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SUTURED ANNULAR KHOVANOV-ROZANSKY HOMOLOGY

HOEL QUEFFELEC AND DAVID E. V. ROSE

Abstract. We introduce an sln homology theory for knots and links in the
thickened annulus. To do so, we first give a fresh perspective on sutured annu-
lar Khovanov homology, showing that its definition follows naturally from trace
decategorifications of enhanced sl2 foams and categorified quantum glm, via
classical skew Howe duality. This framework then extends to give our annular
sln link homology theory, which we call sutured annular Khovanov-Rozansky
homology. We show that the sln sutured annular Khovanov-Rozansky homol-
ogy of an annular link carries an action of the Lie algebra sln, which in the
n = 2 case recovers a result of Grigsby-Licata-Wehrli.

1. Introduction

Following Khovanov’s categorification of the Jones polynomial of knots and links
in S3 [18, 19, 21], Asaeda, Przytycki, and Sikora [1] introduced a homology theory
for links in Σ × [0, 1] categorifying the Kauffman skein module of the surface Σ.
In the case that Σ = A := S1 × [0, 1], this invariant has been extensively studied
by Roberts [36] and Grigsby-Wehrli [17] and dubbed sutured annular Khovanov
homology (saKh), due to its relation with sutured Floer homology. In recent work
[16], Grigsby, Licata, and Wehrli have shown that saKh is not only useful topolog-
ically, but is also of representation-theoretic interest. Motivated by a conjecture
relating this invariant to symplectic geometry, they show that the saKh of a link
carries an action of sl2.

After Khovanov’s initial work on link homology, he and Rozansky constructed a
homology theory for knots and links in S3 categorifying the sln Reshetikhin-Turaev
knot polynomials [26]. However, it was clear that an extension of Asaeda, Przytycki
and Sikora’s work to this general framework required further insight, and as such,
there has not been a construction extending Khovanov-Rozansky homology to knots
and links in other 3-manifolds.

In the present work, we give the first such extension, constructing an sln homol-
ogy theory for knots and links in A× [0, 1] which categorifies the sln skein module
of the annulus. To do so, we first give a new construction in the n = 2 case, showing
that saKh follows from trace decategorifications of the Khovanov-Lauda categori-
fied quantum group UQ(glm) [22–24] (see also independent work of Rouquier [40])
and the enhanced sl2 foam category introduced by Blanchet [7] and studied by the
authors (joint with Lauda) in [28]. This novel perspective makes an extension to
the sln case completely natural, and we obtain an sln homology for colored links
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in the thickened annulus, which we call sutured annular Khovanov-Rozansky ho-
mology (saKhR). A direct consequence of our construction is that the saKhR of an
annular link carries an action of sln, which specializes in the n = 2 case to recover
the aforementioned result of Grigsby-Licata-Wehrli.

We’ll now quickly summarize our construction in the n = 2 case, where the
structures are most familiar. The definitions, details, and extension to general n
are saved for the remainder of the paper. In [28], we showed that there is a skew
Howe 2-functor UQ(glm) → 2Foam, where the latter is the enhanced (Blanchet)
version of Bar-Natan’s quotient of the 2-category of planar tangles and cobordisms.
Given a link L ⊂ S3, we can assign to it a complex C(L) in 2Foam, from which
its Khovanov homology can be obtained. Moreover, this 2-functor factors through
the quotient UQ(glm)0≤2, in which we’ve killed glm weights with entries not in the
set {0, 1, 2}.

We rederive saKh by applying trace decategorifications to the 2-functor
UQ(glm)0≤2 → 2Foam. Given a graded 2-category C, we consider both its horizon-

tal trace hTr(C) and a graded version of its vertical trace ṽTr(C), which includes
into the former as a full subcategory. Since both of these operations are functorial,
we obtain the following diagram:

(1.1)

ṽTr(UQ(glm)0≤2) ��
� �

��

ṽTr(2Foam)� �

��

hTr(UQ(glm)0≤2) �� hTr(2Foam).

The category in the bottom right is an enhanced version of the Bar-Natan category
of the annulus. Using Rickard complexes [14] in UQ(glm), we assign a complex C(L)
in this category to any link L ⊆ A × [0, 1]. This complex lifts1 to a complex C̃(L)
in ṽTr(2Foam), which in turn lifts to a complex D̃(L) in ṽTr(UQ(glm)0≤2), the
universal annular sl2 invariant of L. Results of Beliakova, Guliyev, Habiro, Lauda,

Webster, and Z̆ivković [3–5] show that ṽTr(UQ(slm)) is isomorphic to U̇(slm[t]),
the idempotented form of the current algebra of slm. This pairs with skew Howe
duality on

∧
(�2 ⊗�m) to give a functor

U̇(slm[t])
t=0−−→ U̇(slm)

SH−−→ Rep(sl2),

which necessarily factors through ṽTr(UQ(glm)0≤2). Applying the induced functor

ṽTr(UQ(glm)0≤2)
SH−−→ Rep(sl2)

to D̃(L) gives a complex whose chain groups are sl2 representations and whose
differentials are sl2 intertwiners. The homology of this complex is saKh(L), which
clearly carries an action of sl2. The extension to general n follows from a similar
schematic, with 2Foam replaced by nFoam, the enhanced sln foam 2-category
constructed by the authors in [34].

In section 2, we review Bar-Natan’s cobordism model for Khovanov homology,
Blanchet’s enhanced version, and the relation to categorified quantum groups. We
also review Asaeda-Przytycki-Sikora’s annular Khovanov homology, its relation to
the Bar-Natan category of the annulus, and introduce the Blanchet version of
this category. In section 3, we discuss traces of 2-categories, showing how the

1In fact, we’ll show that both of the inclusions in equation (1.1) are equivalences of categories.
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(2-)categories discussed in section 2 assemble to give the commutative diagram in
equation (1.1). In section 4, we show how to recover saKh via skew Howe duality
and also show that our arguments extend mutatis mutandis to define sln sutured
annular Khovanov-Rozansky homology, which again carries an action of sln. Fi-
nally, in section 6 we relate the sutured annular Khovanov-Rozansky homology of
an annular link to the Khovanov-Rozansky homology of the corresponding link in
S3 by constructing a spectral sequence from the former to the latter.

2. Background

2.1. Khovanov homology. In [2], Bar-Natan interprets Khovanov’s homology
theory for links L ⊆ S3 in terms of a quotient of the category of planar tan-
gles and cobordisms. For2 a, b ∈ �, let bBN a denote the category whose ob-
jects are �-graded, formal direct sums of planar (b, a)-tangles in [0, 1] × �, and
whose morphisms are matrices of linear sums of degree-zero dotted cobordisms
between such tangles, modulo isotopy (relative to the boundary) and local rela-
tions. We’ll view our tangles as mapping from the a endpoints on the right to
the b endpoints on the left, and cobordisms as mapping from the bottom tangle
to the top. In fact, the categories {bBN a}a,b∈� assemble to give a 2-category BN
where HomBN (a, b) := bBN a and in which horizontal and vertical composition of
2-morphisms is given by gluing cobordisms in the indicated direction.

The local relations are as follows:

(2.1)

= 0

•
= 1

, =
•

+
•

and the degree of a cobordism C : qd1T1 → qd2T2 is given by the formula3

(2.2) deg(C) = −χ(C) + 2#D +
#∂

2
− d2 + d1

where χ is the Euler characteristic of the underlying surface, #D is the number of
dots, #∂ is the number of boundary points in either T1 or T2, and the powers of
the formal variable q denote degree shift.

The categorified skein relations4

(2.3)
� �

=

⎛⎝q−1 −−−−→
���

⎞⎠ ,
� �

=

⎛⎝
���

−−−−→ q

⎞⎠
assign a complex in BN to any framed tangle; in particular, they assign a complex�L� in BN to a link L ⊆ S3. Applying (graded) HOM(∅,−) to each term of this

2By convention, 0 ∈ �.
3We use the negative of the grading convention from [2] to match with the categorified quantum

group convention that a dot has degree 2.
4Here, and throughout, we’ve

��������
underlined the term of a complex in homological degree zero.

Additionally, we use the grading shifts for complexes assigned to crossings from [34] throughout.
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complex and imposing the further relation

(2.4) •2 = 0

gives a complex of graded vector spaces, and taking homology gives Kh(L), the
Khovanov homology of the link.

In [28], the authors (joint with Lauda) relate 2Foam, the Blanchet foam ver-
sion of Bar-Natan’s cobordism 2-category, to categorified quantum groups. The
2-category 2Foam, introduced in [7], provides a properly5 functorial model for
Khovanov homology and is presented in the spirit of Khovanov’s sl3 foams [20] (see
also [30] and [34] for the sln case). Objects in the 2-category 2Foam are sequences
of the symbols 1 and 2, which we view as labeling boundary points on {0}×� and
{1} ×�, together with a zero object. The 1-morphisms are graded, formal direct
sums of left-directed sl2 webs – trivalent graphs in [0, 1]×� generated by the basic
webs:

11 , 22 , 2

1

1

, 2

1

1

.

The 2-morphisms in this category are matrices of linear combinations of degree-
zero sl2 foams, singular surfaces with 1- and 2-labeled facets between such webs
generated by identity foams W × [0, 1] of the generating webs W above, dots on
1-labeled facets, and the basic foams:

(2.5)
2

1

1
,

2
1

1
,

21

1

,
2

1

1

modulo isotopy and relations analogous to (2.1). Enhanced versions of the skein
relations (2.3) assign6 a complex to any link:
(2.6)

� �
=

⎛⎜⎜⎝q−1 −−−−−→
���

⎞⎟⎟⎠ ,
� �

=

⎛⎜⎜⎝
���

−−−−−→ q

⎞⎟⎟⎠ .

Passing to a quotient (denoted 2Foam• in [34]) in which we impose the relation
in equation (2.4) and applying a suitable representable functor gives a complex of
finite-dimensional vector spaces, whose homology is Khovanov homology; see [7],
[28, section 3.1], or the n = 2 case of [34] for full details.

5Khovanov’s original construction of sl2 link homology is functorial under link cobordism only
up to factors of ±1. See [15] for the original fix to this issue, which requires the use of complex
coefficients in the ground ring.

6Cap and cup tangles with vertical tangencies are sent to the appropriate generating webs.
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In [28] we construct 2-functors:

(2.7) UQ(slm)
Φm,N

−−−−→ 2Foam(N)

for each m ≥ 2 and N ≥ 1, where UQ(slm) denotes7 the Khovanov-Lauda diagram-
matic categorification of quantum slm [22–24], and 2Foam(N) is the 2-subcategory
of 2Foam where objects have entries that sum to N . Recall that the 2-category
UQ(slm) has slm weights λ = (λ1, . . . , λm−1) ∈ �m−1 as objects, and 1-morphisms
are given by graded, formal direct sums of composites of identity morphisms 1λ and
basic generators Ei1λ ∈ Hom(λ, λ+αi), Fi1λ ∈ Hom(λ, λ−αi), where αi is the i

th

simple root. The 2-morphisms in UQ(slm) are matrices of linear combinations of
degree-zero dotted string diagrams8 colored by nodes of the slm Dynkin diagram,
generated by

λλ+αi

i

,
λλ−αi

i

,
λλ+αi

i

• ,
i j

λ

,
i

λ

,
i

λ

,
i

λ

,
i

λ

modulo local relations. These diagrams should be read as mapping from the se-
quence of boundary points at the bottom to those at the top, where we translate a
sequence of boundary points to a composition of basic 1-morphisms by identifying
an upward i-labeled strand with Ei1λ and a downward i-labeled strand with Fi1λ

and using the labeling of the planar regions to indicate the domain and codomain
of the 1-morphism, e.g.

k

i j
λ

is a 2-morphism in Hom(EiEj1λ, q
dEjEkEiFk1λ). Here, and throughout, we use the

(non-standard) convention that powers of q denote degree shifts of 1-morphisms
in categorified quantum groups; the shift in the codomain above depends on the
adjacency of the nodes in the Dynkin diagram labeling the strings involved in the
crossings. See [12] for full details about UQ(slm), where the grading shift qd is

instead denoted by 〈d〉. The main result of [23] is that U̇Q(slm), the 2-category
obtained from UQ(slm) by taking the Karoubi completion in each Hom-category,

categorifies U̇q(slm), the Lusztig idempotented form of quantum slm.

Remark 2.1. We actually show in [28, 34] that the domain of the 2-functors in
equation (2.7) (as well as those in equation (5.1) below) can be extended to the full

2-subcategory ǓQ(slm) of U̇Q(slm) generated by the divided power 1-morphisms

E(a)
i 1λ and F (a)

i 1λ (see [27] and [25] for details on divided powers in the sl2 case).
Since the vertical trace used later in this paper cannot distinguish between these
2-categories, we’ll mostly work with the non-idempotent complete version for sim-
plicity. However, in a handful of instances, our results can only be accurately stated
in terms of ǓQ(slm); the reader unfamiliar with this version of the categorified quan-
tum group can see [28] and [34] for full details.

7We work with the version of UQ(slm) defined in [12] and use the choice of sign data Q from

[34], i.e., ti,i+1 = −1 and ti+1,i = 1.
8These diagrams should be viewed, both figuratively and literally, as perpendicular to planar

tangles and webs.
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The 2-functor Φm,N in equation (2.7) is a combinatorial version of the categorical
geometric skew Howe duality of Cautis-Kamnitzer-Licata [10] and was motivated
by (and categorifies) the diagrammatic skew Howe duality of Cautis-Kamnitzer-
Morrison [11]. It is given by first sending an slm weight λ = (λ1, . . . , λm−1) to the
sequence [a1, . . . , am] ∈ �m so that

∑
ai = N and ai − ai+1 = λi when a solution

exists for ai ∈ {0, 1, 2} and then by deleting the zero entries in this sequence to give
an object in 2Foam. If no such sequence [a1, . . . , am] exists, then the slm weight is
mapped to the zero object. The following schematic specifies Φm,N on generating
1-morphisms:

1λ 
→
am

a2

a1

···
, Ei1λ 
→

ai+1

ai

ai+1−1

ai+1

1 ,

Fi1λ 
→
ai+1

ai

ai+1+1

ai−1

1

where 0-labeled edges are understood to be deleted. The 2-functor is given on gen-
erating 2-morphisms by sending the identity 2-morphism of 1λ to parallel vertical
sheets (of the appropriate type) and on the generating 2-morphisms by viewing
them as cross-sections of facets attached between the vertical sheets (and deleting
0-labeled facets), e.g.

Φm,N

(
i

λ
)

=

ai

ai+1

.

For more details, including a complete description of the 2-functor on 2-morphisms,
see [28] and [34].

We can describe the family of 2-functors {Φm,N}N≥1 more succinctly using
the categorified quantum group UQ(glm) from [31]. This 2-category admits a
description almost identical to UQ(slm), but objects are instead given by glm
weights a = [a1, . . . , am] ∈ �

m and the (non-identity) generating 1-morphisms
are Ei1a ∈ Hom(a, a+ εi) and Fi1a ∈ Hom(a, a− εi) for εi = [0, . . . , 1,−1, . . . , 0].
This then gives a 2-functor

(2.8) UQ(glm)
Φm

−−→ 2Foam

defined on objects by simply forgetting the 0-entries of a glm weight when each entry
of the weight lies in {0, 1, 2}, and sending the weight to the zero object otherwise.
This 2-functor is given on 1- and 2-morphisms analogously to the slm case.
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Note that Φm factors through the “2-bounded” quotient of UQ(glm) where we’ve
killed all weights with entries not lying in {0, 1, 2}; we’ll denote this quotient
by UQ(glm)0≤2. We’ll also later consider the more general n-bounded quotient
UQ(glm)0≤n for n ≥ 2, where we kill weights with entries not in the set {0, . . . , n}.
We denote the limiting 2-category, where we only quotient by glm weights contain-
ing negative integers, by UQ(glm)0≤.

Remark 2.2. Since the Hom-categories in UQ(slm) and UQ(glm) are only non-trivial
between weights which differ by the respective root lattices (generated by the αi’s
and εi’s, respectively), we have that both 2-categories are given as the disjoint
unions of 2-subcategories corresponding to root lattice cosets in the weight lattice.
Using this, we have an identification

UQ(glm) ∼=
∐
�

UQ(slm)

where a glm weight [a1, . . . , am] on the left-hand side corresponds to the slm weight

(λ1, . . . , λm−1) with λi = ai − ai+1 in the
⌊

1
m

∑
ai
⌋th

copy on the right-hand side.
We’ll use this identification, and the corresponding one at the decategorified level,
to import constructions from the “slm-side” to the “glm-side”, e.g. we immediately

obtain 2-categories ǓQ(glm) and U̇Q(glm). Similarly, the 2-functor Φ is given by

Φm,N acting on the (root lattice coset 2-subcategory of the)
⌊
N
m

⌋th
summand on

the right-hand side.

2.2. Annular cobordism categories and saKh. There is a natural extension of
the Bar-Natan category 0BN 0 to the annulus A = S1× [0, 1], which we’ll denote by
ABN . Objects in ABN are graded direct sums of disjoint unions of simple closed
curves in A, and morphisms are matrices of linear combinations of degree-zero
dotted cobordisms embedded in A × [0, 1] between such objects, modulo isotopy
and the relations in equation (2.1). Note that, unlike in the case of 0BN 0, not all
objects in ABN are isomorphic to direct sums of shifts of the empty curve.

The skein formulae (2.3) assign a complex in ABN to any link L ⊆ A × [0, 1];
however, there is no longer a canonical choice of representable functor giving a
complex of vector spaces of which we can take homology. Rather, the sutured an-
nular Khovanov homology saKh(L) of Asaeda-Przytycki-Sikora can be interpreted
as taking the homology of the resulting complex after applying a functor from
ABN to the category of bi-graded vector spaces (with the grading denoted by
powers of q and w). After imposing the additional relation (2.4), this functor is
given as in the non-annular case on the subcategory consisting of curves and cobor-
disms which don’t interact with the annular core, and placing these vector spaces
in zero w-degree. This functor is determined on all of ABN by the requirement

that it is monoidal, sends the “essential circle” to the graded vector space
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V1 := w� ⊕ w−1
� = span{v+, v−}, and maps the following cobordisms as indi-

cated:9

(2.9)

• 
→ 0 , 
→

⎧⎨⎩ V1 ⊗ V1 −→
v± ⊗ v± 
→ 0
v± ⊗ v∓ 
→ ±1

⎫⎬⎭


→
{

−→ V1 ⊗ V1

1 
→ v+ ⊗ v− − v− ⊗ v+

}
.

In [16], Grigsby-Licata-Wehrli prove that this actually describes a monoidal func-
tor ABN → grRep(sl2), where grRep(sl2) is a version of the category of finite-
dimensional sl2 representations, which is also equipped with a formal q-degree. This
functor maps the empty curve to the trivial representation V0 and hence sends the
“trivial circle”


→ qV0 ⊕ q−1V0

and sends an essential circle to the fundamental sl2 representation V1.
Again, in order to make contact with the theory of categorified quantum groups

(and their trace decategorifications), we must introduce an enhanced version of
ABN . Let 2AFoam be the category in which objects are graded, direct sums
of annular closures of left-directed sl2 webs, i.e., the trivalent graphs obtained by
gluing the matching endpoints of left-directed sl2 webs together, around the core
of A, e.g.

∈ 1Mor(2Foam) � ∈ Ob(2AFoam).

Morphisms in 2AFoam are given by matrices of linear combinations of degree-
zero sl2 foams between such webs, embedded in A× [0, 1], e.g.

(2.10) , , or ,

9A choice should be made to identify each circle with a particular tensor factor for the sec-
ond cobordism. Additionally, these maps differ slightly from those appearing previously in the
literature [1,17,36], but are equal to them up to a change of basis and shifts in grading conventions.
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again modulo isotopy and local relations. In equation (2.10), the first two foams
should be viewed as shorthand for the annular foams given by the composition
of the annular closures of generating foams in (2.5). Note that 2AFoam has a
natural monoidal structure, given by gluing the outermost circle of one annulus to
the innermost circle of the other.

The skein relations (2.6) assign a complex in 2AFoam to any link L ⊂ A× [0, 1],
and an analog of the above functor gives saKh(L). In section 4, we’ll show how this
functor arises naturally by considering trace decategorifications of UQ(glm) and
skew Howe duality.

3. Trace decategorification

In this section, we’ll discuss trace decategorifications of linear 2-categories, in
particular the vertical and horizontal traces of categorified quantum groups and
foam 2-categories. See [3–5] for a detailed study of the vertical trace decategorifi-
cation of UQ(slm).

3.1. Vertical trace. Recall from [4] that the trace of a small linear category C is
the abelian group given by

Tr(C) :=
⊕

c∈Ob(C)

HomC(c, c)

/
span{fg − gf}

where the span is taken over all pairs f ∈ HomC(c1, c2) and g ∈ HomC(c2, c1). This
directly extends to give a notion of trace for linear 2-categories; recall that if C is
a linear 2-category and c1, c2 are objects in C, then HomC(c1, c2) is itself a linear
category.

Definition 3.1. The vertical trace of a linear 2-category C is the linear category
vTr(C) whose objects are the same as those in C and with morphisms determined
by

HomvTr(C)(c1, c2) := Tr(HomC(c1, c2)).

Given a 2-morphism D in C whose domain and codomain 1-morphisms agree,
we’ll denote the corresponding morphism in vTr(C) by vTr(D). If the 2-category C is
presented graphically via string diagrams, such as UQ(slm), the vertical trace admits
a topological interpretation. Morphisms in vTr(C) are described by 2-morphisms in
C with equal domain and codomain 1-morphisms, closed around a cylinder,10 e.g.

(3.1) vTr

(
λλ+4

•
)

=
λλ+4 •

in vTr(UQ(sl2)). In this description of vTr(UQ(slm)), we must also specify a grading
shift11 qd on each cylindrical diagram, corresponding to the shift in degree of the
(co)domain 1-morphism of the corresponding 2-endomorphism in UQ(slm). If no
such grading shift appears, as in equation (3.1), the diagram is understood to be in
degree zero. The relations on diagrams are extended to allow isotopy around the

10In [3], this cylinder is flattened to an annulus, but we’ll not do this in order to avoid confusion
with annular sl2 webs and to highlight the relation with the horizontal trace.

11The category vTr(UQ(slm)) is not graded sensu stricto, since there is no grading (shift) on

objects.
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cylinder; composition is given by gluing two such cylinders together along a bound-
ary. In [3–5], the authors show that U̇q(slm) ∼= vTr(U̇Q(slm)) ∼= vTr(UQ(slm)),
with the isomorphism determined by

(3.2) qkEi1λ 
→ qk
λ

i

, qkFj1λ 
→ qk
λ

j

.

A more interesting vertical trace results by considering a non-graded variant of
UQ(slm). Let U∗

Q(slm) be the version of UQ(slm) in which all of the different grading
shifts of each 1-morphism are identified or, equivalently, where there are no grading
shifts of 1-morphisms, and 2-morphisms are not required to be degree zero. In [4,5],
the vertical trace of this 2-category is related to the current algebra U(slm[t]), the
universal enveloping algebra of slm[t] := slm ⊗�[t]. Let

aij =

⎧⎪⎨⎪⎩
2 if i = j,

−1 if i = j ± 1,

0 else

be the Cartan matrix of slm.

Definition 3.2. The current algebra U(slm[t]) of slm is the �-algebra generated
by Ei,r, Fi,r and Hi,r, for 1 ≤ i ≤ m − 1 and r ∈ �, subject to the following
relations:

1. [Hi,r, Hj,s] = 0 , [Hi,r, Ej,s] = aijEj,r+s , [Hi,r, Fj,s] = −aijFj,r+s;
2. [Ei,r+1, Ej,s] = [Ei,r, Ej,s+1] , [Fi,r+1, Fj,s] = [Fi,r, Fj,s+1],

[Ei,r, Fj,s] = δi,jHi,r+s;
3. for |i− j| �= 1: Ei,rEj,s = Ej,sEi,r , Fi,kFj,l = Fj,lFi,k;
4. for |i− j| = 1: [Ei,r, [Ei,s, Ej,t]] = 0 = [Fi,r, [Fi,s, Fj,t]].

Remark 3.3. Our relation 1 is the same as relations C1, C2, and C3 from [5],
and our relation 2 is their C4 and C5. Our relation 3 is their relation C6a when
|i − j| > 1 (and follows from our relation 2 when i = j and when working over a
field), and our relation 4 is their relation C6b.

The Lusztig idempotented form U̇(slm[t]) of the current algebra is the additive
category with objects slm weights λ ∈ �m−1 and with morphisms generated by
Hi,r1λ ∈ End(λ), Ei,r1λ ∈ Hom(λ, λ+ αi), and Fi,r1λ ∈ Hom(λ, λ− αi) subject to
the above relations and the condition that Hi,01λ = λi1λ. As usual, we can also

consider U̇(glm[t]) by passing to glm weights.
The main results of [4, 5] give the following:

Theorem 3.4. There is an isomorphism U̇(slm[t]) ∼= vTr(U∗
Q(slm)) of linear cat-

egories determined by

Ei,r1λ 
→ vTr

(
i

λ
•r

)
=

λ

•r
i

,

Fj,s1λ 
→ vTr

(
j

λ
•s

)
=

λ•s
j

.
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Under this assignment, Hi,01λ 
→ λi1λ and

Hi,r 
→
∑

a+b=r

(a+ 1) vTr

(
•

λi−1+a
•

−λi−1+b

)

= −
∑

a+b=r

(b+ 1) vTr

(
•

λi−1+a
•

−λi−1+b

)

for r > 0 (here the bubbles are all i colored).

We can also consider the vertical trace of the sl2 foam 2-category, which ad-
mits a topological description as well. We’ll again work both with 2Foam and
a version 2Foam∗ in which we’ve forgotten the grading on 1-morphisms and al-
low 2-morphisms of any degree. Morphisms in vTr(2Foam) or vTr(2Foam∗) are
given by closing foams with the same domain and codomain 1-morphisms around
a horizontal axis, e.g.

vTr

⎛⎜⎜⎝ •

⎞⎟⎟⎠ =
•

.

Note that objects in vTr(2Foam) or vTr(2Foam∗) giving the domain and codomain
of such a morphism, which are sequences of 1’s and 2’s, can be read off (radially)
from the strand labelings of the circles on the right and left boundaries. As before,
such a closure of a degree-zero foam only specifies the morphism in vTr(2Foam) up
to grading shift, since we can simultaneously shift the domain and codomain webs in
2Foam to obtain distinct 2-morphisms, hence different morphisms in vTr(2Foam).

Functoriality of the vertical trace, together with equation (2.7) and Theorem 3.4,
immediately gives the following result.

Proposition 3.5. For each m,N , there exists a functor

U̇(slm[t])
ϕm,N

−−−→ vTr(2Foam∗)

determined by λ 
→ [a1, . . . , am] for λi = ai − ai+1,
∑

ai = N and

Ei,r1λ 
→
•r ai+1

ai
, Fj,s1λ 
→

•s ai+1

ai

where we have omitted the remaining parallel cylindrical foam components in the
images and, as usual, 0-labeled facets are understood to be deleted.

In section 4, we’ll see that the functor giving saKh is induced by the one in
Proposition 3.5 and skew Howe duality.
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3.2. Horizontal trace. A second notion of trace for a 2-category C is introduced in
[4], the horizontal trace hTr(C). To quickly summarize, hTr(C) is a linear category
whose objects are 1-endomorphisms f : c → c in C. Morphisms in hTr(C) between
f : c → c and g : d → d are equivalence classes of pairs (h,M), where h : c → d is a
1-morphism and M : hf ⇒ gh is a 2-morphism. The equivalence relation on pairs
is generated by the following relation, which we describe using the string calculus12

description for 2-categories:

(3.3) (h,N ◦ (P1f )) = N

P

g h

fh

∼ N

P

g h′

fh′

= (h′, (1gP) ◦ N).

This definition simplifies for 2-categories in which every 1-morphism admits a
bi-adjoint. Since UQ(slm) and 2Foam are such 2-categories, the following two
propositions are immediate.

Proposition 3.6. The (additive closure13 of the) horizontal trace hTr(UQ(slm)) of
UQ(slm) is equivalent to the category whose objects are direct sums of 1-endomor-
phisms in UQ(slm) and whose morphisms are matrices of linear combinations of
degree-zero UQ(slm) string diagrams between such 1-morphisms, drawn on a cylin-
der.

Proof (sketch). The correspondence between morphisms in hTr(UQ(slm)) and cylin-
drical string diagrams is given by

(h,M) = M

g h

fh

←→ M

g

f

where the string wrapping around the back of the cylinder is labeled h. Under this
correspondence, the equivalence in equation (3.3) corresponds to isotopy around
the back of the cylinder. �

For example, the picture

(3.4)

λ

12See e.g. [27].
13In general, we will assume all categories are additive and will tacitly pass to the additive

closure of any categories which are not.
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denotes a morphism FE1λ → FE1λ in hTr(UQ(sl2)) and corresponds to the equiva-
lence class of the pair (FE , 1FEFE). In general, we can recover the (co)domain from
such a “cylindrical string diagram” from the boundary points, which are required
to be on the front of the top and bottom circles. We have the following similar
result in the foam setting.

Proposition 3.7. The horizontal trace hTr(2Foam) of 2Foam is equivalent to
2AFoam.

Proof. The equivalence hTr(2Foam) → 2AFoam is given on objects e.g. by send-
ing


→

where the first, non-annular web is viewed as an object of hTr(2Foam). The
equivalence is similarly given on 2-morphisms by “filling in” an enhanced foam
embedded in A × [0, 1] (which possibly wraps around the annulus) with vertical
sheets. �

Both hTr(UQ(slm)) and hTr(2Foam) inherit gradings, and the latter coincides
with the grading on 2AFoam. Given a 2-morphism D in either UQ(slm) or 2Foam
with equal domain and codomain objects, we’ll denote by hTr(D) the obvious hor-
izontal closure in hTr(UQ(slm)) or hTr(2Foam), e.g.

hTr

(
i

λ
)

= λ

i

.

Note, however, that there exist morphisms in hTr (C) which are not the horizon-
tal closure of a 2-morphism in C, for example the 2-morphism in equation (3.4).
Observe also that functoriality of hTr implies that for each m,N there exists a
functor

(3.5) hTr(UQ(slm))
ϕm,N

−−−→ 2AFoam

which is given by the cylindrical/annular extension of equation (2.7).
Next, recall from [4] that there is a nice relationship between the vertical and

horizontal traces of a 2-category. More specifically, given a 2-category C, there is a
fully faithful functor

(3.6) vTr(C) ι
↪−→ hTr(C)

which is given on objects by sending c ∈ Ob(C) to the identity 1-morphism 1c of
that object. For the 2-categories considered here, this functor is given on morphisms
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by simply turning the cylinder (or A× [0, 1]) sideways, e.g.

λλ+4 • ι
−→

1λ

1λ+4

•

and, in the case of UQ(slm) or 2Foam, shifting the gradings on the domain and
codomain in hTr by the degree of the morphism in vTr.

In our setting, we can actually extend the inclusion (3.6), using the relationship
between UQ(slm) and 2Foam and their non-graded forms. Let D denote either
UQ(slm) or 2Foam and note that the morphisms in vTr(D∗) inherit gradings via
the grading on the corresponding 2-morphism in D, independent of the choice of
representative (in vTr(U∗

Q(slm)), this is simply the grading on the current alge-

bra). Following the discussion in [2, section 6], we can consider a graded version of
vTr(D∗) by introducing a formal grading shift qk on objects, imposing the condition

that a morphism qk1d1
D−→ qk2d2 has degree14 deg(D) + k1 − k2, and restricting to

degree-zero morphisms.
Denoting the additive closure of this graded version of the vertical trace of D∗

by ṽTr(D), we have the following enhancement of equation (3.6).

Proposition 3.8. There is a degree-preserving, fully faithful functor

ṽTr(D)
ι
↪−→ hTr(D).

Proof. The functor is again given on objects by sending qkd ∈ Ob(ṽTr(D)) to
qk1d ∈ Ob(hTr(D)) and on morphisms by turning the cylinder15 (in the case that
D = UQ(slm)) or A × [0, 1] (when D = 2Foam) sideways. This functor preserves

degree, as the degrees of morphisms in both ṽTr(D) and hTr(D) are computed
locally. �

This proposition, together with functoriality of the traces and the fact that
UQ(glm) ∼=

∐
�
UQ(slm), now gives the diagram

ṽTr(UQ(glm)) ��
� �

��

ṽTr(2Foam)� �

��

hTr(UQ(glm)) �� hTr(2Foam).

Since the horizontal morphisms clearly factor through the traces of UQ(glm)0≤2,
this gives the commutative diagram in equation (1.1).

14Our somewhat backwards looking convention is chosen to best match the two existing con-
ventions that a dot in UQ(g) has degree two and that the Khovanov differential “raises” the power

of q.
15This is slightly inaccurate in the case of UQ(slm), since we don’t work with the cyclic version

of this 2-category. To be precise, one should preserve the direction of non-cyclic (i, i±1)-crossings
while rotating the cylinder, which can be accomplished using cap/cup morphisms.
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4. Skew Howe duality and saKh

We begin this section by quickly recalling skew Howe duality, à la Cautis, Kam-
nitzer, Licata, and Morrison [10, 11]. We then show how the diagram in equation
(1.1) pairs with this to recover sutured annular Khovanov homology.

4.1. A review of skew Howe duality. Consider the vector space
∧N (�n⊗�m),

which carries commuting actions of sln and glm. The glm weight space decomposi-
tion

(4.1)
∧N

(�n ⊗�m) ∼=
⊕

N=
∑

ai

∧a1�
n ⊗ · · · ⊗ ∧am�

n

gives a functor U̇(glm) → Rep(sln). Here U̇(glm) is the idempotented enveloping
algebra of glm, Rep(sln) is the category of finite-dimensional sln-modules, and the
functor sends a glm weight a = [a1, . . . , am] to the sln representation ∧a1�

n⊗· · ·⊗
∧am�

n, and the elements Ei1a and Fi1a to the morphisms of sln representations
determined by the glm action in equation (4.1). As in Remark 2.2, we can view

U̇(glm) as
∐
�
U̇(slm), so for each N ≥ 0 we obtain functors U̇(slm) → Rep(sln),

which send an slm weight λ = (λ1, . . . , λm−1) to ∧a1�
n ⊗ · · · ⊗ ∧am�

n where
λi = ai−ai+1 and N =

∑
ai (and to the zero representation otherwise). These (or

more precisely their quantum versions) are the functors categorified by equation
(2.7).

Our next result will be used to construct our annular link invariant. Before
stating it, we first introduce the category grRep(sl2), a version of the category of
finite-dimensional sl2 representations to which we’ve introduced a formal q-grading.
Its objects are direct sums of sl2 representations which are formally shifted in q-

degree; e.g. they take the form
⊕l

i=1 q
kiVi, where each Vi is an sl2 representation.

Morphisms are given by q-degree-zero maps of sl2 representations; i.e., we have

Hom(qk1V, qk2W ) =

{
Hom(V,W ) if k1 = k2,

0 else,

hence grRep(sl2) ∼=
⊕
�
Rep(sl2). Note that each finite-dimensional sl2-module

is itself graded via its weight space decomposition (this is precisely the w grading
appearing earlier), so the vector spaces in grRep(sl2) are bi-graded.

Lemma 4.1. The skew Howe duality functor induces a functor ṽTr(UQ(glm))
SHt=0−−−−→

grRep(sl2) which factors through ṽTr(2Foam). The induced functor ṽTr(2Foam)
SH−−→ grRep(sl2) is monoidal, maps essential 1-labeled circles to the vector repre-
sentation V1, and maps essential 2-labeled circles to the trivial representation.

Proof. The functor ṽTr(UQ(glm))
SHt=0−−−−→ grRep(sl2) is given by “setting t = 0”

and then applying skew Howe duality. Explicitly, an object in ṽTr(UQ(glm)) is a
direct sum of objects of the form qk[a1, . . . , am], and we send each of these objects to
the q-graded sl2 representation qk(∧a1�

2 ⊗ · · ·⊗∧am�
2) if every ai ∈ {0, 1, 2} and

to the zero representation otherwise, and then extend to direct sums. Morphisms in

ṽTr(UQ(glm)) are given by q-degree shifts of elements in U̇(slm[t]), and the functor
is given by sending Ei,r1λ, Fi,r1λ, Hi,r1λ 
→ 0 if r > 0, and using skew Howe duality

if r = 0. Here, we use the fact that U̇(slm) is the t-degree-zero piece of U̇(slm[t]).
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In [34], we showed that 2Foam is the quotient of lim−→
m

ǓQ(glm) by the ideal

generated by (the identity 2-morphisms of identity 1-morphisms of) weights with
entries not in {0, 1, 2}; hence the same is true after taking traces. The result then

follows since ṽTr(ǓQ(glm)) ∼= ṽTr(UQ(glm)) and ṽTr(UQ(glm))
SHt=0−−−−→ grRep(sl2)

kills such weights. �
4.2. The annular sl2 invariant. We’ll now use the functor in Lemma 4.1 to
reconstruct sutured annular Khovanov homology. Recall from [28] that equation
(2.6) assigns a complex of enhanced webs and foams to any framed tangle. Since
any framed, annular link can be presented as the annular closure of such a tangle,
this same equation assigns a complex C(L) in 2AFoam ∼= hTr(2Foam) to any such
link L. Our first result shows that this complex is in fact isomorphic to a complex

in ṽTr(2Foam).

Proposition 4.2. The inclusion ṽTr(2Foam) ↪→ hTr(2Foam) is an equivalence
of categories.

Proof. Since ṽTr(2Foam) embeds as a full subcategory of hTr(2Foam), it suffices
to show that every object in the latter is isomorphic to one in the former. In other
words, it suffices to show that every annular enhanced sl2 web is isomorphic to a
direct sum of degree shifts of tensor products of essential 1- and 2-labeled circles.
This then follows using the local web isomorphisms

∼= , ∼=(4.2)

∼= q ⊕ q−1

which are given e.g. as the n = 2 case of [34, Remarks 3.6 and 3.12]. It follows,
either from a Euler characteristics argument or as in Lemma 5.2 below, that these
moves are sufficient to decompose any annular web into nested circles. �

Noting that the isomorphisms in equation (4.2) can be lifted to UQ(glm)0≤2, we
have actually shown the following.

Corollary 4.3. The inclusion ṽTr(UQ(glm)0≤2) ↪→ hTr(UQ(glm)0≤2) is an equiv-
alence of categories.

Given a framed annular link L, we can now pass from C(L) to an isomorphic

complex C̃(L) which lies in ṽTr(2Foam). Applying the functor ṽTr(2Foam)
SH−−→

grRep(sl2) from Lemma 4.1, we obtain a complex SH(C̃(L)) in grRep(sl2).

Proposition 4.4. The homology of the complex SH(C̃(L)) is isomorphic to saKh(L).

Proof. It is easy to check that the chain groups in the complex SH(C̃(L)) are
isomorphic to those in the complex used to compute saKh(L) (up to shifts coming
from differing grading conventions), so it remains to check that the differentials in

SH(C̃(L)) give a complex isomorphic to the one used for saKh(L). By a standard
argument (see e.g. [33]), it suffices to check that the maps on the edges of the
“cube of resolutions” assigned to a link in both theories agree up to a sign. All of
the maps in the saKh cube of resolutions are given by saddle cobordisms between
circles, so we analyze the images of the analogous foams and compare them to the
maps assigned to the saddle cobordisms determined by equation (2.9).
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We first consider the differential corresponding to an “enhanced saddle” in
2AFoam between two essential circles and one enhanced inessential circle:

−→ q

which is the image under hTr(Φ) of the morphism

1[1,1]

hTr

( )

−−−−−−−−→ qFE1[1,1]

in hTr(UQ(gl2)). Although the latter term is indecomposable in UQ(gl2)
0≤2, the

following map is an isomorphism in hTr(UQ(gl2)
0≤2):

(4.3)

FE1[1,1]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

,

•

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−→ q−11[2,0] ⊕ q1[2,0]

with inverse given by

(4.4)

q−11[2,0] ⊕ q 1[2,0]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•
+

•−2

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ FE1[1,1].

Hence, the complex in the vertical trace corresponding to the enhanced saddle is

[1, 1]

⎛
⎜⎜⎜⎝

[1, 1][2, 0]
,

[1, 1][2, 0] •
⎞
⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [2, 0]⊕ q2[2, 0].

Under skew Howe duality, this is mapped to

V1 ⊗ V1

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
v− ⊗ v− 
→ 0
v+ ⊗ v− 
→ v0
v− ⊗ v+ 
→ −v0
v+ ⊗ v+ 
→ 0

⎫⎪⎪⎬⎪⎪⎭ , 0

⎞
⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−→ V0 ⊕ q2V0,

which matches equation (2.9).
Similarly,

−→ q
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lifts to the complex

q−1[2, 0]⊕ q[2, 0]
⎛
⎜⎜⎝

[2, 0][1, 1] •
+

•−2

[2, 0][1, 1]

,

[2, 0][1, 1]

⎞
⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q[1, 1]

which under skew Howe duality is sent to

q−1V0 ⊕ qV0

(
0 , {v0 
→ v+ ⊗ v− − v− ⊗ v+}

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qV1 ⊗ V1.

We now turn to the analog in the foam setting of an essential circle merging with
an inessential one under a saddle cobordism:

−→ q .

This lifts to the following complex in hTr(UQ(gl3)
0≤2):

E2F21[1,2,0] −−−−−−→ q E2E1F1F21[1,2,0]

where we color our string diagrams according to the chromatic ordering • •1 2
of

the nodes in the sl3 Dynkin diagram. We next note that we have the isomorphism

q−11[1,2,0] ⊕ q1[1,2,0]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

• +

•−2

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ E2F21[1,2,0]

in hTr(UQ(gl3)
0≤2) with inverse

E2F21[1,2,0]

⎛
⎜⎜⎜⎜⎜⎜⎝

, •

⎞
⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−→ q−11[1,2,0] ⊕ q1[1,2,0]
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and the isomorphism

E2E1F1F21[1,2,0] −−−−−−→ 1[1,2,0]

with inverse

1[1,2,0] −−−−−−→ E2E1F1F21[1,2,0].

Using the following relations (where l > 0 and which also hold with the colors
switched):

•
k

= •
k + 1

− •
k

• , •
l

=
∑

r+s=l−1
•
s

•r

•
k

= •
k+1

− •
k

• , •
l

=
∑

r+s=l−1
•
s

•r

we lift the complex to the following one in the vertical trace:

q−11[1,2,0] ⊕ q1[1,2,0]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

• + •2
, id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−→ q1[1,2,0].

Under skew Howe duality, this is sent to

q−1V1 ⊕ qV1
(0,id)−−−→ qV1

as desired. Similarly,

−→ q

lifts to the complex

1[1,2,0]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
id , •

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−→ 1[1,2,0] ⊕ q21[1,2,0]
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in hTr(UQ(gl
0≤2
3 )) which maps to

V1
(id,0)−−−→ V1

⊕
q2V1.

The other arrangement, where the trivial circle merging lies inside the essential
circle, yields a similar result.

Finally, we consider the inessential, “non-annular” situation. The complex

−→ q

lifts to

EFEF1[2,0] −−−−−−→ qEF1[2,0]

in hTr(U̇Q(gl2)). This is isomorphic to the complex

q−2[2, 0]⊕[2, 0]⊕[2, 0]⊕q2[2, 0]

⎛
⎜⎜⎜⎜⎜⎝

3 •
2 id id 0

•
3

+ 3
•
2

•
2

2 •
2 2 •

2 id

⎞
⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [2, 0]⊕q2[2, 0]

in ṽTr(UQ(gl2)
0≤2), where the (linear combinations of) bubbles are understood

as the corresponding elements in the vertical trace. This gives under skew Howe
duality:

q−2V0 ⊕ V0 ⊕ V0 ⊕ q2V0

⎛
⎝0 id id 0
0 0 0 id

⎞
⎠

−−−−−−−−−−−−−→ V0 ⊕ q2V0,

which agrees with the “non-annular Khovanov differential”:⎧⎪⎪⎨⎪⎪⎩
1⊗ 1 
→ 1
1⊗ x 
→ x
x⊗ 1 
→ x
x⊗ x 
→ 0

⎫⎪⎪⎬⎪⎪⎭ .

A similar computation confirms the case when an enhanced inessential circle splits
into two. �

The following result, originally due to Grigsby-Licata-Wehrli [16], now follows
easily from our construction of saKh.

Corollary 4.5. For any annular link L, saKh(L) carries an action of sl2.

Proof. This follows immediately since the differential in SH(C̃(L)) consists of in-
tertwiners between sl2-modules. �
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5. Sutured annular Khovanov-Rozansky homology

We now show that the specialization to sl2 link homology in section 4 served
to simplify only one technical result, and hence we generalize this to construct our
annular sln link homology theory.

Recall that Khovanov extended his categorification of the Jones polynomial to a
link homology theory categorifying the sl3 Reshetikhin-Turaev link invariant using
the theory of sl3 foams [20]. Khovanov and Rozansky subsequently addressed the
case of general sln Reshetikhin-Turaev invariants, using the homotopy category of
matrix factorizations to construct sln link homology [26]. This sln homology theory
was then interpreted using foams by Mackaay, Stošić and Vaz [30]; however, that
construction was not completely elementary/combinatorial in nature. Recently, the
authors introduced the 2-category nFoam of enhanced sln foams to give an entirely
elementary foam-based description of (colored) Khovanov-Rozansky homology us-
ing categorified skew Howe duality [34].

Our foam-based presentation of Khovanov-Rozansky sln link homology was mo-
tivated by a desired relation between nFoam and the categorified quantum group
UQ(glm). The crucial point is that equation (2.7) remains valid for general n, and
we obtain a 2-functor:

(5.1) UQ(glm)
Φm

n−−→ nFoam

which recovers the 2-functor from equation (2.8) when n = 2. This functor again
factors through the n-bounded quotient UQ(glm)0≤n.

We can now emulate our construction of the sl2 annular link invariant, with
2AFoam replaced by hTr(nFoam) to construct an annular sln link homology,
which we call sutured annular Khovanov-Rozansky homology. We’ll assume some
familiarity with the 2-category nFoam for the duration; see [34] for full details.

Recall that the above construction of saKh consisted of the n = 2 specialization
of the following steps.

(1) Assign to any framed annular link a complex in hTr(nFoam) which is
invariant up to homotopy under Reidemeister moves.

(2) Lift this complex to an isomorphic complex in ṽTr(nFoam).

(3) Apply a functor ṽTr(nFoam) → grRep(sln) to obtain a complex of for-
mally q-graded sln-modules, then take homology.

For general n, the first and third steps follow exactly as they did in the sl2 case.
Indeed, for step (1) we can use the sln skein relations
(5.2)

� �
n
=

⎛⎜⎜⎝q−1 −−−−−→ 2

����

⎞⎟⎟⎠ ,
� �

n
=

⎛⎜⎜⎝ 2

����

−−−−−→ q

⎞⎟⎟⎠
and the a = 1 case of the formulae
(5.3)�

a
�
n

=
n−a

a
n ,

�
a

�
n

=
n−a

a
n

�
a

�
n

=
n−a

a
n ,

�
a

�
n

=
n−a

a
n
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to assign a complex Cn(L) in hTr(nFoam) to any framed annular link (recall that
edges of webs in nFoam carry labels in the set {0, 1, . . . , n}). More generally, we
can use Rickard complexes [14], in particular the shifted Rickard complexes16 from
[34, equations (4.1) and (4.2)], and the general form of equation (5.3) to assign a
complex Cn(L) in hTr(nFoam) to any framed annular link whose components are
colored by fundamental17 representations of sln, e.g. for b ≥ a:

�
a

b

�
n

=

⎛⎝q−a a

b

b

a
−→q−a+1

1
a

b

b

a
−→ · · · −→

a

b

b

a

������������

⎞⎠ .

As in the sl2 case, the complex Cn(L) is invariant under Reidemeister moves, up to
homotopy equivalence (and up to tensoring with essential n-labeled circles, which
won’t affect the resulting homology). To see that step (3) carries over to the sln

case, simply repeat the arguments in Lemma 4.1 with 2 replaced by n.
Step (2), however, is more difficult in the sln case. Recall that the crucial fact

was the equivalence of categories between ṽTr(2Foam) and hTr(2Foam), and we
are currently unable to extend this result to the sln setting. Nevertheless, we can
show that it holds “up to homotopy”; i.e., we have the following, which suffices to

lift the complex Cn(L) to a complex C̃n(L) in ṽTr(nFoam).

Proposition 5.1. There is an equivalence of categories Kom(hTr(nFoam)) ∼=
Kom(ṽTr(nFoam)), where Kom(−) denotes the homotopy category of bounded com-
plexes over an additive category.

In order to prove this, we first detail the decategorified version of this result. The
setting for this is the �[q, q−1]-module of Cautis, Kamnitzer, and Morrison’s sln

webs [11] embedded in the annulus. We believe this result is of independent interest;
see e.g. [35] and [39], where this result is used in the study of the HOMFLY-PT
polynomial via a doubled Schur algebra and a symmetric web formulation of the
colored Jones polynomial (respectively).

Lemma 5.2 (Annular web evaluation algorithm). The annular closure of any sln

web is equal to a �[q, q−1]-linear combination of nested, labeled essential circles.

Note that in order to consider the annular closure of a web, the labelings on the
top and bottom web endpoints must agree.

Proof. By [11, Theorem 5.3.1], it suffices to consider “ladder webs”, and our ar-
gument proceeds by increasing the labelings on the leftmost ladder upright, until
this upright is freed from the remainder of the web closure. The result then follows
inductively.

16These complexes live in ǓQ(glm), so this formally requires using trace decategorifications of

the extended 2-functor ǓQ(glm)
Φn−−→ nFoam. As we mentioned in Remark 2.1, ˜vTr(ǓQ(glm)) ∼=

˜vTr(UQ(glm)), so the consideration of ǓQ(glm) is only technical in nature.
17Even more generally, we can use Cautis-Rozansky categorified projectors (see [8, 37, 41]) to

assign a complex to an annular link with components colored by arbitrary irreducible representa-
tions of sln.
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To begin, we can use the following web relations to combine as many consecutive
ladder rungs pointing in the same direction as possible:

a

b

=

[
a+ b

a

]
a+b

,

a

b

=

[
a+ b

a

]
a+b

,

= , = .

(5.4)

Next, we consider the leftmost upright of the ladder web. If no rungs touch it,
then it already yields a nested circle, and we are done (by inducting on the number of
uprights). If not, locate rungs between the leftmost and second-to-leftmost uprights
which successively point to the right, then to the left, i.e., arranged as in the web on
the left-hand side of equation (5.5) below, but possibly with other rungs between
the second-to- and third-to-leftmost upright separating them. Such a pair of rungs
necessarily exists, since the web is an annular closure (this may require sliding rungs
“around the annulus”).

We now aim to use the relation

(5.5)

k l

k−j1+j2 l+j1−j2

k−j1 l+j1

j1

j2

=

min(j1,j2)∑
j′=0

[
k − j1 − l + j2

j′

]

k l

k−j1+j2 l+j1−j2

k+j2−j′ l−j2+j′

j2−j′

j1−j′

to express our web in terms of webs where either one label on the leftmost up-
right is larger than our web (and all others are the same) or where the number
of rungs between the leftmost and second-to-leftmost uprights decreases. Iterating
this procedure, it eventually terminates, since there is a maximal possible labeling
of an edge in our web (a crude bound is n multiplied by the number of uprights),
and expresses our web as a linear combination of webs where there are no rungs
connected to the leftmost upright.

We now show that it is always possible to apply equation (5.5) to our chosen pair
of rungs after possibly expressing our web as a linear combination of webs using
relations which affect neither the labels on the leftmost upright nor the number
of rungs connected to the leftmost upright. Consider the set of rungs which are
“trapped” between our chosen rungs, i.e., those rungs which cannot be moved using
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the latter two “slide” relations in equation (5.4) to the part of the web outside the
region between our two rungs. For example, the red rungs in the following web are
trapped, while the blue ones are not:

We’ll now apply relations to express our web in terms of those with fewer trapped
rungs, noting that when there are no trapped rungs, we can apply equation (5.5)
as desired. Begin by using slide relations to move away all untrapped rungs. Next,
find a leftward oriented trapped rung which can be slid down so that there are
no leftward oriented rungs anywhere between this rung and the rightward oriented
rung in the chosen pair (i.e., no leftward oriented rungs below it). Sliding this
rung as far down as possible, we must arrive at the configuration given on the
left-hand side of equation (5.5). Applying this relation, we obtain webs with either
fewer trapped rungs or with a leftward oriented rung which can be slid even further
down. Repeating this procedure eventually allows us to slide the lowest leftward
oriented rung out the bottom of the region (i.e., it becomes untrapped). �

Unfortunately, this process doesn’t directly lift to the categorified case of
hTr(nFoam). Indeed, we can try to mimic the above argument to express any
annular web closure as a graded direct sum of essential circles. However, the cate-
gorical analog of equation (5.5):

(5.6)

k l

k−j1+j2 l+j1−j2

k−j1 l+j1

j1

j2

∼=
min(j1,j2)⊕

j′=0

⊕
[k−j1−l+j2

j′ ]

k l

k−j1+j2 l+j1−j2

k+j2−j′ l−j2+j′

j2−j′

j1−j′

holds in nFoam only when k − l ≥ j1 − j2, since otherwise the right-hand side of
equation (5.5) contains negative numbers. When this inequality doesn’t hold, we
cannot replace the web on the left-hand side with a direct sum of webs of the form
on the right.18 Instead, the web appears as a term on the right-hand side of the

18The reason is essentially that F (b)E(a)1λ is not a canonical basis element in U̇q(sl2) when

λ < b− a.
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isomorphism

k l

k+j1−j2 l−j1+j2

k+j1 l−j1

j1

j2

∼=
min(j1,j2)⊕

j′=0

⊕
[l−j1−k+j2

j′ ]

k l

k+j1−j2 l−j1+j2

k−j2+j′ l+j2−j′

j2−j′

j1−j′

.

Nevertheless, we’ll see that we can express the web on the left-hand side of equation
(5.6) in terms of those on the right-hand side in the homotopy category, which
suffices to deduce Proposition 5.1.

Proof of Proposition 5.1. Given a complex in Kom(hTr(nFoam)), we’d like to ap-
ply the above annular evaluation algorithm to each term in the complex, utilizing
the categorical analogs of equations (5.4) and (5.5). However, we need a replace-
ment for the isomorphism in equation (5.6) when k − l < j1 − j2.

In this case, we can use the equality

[
a

b

]
= (−1)b

[
−a+ b− 1

b

]

from [29, 1.3] to rearrange equation (5.5) to give the relation

k l

k−j1+j2 l+j1−j2

k−j1 l+j1

j1

j2

+

min(j1,j2)∑
j′=1
j′odd

[
l − k + j1 − j2 + j′ − 1

j′

]

k l

k−j1+j2 l+j1−j2

k+j2−j′ l−j2+j′

j2−j′

j1−j′

=

min(j1,j2)∑
j′=0
j′even

[
l − k + j1 − j2 + j′ − 1

j′

]

k l

k−j1+j2 l+j1−j2

k+j2−j′ l−j2+j′

j2−j′

j1−j′
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where all the coefficients appearing are positive. It follows that the categorical
analog of this equation holds as well, so we have an isomorphism

(5.7)
k l

k−j1+j2 l+j1−j2

k−j1 l+j1

j1

j2

⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
min(j1,j2)⊕

j′=1
j′odd

⊕
[l−k+j1−j2+j′−1

j′ ]

k l

k−j1+j2 l+j1−j2

k+j2−j′ l−j2+j′

j2−j′

j1−j′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼=
min(j1,j2)⊕

j′=0
j′even

⊕
[l−k+j1−j2+j′−1

j′ ]

k l

k−j1+j2 l+j1−j2

k+j2−j′ l−j2+j′

j2−j′

j1−j′

.

Next note that if we have an isomorphism A⊕B ∼= C between objects in an additive
category, then any complex of the form

· · · → Ai−1 → Ai ⊕A → Ai+1 → · · ·
is homotopy equivalent to a complex of the form

· · · → Ai−1 ⊕B → Ai ⊕ C → Ai+1 → · · · .
Given this, we can perform the annular evaluation algorithm as in the decategorified
case, at each step using either equation (5.6) to replace a term in the complex with
a direct sum of terms in the same homological degree or equation (5.7) to replace
a term with two direct sums of terms differing by one in homological degree. �

Again, all steps in the above proof actually lift to the quotient UQ(glm)0≤ of
categorified quantum glm, so we have in fact proven the following.

Corollary 5.3. There is an equivalence of categories

Kom(hTr(UQ(glm)0≤)) ∼= Kom(ṽTr(UQ(glm)0≤)).

In fact, we conjecture a stronger result. Although our categorical annular evalu-
ation algorithm given in Proposition 5.1 shows that every annular web is homotopy

equivalent in Kom(hTr(nFoam)) to a complex19 in Kom(ṽTr(nFoam)), in prac-
tice we find that in all examples we’ve computed the complex is concentrated in
homological degree zero. Equivalently, in examples we find that any annular web
closure can be expressed at the decategorified level as an �[q, q−1]-linear sum of
nested circles, which suggests the following.

Conjecture 5.4. There is an equivalence of categories

hTr(UQ(glm)0≤) ∼= ṽTr(UQ(glm)0≤),

and in particular, an equivalence of categories hTr(nFoam) ∼= ṽTr(nFoam).

19Using a variation on the last step of the proof of Proposition 5.1, we can moreover show that
this complex is concentrated in two adjacent homological degrees.
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We do not need this stronger result at the moment. Indeed, Proposition 5.1
allows us to accomplish step (2), replacing the complex Cn(L) in hTr(nFoam)

assigned to a colored annular link with a homotopy equivalent complex C̃n(L) in

ṽTr(nFoam).

Definition 5.5. Let L be a colored, framed, annular link. The sutured annular
Khovanov-Rozansky homology of L, denoted saKhR(L), is the homology of the

complex SH(C̃n(L)).
That saKhR(L) is an invariant of colored, framed, annular links follows easily

from the fact that applying a Reidemeister move20 to L only changes Cn(L) up
to homotopy equivalence and tensoring with n-labeled essential circles, and the

choice of C̃n(L) is unique up to homotopy equivalence. Neither of these affect the

homology of SH(C̃n(L)), since in particular n-labeled circles are mapped to the
trivial sln representation.

Remark 5.6. In recent work, Cherednik and Elliot define composite DAHA-super-
polynomials of torus knots and suggest that these invariants should be related to
HOMFLY-PT homology in the thickened annulus [13]. It is an interesting problem
to relate their invariants to our annular sln link homology.

Since SH(C̃n(L)) is a complex whose terms are (q-graded) sln representations
and the differentials are degree-zero intertwiners, the following generalization of
Grigsby-Licata-Wehrli’s result is again immediate.

Corollary 5.7. For any colored, framed, annular link L, saKhR(L) carries an
action of sln.

5.1. Decategorification. In [1], Asaeda, Przytycki, and Sikora show that saKh(L)
categorifies the Kauffman skein module of A, although their proof is somewhat
subtle as there are a priori too many elements in their decategorification. It is known
that the Kauffman bracket skein module ofA is isomorphic to �[q, q−1]⊗�R2, where
Rn

∼= K0(Rep(sln)) is the representation ring of sln. This in turn suggests that
we should utilize the sln action on saKhR in our decategorification.

To begin, we first analyze the sln analog of the Kauffman bracket skein module
of the annulus. Let nAWeb denote the �[q, q−1]-module of Cautis-Kamnitzer-
Morrison’s sln webs embedded in the annulus. The identification of the cate-
gory of sln webs with the subcategory of Rep(Uq(sln)) generated by fundamental
representations in [11] shows that nAWeb ∼= Tr(Rep(Uq(sln))). Note also that
nAWeb is in fact an algebra, with multiplication induced by the tensor product of
Rep(Uq(sln)), i.e., given by annular gluing.

Lemma 5.8. nAWeb ∼= �[q, q−1]⊗� Rn.

Proof. The set of finite-dimensional irreducible quantum sln representations gives
an upper-triangular basis for Rep(Uq(sln)), in the sense of [4, section 4.3]. It then
follows that nAWeb ∼= Tr(Rep(Uq(sln))) is isomorphic to the free �[q, q−1]-module
spanned by the finite-dimensional irreducible (quantum) sln representations. The
latter is precisely �[q, q−1]⊗�Rn. Moreover, the algebra structures on nAWeb and
�[q, q−1]⊗�Rn coincide since both are induced by tensor products inRep(Uq(sln)).

�
20All links are considered framed; hence we work with the version of the Reidemeister I move

for framed links.
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Given a colored, framed, annular link, we can consider both saKhR(L) and the
invariant [L]n in nAWeb determined by the shifts of [11, Corollary 6.2.3] giving
the decategorification of the complexes from [34]. We can decategorify saKhR(L)
by taking the formal alternating sum of homology groups and taking into account
the q-grading on grRep(sln). This gives a formal �[q, q−1]-linear combination of
sln representations.

Proposition 5.9. Viewing both as elements of �[q, q−1]⊗� Rn, we have

K0(saKhR(L)) = [L]n.

Proof. We have the diagram

(5.8)

Kom(hTr(nFoam)) ��

��

Kom(grRep(sln))

��

K0(hTr(nFoam)) �� �[q, q−1]⊗� Rn

where the vertical maps are given by taking alternating sums of terms in complexes,
and we use e.g. [38] to identify K0(Kom(hTr(nFoam))) ∼= K0(hTr(nFoam)).

Under inspection, we find that K0(hTr(nFoam)) is precisely the �[q, q−1]-module
of clockwise oriented webs, in which we’ve retained the n-labeled edges.21 The bot-
tom map is given using Lemma 5.2 and then identifying k-labeled essential circles
with the class of ∧k

�
n. Equivalently, this is given as the composition of the map

K0(hTr(nFoam)) → nAWeb, given by cutting n-labeled edges to tags as on page 6
of [11], with the isomorphism from Lemma 5.8.

Furthermore, the image of Cn(L) in nAWeb under the composition

Kom(hTr(nFoam)) → K0(hTr(nFoam)) → nAWeb

precisely gives [Ln], using the identification from [11, Theorem 5.3.1] and the related
process from [34] which presents any tangle diagram in ladder form. The result then
follows using the commutativity of the square in (5.8). �

5.2. A computation. We’ll now perform a sample computation of saKhR(L) where

L = .

This annular knot is the closure of the braid B = , and the complex�B�n assigned to B in nFoam lifts to the complex

q−31[1,1]
�� q−2FE1[1,1]

• − •
�� FE1[1,1]

�� q2FE1[1,1]
��������

in UQ(gl2)
0≤n; see e.g. the (dual) computation in [8, section 10.2].

21These are (annular) quantum gln webs.
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We then compute saKhR(L) by mapping this complex to Kom(hTr(UQ(gl2)
0≤n)),

passing to an isomorphic complex in Kom(ṽTr(UQ(gl2)
0≤n)), using t = 0 skew

Howe duality to map to a complex of (graded) sln modules, and finally comput-
ing homology. Equations (4.3) and (4.4) again give an isomorphism FE1[1,1]

∼=
q−11[2,0] ⊕ q1[2,0] in hTr(UQ(gl2)

0≤n), so the above complex is isomorphic to the
complex

q−31[1,1]
A �� q−31[2,0] ⊕ q−11[2,0]

B �� q−11[2,0] ⊕ q1[2,0]
C �� q1[2,0] ⊕ q31[2,0]

�������������

which lies in Kom(ṽTr(UQ(gl2)
0≤n)). Using the identification with the current

algebra of sl2, we compute that

A =

(
E1[2,0]
E11[2,0]

)
, B =

(
0 0
0 0

)
, C =

(
EF11[2,0] − EFH11[2,0] EF1[2,0]
E1F11[2,0] − E1FH11[2,0] E1F1[2,0]

)
(here, we’ve dropped the first subscript on current algebra elements, since we work
with sl2). Taking the degree-zero part of the differential and applying skew Howe
duality gives the complex

q−3
�

n ⊗�n (π0 )−−−→ q−3 ∧2
�

n ⊕ q−1 ∧2
�

n ( 0 0
0 0 )−−−−→ q−1 ∧2

�
n ⊕ q1 ∧2

�
n

( 0 2
0 0 )−−−−→ q1 ∧2

�
n ⊕ q3 ∧2

�
n

�����������������
,

where π : �n ⊗ �n 
→ ∧2
�

n is the natural projection. Computing homology, we
find that

saKhR(L)i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q−3Sym2
�

n if i = −3,

q−1 ∧2
�

n if i = −2,

q−1 ∧2
�

n if i = −1,

q3 ∧2
�

n if i = 0,

0 else.

6. A spectral sequence to Khovanov-Rozansky homology

We now construct a spectral sequence from the sutured annular Khovanov-
Rozansky homology of a colored, framed, annular link to the (traditional) Khovanov-
Rozansky homology of the corresponding link in S3, extending Robert’s results
in the sl2 case [36]. To do so, we’ll describe a new procedure to extract the
Khovanov-Rozansky homology of a balanced, colored, framed tangle closure from
the 2-category nFoam• (or more precisely, its categorified quantum group analog,
given in equation (6.1) below). Surprisingly, this approach relates current algebras
to non-annular Khovanov-Rozansky homology.

Remark 6.1. In the following, we must be especially careful with our gradings.
Recall that the degree of a string diagram is computed locally in terms of generating
morphisms, e.g.

deg
(
•
)
= 2 , deg

(
i

a
)

= 1 + ai − ai+1,
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and the q-degree of a 2-morphism qd1G mD−−→ qd2H which is given by a string diagram
D mapping between shifts of 1-morphisms G and H is

q-deg(mD) = deg(D)− d2 + d1.

We’ll use HOM and END to denote the vector spaces of not-necessarily degree-zero
morphisms.

Let τ be a colored, framed tangle; we say that τ is balanced if the colors and
orientations of the left and right boundary points agree. Given such a tangle, we can
consider the colored, framed link Lτ ⊂ S3 obtained by taking its closure. In [34],
we showed that the Khovanov-Rozansky homology KhR(L) of a colored, framed
link L ⊂ S3 can be computed from the complex �L�n assigned to L in nFoam• by
applying the evaluation functor

HOM

(
...

n

n
,−

)
from the identity tangle of a highest weight object to obtain a complex of graded
�-vector spaces and computing homology. Equivalently, we can use equation (5.1)
to lift �L�n to a complex 〈L〉n in the 2-category22

(6.1) ǓQ(glm)•
n

:= ǓQ(glm)0≤n

/(
•n = 0

)
for m sufficiently large, apply HOM(1[n,...,n,0,...,0],−) to obtain a complex of vector
spaces, and take homology.

However, in the case of a tangle closure Lτ , we can actually compute KhR(Lτ )
from the complex assigned to τ directly, avoiding the unnecessary closure step.
Indeed, we can again lift the complex �τ�n in nFoam to a complex 〈τ 〉n in23

ǓQ(glm)•
n

and apply the functor HOM(1a,−), with a = [a1, . . . , ak, 0, . . . , 0] where
a1, . . . , ak give the boundary labelings of the webs in �τ�n. It is easy to see that
the complexes HOM(1[n,...,n,0,...,0], 〈Lτ 〉n) and HOM(1a, 〈τ 〉n) are isomorphic, up
to an overall shift by

∑
i ai(n − ai) in quantum degree. We’ll refer to both as the

Khovanov-Rozansky complex.
This setting is now actually very close to the annular one: the isomorphisms used

to simplify the complex C(Lτ ) in hTr(nFoam) which slide ladder rungs around the
annulus are analogous to the isomorphisms of vector spaces

HOM(1b,G1cH) ∼= HOM(1c, q
dH1bG)

22The additional quotient which kills n dots on all strands specifies that we work with
Khovanov-Rozansky homology, not its equivariant or deformed versions.

23Again, for m sufficiently large relative to the boundary (labelings) of our tangle. It suffices
to take m larger than n multiplied by the number of boundary points, and we’ll assume this
condition for the duration.
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for 1-morphisms G,H ∈ ǓQ(glm)•
n

given by

(6.2)
m

b

. . . . . .

c

G H


→ m

b

. . . . . .

c

H G

.

Using these isomorphisms, together with isomorphisms between 1-morphisms in
ǓQ(glm)•

n

, we can mimic the proof of Proposition 5.1 to obtain the following result.

Theorem 6.2. The Khovanov-Rozansky complex of a tangle closure Lτ is homo-
topy equivalent to a complex in which each term takes the form

⊕
b,d HOM(1b, q

d1b)

and the differential is given by the action of the current algebra U̇(slm[t]) on the
center of objects in ǓQ(glm)•

n

. This complex can be endowed with a filtration, and

the associated graded complex is isomorphic to SH(C̃n(Lτ )).

For details concerning the action of the vertical trace of a 2-category C on the
center of objects in a 2-representation of C, and in particular the action of U̇(slm[t])
on the center of objects in a 2-representation of UQ(slm), see [5, section 9]. Note that
this action requires that the 2-category C be cyclic. Fortunately, the 2-categories
UQ(slm) and UQ(glm) are known to be isomorphic to 2-categories which are cyclic
(see [6] and [31]), and we hence pass to such cyclic24 versions for the duration. If
the 2-representation of UQ(slm) is presented diagrammatically, the action of the
current algebra is then given by wrapping dotted circles around an element in the
center of objects, e.g.

(6.3) Ei,r : m 
→ m •r , Fi,r : m 
→ m •r .

Proof of Theorem 6.2. Consider the lift of the complex �τ�n in nFoam to the n-
bounded quotient ǓQ(glm)0≤n, which we’ll again (by slight abuse of notation) de-
note by 〈τ 〉n. We’ll compare the procedures from which we obtain KhR(Lτ ) and
saKhR(Lτ ).

To compute saKhR(Lτ ) we consider 〈τ 〉n as a complex in hTr(ǓQ(glm)0≤n), and
we apply isomorphisms of the form

(6.4) E(k)
i 1cG1b

∼= G1bE(k)
i 1c and F (k)

i 1cG1b
∼= G1bF (k)

i 1c

in hTr(ǓQ(glm)0≤n) and isomorphisms coming from ǓQ(glm)0≤n to use the (cat-
egorified quantum group version of the) annular evaluation algorithm to obtain a

complex 〈̃τ 〉n which is homotopy equivalent to 〈τ 〉n and whose terms take the form

24In practice, this allows us to avoid keeping track of the signs which appear in the non-cyclic
case when sliding a 2-morphism through caps and cups (and which don’t appear when sliding such
a 2-morphism around a cylinder in the trace).
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b,l q

l1b. Such a complex necessarily lies in ṽTr(UQ(glm)0≤n), so we can use t = 0

skew Howe duality to map each 1b to the sln representation ∧b1�
n ⊗ · · · ⊗ ∧bm�

n

and to send the differentials to the maps of sln representations given by the skew

Howe dual action of glm. This recovers the complex SH(C̃n(Lτ )), whose homology
is saKhR(Lτ ).

Alternatively, we can first apply HOM(1a,−) to 〈τ 〉n to obtain a complex which
gives the Khovanov-Rozansky complex after passing to the quotient in equation
(6.1). We can then use equation (6.2) to apply the isomorphisms

HOM(1b, E(k)
i 1cG1b) ∼= HOM(1c, q

2k(k+ci−ci+1)G1bE(k)
i 1c)

and

HOM(1b,F (k)
i 1cG1b) ∼= HOM(1c, q

2k(k−ci+ci+1)G1bF (k)
i 1c)

(which are the analogs of those in equation (6.4)) and isomorphisms in ǓQ(glm)0≤n,
mimicking the annular evaluation algorithm. In the end, we arrive at a complex
homotopy equivalent to HOM(1a, 〈τ 〉n) and whose terms take the form⊕

b,d HOM(1b, q
d1b), with the number of summands and the glm weights appear-

ing in the terms the same as those in 〈̃τ 〉n. Denote the image of this complex in

ǓQ(glm)•
n

by 〈̂τ 〉n. Under careful inspection, we find that the differentials in 〈̂τ 〉n
are given by precisely the same elements in the current algebra U̇(glm[t]) as in 〈̃τ 〉n,
acting here on the center of objects in ǓQ(glm)•

n

via equation (6.3). This confirms
the first statement of the result.

For the second statement, we first note that the chain groups in the Khovanov-
Rozansky complex are isomorphic (as vector spaces) to those in the sutured annular
Khovanov-Rozansky complex. Indeed, this follows since the algebra END(1b) in
ǓQ(glm)•

n

is identified under equation (5.1) with the algebra of endomorphisms of
parallel strands in nFoam•, labeled according to b. It follows from [34, Remark
4.1] that the latter is isomorphic to H∗(Grb1(�

n)) ⊗ · · · ⊗ H∗(Grbm(�n)), which
in turn is isomorphic to ∧b1�

n ⊗ · · · ⊗ ∧bm�
n (using e.g. the geometric Satake

isomorphism; see [9]), as desired.

It remains to define the filtration degree on the chain groups in 〈̂τ 〉n and to iden-

tify the degree-preserving differential with the differential in SH(C̃n(Lτ )). Define
the filtration degree on HOM(1b, q

d1b) by

(6.5) t-deg(m) = q-deg(m) + d−
m∑
j=1

bj(n− bj).

Note that the first two terms on the right-hand side of equation (6.5) combine
to simply compute the degree of a string diagram. Using this, it follows easily
that the action of the current algebra elements Ei,r and Fi,r (and hence Hi,r)
via equation (6.3) raises t-degree by 2r. For example, in the case of 1bEi,r1c
this follows since the r dots contribute 2r to the t-degree, and the clockwise i-
labeled cap and cup contribute 2 + 2(bi+1 − bi), which is exactly cancelled since∑m

j=1 cj(n − cj) −
∑m

j=1 bj(n − bj) = −2 + 2(bi − bi+1). Observe also that, up to

a global shift, the q-degree of a summand of a chain group in SH(C̃n(Lτ )), which

differs from the q-degree in 〈̂τ 〉n since there is no shift on the right-hand side of
equation (6.4), can be computed by taking t-deg(m) − q-deg(m) for any m in the

corresponding term in 〈̂τ 〉n.
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Defining F p = {x | t-deg(x) ≥ p}, we have a decreasing filtration · · · ⊃ F p ⊃
F p+1 ⊃ · · · on 〈̂τ 〉n compatible with the differential. The t-degree preserving part of
the differential is exactly the part of the differential in current algebra degree-zero,
so it suffices to show that the action of these elements coming from equation (6.3)
agrees with the one coming from skew Howe duality, after identifying END(1b) with
∧b1�

n⊗· · ·⊗∧bm�
n. Indeed, these must agree since both cases give representations

of slm (i.e., the degree-zero part of the current algebra) with weight spaces of the
same dimension. �

The filtration defined in the proof of Theorem 6.2 is bounded, so e.g. [32, Theo-
rem 2.6] shows that the corresponding spectral sequence converges to the associated
graded of the homology of the complex. This in turn is isomorphic to the homology
of the complex itself (working over a field). We hence obtain the following.

Corollary 6.3. Given a colored, framed, balanced tangle τ , there exists a spectral
sequence whose first page is the sutured annular Khovanov-Rozansky homology of
the annular closure of τ and which converges to the Khovanov-Rozansky homology
of Lτ .
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