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TOPOLOGICAL PROPERTIES OF A CLASS

OF SELF-AFFINE TILES IN R
3

GUOTAI DENG, CHUNTAI LIU, AND SZE-MAN NGAI

Abstract. We construct a class of connected self-affine tiles in R
3 and prove

that it contains a subclass of tiles that are homeomorphic to a unit ball in
R
3. Our construction is obtained by generalizing a two-dimensional one by

Deng and Lau. The proof of ball-likeness is inspired by the construction of a
homeomorphism from Alexander’s horned ball to a 3-ball.

1. Introduction

The main purpose of this paper is to construct a class of self-affine tiles in R
3

that are homeomorphic to a unit ball in R
3.

Let d ≥ 1 be an integer and let A be a d × d expanding matrix (i.e., all of its
eigenvalues have moduli greater than 1). It is well known (see [11,16]) that for any
finite set D ⊂ R

d there exists a unique nonempty compact set T = T (A,D) such
that

T =
⋃

di∈D
A−1(T + di).

The above set equation can be rewritten as AT = T +D, and T can be expressed
as

(1.1) T =
{∑

k≥1
A−kdk : dk ∈ D

}
.

We call D a digit set, (A,D) a self-affine pair, and T a self-affine set. If #D =
| det(A)| is an integer and the interior of T is nonempty, then T actually tiles Rd in
the following sense: there exists a discrete set L ⊂ R

d which satisfies (i) T +L = R
d

and (ii) (T ◦+ι1)∩(T ◦+ι2) = ∅ for all distinct ι1, ι2 ∈ L. We call such T a self-affine
tile.

Extensive studies of self-affine tiles began in the late 1980s by Thurston, Kenyon,
Bandt, Lagarias, Wang, and others (see [3, 13, 16, 21] and the references therein).
Since then, analytic, number theoretic, as well as topological properties of tiles have
been studied by many authors.

This paper concerns topological properties of self-affine tiles. Connectedness of
self-affine tiles has been studied by Kirat and Lau [14], Kirat et al. [15], Akiyama and
Gjini [1], Leung and Luo [18], and others. Disk-likeness of self-affine tiles in R

2 has
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been investigated by authors including Bandt andWang [5], Luo et al. [19], Ngai and
Tang [20], Leung and Lau [17], and Deng and Lau [8]. Topological properties of self-
affine tiles related to number systems have been studied by Akiyama, Thuswaldner,
and other authors (see [2] and the references therein).

The main motivation for this paper is the construction of ball-like tiles. Gel-
brich [9] asked whether or not a lattice self-affine tile with two pieces in R

d (d ≥ 3)
is homeomorphic to the d-dimensional ball (this is true for d = 2). We refer the
reader to Bandt [4] for some related conjectures on this question. Many tiles in
R

2 are disk-like. However, in R
d (d ≥ 3), except for some trivial tiles such as a

hypercube, the Cartesian product of a disk-like tile, and some interval, not much
was known. Recently, by making use of deep theorems from geometric topology,
Conner and Thuswaldner [7] formulated an algorithm which allowed them to prove
that some nontrivial self-affine tiles in R

3 are ball-like. Unlike the method in [7], our
proof is direct analytic and topological in nature. After this work was completed,
the authors were informed by Jun Luo that Kamae, Luo, and Tan [12] constructed
a family of n-dimensional self-affine tiles that are homeomorphic to the unit cube
[0, 1]n.

This paper considers tiles generated by digit sets that are noncollinear. More
precisely, we consider the following family:

(1.2) A :=

⎛
⎝ p 0 0

0 q 0
−t −s r

⎞
⎠ and

D :=
{
(i, j, k + ai + bj) : 0 ≤ i < |p|,

0 ≤ j < |q|, 0 ≤ k < |r|
}
,

where ai, bj are in R. Note that T (A2, D̃) = T (A,D) if D̃ = D + AD. So, by

considering (A2, D̃) instead of (A,D) if necessary, we will assume p, q, r ≥ 2. To
study the set T , we consider the following iterated function system (IFS) that
generates T :
(1.3){
Si,j,k(x, y, z) = A−1

(
(x, y, z)+(i, j, k+ai+bj)

)
: 0 ≤ i < p, 0 ≤ j < q, 0 ≤ k < r

}
.

By using this IFS, we partition T in three different ways as follows. Let

Gij =

r−1⋃
k=0

Si,j,k(T ), Ei =

q−1⋃
j=0

Gij , Fj =

p−1⋃
i=0

Gij ,(1.4)

T =
⋃
i,j

Gij =

p−1⋃
i=0

Ei =

q−1⋃
j=0

Fj .(1.5)

We call each Gi,j a cylinder. We say that two cylinders Gi,j , Gi′,j′ are adjacent if
max{|i− i′|, |j − j′|} ≤ 1 and are diagonal if |i− i′| = |j − j′| = 1 (see Figure 1).

We will use Lemma 2.3 from [10] to investigate the connectedness of T . For this
purpose, we define δ1, δ2, δ3 as follows:

δ1(i) := inf
{∣∣|ρ1(i)| − r−n|ρ2(j)|

∣∣ : 0 ≤ j < q − 1, n ≥ 1
}
, 0 ≤ i < p− 1,

δ2(j) := inf
{∣∣|ρ2(j)| − r−n|ρ1(i)|

∣∣ : 0 ≤ i < p− 1, n ≥ 1
}
, 0 ≤ j < q − 1,

δ3(i, j) :=
∣∣|ρ1(i)| − |ρ2(j)|

∣∣,

(1.6)
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Figure 1. The projections on the plane z = 0 of T , Gij , Ei, Fj ,
drawn with p = 2 and q = 3. Two adjacent cylinders marked in
gray are diagonal.

Ei

Ei+1 Gi,j

Gi+1,j+1

ρ1(i) δ1(i)
δ3(i, j)

x =
i+ 1

p

y

z

1

Figure 2. Geometric interpretation of δ1, δ3, and ρ1. The figure
is the vertical cross-section of T on the plane x = (i + 1)/p. The
set with a dotted boundary is the cross-section of Ei, and the rest
is the cross-section of Ei+1. It is drawn with p = 2, q = 3, r = 4,
s = t = 1, a0 = 0, a1 = 13.7, b0 = 0, and b2 = −b1 = 10.

where

(1.7) ρ1(i) :=
ap−1 − a0 + t

r(r − 1)
+

ai − ai+1

r
, ρ2(j) :=

bq−1 − b0 + s

r(r − 1)
+

bj − bj+1

r
.

We comment on these quantities. Let W+
i ,W−

i+1 be the restrictions of Ei, Ei+1

to the plane x = (i + 1)/p, respectively (see Figure 2). Then ρ1(i) is the amount
of translation from W+

i to W−
i+1, and δ1(i) is the vertical distance between the

bottoms of W+
i and W−

i+1. The quantities ρ2 and δ2 have analogous geometric
meanings (with respect to the sets Fj). The quantity δ3(i, j) is the distance of the
bottom of two diagonal cylinders restricted on the vertical line (see Figure 2):

x =
i+ 1

p
, y =

j + 1

q
, z = t, t ∈ R.

Our first main result concerns the connectedness of T and its interior.
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Theorem 1.1. Let (A,D) be given as in (1.2) with p, q, r ≥ 2 and let T be the
corresponding self-affine set. Assume ρ1, ρ2 are defined as in (1.7) and δ1, δ2, δ3
are given as in (1.6).

(a) T is connected if (i) or (ii) below holds:
(i) for all i, δ1(i) ≤ 1, and for all j either δ2(j) ≤ 1 or there exists i

(depending only on j) such that δ3(i, j) ≤ 1;
(ii) for all j, δ2(j) ≤ 1, and for all i, either δ1(i) ≤ 1 or there exists j

(depending only on i) such that δ3(i, j) ≤ 1.
Moreover, if ai, bj are zero for all i,j, then each of the above sufficient
conditions is necessary; i.e., if T is connected, then (i) or (ii) holds.

(b) T ◦ is connected if and only if |ρ1(i)| < 1 and |ρ2(j)| < 1 for all i, j.

We remark that the condition in Theorem 1.1(a) is sufficient but not necessary
(see Example 3.4).

Next, we consider the question whether T is homeomorphic to a 3-ball. It is easy
to get a necessary condition for T to be homeomorphic to a ball by considering the
genus. However, it is not easy to obtain a sufficient condition. We do this by
directly constructing a homeomorphism from T onto a 3-ball. This approach is
inspired by the construction of a homeomorphism from the Alexander horned ball
onto a 3-ball (see Bing [6]). The key to the construction is to decompose T in a
way that allows us to define the homeomorphism inductively. Roughly speaking, we
write T as a union of infinitely many levels (each level is a disjoint union of finitely
many polyhedra) such that two levels intersect if and only if they are adjacent (for
more details, see Section 4). The following is the main result of the paper.

Theorem 1.2. Let (A,D) be given as in (1.2) with p, q, r ≥ 2 and let T be the
corresponding self-affine set. Assume ρ1, ρ2 are defined as in (1.7). If T is home-
omorphic to a ball, then |ρ1(i)| + |ρ2(j)| < 1 for all i, j. The converse holds if all
ai, bj are zero and st ≥ 0.

The rest of this paper is organized as follows. In Section 2, we establish some
preliminary results that are needed in the proof of Theorem 1.1. Section 3 is devoted
to the proof of Theorem 1.1. Ball-likeness (Theorem 1.2) is proved in Section 4.
Finally, we state an open question in Section 5.

2. Preparation for the proof of Theorem 1.1

In this section, we establish some results that will be used in the proofs of
Theorems 1.1 and 1.2. For a set E ⊆ R

n, let E◦, ∂E, and E denote the interior,
boundary, and closure of E respectively.

2.1. The symbolic space. For an integer m ≥ 2, denote Σk
m := {0, 1, . . . ,m−1}k,

Σ∗
m :=

⋃
k≥0 Σ

k
m and Σ∞

m := {0, 1, . . . ,m − 1}∞, where Σ0
m := {∅} (∅ is the empty

word). We equip the symbolic space Σn
m with the lexicographic order.

We call i ∈ Σk
m an m-adic word of length k, and denote its length by |i|. For i =

i1 · · · ik ∈ Σk
m and j = j1j2 · · · ∈ Σ∗

m

⋃
Σ∞

m , let ij = i1 · · · ikj1i2 · · · , j|n = j1 · · · jn,
and i± = i1 · · · ik−1(ik ± 1) if ik ± 1 ∈ Σ1

m. For i ∈ Σ∗
m, we denote the infinite word

ii · · · by i.
The map ϕm : Σ∞

m → [0, 1] defined as

(2.1) ϕm(i) :=
∑
n≥1

in
mn

, i = i1i2 · · · ,
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is surjective. We say i ∈ Σ∞
m is an m-adic expansion (or simply expansion) of

x ∈ [0, 1] if x = ϕm(i). A real number x can have one or two m-adic expansions. x

has two expansions if and only if x =
∑|i|

n=1 inm
−n for some i ∈ Σ∗

m with i|i| 
= 0;
in this case the two expansions are

i1 · · · i|i|(m− 1) and i1 · · · i|i|−1(i|i| + 1)0,

where 0 ≤ i|i| < m− 1. We also define ϕm(i) :=
∑|i|

n=1 m
−nin for i ∈ Σ∗

m.
Denote Σn

p,q := Σn
p × Σn

q and Σ∞
p,q := Σ∞

p × Σ∞
q . We also say (i, j) ∈ Σ∞

p,q is an
expansion of (x, y) if (x, y) = (ϕp(i), ϕq(j)).

2.2. Notation concerning tiles. Let T = T (A,D) be given as in Theorem 1.1.
We introduce some notation that will simplify the proof of Theorem 1.1. First, by
a simple calculation, the inverse of the expanding matrix An can be written as

(2.2) A−n =

⎛
⎝p−n 0 0

0 q−n 0
tn sn r−n

⎞
⎠ ,

where

(2.3) tn :=

⎧⎪⎨
⎪⎩

(
p−n − r−n

)
t

r − p
, r 
= p,

nt

rn+1
, r = p,

sn :=

⎧⎪⎨
⎪⎩

(
q−n − r−n

)
s

r − q
, r 
= q,

ns

rn+1
, r = q.

Using the expression for T (see (1.1)) and the above expression for A−n, we may
rewrite T as

T =
{(∑

n≥1

in
pn

,
∑
n≥1

jn
qn

,
∑
n≥1

(kn
rn

+ intn +
ain
rn

+ jnsn +
bjn
rn

))
: 0 ≤ in < p,

0 ≤ jn < q, 0 ≤ kn < r, n ≥ 1
}
.

To simplify this expression for T , we define

(2.4) t(i) :=

|i|∑
n=1

intn, a(i) :=

|i|∑
n=1

ain
rn

, s(j) :=

|j|∑
n=1

jnsn, b(j) :=

|j|∑
n=1

bjn
rn

,

and we denote
d(i, j) := t(i) + a(i) + s(j) + b(j),

for i ∈ Σ∗
p

⋃
Σ∞

p and j ∈ Σ∗
q

⋃
Σ∞

q . Geometrically, d(i, j) is on the bottom surface
of T . For convenience, we set t(∅) = s(∅) = a(∅) = b(∅) := 0. Now T can be
expressed as

(2.5) T =
{(

ϕp(i), ϕq(j), d(i, j) + ϕr(k)
)
: (i, j) ∈ Σ∞

p,q, k ∈ Σ∞
r

}
.

Consider the IFS {Si,j,k} in (1.3) that generates T . For i = i1 · · · in, j = j1 · · · jn,
and k = k1 · · · kn, define

Si,j,k := Si1,j1,k1
◦ · · · ◦ Sin,jn,kn

and Gi,j :=
⋃

k∈Σn
r

Si,j,k(T ).

It is easy to check that
(2.6)

Si,j,k(T ) =
{
(ϕp(ii

′), ϕq(jj
′), d(ii′, jj′) + r(kk′)) : (i′, j′) ∈ Σ∞

p,q, k′ ∈ Σ∞
r

}
,

Gi,j =
{
(ϕp(ii

′), ϕq(jj
′), d(ii′, jj′) + ϕr(k

′)) : (i′, j′) ∈ Σ∞
p,q, k

′ ∈ Σ∞
r

}
.
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Let Ei and Fj be defined as in (1.4). We get from (1.5) and (2.6) that

T =
⋃

0≤i<p

Ei =
⋃

0≤j<q

Fj =
⋃

(i,j)∈Σn
p,q

Gi,j for all n ≥ 1.

The components Ei, Fi, and Gi,j of T will be used to study the connectedness of T
in Section 3.

2.3. Some properties of the tile T . In this subsection, we list some useful prop-
erties of the self-affine pair (A,D) and T . Lemma 2.1 presents some formulas
concerning tn, sn, t(i), s(j), a(i), b(j). Proposition 2.2 states some properties of the
tile, where (a) and (b) are analogs of [8, Proposition 2.2], and (c) follows from
(2.6). Theorem 2.3, due to Hata [10], is used to prove connectedness. Lemma 2.4
is a direct consequence of Theorem 2.3 and Proposition 2.2(b). Finally, Lemma 2.5
gives a complete description of the interior of T . We point out here that most of
the computations in Sections 3 and 4 depend on (2.8) and (2.9).

Lemma 2.1. Let tn, sn, t(i), s(j), a(i), b(j) be defined with respect to the self-affine
pair (A,D), and ρ1(i), ρ2(j) be as in (1.7). Then the following equalities hold:

(2.7) ptn+1 − tn = tr−n−1, qsn+1 − sn = sr−n−1;

(2.8)

∑
k≥n

tk =

⎧⎪⎪⎨
⎪⎪⎩

(
p−n+1(r − 1)− r−n+1(p− 1)

)
t

(p− 1)(r − p)(r − 1)
, p 
= r,

(1 + n(r − 1))r−nt

(r − 1)2
, p = r,

∑
k≥n

sk =

⎧⎪⎪⎨
⎪⎪⎩

(
q−n+1(r − 1)− r−n+1(q − 1)

)
s

(q − 1)(r − q)(r − 1)
, q 
= r,

(1 + n(r − 1))r−ns

(r − 1)2
, q = r.

Moreover, for (i, j) ∈ Σn
p,q, 0 ≤ i < p− 1 and 0 ≤ j < q − 1,

(2.9)
d(iip− 1, j)− d(i(i+ 1)0, j) = t(iip− 1)− t(i(i+ 1)0) + a(iip− 1)− a(i(i+ 1)0)

= r−nρ1(i),

d(i, jjq − 1)− d(i, j(j + 1)0) = s(jjq − 1)− s(j(j + 1)0) + b(jjq − 1)− b(j(j + 1)0)

= r−nρ2(j).

Proof. Since (2.8) follows from (2.3), we show (2.7) and (2.9). Using symmetry, we
only prove the equalities for p.

Using (2.3), we see that

ptn+1 − tn =

⎧⎪⎪⎨
⎪⎪⎩

p(p−n−1 − r−n−1)t

r − p
− (p−n − r−n)t

r − p
=

t

rn+1
, p 
= r,

p(n+ 1)t

rn+2
− nt

rn+1
=

t

rn+1
, p = r.

Note that in both cases, ptn+1 > tn.
As for (2.9), we first compute σ := (p− 1)

∑
k≥n+2 tk − tn+1 by using (2.3) and

(2.8). When p = r,

(2.10) σ =

(
1 + (n+ 2)(r − 1)

)
r−n−2t

r − 1
− (n+ 1)t

rn+2
=

r−nt

r(r − 1)
,
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and when p 
= r,

(2.11) σ =

(
p−n−1(r − 1)− r−n−1(p− 1)

)
t

(r − p)(r − 1)
−

(
p−n−1 − r−n−1

)
t

r − p
=

r−nt

r(r − 1)
.

Second, fix i = i1 · · · in ∈ Σn
p and 0 ≤ i < p− 1. From the definition of t(·), (2.10)

and (2.11), we get

t(ii(p− 1))− t(i(i+ 1)0) = itn+1 + (p− 1)
∑

k≥n+2

tk − (i+ 1)tn+1

= σ =
r−nt

r(r − 1)
.(2.12)

From the definition of a(·), we have

a(ii(p− 1))− a(i(i+ 1)0) =
ai

rn+1
+ ap−1

∑
k≥n+2

1

rk
− ai+1

rn+1
− a0

∑
k≥n+2

1

rk

= r−n
(ai − ai+1

r
+

ap−1 − a0
r(r − 1)

)
.(2.13)

Finally, combining (2.12), (2.13) and the expression for ρ1(i) completes the proof.
�

To state the next lemma, we let

�x,y := {(x, y)} × R and Tx,y := T ∩ �x,y

be, respectively, the vertical line passing through (x, y, 0) and the restriction of T
to �x,y.

Proposition 2.2. Let (A,D) be given as in Theorem 1.1; i.e.,

A =

⎛
⎝ p 0 0

0 q 0
−s −t r

⎞
⎠ and D = {i, j, k+ai+bj : 0 ≤ i < p, 0 ≤ j < q, 0 ≤ k < r},

where p, q, r ≥ 2. Then the following statements hold.

(a) The set T = T (A,D) is a tile with Lebesgue measure 1, and for any sequence
of real numbers {αi,j : (i, j) ∈ Z

2}, J := {(i, j, k+αi,j) : (i, j) ∈ Z
2, k ∈ Z}

is a tiling set for T in R
3.

(b) For any (i, j) ∈ {0, . . . , p − 1} × {0, . . . , q − 1} and k ∈ {0, . . . , r − 1},
Si,j,k(T ) ∩ Si,j,k+1(T ) ∩ T ◦ 
= ∅.

(c) Tx,y can be written as a union of vertical unit intervals as

Tx,y =
⋃

(i,j)∈(ϕ−1
p ({x})×ϕ−1

q ({y}))∩Σ∞
p,q

{(x, y)} ×
(
[0, 1] + d(i, j)

)
.

Proof. (a) Let Dj = {0, . . . , j − 1}; then T (j,Dj) = [0, 1] for j ≥ 2. Fix (x, y, z) ∈
R

3. We choose (i, j) ∈ Z
2 such that (x, y) − (i, j) ∈ [0, 1], and hence there is

(i, j) ∈ Σ∞
p,q such that (x, y) − (i, j) = (ϕp(i), ϕq(j)). Since T (r,Dr) = [0, 1], there

exists an integer k such that z − d(i, j) − k − αi,j ∈ [0, 1]. This implies that
z = d(i, j)+ϕr(k)+k+αi,j for some k ∈ Σ∞

r . Therefore, (x, y, z) ∈ T+(i, j, k+αi,j),
implying T + J = R

3.
It remains to show that {T + t : t ∈ J } are essentially disjoint. In fact, for

almost all (x, y) ∈ R
2, there is a unique pair (i, j) ∈ Z

2 and (i, j) ∈ Σ∞
p,q such that

(x, y)− (i, j) = (ϕp(i), ϕq(j)). When (i, j) and (i, j) are fixed, for almost all z ∈ R,
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the above k and k are unique. Hence the Lebesgue measure of (T + t1) ∩ (T + t2)
is zero if t1, t2 ∈ J with t1 
= t2. If we let all αi,j be zero, then J = Z

3 is a lattice
tiling set, completing the proof of (a).

(b) Let e1 = (0, 0, 1) be a unit vector in R
3. Now we show that T ∩ (T + e1)

contains an interior point of (T ∪ (T + e1))
◦, which implies the result since S−1

i,j,k ◦
Si,j,k+1(x, y, z) = (x, y, z) + e1. Take (x, y) ∈ (0, 1)2 with a unique expansion
(i, j) ∈ Σ∞

p,q. Let

(2.14) t =
(
x, y, d(i, j)

)
+ e1.

Then (2.5) implies t ∈ T ∩ (T + e1).
Next we show that t is a desired interior point of T ∪ (T + e1). By (a), Z3 is

a tiling set of T . Since (x, y) is an interior point of [0, 1]2 and T ⊂ [0, 1]2 × R,
that t ∈ T + (i, j, k) for some (i, j, k) implies i = j = 0. On the other hand, if
t ∈ T + (0, 0, k), then the last coordinate of t must be of the form

d(i, j) + ϕr(k) + k

for some k ∈ Σ∞
r . Considering (2.14) and (2.5), we have ϕr(k) + k = 1 and hence

k = 0 or 1 since ϕr(k) ∈ [0, 1]. Therefore t is contained only in T ∪ (T + e1) and
not in other translates of T . Hence t does not lie in the boundary of T ∪ (T + e1).
The conclusion follows.

(c) This is a consequence of the expression (2.5) for T , since ϕr(Σ
∞
r ) = [0, 1]. �

Theorem 2.3 (Hata [10]). Let {ψj}Nj=1 be a family of contractions on R
d and let

K be its attractor. Then K is connected if and only if for any i 
= j ∈ {1, . . . , N},
there exists a finite sequence of indices j1, . . . , jn in {1, . . . , N}, with j1 = i and
jn = j, such that ψjk(K) ∩ ψjk+1

(K) 
= ∅ for all 1 ≤ k < n.

Applying the above lemma to the IFS {Si,j,k}, we obtain the following lemma.

Lemma 2.4. Assume the sequence {(i1, j1), . . . , (in, jn)} satisfies
⋃n

k=1{(ik, jk)} =
{0, . . . , p− 1} × {0, . . . , q − 1}. If Gik,jk ∩Gik+1,jk+1


= ∅ for 1 ≤ k < n, then T is
connected.

For x, y ∈ (0, 1), let

dmin(x, y) := min
{
d(i, j) : ϕp(i) = x, ϕq(j) = y, (i, j) ∈ Σ∞

p,q

}
,

dmax(x, y) := max
{
d(i, j) : ϕp(i) = x, ϕq(j) = y, (i, j) ∈ Σ∞

p,q

}
.

Intuitively, dmin(x, y) and dmax(x, y)+1 are the lowest and highest points of T∩�x,y,
respectively.

Lemma 2.5. Let x, y ∈ (0, 1). A point P = (x, y, z) ∈ T belongs to T ◦ if and only
if

(2.15) dmax(x, y) < z < dmin(x, y) + 1.

Proof. Using Proposition 2.2(a), we let L = Z
3 be a tiling set for T . Assume (2.15)

holds. If P ∈ T + t for some t = (t1, t2, t3) ∈ L, then t1 = t2 = 0. In this case,
P ∈ Tx,y + t3, i.e., z − t3 ∈ [dmin(x, y), dmax(x, y) + 1]. Comparing this with (2.15),
we get t3 = 0. Hence P does not lie in any neighbor of T in the tiling and is
hence an interior point of T . If (2.15) fails, then z ∈ [0, 1] + dmax(x, y) − k or
z ∈ [0, 1] + dmin(x, y) + k for some integer k 
= 0, implying P ∈ T + (0, 0, k). Hence
P ∈ T ∩ (T + (0, 0, k)) and thus P /∈ T ◦. The proof is complete. �
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3. Proof of Theorem 1.1

In this section, we study the self-affine set T = T (A,D) in R
3 and prove Theorem

1.1. To do this, we first establish some properties of the intersections of the Gi,j

(Lemma 3.1) and of the Gi,j ∩T o (Lemma 3.3) by using ρ1, ρ2, δ1, δ2 and δ3, which
are defined as in Section 1. Then by using these properties and Lemma 2.4, we give
a detailed proof of Theorem 1.1. Finally, we present an example to show that the
condition in Theorem 1.1(a) is not necessary.

We first observe by definition that δ1(i) ≤ |ρ1(i)| and δ2(j) ≤ |ρ2(j)|. Also, if
ρ1(i) 
= 0, then, since r−n|ρ2(j)| → 0 as n → ∞, we have

(3.1) δ1(i) = min
0≤j≤q−1,n≥1

∣∣|ρ1(i)| − r−n|ρ2(j)|
∣∣.

Similarly, if ρ2(j) 
= 0, then

(3.2) δ2(j) = min
0≤i≤p−1,n≥1

∣∣|ρ2(j)| − r−n|ρ2(i)|
∣∣.

Lemma 3.1. If Gi,j ∩ Gi′,j′ 
= ∅, then Gi,j and Gi′,j′ are adjacent, i.e.,
max{|i− i′|, |j − j′|} ≤ 1. Moreover,

(a) Gi,j ∩Gi+1,j 
= ∅ for any j if and only if δ1(i) ≤ 1;
(b) Gi,j ∩Gi,j+1 
= ∅ for any i if and only if δ2(j) ≤ 1;
(c) Gi,j∩Gi+1,j+1 
= ∅ if and only if |ρ1(i)−ρ2(j)| ≤ 1, and Gi+1,j∩Gi,j+1 
= ∅

if and only if |ρ1(i)+ρ2(j)| ≤ 1. In particular, if either of the inequalities is
indeed an equality, then the corresponding intersection contains no interior
points of T .

Proof. The first part of the conclusion holds since Gi,j is contained in the region[ i
p
,
i+ 1

p

]
×
[ j
q
,
j + 1

q

]
× R.

To show (a), assume Gi,j ∩Gi+1,j 
= ∅. Take any point P = (x, y, z) contained in
the intersection. Note that Gi,j∩Gi+1,j lies on the plane x = (i+1)/p, and so x has

two p-adic expansions i1 = i(p− 1) and i2 = (i+ 1)0. Suppose y ∈ [j/q, (j + 1)/q]
for some j. Recall that Tx,y, which contains P , is a union of vertical unit intervals
(see Proposition 2.2(c)).

If y has only one expansion j, then by the definition of Tx,y, the last coordinates
of Tx,y form a union of two unit intervals I1 ∪ I2, where Im = [0, 1] + d(im, j) for
m = 1, 2 (see Figure 3(a1)). Clearly, {(x, y)}×I1 ⊂ Gi,j and {(x, y)}×I2 ⊂ Gi+1,j .
That is, Tx,y is a line segment, and so is I1 ∪ I2. Noting that I1 and I2 are two unit
intervals and putting n = 0 in (2.9), we get∣∣ρ1(i)∣∣ = ∣∣d(i1, j)− d(i2, j)

∣∣ ≤ 1.

If y has two expansions j1 = jj′(q − 1), j2 = j(j′ + 1)0, where j ∈ Σn
q , then

the last coordinates of Tx,y form a union of four unit intervals
⋃2

l,m=1 Il,m, where

Il,m = [0, 1] + d(il, jm) (see Figure 3(a2)). Clearly, {(x, y)} × (I1,1 ∪ I1,2) ⊂ Gi,j ,
{(x, y)} × (I2,1 ∪ I2,2) ⊂ Gi+1,j . Since (x, y, z) ∈ Tx,y ∩ Gi,j ∩ Gi+1,j 
= ∅, either
I2,1 ∩ (I1,1 ∪ I1,2) 
= ∅ or I2,2 ∩ (I1,1 ∪ I1,2) 
= ∅. Hence either one of the following
holds:

min
{
|d(i2, j1)− d(i1, j1)|, |d(i2, j1)− d(i1, j2)|

}
≤ 1 or

min
{
|d(i2, j2)− d(i1, j1)|, |d(i2, j2)− d(i1, j2)|

}
≤ 1.
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ρ1 I1

I2

�x,y

Gi,j

Gi+1,j

(a1)

z

y

x =
i+ 1

p

�x,y

I1,2

I1,1
I2,2

I2,1

Gi,j

Gi+1,j

ρ1

(a2)

Ei

Ei+1
Gi,j

Gi+1,j+1
ρ1

�2

�1
δ3

�x,y(b)

Figure 3. Figures for Lemma 3.1. This is on the plane x =
(i+ 1)/p.

This implies, in view of (2.9) and the definition of d(i, j),

∣∣ρ1(i)∣∣ ≤ 1 or δ1(i) ≤
∣∣∣∣∣ρ1(i)∣∣± 1

rn
∣∣ρ2(j′)∣∣

∣∣∣ ≤ 1.

Thus the necessity follows from the fact δ1(i) ≤ |ρ1(i)|.
To show the sufficiency, we notice that ρ1(i) = 0 implies d(i1, j) = d(i2, j) for all

j. That is, Gi,j ∩Gi+1,j ⊃ {(ϕp(i1), ϕq(j))}× ([0, 1]+ d(i1, j)). So ρ1(i) = 0 implies
Gi,j ∩Gi+1,j 
= ∅. Now we suppose ρ1(i) 
= 0. By (3.1), we let n, j′ be chosen such

that δ1(i) = ||ρ1(i)|− r−n|ρ2(j′)||. Set j1 = j0n−1j′(q − 1) and j2 = j0n−1(j′+1)0.
Then either |d(i1, j1) − d(i2, j2)| or |d(i1, j2) − d(i2, j1)| is the minimum δ1(i). It
follows that I1,1 ∪ I1,2 intersects I2,1 ∪ I2,2, where Il,m, l,m = 1, 2, are defined as
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above with respect to i1, i2, j1, j2. The argument above shows that Gi,j ∩Gi+1,j is
nonempty.

Similar reasoning yields (b). To prove (c), we only consider the set Gi,j∩Gi+1,j+1

(see Figure 3(b)), the other case being similar. The real number x = (i + 1)/p

has two p-adic expansions i1 = i(p− 1), i2 = (i + 1)0, and the real number y =

(j + 1)/q has two q-adic expansions j1 = j(q − 1), j2 = (j + 1)0. The intersection
Gi,j∩Gi+1,j+1 is a subset of Tx,y and the restrictions of Gi,j andGi+1,j+1 on Tx,y are
the line segments �1 = {(x, y)}×([0, 1]+d(i1, j1)) and �2 = {(x, y)}×([0, 1]+d(i2, j2))
respectively. Hence the intersection is not empty if and only if �1 ∩ �2 
= ∅ and the
intersection contains exactly one point if and only if �1 ∩ �2 contains exactly one
point. Note that �1 and �2 are unit intervals. Hence �1 ∩ �2 
= ∅ if and only if

(3.3)
∣∣d(i1, j1)− d(i2, j2)

∣∣ ≤ 1.

Moreover, (3.3) is an equality if and only if �1∩ �2 contains a unique point, denoted
by P = (x, y, z). Because the last coordinate z does not satisfy the inequality in
(2.15), we know P /∈ T ◦ by Lemma 2.5. Now, it follows from (2.9) and a direct
calculation that the left side of (3.3) is equal to |ρ1(i)− ρ2(j)|, and the conclusion
follows. �

Notice that the expressions for δ1(i) and δ2(j) are independent of j and i respec-
tively. Hence we obtain the following result from Lemma 3.1.

Corollary 3.2. If Gi,j ∩ Gi+1,j 
= ∅ holds for some j, then it holds for all j; if
Gi,j ∩Gi,j+1 
= ∅ holds for some i, then it holds for all i.

Lemma 3.3. Let n,m ≥ 0, (i, j) ∈ Σn
p,q, and (i′, j′) ∈ Σn+m+1

p,q . Then Gii(p−1)m, j′∩
Gi(i+1)0m, j′ intersects T

◦ if |ρ1(i)| < 1 and Gi′, jj(q−1)m ∩Gi′, j(j+1)0m intersects T ◦

if |ρ2(j)| < 1. When n = m = 0, the necessity is also sufficient; i.e., (Gi,j ∩
Gi+1,j)∩ T ◦ 
= ∅ only if |ρ1(i)| < 1 and (Gi,j ∩Gi,j+1)∩ T ◦ 
= ∅ only if |ρ2(j)| < 1.

Proof. Using the symmetry of i, j, we only check the value of ρ1(i). Recall that
Jj′ = ϕq(j

′)+[0, q−n−m−1]. Take an irrational number y0 ∈ Jj′ , which has a unique

q-adic expansion (denoted by j′′), and let i1 = ii(p− 1) and i2 = i(i + 1)0 be the
two p-adic expansions of x0 = ϕp(i(i + 1)). Suppose |ρ1(i)| < 1. From the first
equation in (2.9), we see that∣∣d(i1, j′′)− d(i2, j

′′)
∣∣ = ∣∣t(i1) + a(i1)− t(i2)− a(i2)

∣∣ = r−n
∣∣ρ1(i)∣∣ < 1.

Then

dmin(x0, y0) + 1− dmax(x0, y0) = 1− r−n|ρ1(i)| > 0.

So, we can take z0 ∈ (dmax(x0, y0), dmin(x0, y0) + 1). Therefore, Lemma 2.5 shows
that P = (x0, y0, z0) ∈ Gii(p−1)m, j′ ∩Gi(i+1)0m, j′ ∈ T ◦.

Now suppose n = m = 0 and |ρ1(i)| ≥ 1. Let S =
⋃

y∈[j/q,(j+1)/q]∩Qc Tx0,y which

is dense in Gi,j ∩Gi+1,j . Note that for any P = (x0, y0, z0) ∈ S, the second coordi-
nate has exactly one q-adic expansion, which implies dmax(x0, y0)− dmin(x0, y0) =
|ρ1(i)| ≥ 1. So (2.15) cannot hold. This implies S ∩ T ◦ = ∅ by Lemma 2.5.
Therefore, the intersection Gi,j ∩Gi+1,j contains no interior points of T . �

Now we prove Theorem 1.1.

Proof of Theorem 1.1. (a) First, notice that δ3(i, j) ≤ 1 implies either Gi,j ∩
Gi+1,j+1 
= ∅ or Gi,j+1 ∩ Gi+1,j 
= ∅. That is, Fj ∩ Fj+1 
= ∅. If δ2(j) ≤ 1
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holds for some j, then Fj ∩ Fj+1 
= ∅. The assertion (a)(i) implies Fj ∩ Fj+1 
= ∅
for 0 ≤ j < q − 1; consequently, there exist {(im,m)}q−2

m=0 and {(i′m,m + 1)}q−2
m=0

such that Gim,jm ∈ Fm, Gi′m,j′m ∈ Fm+1, and Gim,jm ∩Gi′m,j′m 
= ∅. Notice that the
assertion δ1(i) ≤ 1 implies that any two sets Gi,j and Gi+1,j contained in Fj have
a nonempty intersection. So the sequence of indices

{(0, 0), (1, 0), . . . , (p− 2, 0), (p− 1, 0), (p− 2, 0), . . . , (i0 + 1, 0), (i0, 0),
(i′0, 1), (i

′
0 − 1, 1), . . . , (0, 1), (1, 1), . . . , (p− 1, 1), (p− 2, 1), . . . , (i1, 1),

(i′1, 2), (i
′
1 − 1, 2), . . . , (0, 2), (1, 2), . . . , (p− 1, 2), (p− 2, 2), . . . , (i2, 2),

...
(i′q−2, q − 1), (i′q−2 − 1, q − 1), . . . , (0, q − 1), (1, q − 1), . . . , (p− 1, q − 1)},

F0

F1

F2

...
Fq−1

satisfies Gi,j ∩Gi′,j′ 
= ∅ if (i, j), (i′, j′) are two consecutive terms of the sequence.
Thus, the connectedness of T follows from Lemma 2.4. The proof for (a)(ii) is
similar.

To show that the sufficient condition is also necessary when ai = bj = 0 for all
i, j, we suppose, without loss of generality, that |t| ≥ |s|. The conditions δ1(i) ≤ 1,
δ2(j) ≤ 1, and δ3(i, j) ≤ 1 are equivalent, respectively, to

|t| − |s/r| ≤ r(r − 1);(3.4)

inf
n≥1

{∣∣|s| − |tr−n|
∣∣} ≤ r(r − 1);(3.5)

|t| − |s| ≤ r(r − 1).(3.6)

We point out here that (a)(i) is equivalent to (3.4) and (3.6) and (a)(ii) is equivalent
to (3.5) and (3.6).

We prove by contradiction. Assume (a)(i) and (a)(ii) fail. Then at least two
of (3.4)–(3.6) fail. First we notice that (3.4) must fail, for otherwise (3.6) would
hold because |t| − |s| < |t| − |s/r|, which implies that (a)(i) is satisfied. If (3.5)
fails (in this case, δ1, δ2 > 1), Lemma 3.1 says that if Gi,j ∩ Gi′,j′ 
= ∅, then
|i− i′| = |j − j′| = 1. In other words, Gi,j ∩Gi′,j′ 
= ∅ implies that i+ j and i′ + j′

have the same parity and thus (
⋃
{Gi,j : i+j is odd})∩(

⋃
{Gi,j : i+j is even}) = ∅.

Therefore T is disconnected. If (3.6) fails, we can conclude (note that (3.4) fails)
that G0,j ∩ G1,j′ = ∅ for any j, j′. This implies E0 ∩ E1 = ∅. So T is also
disconnected. The necessity follows.

(b) Suppose |ρ1(i)| ≥ 1 for some i. By Lemma 3.3, Gi,j ∩ Gi+1,j contains no
interior points of T for all j. Hence all interior points in Ei ∩Ei+1 belong to

( q−2⋃
j=0

(Gi,j ∩Gi+1,j+1)
)⋃( q−1⋃

j=1

(Gi,j ∩Gi+1,j−1)
)
.

However, the set stated above, consisting of finitely many line segments and finitely
many points, contains no interior points of T . This implies Ei ∩ Ei+1 ∩ T ◦ = ∅.
So, we divide T into two parts, namely, T1 =

⋃i
l=0 El and T2 =

⋃p−1
l=i+1 El so that

T1 ∩ T2 = Ei ∩ Ei+1 contains no interior points of T . The disconnectedness of T ◦

follows. Similarly, that |ρ2(j)| ≥ 1 for some j forces T ◦ to be disconnected.
To show the sufficiency, we choose n large enough so that

p
∑
k>n

|tn|+ q
∑
k>n

|sn|+ c
∑
k>n

r−k <
1

4
,
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Figure 4. Figure for the proof of Theorem 1.1(b).

where c = 2
∑p−1

i=0 |ai| + 2
∑q−1

j=0 |bj |. So, for each (i, j) ∈ Σn
p,q and any two pairs

(i1, j1) = (in+1in+2 · · · , jn+1jn+2 · · · ), (i2, j2) = (i′n+1i
′
n+2 · · · , j′n+1j

′
n+2 · · · ),∣∣d(ii1, jj1)− d(ii2, jj2)

∣∣
≤

∑
k>n

(∣∣(ik − i′k)tk
∣∣+ ∣∣(jk − j′k)sk

∣∣+ ∣∣∣aik − ai′k
rk

∣∣∣+ ∣∣∣bjk − bj′k
rk

∣∣∣)

≤ p
∑
k>n

|tk|+ q
∑
k>n

|sk|+ c
∑
k>n

r−k <
1

4
.

Hence, for any two pairs (x, y), (x′, y′) ∈ I◦i × J◦
j ,

(3.7)
max

{
|dmin(x, y)− dmin(x

′, y′)|, |dmax(x, y)− dmax(x
′, y′)|

}
≤
∣∣dmax(x, y)− dmin(x

′, y′)
∣∣ < 1

4
.

Now we claim that if P0 ∈ T ◦ ∩ ∂Gi,j and P1 = (x1, y1, z1) ∈ G◦
i,j, then there

exists a piecewise linear curve � ⊂ T ◦ connecting P0 and P1.
We show the claim by constructing such a curve � (see Figure 4). Since P0 ∈ Gi,j

is an interior point of T , there exists P2 ∈ G◦
i,j such that the line segment P0P2 is

contained in T ◦. Set

Pi+2 = (xi+2, yi+2, zi+2) :=
(
xi, yi, 2

−1
(
dmin(xi, yi) + dmax(xi, yi) + 1

))
, i = 1, 2,

and let � = P0P2P4P3P1 be a piecewise linear curve. To show � ⊂ T ◦, we need
only check that the line segment P3P4 is contained in T ◦, since P2P4 and P3P1 are
contained in T ◦ by Lemma 2.5. Without loss of generality, suppose z4 ≥ z3. For
each P = (x, y, z) on the line segment P3P4, by applying (3.7) twice, we see that

z − dmax(x, y) ≥ z3 − dmax(x3, y3)−
(
dmax(x, y)− dmax(x3, y3)

)
≥ 2−1

(
dmin(x3, y3) + 1− dmax(x3, y3)

)
− 4−1

≥ 8−1 > 0.

Similarly, z − dmin(x, y) − 1 < 0. Lemma 2.5 says that P ∈ T ◦. Hence, the claim
follows.

Now we suppose |ρ1(i)| < 1 and |ρ2(j)| < 1 for all i, j. Let P ∈ G◦
0n,0n be

fixed. We will use the claim to show that for any P ′ ∈ T ◦ there exists a piecewise
linear curve � ⊂ T ◦ connecting P and P ′. This also shows the connectedness of T ◦.
Suppose P ′ ∈ Gi,j, where (i, j) ∈ Σn

p,q. Recall that Σ
n
p and Σn

q are equipped with the



1334 G.T. DENG, C.T. LIU, AND S.-M. NGAI

lexicographic order. List the elements in {i′ ∈ Σn
p : i′ ≤ i} and {j′ ∈ Σn

q : j′ ≤ j}
in the following order:

i0, i1, . . . , in1
, j0, j1, . . . , jn2

, with i0 = 0n, in1
= i, j0 = 0n, jn2

= j.

Now, from Lemma 3.3, the intersection of any two consecutive sets in

{Gi0,j0 , Gi1,j0 , . . . , Gin1
,j0 , Gin1

,j1 , . . . , Gjn1
,jn2

} := {Gi′m,j′m}n1+n2+1
m=1

contains a point Pm ∈ T ◦. Let P ′
m ∈ G◦

i′m,j′m
for m = 1, . . . , n1 + n2 + 1, where

P ′
1 = P and P ′

n1+n2+1 = P ′ if P ′ ∈ G◦
i,j. Denote Pn1+n2+2 = P ′ if P ′ ∈ ∂Gi,j and

Pn1+n2+2 = Pn1+n2+1 if P ′ /∈ ∂Gi,j. Let �m and �′m be two piecewise linear curves
as in the claim above such that �m connects P ′

m, Pm and �′m connects Pm, P ′
m+1.

Now the piecewise linear curves

�1�
′
1�2�

′
2 · · · �n1+n2+1�

′
n1+n2+1 ⊂ T ◦

connects P and P ′. The connectedness of T ◦ is proved.

We remark that the condition in Theorem 1.1(a) is sufficient but not necessary.
We give a counterexample below.

Example 3.4. Let t = s = 5, b0 = 0, b1 = −5, b2 = −9, b3 = −14,

A =

⎛
⎝ 2 0 0

0 4 0
−t −s 2

⎞
⎠ and D =

{
(i, j, k + bj) : 0 ≤ i, k ≤ 1, 0 ≤ j ≤ 3

}
.

Then T = T (A,D) is connected, but condition (a) in Theorem 1.1 fails.

Proof. We will use Lemma 3.1 to check whether or not Gi,j ∩ Gi′,j′ is empty for
neighbors (i, j) and (i′, j′) by estimating δ1(i) and δ2(j). By assumption, we know
that p = r = 2, q = 4, and a0 = a1 = 0. Thus ρ1(0) = 2−1t > 0. Note that
p− 1 = r − 1 = 1. We have the following:

2
∣∣ρ1(0)− 2−n|ρ2(j)|

∣∣ =
∣∣∣t− 2−n

∣∣(b3 − b0 + s) + (bj − bj+1)
∣∣∣∣∣

=
∣∣∣5− 2−n

∣∣9− (bj − bj+1)
∣∣∣∣∣

≥ 5− 2−15 > 2,

2
∣∣|ρ2(1)| − 2−nρ1(0)

∣∣ = ∣∣∣∣∣(b3 − b0 + s) + (b1 − b2)
∣∣− 2−nt

∣∣∣ = 5− 2−n5 ≥ 2−15 > 2.

We conclude that both δ1(0) and δ2(1) are larger than one. Lemma 3.1 and Corol-
lary 3.2 yield G0,j ∩G1,j = ∅ for all j and Gi,1 ∩Gi,2 = ∅ for all i. Thus Ei and Fj

are disconnected for all i, j. Hence condition (a) in Theorem 1.1 fails.
Since ρ2(0) = 2 
= 0,

2δ2(0) = min
n≥1

{∣∣∣∣∣(b3 − b0 + s) + (b0 − b1)
∣∣− 2−nt

∣∣∣} = 4− 2−1 · 5 < 2.

As b0− b1 = b2− b3, the above inequality shows that δ2(2) = δ2(0) < 1. Lemma 3.1
implies G0,0∩G0,1 
= ∅ and G0,2∩G0,3 
= ∅, while Corollary 3.2 yields G1,0∩G1,1 
= ∅
and G1,2 ∩ G1,3 
= ∅. Notice that 2|ρ1(0) + ρ2(j)| = |t + (b3 − b0 + s + bj − bj+1)|
equals zero if j = 1 and equals 1 if j = 0 or 2. It follows from Lemma 3.1 that
G0,j+1 ∩G1,j 
= ∅ for 0 ≤ j ≤ 2. The above nonempty intersections imply that any
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(a) The tile (b) The cross section at x = 2−1

(c) The cross section at y = 4−1 (d) The cross section at y = 2−1

Figure 5. The figure for Example 3.4.

two consecutive sets in the following finite sequence have nonempty intersection
(see Figure 5):

G0,0, G0,1, G1,0, G1,1, G0,2, G0,3, G1,2, G1,3.

It now follows from Lemma 2.4 that T is connected. �

4. A theorem on homeomorphism

This section is devoted to the proof of Theorem 1.2. The difficult part is to show
the necessity, i.e., to find, under the given conditions, a homeomorphism between T
and a 3-ball. The idea comes from the construction of a homeomorphism between
an Alexander horned sphere and a 2-sphere [6, Chapter IV.3]: divide each of these
spheres into infinitely many parts in such a way that two corresponding parts are
homeomorphic, which leads to a homeomorphism between them. However, this
result is not needed in our proofs; we only use a similar idea to construct a required
homeomorphism.

In view of the complexity of the proof, we give a sketch here. First, we prove
some elementary properties of T such as symmetry, which allows us to focus on
the case where s, t are positive (Proposition 4.1). We also use planes πc

n to divide
T into infinitely many parts (Lemma 4.6), each of which is homeomorphic to a
3-ball (Lemma 4.3). We also prove some basic geometric properties of these parts
(Lemma 4.4 and Proposition 4.5). Second, we introduce the definition of path
separation and prove a property of such separation (Lemma 4.8). Third, we use
a cut-and-paste technique to give another construction of T . We give the details
of the construction of the desired homeomorphism when s ≤ t < rs (Lemma 4.10)
and sketch the proof for the case t ≥ rs (Lemma 4.11). Finally, we complete the
proof of Theorem 1.2.
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4.1. Preparation. We begin this subsection with some properties of T . We first
point out that when ai, bj are all zero, the inequality |ρ1(i) + ρ2(j)| < 1 can be
rewritten as

|t+ s| < r(r − 1),

and d(i, j) is equal to t(i) + s(j).

Proposition 4.1. Assume all of ai, bj are zero. Then the following assertions hold.
(a) T is symmetric with respect to the point t = (1/2)(1, 1, 1 + (t+ s)/(r − 1)),

i.e.,

T = 2t− T =
{
2t− (x, y, z) : (x, y, z) ∈ T

}
.

(b) Replace t, s by −s,−t in A and denote the resulting matrix by A′. Then the
new tile T ′ = T (A′, D) is a reflection of T with respect to the plane z = 1/2.

Proof. (a) Note from (2.8) that

t+ s

r − 1
= (p− 1)

∑
n≥1

tn + (q − 1)
∑
n≥1

sn.

As 1 = ϕm(m− 1), using the above equation, we get

2t− T =
{(

1− ϕp(i), 1− ϕq(i), 1− ϕr(k) +
t+ s

r − 1
− t(i)− s(j)

)
:

(i, j) ∈ Σ∞
p,q, k ∈ Σ∞

r

}
= {(ϕp(i

′), ϕq(i
′), ϕr(k

′) + t(i′) + s(j′)) : (i′, j′) ∈ Σ∞
p,q, k

′ ∈ Σ∞
r }

= T,

where i′ = (p − 1 − i1)(p − 1 − i2) · · · , j′ = (q − 1 − i1)(q − 1 − j2) · · · , and
k′ = (r − 1− k1)(r − 1− k2) · · · .

(b) Define d′(i, j) =
∑

n≥1 in(−tn) +
∑

n≥1 jn(−sn). Then T ′ can be rewritten
as

T ′ = {(ϕp(i), ϕq(j), d
′(i, j) + ϕr(k)) : (i, j) ∈ Σ∞

p,q, k ∈ Σ∞
r

}
.

The reflection of T with respect to the plane z = 1/2 has the form{
(ϕp(i), ϕq(j), 1− d(i, j)− ϕr(k)) : (i, j) ∈ Σ∞

p,q, k ∈ Σ∞
r

}
.

These two sets are in fact the same, since d′(i, j) = −d(i, j) and both 1−ϕr(k) and
ϕr(k) fill the unit interval when k runs over Σ∞

r . �

Remark 4.2. Using Proposition 4.1, we may assume the parameters r, s, t in (1.2)
satisfy

(4.1) s, t > 0 and t+ s < r(r − 1).

In the following, we will give another construction of T which allows us to con-
struct the desired homeomorphism. Let πc

n be the plane

−pn+1tn+1x− qn+1sn+1y + z − 1 + c = 0.

Let zcn = zcn(x, y) = pn+1tn+1x+ qn+1sn+1y+1− c. Then (x, y, zcn(x, y)) lies in πc
n.

When c = 0, we also denote πc
n and zcn by πn and zn respectively. The next lemma

shows some properties of πc
n and the relationship between πc

n and T . Recall that

T =
{(

ϕp(i), ϕq(j), ϕr(k) + t(i) + s(j)
)
: (i, j) ∈ Σ∞

p,q, k ∈ Σ∞
r

}
.
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Lemma 4.3. (a) For each n, the plane πc
n+1 lies above the plane πc

n in the first
quadrant. Consequently, {zcn} is increasing.

(b) Let c̄ = 1/2 − (t + s)/(2r(r − 1)). Then the plane πc̄
0 divides T into two

symmetric parts.
(c) For each pair (i, j) ∈ Σn−1

p,q , all pq points (ϕp(ii), ϕq(jj), 1 + t(ii) + s(jj)),

(i, j) ∈ Σ1
p,q lie in the plane πcn

n , where

(4.2) cn = cn(i, j) := pn+1tn+1ϕp(i) + qn+1sn+1ϕq(j)− t(i)− s(j) + 1.

Proof. (a) Fix a point (x, y) in the first quadrant. Let (x, y, ξn), (x, y, ξn+1) be two
points belonging to πc

n and πc
n+1, respectively. We draw the conclusion by showing

that ξn+1 > ξn. In fact

ξn+1 − ξn = pn+2tn+2x+ qn+2sn+2y − pn+1tn+1x− qn+1sn+1y

= pn+1x(ptn+2 − tn+1) + qn+1y(qsn+2 − sn+1) > 0.

The last inequality follows from (2.7) and the fact that x, y > 0. Hence πc
n+1 lies

above πc
n in the first quadrant and thus zcn+1 > zcn.

(b) We show the conclusion by checking that the plane πc̄
0 passes through the

point of symmetry t of T . In fact,

−pt1 ·
1

2
− qs1 ·

1

2
+
(1
2
+

t+ s

2(r − 1)

)
− 1 + c̄ =

t+ s

2r(r − 1)
− 1

2
+

1

2
− t+ s

2r(r − 1)
= 0,

which implies that t lies on the plane πc̄
0.

(c) For each 0 ≤ i ≤ p− 1,

(
− pn+1tn+1ϕp(ii) + t(ii)

)
+
(
pn+1tn+1ϕp(i)− t(i)

)
= −itn+1 + itn+1 = 0.

Similarly, for each 0 ≤ j ≤ q − 1,

(
− qn+1sn+1ϕq(jj) + s(jj)

)
+
(
qn+1sn+1ϕq(j)− s(j)

)
= −jsn+1 + jsn+1 = 0.

So the point (ϕp(ii), ϕq(jj), 1 + t(ii) + s(jj)) lies in the plane πcn
n . �

For convenience, we set c0 = c0(∅, ∅) = 0. For (i, j) ∈ Σn
p,q, define

Ii := [0, p−n] + ϕp(i), Jj := [0, q−n] + ϕq(j).

Lemma 4.4. Suppose (i, j) = (i1 · · · in, j1 · · · jn) ∈ Σn
p,q and (x, y) ∈ (Ii × Jj)

◦. Let
(i′, j′) = (in+1 · · · , jn+1 · · · ) ∈ Σ∞

p,q such that (ii′, jj′) is an expansion of (x, y).

(a) zcnn can be expressed as zcnn (x, y) = 1 + d(ii′, jj′)− εn+1, where

(4.3) εn+1 :=
∑
k≥1

(
in+k

(
tn+k − tn+1

pk−1

)
+ jn+k

(
sn+k − sn+1

qk−1

))

decreases (not necessarily strictly) to zero as n → ∞. Consequently, zcnn ≤
1 + d(ii′, jj′).

(b) Let c̄ be given as in Lemma 4.3. Then d(ii′, jj′) < zc̄0(x, y).
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Proof. (a) Combining (2.3) (formulas for tn, sn) and (4.2) (expression for cn) and
using the definition of zcnn , we obtain

zcnn (x, y) = 1 + pn+1tn+1x+ qn+1sn+1y − cn

= 1 + pn+1tn+1

(
ϕp(ii

′)− ϕp(i)
)

+qn+1sn+1

(
ϕq(jj

′)− ϕq(j)
)
+ t(i) + s(j)

= 1 + ptn+1ϕp(i
′) + qsn+1ϕq(j

′) + t(i) + s(j)

= 1 + t(ii′) + s(jj′)− (t(0ni′)− ptn+1ϕp(i
′) + s(0nj′)− qsn+1ϕq(j

′)).

Hence εn+1 = (t(0ni′) − ptn+1ϕp(i
′)) + (s(0nj′) − qsn+1ϕq(j

′)) =: B1 + B2. The
definitions of t(·), s(·), ϕp(·), and ϕq(·) yield

(4.4) B1 =
∑
k≥1

in+k

(
tn+k − tn+1

pk−1

)
, B2 =

∑
k≥1

jn+k

(
sn+k −

sn+1

qk−1

)
.

Now (4.3) is a direct consequence of (4.4).
Notice that in+k < p for each k ≥ 1. By the first equality in (4.4) and the first

equality in (2.8),

0 ≤ B1 ≤
∑
k≥1

(p− 1)tn+k =

⎧⎪⎪⎨
⎪⎪⎩

p−n(r − 1)− r−n(p− 1)

(r − p)(r − 1)
< p−nr + r−np, p 
= r,

(1 + (n+ 1)(r − 1))r−n−1

r − 1
< 2nr−n, p = r.

In both cases, we get limn→∞ B1 = 0. Similarly, limn→∞ B2 = 0. Hence
limn→∞ εn+1 = 0. To show the remaining part of (a), we notice that ptn+1 − tn =
t · r−n−1 > 0 from (2.7) and hence tn+k − p1−ktn+1 > 0 for all k ≥ 2. Similarly,
sn+k − q1−ksn > 0 for all k ≥ 2. Now applying (4.3) yields

εn − εn+1 =
∑
k≥1

(
in+k

( tn+1

pk−1
− tn

pk
)
+ jn+k

(sn+1

pk−1
− sn

qk
))

= (ptn+1 − tn)
∑
k≥1

in+k

pn+k
+ (qsn+1 − sn)

∑
k≥1

jn+k

qn+k
≥ 0.

This implies {εn+1} is a nonincreasing sequence.
(b) Notice that part (a) also holds when n = 0 since t(∅) = s(∅) = 0. Using the

expressions for
∑

tn and
∑

sn in (2.8), we know

(4.5) ε1 ≤
∑
k≥1

(
(p− 1)

(
tk+1 −

t1
pk

)
+ (q − 1)

(
sk+1 −

s1
qk

))
=

t+ s

r(r − 1)
.

Hence the second assumption in (4.1) implies that ε1+c̄ ≤ 1/2+(t+s)/(2r(r−1)) <
1. Now it follows from (a) that zc̄0 = z0 − c̄ = 1+ t(i′)+ s(j′)− ε1 − c̄ > t(i′)+ s(j′),
proving (b). �

We use Tn(i, j) to denote the part of Ii × Ij × R lying between the planes π
cn−1

n−1

and πcn
n , i.e.,

(4.6) Tn(i, j) :=
{
(x, y, z) : x ∈ Ii, y ∈ Jj, z

cn−1

n−1 ≤ z ≤ zcnn
}
.

We call Tn(i, j) an nth order basic block. Clearly, each basic block is homeomorphic
to a 3-ball. We remark that each Tn(i, j) is a subset of T , which will be shown later.
The following proposition follows from the definition of basic block in (4.6) and the
formulas for tn, sn in (2.3); we omit the proof.



TOPOLOGICAL PROPERTIES OF A CLASS OF SELF-AFFINE TILES 1339

(a) πn (b) Tn

Figure 6. Figure for πn and Tn. The coordinates of A,B,C,D
are (0, 0, 1), (p−n, 0, 1), (p−n, q−n, 1), and (0, q−n, 1), respectively.
The figure is drawn with p = 2, q = 3, r = 2, t = 8/15, s = 2/5.

Proposition 4.5. Suppose Tn is defined as in (4.6). Then:

(a) Each Tn(i, j) is a translate of the set Tn(0
n, 0n), and for each pair (i, j) ∈

Σ1
p,q, the bottom of Tn+1(ii, jj) is on the top of Tn(i, j).

(b) Let un, vn, wn be the lengths of the three vertical sides of an nth order basic
block, as shown in Figure 6(b). Then

(4.7) un = tr−n−1, vn = sr−n−1, wn = un + vn = (t+ s)r−n−1.

(c) Suppose 0 < rN1s < t < rN1+1s for some integer N1 ≥ 0. Then there exists
N > 0 such that

(4.8)

N1+N+n∑
k=N1+n

uk −
∑
k≥n

vk > 0,
N+n∑
k=n

vk −
∑

k>N1+n

uk > 0.

Moreover, if t = rN1s > 0, the second inequality in (4.8) still holds when
we set N = 1.

Now we divide T as follows. Let πc̄
0 be the plane passing through the point of

symmetry t = 1/2(1, 1, 1 + (t + s)/(r − 1)). Define a sequence of sets {Xn}n≥0 as
follows:

X0 :=
{
(x, y, z) : 0 ≤ x, y ≤ 1, zc̄0(x, y) ≤ z ≤ z0(x, y)

}
,

Xn := Xn−1 ∪
( ⋃

(i,j)∈Σn
p,q

Tn(i, j)
)
, n ≥ 1,(4.9)

and let

X :=
⋃
n≥0

Xn.

Roughly speaking, the set Xn is obtained from Xn−1 by stacking (pq)n small basic
blocks Tn(i, j), (i, j) ∈ Σn

p,q, onto the top of Xn−1 (see Figure 7). The following
lemma describes the relation between X and T .

Lemma 4.6. Let c̄, πc̄
0, X and Xn be defined as above. Then T = X ∪ (2t −X).

Furthermore, X ∩ (2t−X) is a parallelogram lying on the plane πc̄
0.

Proof. The fact that T is the closure of its interior (see, e.g., [16]) will be used twice
in the proof, i.e.,

(4.10) T ◦ = T.
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X0 X1

X2 X3 X4

Figure 7. The first five steps of the construction of Xn. This is
drawn with the same parameters as Figure 6, but with a different
viewpoint.

Let Y = X∪(2t−X). We prove the conclusion by showing that Y ⊂ T and T ⊂ Y .
Let B denote the part of T lying between the planes π0 and πc̄

0, i.e.,

B =
{
(x, y, z) ∈ T : zc̄0(x, y) ≤ z ≤ z0(x, y), 0 ≤ x, y ≤ 1

}
.

Since c̄ > 0, we see that B is not empty.
We claim that B = X0. First, the definition of X0 yields B ⊂ X0. On the other

hand, for any P = (x, y, z) ∈ X◦
0 , using Lemma 4.4(a,b) (with n = 0) we have

d(i, j) < zc̄0(x, y) ≤ z ≤ z0 ≤ d(i, j) + 1,

where (i, j) is an expansion of (x, y). Hence there exists k ∈ Σ∞
r such that z =

d(i, j) + ϕr(k). This implies P ∈ T . So X0 ⊂ T by (4.10). We get B = X0 as
claimed.

For any n ≥ 1, any pair (i, j) ∈ Σn
p,q, and any P = (x, y, z) ∈ (Tn(i, j))

◦, Lemma
4.4(a) yields

1 + d(ii′, jj′)− εn = z
cn−1

n−1 (x, y) < z < zcnn = 1 + d(ii′, jj′)− εn+1,

where (ii′, jj′) is any expansion of (x, y). Since εn ≤ ε1 < 1/2, there exists k ∈ Σ∞
r

such that z = d(ii′, jj′) + ϕr(k) ∈ T . So, we conclude that X ⊂ T . Notice that
T = 2t− T by Proposition 4.1. We see that X ∪ (t−X) ⊂ T ∪ (t− T ) = T . This
yields Y ⊂ T .

Now we show T ⊂ Y . By the symmetry of T , we only show that the part of T
lying above πc̄

0 is a subset of X. Using the claim B = X0 above, we only need to
check that all points in T lying above π0 belong to X. Then, by (4.10) again, the
conclusion follows if we can prove that each interior point of T lying above π0 is in
X.

Assume P = (x, y, z) ∈ T ◦ lies above π0. Then z > z0(x, y) = 1 + d(i, j) − ε1,
where (i, j) ∈ Σ∞

p,q is any expansion of (x, y). On the other hand, Lemma 2.5 yields
z < dmin(x, y) + 1. So z < d(i, j) + 1. Notice that {εn} decreases to zero (Lemma
4.4(a)). There is n > 0 such that 1 + d(i, j)− εn ≤ z < 1 + d(i, j)− εn+1, namely,

z
cn−1

n−1 (x, y) ≤ z < zcnn (x, y).

Therefore P ∈ Tn(i|n, j|n), proving that T ⊂ Y .
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F

a b

E

S

F

a b

E

S

C

P1P2Pn

CC

(a) (b)

C ′

Figure 8. (a) Two bridges E,F and their path separation C. (b)
Figure for the proof of Lemma 4.8. The biggest disk is [E]δ, whose
boundary is C ′. E and F are path separated by C, the widened
curve.

The last part of the assertion is a direct consequence of Proposition 4.1(a). �
By induction, we see that each Xn is homeomorphic to the 3-ball. We will show

that X is homeomorphic to a 3-ball. To this end, we introduce the definition of
path separation as well as some notation.

For two sets E,F ⊆ R
d, denote their distance by

d(E,F ) := inf
{
‖e− f‖ : e ∈ E, f ∈ F

}
,

where ‖ · ‖ is the usual Euclidian norm in R
d. For convenience, define d(e, F ) :=

d({e}, F ). The closed δ-neighborhood of a set F is defined by [F ]δ := {e ∈ R
d :

d(e, F ) ≤ δ}. Let B◦(x, r) and B(x, r) be, respectively, the open and closed balls
in R

d with radius r and center x.

Definition 4.7. For a < b, let S = [a, b] × R be an infinite band. A connected
subset of S is called a bridge (of S) if it has nonempty intersections with both lines
x = a and x = b. Let E,F ⊂ S be two bridges. We say a curve C ⊂ S with
min{d(E,C), d(F,C)} > 0 path separates E and F if any curve in S intersecting
both E and F must also intersect C (see Figure 8(a)).

Lemma 4.8. Let E,F be two compact bridges of S = [a, b]×R with E lying above
F . If d(E,F ) > 0, then for any ε > 0, there exists a piecewise linear curve C ⊂ S,
with d(E,C) < ε, that path separates E and F .

Proof. Take δ = 4−1 min{d(E,F ), ε}. Consider [E]δ, the closed δ-neighborhood of

E. Define the exterior boundary of [E]δ, denoted by ∂̃[E]δ, to be the boundary of

the unbounded component of R2 \ [E]δ. Note that ∂̃[E]δ is compact and is not a

subset of S. Let {B◦(P, δ) : P ∈ ∂̃[E]δ} be an open cover of ∂̃[E]δ by δ-balls. Then
there exists a finite subcover which can be rearranged as {B◦(Pk, δ)}nk=1 such that
d(Pk, Pk+1) < δ for 1 ≤ k ≤ n and Pn+1 = P1. The closed piecewise linear curve
connecting the centers of the balls, C ′ = P1P2 · · ·PnP1, satisfies 0 < d(E,C ′) < ε
and d(F,C ′) > 0. Note that C ′∩S consists of finitely many piecewise linear curves.
The conclusion holds by letting C be the bottom piecewise linear curve. �
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Figure 9. Boundaries and surfaces. The left one shows the
four boundaries ML,MR,MB,MF of FT (i, j) (the top surface of
Un(i, j)) and the right boundary M ′

R = MR(i, j
−) of FT (i, j

−) (the
top surface of Un(i, j

−)). The right one shows the three surfaces of
Rn(i, j) and Un(i, j). This figure is drawn with the same parame-
ters as those for Figure 2 (hence N = 1).

4.2. Construction of homeomoprhism. In this subsection, we will use Lemma
4.8 to give another partition of T , which allows us to define a homeomorphism
between T and a 3-ball in a natural way. Let i±, j± be defined as in Section 2.
For (i, j) ∈ Σn

p,q, divide the closure of
⋃

k≥1

⋃
(i′,j′)∈Σk

p,q
Tn+k(ii

′, jj′) into two parts.

One is U1
n(i, j), which contains all basic blocks with order no more than N +n; the

other is Rn(i, j), the remaining portion. More precisely, we define

Ln+k(i, j) :=
⋃

(i′,j′)∈Σk
p,q

Tn+k(ii
′, jj′),(4.11)

U1
n(i, j) :=

N⋃
k=1

Ln+k(i, j), Rn(i, j) :=
⋃
k>N

Ln+k(i, j).(4.12)

In particular, LN+n+1(i, j) is the union of all basic blocks lying at the bottom of
Rn(i, j) with order N + n + 1. From the equations (4.11) and (4.12), we see that
Rn(i, j) is on the top of Un(i, j) and

(4.13) X = Xn ∪
( ⋃

(i,j)∈Σn
p,q

(
Rn(i, j) ∪ U1

n(i, j)
))

for all n ≥ 1.

Keeping this in mind, one can better understand our setting in the rest of this
section.

The top exterior surface of U1
n(i, j), including the vertical polygons inside the

interior of Ii × Jj × R, is denoted by FT (i, j). We denote the left, right, back, and
front exterior boundaries of FT (i, j) by ML(i, j), MR(i, j), MB(i, j) and MF (i, j)
respectively.

Let FL(i, j) be the union of ML(i, j) and the left exterior vertical surface of
Rn(i, j). The sets FR(i, j), FB(i, j) and FF (i, j) are defined similarly. For an illus-
tration of these sets, we refer the reader to Figure 9. We point out that all the
surfaces and curves FT , FL, FR, FB, FF ,ML,MR,MB,MF depend on Un and Rn ----
or, more precisely, on the number N .
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Figure 10. Figure for Lemma 4.9. Here P0 is the junction of
ML(i, j) and MB(i, j), M ′

R = MR(i, j
−) and M ′

F = MF (i
−, j+).

This figure is drawn using the same parameters as those for Fig-
ure 2 and (i, j) = (1, 2).

Clearly, the construction stated above yields:

(1) Rn(i, j) is a translate of Rn(0
n, 0n);

(2) Rm(i′, j′) ⊂ Rn(i, j) if (i, j) is a prefix of (i′, j′);
(3) FL(i, j) and FR(i, j

−) lie in the same vertical plane, as do FB(i, j) and
FF (i

−, j) (see Figure 10). This fact is useful in proving the following sepa-
ration lemma.

Recall that �x,y := {(x, y)} × R.

Lemma 4.9. Assume that s ≤ t < rs. Let (i, j) ∈ Σn
p,q with i = i1 · · · in and

j = j1 · · · jn, and let N be determined by Proposition 4.5 for N1 = 0. The following
statements hold.

(a) If jn > 0, then there exists a piecewise linear curve γ1 = γ1(i, j) ⊂ Ii ×
{ϕj(j)} × R path separating FR(i, j

−) and FL(i, j).
(b) If in > 0, then there exists a piecewise linear curve γ2 = γ2(i, j) ⊂ {ϕi(i)}×

Jj × R path separating FF (i
−, j) and FB(i, j).

(c) We can require that the piecewise linear curves in (a) and (b) satisfy:
(i) if injn > 0, then γ1(i, j) ∪ γ2(i, j) is connected;
(ii) if s = t, then γ2(i, j) ∪ γ1(i−, j+) is connected;
(iii) if s 
= t, then the right end-point of γ2(i, j) lies below FF (i

−, j+) for
jn<q−1.

Proof. We apply Lemma 4.8. Denote y0 = ϕq(j). Since each complex Tn(i, j) is a
translate of Tn(0

n, 0n), and the bottom of Tn(0
n, 0n) is a parallelogram, ML(i, j) is

a piecewise linear curve which is a vertical translate of MR(i, j
−) (see Figure 10).

In fact,

MR(i, j
−) = ML(i, j) +

(
0, 0,

N+n∑
k=n

vk

)
.

So there exist i, 0 ≤ i < p, and two points P1 ∈ MR(i, j
−), P2 ∈ FL(i, j), both

lying in �ϕp(ii),y0
, such that the distance between MR(i, j

−) and FL(i, j) is equal to
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Cd(P1, P2), where C is a positive constant depending only on ML(i, j). Since (see
Figure 10)

(4.14) d(P1, P2) =
N+n∑
k=n

vk −
∑
k>n

uk > 0,

d(FR(i, j
−), FL(i, j)) > 0. Notice that FR(i, j

−) and FL(i, j) are connected. This,
together with (4.14), implies the existence of γ1 by Lemma 4.8. This proves part
(a).

A similar discussion yields (b). As for (c), we see that

(1) injn > 0 implies that ML(i, j) and MB(i, j) are joined at the left end-point
of MB(i, j) (independent of the relation of s, t);

(2) in(q − 1 − jn) > 0 implies that MB(i, j) and MF (i
−, j+) are joined at the

right end-point of MB(i, j) when s = t, as un = vn in this case.

Using these facts, together with the arbitrariness of ε as given in Lemma 4.8, we can
change the end-points of those piecewise linear curves, with the required separation
properties, such that (c)(i) and (c)(ii) hold. Now we show (c)(iii). Suppose jn <
q− 1 and s < t. Let � = �ϕp(i),ϕq(j+). Denote the unique point in MF (i

−, j+)∩ � by
P3 and the top point in FB(i, j)∩ � by P4. The difference of the last coordinates of
P3, P4 is equal to

N+n∑
k=n

uk −
∑
k≥n

vk,

which is positive by Proposition 4.5. This implies that P4 lies below P3 and the
conclusion holds when we set ε < 2−1d(P3, P4) in Lemma 4.8. �

Lemma 4.10. If s ≤ t < rs, then X is ball-like.

Proof. In the following proof, we first present another construction of X by a cut-
and-paste technique that reveals a similarity between the structure of X and that
of a horned ball. The new construction establishes a homeomorphism between X
and the 3-ball B(0, 1). We divide the proof into three steps.

Step 1. The definition of Un(i, j). Let N be given as in Proposition 4.5, and let
U1
n(i, j), Rn(i, j), Ln+N+1(i, j) be defined as in (4.11) and (4.12). Also, let γ1, γ2 be

given as in Lemma 4.9 for the pair (i, j) ∈ Σn
p,q. If jn > 0, connect the end-points of

γ1 and ML(i, j) with two vertical line segments, and denote the resulting polygon
by H1 = H1(i, j). If in > 0, connect the end-points of γ2 and MB(i, j) with two
vertical line segments and denote the resulting polygon by H2 = H2(i, j). We set
H1 = ∅ if jn = 0 and H2 = ∅ if in = 0. Let

Q(i, j) :=
[
H1 ∪H2 ∪ FT (i, j)

]
2−nδ

∩XN+n,

where δ will be given in the next step (see Figure 11).
Remove all polyhedra Q(i, j) from XN+1, and denote the closure of the resulting

set by U0(∅, ∅) := U0, i.e.,

U0 = XN+1\
( ⋃

(i,j)∈Σ1
p,q

Q(i, j)
)
.
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(a) s < t < rs (b) s = t

Figure 11. Figures for H1, H2, FT and H ′
1, F

′
T . The set Q(i, j)

is the closed 2−nδ-neighborhood of the shaded area H1 ∪H2 ∪ FT

restricted to XN+n.

For n ≥ 1, we define Un(i, j) as follows. We put Q(i, j), which is removed in the
(n−1)th step, back to the set Ln+N+1(i, j), and remove all the polyhedra Q(ii, jj),
(i, j) ∈ Σ1

p,q, from the union. Finally, denote the closure of the resulting set by
Un(i, j), i.e.,

(4.15) Un(i, j) = LN+n+1(i, j) ∪Q(i, j)\
( ⋃

(i,j)∈Σ1
p,q

Q(ii, jj)
)
.

Step 2. The new construction of X. Fix n. For (i, j) ∈ Σn
p,q, let

[
(i, j)

]
:=

{
(i′, j′) ∈ Σn

p,q : there exist (i1, j1) = (i, j), . . . , (ik, jk) = (i′, j′)

such that Un(im, jm) ∩ Un(im+1, jm+1) 
= ∅, 1 ≤ m < k
}
,

and denote [Un(i, j)] :=
⋃

(i′,j′)∈[i,j] Un(i
′, j′). We choose δ > 0 small enough such

that, when s = t, Un(i, j) ∩ Un(i
′, j′) 
= ∅ if and only if (i′, j′) = (i−, j+) or (i′, j′) =

(i+, j−) and, when s < t, [Un(i, j)] contains only Un(i, j). The choice of δ yields:

(1) the sets [Un(i, j)], where (i, j) ∈ Σn
p,q, are pairwise disjoint and homeomor-

phic to the 3-ball;
(2) if (i, j) ∈ Σn

p,q is a prefix of (i′, j′) ∈ Σm
p,q, then Un(i, j) ∩ Um(i′, j′) 
= ∅ if

and only if m = n+ 1.

Denote X̄N+1 = U0 and for n ≥ 1 define

X̄N+n+1 = X̄N+n ∪
( ⋃

(i,j)∈Σn
p,q

Un(i, j)
)
.

Notice that the difference of X̄N+n and XN+n is in the set
⋃

(i,j)∈Σn
p,q

Q(i, j), and

moreover, the thickness of each Q(i, j), (i, j) ∈ Σn
p,q, tends to zero as n → ∞.

So
⋃

n≥N+1 Xn and
⋃

n≥N+1 X̄n have the same closure. Hence X coincides with⋃
n≥N+1 X̄n.
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V1(0, 0)

V1(0, 1)

V1(0, 2)

V1(1, 0)

V1(1, 1)

V1(1, 2)

V2(i0, j0) V2(i0, j1) V2(i0, j2)

V2(i1, j0) V2(i1, j1) V2(i1, j2)

(a) (b)

V1(i, j)

Figure 12. The homeomorphism h for s < t. The figures are
drawn with p = 2 and q = 3.

Step 3. A desired homeomorphism. We let V1(i, j), (i, j) ∈ Σ1
p,q, be pq spher-

ical caps of the 3-ball B(0, 1) such that the simply connected sets [V1(i, j)] :=⋃
(i′,j′)∈[(i,j)] V1(i

′, j′) are pairwise disjoint, with the equivalence relation being de-

fined in Step 2 (see Figure 12(a) for s < t). A homeomorphism h can be constructed
by specifying that h sends B(0, 1) \

⋃
(i,j)∈Σ1

p,q
V1(i, j) to X̄N+1. Let V2(ii

′, jj′),

(i′, j′) ∈ Σ1
p,q, be pq smaller spherical caps of B(0, 1) in V1(i, j) such that the sim-

ply connected sets [V2(ii
′, jj′)] :=

⋃
(i,j)∈[(ii′,jj′)] V2(i, j) are pairwise disjoint (see

Figure 12(b) for s < t). We also assume that none of the V2(ii
′, jj′) intersects the

bottom of V1(i, j). Extend h to X̄N+2. This procedure can be continued ad infini-
tum by using the properties (1) and (2) of {Un(i, j)} in Step 2. Now one obtains a
homeomorphism h from the major part of B(0, 1) to the union of

⋃
n≥1 X̄N+n. It is

not yet defined on the set
⋂

n≥1

⋃
(i,j)∈Σn

p,q
Vn(i, j), which is either a Cantor set (s < t

or p 
= q; see Figure 13(a)) or a union of infinitely many curves (s− t = p− q = 0;
see Figure 13(b)), but this set is sent by h onto⋂

n≥1

⋃
(i,j)∈Σn

p,q

(
Rn(i, j) ∪Q(i, j)

)
.

This finishes the construction of the homeomorphism h and completes the proof. �

Lemma 4.11. If t ≥ rs, then X is ball-like.

Proof. The proof is similar to that of Lemma 4.10; we provide only an outline. Let
N1 ∈ Z satisfy rN1s ≤ t < rN1+1s and let N be determined by Proposition 4.5.
First, we let U1

n(i, j) and Rn(i, j) be defined as in (4.11) and (4.12) with respect to
the integer N +N1. Then partition them into pN1 parts as follows (see Figures 14
and 15):

U1;i1
n (i, j) =

⋃
j1∈Σ

N1
q

N⋃
k=1

⋃
(i′,j′)∈Σk

p,q

Tn+N1+k(ii1i
′, jj1j

′),

Ri1
n (i, j) =

⋃
j1∈Σ

N1
q

⋃
k>N

⋃
(i′,j′)∈Σk

p,q

Tn+N1+k(ii1i
′, jj1j

′),
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x y

n = 1

x y

n = 2

n = 3

x y

(a)

x y

n = 1

x y

n = 2

x y

n = 3

(b)

Figure 13. Bird’s-eye views of Un(i, j) for n = 1, 2, 3 and s = t.
(a) is for p 
= q and (b) is for p = q. Each cube stands for a Un.
Two diagonal (from left to right) cubes can be connected only if
they have the same color.

(a) XN+N1+1 and some surfaces of Ri1
n (i, j) (b) Three polygons

Figure 14. The figures ofXn+N1+N and the polygonsH1, H2, FT ,
determined by U1;i1

n (i, j). The figures are drawn with p = r = 2,
q = 3 and s = 0.3, t = rs (and hence N = N1 = 1).



1348 G.T. DENG, C.T. LIU, AND S.-M. NGAI

(a) XN+N1+1 and some surfaces of Ri1
n (i, j) (b) Five polygons

Figure 15. Figures of Xn+N1+N and the five polygons
H1, H2, FT , H

′
1, F

′
T . The first three polygons H1, H2, FT are de-

termined by U1,0N1

n (i, j), while the last two polygons H ′
1, F

′
T are

induced by U
1;(p−1)N1

n (i, j+). The figures are drawn with p = r = 2,
q = 3, s = 0.1, and t = 1.5rs (and hence N = N1 = 1).

where i1 ∈ ΣN1
p . The set Li1

n+N1+N+1(i, j) is the union of all basic blocks in Ri1
n (i, j)

with order n+N1 +N + 1, i.e.,

Li1
n+N1+N+1(i, j) =

⋃
j1∈Σ

N1
q

⋃
(i′,j′)∈ΣN+1

p,q

Tn+N1+N+1(ii1i
′, jj1j

′).

Second, applying Proposition 4.5 for such N1, and using Lemma 4.9 (we replace
Un(i, j), Rn(i, j) by U1;i1

n (i, j), Ri1
n (i, j) respectively), we get piecewise linear curves

γk;i1(i, j), k = 1, 2. For these piecewise linear curves and the sets Li1
n+N1+1, we

define Qi1(i, j) as Q(i, j). Then we let

U i1
0 = U i1

0 (∅, ∅) = XN1+N+1\
⋃

i′1∈Σ
N1
p

⋃
(i,j)∈Σ1

p,q

Qi′1(i, j)

and

U i1
n (i, j) = Li1

n+N1+N+1(i, j) ∪Qi1(i, j)\
( ⋃

i′1∈Σ
N1
p

⋃
(i,j)∈Σ1

p,q

Qi′1(ii, jj)
)
.

Their definitions are similar to those of the sets Un(i, j). Third, we define subsets
V i1
n of the 3-ball as Vn in Step 3 of the proof of Lemma 4.10 such that the interiors

of V i1
n (i, j) and V i1

n (i′, j′) are disjoint if and only if U i1
n (i, j)∩U i1

n (i′, j′) = ∅. Finally,
for the sets {U i1

n } and {V i1
n }, we construct a homeomorphism h from the 3-ball to

X, as described in Lemma 4.10. The proof is complete. �

Theorem 4.12. Assume that s, t > 0 satisfy s+ t < r(r − 1). Then T is ball-like.

Proof. Without loss of generality, we assume s ≤ t. Combining Lemmas 4.10 and
4.11, we see X is ball-like. Now Lemma 4.6 says T = X ∪ (2t − X) is also ball-
like. �

Proof of Theorem 1.2. Suppose |ρ1(i) + ρ2(j)| ≥ 1 for some i and j. Let x =
(i+1)/p and y = (j+1)/q. Then x has two expansions i1 = ip− 1 and i2 = (i+1)0,
while y has two expansions j1 = jq − 1 and j2 = (j + 1)0. Now, from (2.9) and the
definitions of dmax and dmin, we have

dmax(x, y)− dmin(x, y) ≥ |d(i1, j1)− d(i2, j2)| = |ρ1(i) + ρ2(j)| ≥ 1,
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which implies, by Lemma 2.5, that Tx,y is a subset of ∂T . Therefore, either T ◦ is
disconnected or the genus of ∂T is at least one. Hence T is not homeomorphic to
a ball.

For the sufficiency, we assume that ai = bj = 0 for all i, j, and that |t + s| <
r(r − 1) with ts ≥ 0. When t = 0 or s = 0, T is the Cartesian product of a unit
interval and a disk-like self-affine tile in R

2. For example, when t = 0,

T =
{
ϕr(i) : i ∈ Σ∞

p

}
×
{
(ϕq(j), ϕr(k) + s(j)) : j ∈ Σ∞

q , k ∈ Σ∞
r

}
.

Thus, T is homeomorphic to a 3-ball.
Next, we assume st 
= 0. Theorem 4.12 shows that T is ball-like when s, t are

positive. Proposition 4.1(b), together with Theorem 4.12, shows that the reflection
of T with respect to the plane z = 1/2 is ball-like when s, t are negative, and thus
T is also ball-like. This completes the proof. �

5. A question

Theorem 1.2 gives a necessary and sufficient condition for T to be ball-like, under
the assumption that st ≥ 0 and ai = bj = 0 for all i, j. When st < 0, our cut-and-
paste technique fails, as T cannot be expressed as a limit of the union of X0 and
all nth basic blocks. Our proof in the case st > 0 requires the added “horns” to be
homeomorphic to a 3-ball and that there are no gaps between the horns and Xn.
If ai = bj = 0, an added horn is a basic block with the bottom and some face of
Xn lying in the same plane, and so the gap is zero. However, if ai, bj are not zero,
it might still be possible to find new horns and new Xn, all being homeomorphic
to a 3-ball, to make the gap zero. The bottom of the horns will be a surface in R

3,
not contained in a plane. So we have

Conjecture 5.1. Condition |ρ1(i)|+ |ρ2(j)| < 1 is sufficient for T to be ball-like.
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