+1
2 (g−1) τ (χ)

χ(ω+
n )

L(E,χ, 1)

ΩE(F+)
,

• for even n, we have

χ
(
L−
p (E/F+)

)
= (−1)g·(

n
2 +1)pn/2(g−1) τ (χ)

χ(ω−
n )

L(E,χ, 1)

ΩE(F+)
.

Furthermore, their value at the trivial character is given by

1
(
L+
p (E/F+)

)
= u1 ·

L(E, 1)

ΩE(F+)
, 1

(
L−
p (E/F+)

)
= u2 ·

L(E, 1)

ΩE(F+)

where u1, u2 ∈ Q
×

(whose precise values we need not know).

Here, the period ΩE(F
+) corresponds to the quantity Ω(ε0, fE)D

−1
F+(

√
−1)−g in

[PS11], where fE is the Hilbert modular form of parallel weight two that one as-
sociates (via the Weil-Jacquet-Langlands correspondence) to our CM elliptic curve
E and DF+ is the discriminant of F+.

Proof. This is an immediate consequence of the interpolation formula [PS11, The-
orem 2.3] and the factorization [PS11, Theorem 2.7], used together with [Pol03,
Lemma 4.7]. �

The following is the signed-main conjecture that Park and Shahabi posed in this
context.

Conjecture 6.10 (Park-Shahabi).

(i) Both modules Sel+p (E/F cyc) and Sel−p (E/F cyc) are Λcyc-cotorsion.

(ii) Any generator of the ideal char
(
Sel±p (E/F cyc)∨

)
also generates the ideal

L±
p (E/F+)(Λcyc ⊗Qp).

Definition 6.11. Let V ±
i ⊂ U

ρ
i,cyc denote the orthogonal complement of E±(F cyc

pi
)⊗

Qp/Zp under the Kummer pairing defined as above. Via the identifications in Re-
mark 6.5, we view V ±

i as a submodule of H1(Fpi
,Tcyc(E)).

Set U =
⊕g

i=1 Ui and V±
E,cyc =

⊕g
i=1 V

±
i . Define Uρ

∞ and Uρ
cyc in a similar

manner. Let α : U → X be the Artin map of global class field theory (and likewise
the compositum

a : Uρ
cyc

∼−→ H1(Fp,T(E)) −→ H1
F∗

str
(F,Tcyc(E)∗)∨

be the map obtained by the Poitou-Tate global duality). The following properties of
the submodules V±

E,cyc may be obtained as in [PR04, Theorem 4.3 and Proposition

4.4] (and using the comparisons of Remark 6.5 wherever necessary).
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Proposition 6.12 (Pollack-Rubin). For every 1 ≤ i ≤ g we have:

(i) the Λ-module U
ρ
i,∞

∼= H1(Fpi
,T(E)) and the Λcyc-module U

ρ
i,cyc

∼=
H1(Fpi

,Tcyc(E)) are free of rank two,
(ii) the Λcyc-modules V ±

i and H1(Fpi
,Tcyc(E))/V ±

i are both free of rank one,
(iii) there is a (non-canonical) submodule V±

i ⊂ H1(Fpi
,T(E)) whose image

under the natural map

πcyc : H
1(Fpi

,T(E)) −→ H1(Fpi
,Tcyc(E))

is the module V ±
i and is such that both V±

i and H1(Fpi
,T(E))/V±

i are free
of rank one over Λ,

(iv) Sel±p (E/F cyc)∨ = Xρ
cyc/α(V

±
E,cyc)

∼= H1
F∗

str
(F,Tcyc(E)∗)∨/a(V±

E,cyc) .

6.3. An explicit reciprocity conjecture for Rubin-Stark elements. As we
have assumed that the prime p splits completely in F+/Q, we may identify F+

℘i
with

Qp, and the constructions of Kobayashi [Kob03, §4] for a supersingular elliptic curve
defined over Qp carry over.

Definition 6.13. Given positive integers n and 1 ≤ i ≤ g, let E1(Fn,pi
) ⊂ E(Fn,pi

)
denote the kernel of the reduction map modulo pi. Then E1(Fn,pi

) is the pro-p part
of E(Fn,pi

), and we define the logarithm map λE to be the compositum

λE : E(Fn,pi
) � E1(Fn,pi

)
∼−→ Ê(pi) −→ Fn,pi

,

where Ê is the formal group of E/Fpi
.

We consider Kobayashi’s trace-compatible sequence of points dn,i ∈ E(F+
n,℘i

);
we refer the reader to [PR04, §3] for basic properties of these points and their com-
parison with Kobayshi’s original construction. Using the complex multiplication
map E(F+

n,℘i
)⊗O → E(Fn,pi

), we define the element dn,i ∈ E(Fn,pi
) as the image

of dn,i. Key properties of the elements dn,i are outlined in the following proposition.

Proposition 6.14 (Kobayashi). Let Γn := Gal(Fn/F ). For every positive integer
n and 1 ≤ i ≤ g,

(i)
∑

σ∈Γn
χ(σ)λE(d

σ
n,i) = (−1)[n/2]τ (χ), where τ (χ) is the Gauss sum,

(ii) if ε is the sign of (−1)n, then Eε(Fn,℘i
) = O[Γn]dn,i and E−ε(Fn,℘i

) =
O[Γn]dn−1,i. Moreover, we have Eε(Fn,℘i

) + E−ε(Fn,℘i
) = E(Fn,℘i

).

Proof. This is a restatement of [PR04, Theorem 3.2]. �

Definition 6.15. Let S∞ ⊂ lim←−M⊂F∞

∧g H1
Fcan

(M,T ) denote the cyclic Λ-module

generated by the tower of Rubin-Stark elements {εχM} and let SE,p
∞ be the image

of S∞ under the compositum of maps

lim←−
M⊂F∞

g∧
H1

Fcan
(M,T ) → lim←−

M⊂F∞

g∧
H1(Mp, T )

∼−→
g∧
H1(Fp,T)

∼−→
tw

g∧
H1(Fp,T(E)).

We write pri : H
1(Fp,T) → H1(Fpi

,T) for the obvious projection map (similarly,
for the map defined on H1(Mp, T ) for any M as above).
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Conjecture 6.16.

(i) There exists a generator Ξ1∧· · ·∧Ξg of the cyclic Λ-module SE,p
∞ such that

for every n ∈ Z+, for every primitive character χ : Gal(Fn/F ) → μμμp∞ and
for every positive integer k,

det

( ∑
σ∈Γn

χ−1(σ)〈dσn,i ⊗ p−k, ui,j〉
)

= p−kg(−1)[n/2]gτ (χ)χ(ωε
n)

g−1p[
n+1
2 ](g−1)L(E/F+, χ, 1)

ΩE(F+)

where ui,j := pri(Ξj) ∈ H1(Fpi
,T(E))

tw
= U

ρ
∞ , L(E/F+, χ, s) is the L-series

twisted by the character χ and ε is the sign of (−1)n.
(ii) For all but finitely many characters χ of Γcyc, we have L(E/F+, χ, 1) �= 0.

Remark 6.17. The first part of Conjecture 6.16 is a natural (but partial, in that
it only concerns the plus/minus subgroups of the local cohomology groups) gen-
eralization of Coates and Wiles’ reciprocity law [CW77,Wil78]. The second part
proposes an extension of Rohrlich’s [Roh84] non-vanishing theorem in the special
case F+ = Q; see also [Roh89] for a result in this direction (which proves the weaker
statement that (ii) holds true for infinitely many characters χ).

Recall the lift V±
i ⊂ U

ρ
i,∞

tw
=H1(Fpi

,T(E)) of V ±
i and set

V±
E :=

g⊕
i=1

V±
i ⊂ H1(Fp,T(E)).

Let V± ⊂ H1(Fp,T) be the inverse image of V±
E under the twisting isomorphism

tw.
Recall the modules M and Mcyc from Section 2.4.2.

Theorem 6.18. If Conjecture 6.16 holds true, then Mcyc∩V±
E,cyc = 0 = M∩V±

E .

Proof. Let Ξ denote the Λ-submodule of H1(Fp,T(E)) generated by S =
{Ξ1, · · · ,Ξg} and Ξcyc its image inside H1(Fp,Tcyc(E)) generated by Scyc =
{Ξcyc

1 , · · · ,Ξcyc
g } where Ξcyc

j ∈ H1(Fp,Tcyc(E)) is the image of Ξj . First, notice
that S is linearly independent over Λ and Scyc is linearly independent over Λcyc.
Indeed, if a1 · Ξcyc

1 + · · ·+ ag · Ξcyc
g = 0 for some a1, · · · , ag ∈ Λcyc, then this would

imply that
a1 · col1 + · · ·+ ag · colg = 0,

where colj denotes the jth column of the matrix
[∑

σ∈Γn
χ−1(σ)〈dσn,i ⊗ p−k, ui,j〉

]
i,j

and a ∈ O is the image of a ∈ Λcyc under the augmentation map. The explicit
reciprocity conjecture (applied for large enough n) shows that ai = 0 for every i,
so that ai = (γcyc − 1)bi for some bi ∈ Λcyc. As the Λcyc-module H1(Fp,Tcyc(E))
is Λcyc-torsion free, we conclude that

b1 · Ξcyc
1 + · · ·+ bg · Ξcyc

g = 0

and in turn that each bi is divisible by γcyc−1. Iterating this argument, we conclude
that each ai is divisible by arbitrarily large powers of γcyc−1, then ai = 0 for every i.
This completes the verification that Scyc is Λcyc-linearly independent. The assertion
that the set S is Λ-linearly independent is proved similarly. We therefore conclude
that Ξ is a free Λ-module, Ξcyc is a free Λcyc-module and both have rank g.
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We are now content to prove that Ξcyc ∩ V±
E,cyc = 0 . Suppose that

∑
i ai · Ξ

cyc
i

belongs to Vε
E,cyc (where ε = + or −) for some a1, · · · , ag ∈ Λcyc. Let n be

a positive integer chosen so that the sign of (−1)n is ε and L(E/F+, χ, 1) �= 0
for some primitive character χ of Γn. If col1, · · · , colg are the column vectors of[∑

σ∈Γn
χ−1(σ)〈dσn,i ⊗ p−k, ui,j〉

]
i,j

as above, we conclude once again that

a1 · col1 + · · ·+ ag · colg = 0

and by the explicit reciprocity conjecture that each ai is divisible by γcyc−1. Write
ai = (γcyc − 1)bi so that we have

(γcyc − 1) ·
∑
i

bi · Ξcyc
i ∈ Vε

E,cyc .

But according to Proposition 6.12(ii), the Λcyc-module H1(Fp,Tcyc(E))/Vε
E,cyc is

torsion-free and therefore
∑

i bi ·Ξ
cyc
i ∈ Vε

E,cyc. Repeating the argument s times (for

every positive integer s) we conclude that (γcyc− 1)s divides each ai, and therefore
that ai = 0, as desired.

It is not hard to see that there is an r ∈ Λ with πcyc(r) �= 0 and r ·Ξ ⊂ M (hence,
we also have πcyc(r) ·Ξcyc ⊂ Mcyc). The submodule πcyc(r) ·Ξcyc has Λcyc-rank g,
and therefore the quotient Mcyc/πcyc(r) · Ξcyc is torsion. This in turn shows that
there is a non-zero element r̃ ∈ Λcyc with r̃Mcyc ⊂ Ξcyc. Using this observation, the
fact that H1(Fp,Tcyc(E) is Λcyc-torsion free and our conclusion from the previous
paragraph that Ξcyc ∩ V±

E,cyc = 0, it follows that Mcyc ∩ V±
E,cyc = 0.

It now follows at once from Nakayama’s lemma that M∩ V±
E = 0 as well. �

Remark 6.19. Theorem 6.18 supplies us with two natural choices for the free Λ-
module VE in Definition 2.27: V+

E or V−
E .

6.4. Rubin-Stark elements and the plus/minus main conjecture. Through-
out this subsection, we assume the truth of the Explicit Reciprocity Conjecture 6.16
(therefore, implicitly the truth of Rubin-Stark conjectures) and of Leopoldt’s con-
jecture for the number field L. Throughout, let ε stand for one of + or −.

Definition 6.20.

(i) Let Qε,∞ := H1(Fp,T(E))/Vε
E and let locεp denote the compositum

locεp : H1(F,T(E))
locp−→ H1(Fp,T(E)) −→ Oε,∞.

(The quotient Qε,∞ is related (via the twisting map tw) to the quotients
Q defined as in Section 5 and the map locεp to loc/V .) Observe that Qε,∞
is a free Λ-module of rank g by Proposition 6.12(iii) and the map locεp is
injective by Theorem 6.18.

(ii) Let uR-S = u1 ∧ · · · ∧ ug ∈
∧g

Qε,∞ denote the image of the tower of
Rubin-Stark elements locεp(ε

ωE

F∞
) ∈

∧g Q (given as in Definition 5.8, with

the choice V = tw−1(Vε
E)) under the twisting map

∧g Q →
∧g

Qε,∞.
(iv) Similarly define Qε,cyc and the map

locεp : H1(F,Tcyc(E)) −→ Qε,cyc .

Let ūR-S = ū1∧· · ·∧ūg ∈
∧g

Qε,cyc be the image of uR-S under the projection
map

∧g
Qε,∞ →

∧g
Qε,cyc .
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Theorem 6.21. Any generator of the ideal char (
∧g

Qε,cyc/Λcyc · ūR-S) generates
the cyclic (Λcyc ⊗Qp)-module (Λcyc ⊗Qp) · Lε

p(E/F+).

The proof we shall present below for this theorem is essentially identical to the
proof of [PR04, Theorem 7.2] after a number of obvious modifications.

Proof. Let μ±
i ∈ Hom(E±(F cyc

pi
) ⊗ Qp/Zp,Qp/Zp) be the generator which was es-

sentially constructed by Kobayashi [Kob03, Theorem 6.2], whose properties are
outlined in [PR04, Theorem 7.1]. Let Ξ = ξ1 ∧ · · · ∧ ξg ∈

∧g ∈ Sρ
∞ be as in the

statement of Conjecture 6.16, and let ϕ±
i,j denote the image of ξj inside

Hom(E±(F cyc
pi

)⊗Qp/Zp,Qp/Zp). Then

(6.5) ϕ±
i,j = h±

i,j μ
±
i

for some h±
i,j ∈ Λcyc and

g∧
Q±,ρ

cyc /Λcyc · ūR-S
∼→ Λcyc

/
det

(
h±
i,j

)
,

char

(
g∧
Q

±,ρ
cyc /Λcyc · ūR-S

)
= det

(
h±
i,j

)
Λcyc.

(6.6)

Let χ : Γcyc → μμμpn be any character of order pn > 1. It follows from (6.5) that for
every k ≥ 1 and 1 ≤ i ≤ g,

(6.7) L±
i,j :=

∑
σ∈Γn

χ(σ)ϕ±
i,j(d

σ
n,i ⊗ p−k) = χ(h±

i,j)
∑
σ∈Γn

χ(σ)μ±
i (d

σ
n,i ⊗ p−k) =: R±

i,j .

A computation of Kobayashi (cf. [PR04, Theorem 7.1]) shows that R±
i,j =

χ(h±
i,j)χ(ω

±
n )p

−k so that we have

(6.8) det
(
R±

i,j

)
= p−kgχ

(
det

(
h±
i,j

))
χ(ω±

n )
g.

On the other hand, Conjecture 6.16 (which we assume) together with Proposi-
tion 6.14 shows that

(6.9) det
(
Lε
i,j

)
= p−kg(−1)[n/2]gτ (χ)χ(ωε

n)
g−1p[

n+1
2 ](g−1)L(E/F+, χ, 1)

ΩE(F+)
,

where ε is the sign of (−1)n+1. It follows from (6.7), (6.8) and (6.9) that

(−1)[n/2]gτ (χ)χ(ωε
n)

g−1p[
n+1
2 ](g−1)L(E/F+, χ, 1)

ΩE(F+)

≡ χ
(
det

(
hε
i,j

))
χ(ωε

n)
g mod pkg

for every k. The proof follows from Theorem 6.9. �

Theorem 6.22. The Λcyc-module H1
Fcan

(F,Tcyc(E)∗)∨ is torsion.

This statement is a reformulation of the weak Leopoldt conjecture for our CM
elliptic curve E and the cyclotomic Zp-extension Fcyc of F .

Proof. By Corollary 4.3, it suffices to prove the existence of a Kolyvagin system
κκκ ∈ KS(Tcyc(E),FL,P) with non-vanishing initial term κ1 ∈ H1

FL
(F,Tcyc(E)). A

suitable modification in Theorem 4.8 (so as to allow the replacement of T with
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T(E) and L with LE , etc.) shows that there is an isomorphism Ψ :
∧g

Qε,∞ → LE

and a Kolyvagin system κκκ(R-S) ∈ KS(T(E),FL,P) with the following properties:

• The initial term κ1(R-S) ∈ H1
FL

(F,T(E)) of κκκ(R-S) verifies that

(6.10) locεp(κ1(R-S)) = Ψ(uR-S) .

• Let κκκcyc(R-S) ∈ KS(Tcyc(E),FL,P) be the image of κκκ(R-S) and let
κcyc
1 (R-S) ∈ H1

FL
(F,Tcyc(E)) be its initial term. Then

(6.11) locεp(κ
cyc
1 (R-S)) = Ψcyc(ūR-S) ,

where Ψcyc :
∧g

Qε,cyc → Lcyc
E is the isomorphism induced from Ψ by base

change.

The proof now follows from (6.11), Theorem 6.21 and the second part of the Explicit
Reciprocity Conjecture 6.16 (from which follows that Lε

p(E/F+) ∈ Λcyc⊗Qp is non-
zero). �

Definition 6.23. Let Fε denote the Selmer structure on T (and on its subquotients,
given by propagation as usual) defined by the local conditions

• H1
Fε
(Fq,T(E)) = H1

Fcan
(Fq,T(E)) for every prime q � p ,

• H1
Fε
(Fp,T(E)) = Vε

E .

Set Yε,∞ = H1
F∗

ε
(F,T(E)∗)∨ and Yε,cyc = H1

F∗
ε
(F,Tcyc(E)∗)∨.

Remark 6.24. Thanks to Theorem 6.18, the Selmer structure Fε agrees with the
Kobayashi Selmer structure FKob with the choice VE = Vε

E in Definition 2.30.

Lemma 6.25. Yε,cyc
∼= Selε(E/F cyc)∨.

Proof. The Poitou-Tate global duality sequence

0 −→ H1
Fstr

(F,T(E)) −→ H1
Fε
(F,T(E))

locp−→ Vε
E

a−→ H1
F∗

str
(F,T(E)∗)∨ −→ Yε,∞ −→ 0

reduces to the sequence

0 −→ Vε
E −→ H1

F∗
str
(F,T(E)∗)∨ −→ Yε,∞ −→ 0

thanks to Proposition 2.33 and Theorem 6.22. Applying the functor −⊗ΛΛcyc and
using the control theorem [MR04, Lemma 3.5.3], we obtain the exact sequence

(6.12) 0 −→ Vε
E,cyc

a−→ H1
F∗

str
(F,Tcyc(E)∗)∨ −→ Yε,cyc −→ 0

(where the exactness on the left follows from rank considerations and the fact that
Vε

E,cyc is free of rank g). This shows, using Proposition 6.12(iv), that

Yε,cyc
∼= H1

F∗
str
(F,Tcyc(E)∗)∨/a(Vε

E,cyc)
∼= Sel±(E/F cyc)∨.

�

Fix a generator L±,alg
p ∈ Λcyc of the ideal char

(
Sel±(E/F cyc)∨

)
. We have the

following result towards Conjecture 6.10.

Theorem 6.26. We have L±,alg
p | L±

p (E/F+) (inside the ring Λcyc ⊗ Qp). This
divisibility is in fact an equality if we assume the Strong Rubin-Stark Conjecture
for E.
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Proof. The proof of Theorem 5.9 applied with the Kolyvagin system

κκκcyc(R-S) ∈ KS(Tcyc(E),FL,P)

in place of the Rubin-Stark L-restricted Kolyvagin system for T and the Selmer
structure Fε in place of Ftr shows that

char
(
H1

F∗
ε
(F,T(E)∗)∨

)
| char

(
g∧
Qε,cyc/Λcyc · ūR-S

)
.

The first part of the theorem now follows from Theorem 6.21 and Lemma 6.25.
If the Strong Rubin-Stark Conjecture holds true, Theorem 5.9 (after twisting)

shows that

char
(
H1

F∗
ε
(F,T(E)∗)∨

)
= char

(
g∧
Qε,∞/Λ · uR-S

)
.

This, however, means using Proposition 2.34 and Theorem 6.21 that

char
(
H1

F∗
L∗
(F,T(E)∗)∨

)
= char

(
H1

FL
(F,T(E))/Λ · κ1(R-S)

)
and by Proposition 4.4 that the Kolyvagin system κκκ(R-S) and its image κκκcyc(R-S)
are both primitive. This shows that

char
(
H1

F∗
L∗
(F,Tcyc(E)∗)∨

)
= char

(
H1

FL
(F,Tcyc(E))/Λcyc · κcyc

1 (R-S)
)
,

and once again applying Proposition 2.34, we conclude that

char
(
H1

F∗
ε
(F,Tcyc(E)∗)∨

)
= char

(
g∧
Qε,cyc/Λcyc · ūR-S

)
.

The second assertion follows as well. �

Assuming the validity of the Strong Rubin-Stark Conjecture for E, we may there-
fore write

L±,alg
p = uπεL±

p (E/F+)

where π ∈ O is a uniformizer, ε ∈ Z and u ∈ Λcyc is a unit.

6.5. Applications of the supersingular main conjecture. The assumptions
of the previous subsection are in effect until the end. We have the following con-
sequence of Theorem 6.26 to the Birch and Swinnerton-Dyer conjecture for E/F+,
generalizing parts of [Rub91, Theorem 11.4] (which applies in the case F+ = Q).

Theorem 6.27.

(1) If L(E/F+, 1) �= 0, then E(F+) is finite.
(2) Assuming the validity of the Strong Rubin-Stark Conjecture and that

L(E/F+, 1) = 0, the classical Selmer group Selp(E/F+) is infinite.

Remark 6.28. Assuming the Strong Rubin-Stark Conjecture and in case L(E/F+, 1)
�= 0, one may in fact express the cardinality of III(E/F )[p∞] in terms of ε, u1 and
the L-value. Since this lacks the desired level of precision, we do not include this
statement as part of Theorem 6.27.
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Proof. The proof of this theorem is essentially identical to the proof of [PR04,
Theorem 8.2]. Besides Theorem 6.26, the key points are as follows:

(a) The perfect control theorem for the Selmer group H1
F∗

str
(F, Tp(E)⊗Λcyc)

∨,

which asserts that

H1
F∗

str
(F, Tp(E)⊗ Λcyc)

∨ ⊗Λcyc
O

∼−→ H1
F∗

str
(F, Tp(E))∨

holds true thanks to [MR04, Lemma 3.5.3] (or [Nek06, Proposition 8.10.1]).
(b) For every n and 1 ≤ i ≤ g, the maps

E(F℘i
)⊗ Φ/O −→ H0(Γcyc, E

±(Fn,pi
)⊗ Φ/O)

are surjective. This assertion is proved as part of [PR04, Lemma 8.3].
(c) Using (a) and (b) above, one may deduce Kobayashi’s control theorem:

Sel±p (E/F cyc)∨ ⊗Λcyc
O

∼−→ Selp(E/F )∨.

(d) The exact sequence (6.12), [PR04, Lemma 6.5] and the proof of [Rub91,
Theorem 11.16] (applied with [NQD̄84, Theorem 3.1]) show that
Sel±p (E/F cyc)∨ has no finite-submodules. This together with (c) implies

|
(
Sel±p (E/F cyc)∨

)
⊗Λcyc

O| = |Selp(E/F )∨| .
The proof now follows from the interpolation property of the signed p-adic L-
function L±

p (E/F+) (considered as the identity character on Γcyc) together with

the isomorphism Selp(E/F+)∨ ⊗Zp
O

∼−→ Selp(E/F )∨ induced by the theory of
complex multiplication. �
Remark 6.29. The analogous statements to Theorem 6.27 may be proved in the
ordinary case using the ordinary CM main conjectures; cf. [Hsi12,Büy14].
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