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HAMILTONIAN GROUP ACTIONS ON EXACT SYMPLECTIC

MANIFOLDS WITH PROPER MOMENTUM MAPS

ARE STANDARD

YAEL KARSHON AND FABIAN ZILTENER

Abstract. We give a complete characterization of Hamiltonian actions of
compact Lie groups on exact symplectic manifolds with proper momentum
maps. We deduce that every Hamiltonian action of a compact Lie group on
a contractible symplectic manifold with a proper momentum map is globally
linearizable.

1. The main result

Let G be a compact Lie group with Lie algebra g = TeG and dual space g∗ =
T ∗
e G. A momentum map for a symplectic G action on a symplectic manifold

(M,ω) is a map μ : M → g∗ that intertwines the G action on M with the coadjoint
G action on g∗ and that satisfies Hamilton’s equation

(1.1) dμξ = −ι(ξM )ω for all ξ ∈ g,

where ξM is the vector field on M that corresponds to ξ and where μξ := 〈μ, ξ〉 :
M → R is the ξth component of μ. A symplectic G action is called Hamiltonian
if it admits a momentum map. A Hamiltonian G manifold is a triple (M,ω, μ)
where (M,ω) is a symplectic manifold with a symplectic G action and μ : M → g∗ is
a momentum map. An isomorphism of Hamiltonian Gmanifolds is an equivariant
symplectomorphism that intertwines the momentum maps. Throughout this paper,
manifolds are assumed to be non-empty unless stated otherwise.

1.2. Remark. This terminology is not used consistently in the literature. We em-
phasize that throughout this paper we require momentum maps to be equivariant
and we require the two-forms of Hamiltonian G manifolds to be non-degenerate.

1.3. Remark. A symplectic G action on a symplectic manifold (M,ω) is the same
thing as a homomorphism from G to the group Symp(M,ω) of symplectomorphisms
of (M,ω) that is smooth in the diffeological sense: the map (g, x) �→ g · x from
G×M to M is smooth (cf. [8]). The action has a momentum map if and only if the
image of the identity component of G is contained in the subgroup Ham(M,ω) of
Hamiltonian diffeomorphisms. (Being contained in Ham(M,ω) implies that there
is a map μ : M → g∗ that satisfies Hamilton’s equation (1.1). The map x �→∫
a∈G

Ad∗(a)(μ(a−1x))da, where da is the Haar probability measure on G, is then a

momentum map.) It is natural to require the image of all of G, not only the identity
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component, to be contained in Ham(M,ω), but we will not need this stronger
requirement.

We recall a particular construction of Hamiltonian G manifolds:

1.4. Definition. Let G be a compact Lie group with Lie algebra g = TeG and dual
space g∗ = T ∗

e G. A centred Hamiltonian G-model is a Hamiltonian G manifold
(Y, ωY , μY ) that is obtained by the following construction.

Let H be a closed subgroup of G. Let (V, ωV ) be a symplectic
vector space with a linear H action and quadratic momentum map
μV : V → h∗. Consider the H action on T ∗G that is induced from
its action h : a �→ ah−1 on G, with the fibrewise homogeneous
momentum map. The model (Y, ωY ) is the symplectic quotient at
zero of T ∗G×V with respect to the anti-diagonal H action. The G
action and momentum map on Y are induced from the left action
g : a �→ ga on G and its homogeneous momentum map on T ∗G.

We describe centred Hamiltonian G models in greater detail in Section 3.
The purpose of this paper is to prove the following theorem.

1.5. Theorem. Let a compact Lie group G act on a symplectic manifold (M,ω)
with momentum map μ : M → g∗. Assume that M/G is connected. Assume that μ
is proper and ω is exact. Then M is equivariantly symplectomorphic to a centred
Hamiltonian G-model.

We prove Theorem 1.5 in Section 6. Here are some implications on the topology,
equivariant topology, and symplectic topology of the manifold.

1.6. Corollary. Let a compact Lie group G act on a symplectic manifold (M,ω)
with momentum map μ : M → g∗. Assume that M/G is connected. Assume that μ
is proper and ω is exact. Then the following results hold.

(i) The Euler characteristic of M is non-negative.
( ii) M contains either no G fixed points or exactly one G fixed point.
(iii) The Gromov width of (M,ω) is infinite.

Here are two situations in which we get even more precise information.

1.7. Corollary. Let the circle group S1 act faithfully on a connected exact sym-
plectic manifold with a proper momentum map. Then the manifold is equivariantly
symplectomorphic either to the cylinder S1 × R with S1 acting by rotations or to
Cn with S1 acting linearly.

1.8. Corollary. Let a compact Lie group G act on a symplectic manifold (M,ω)
with a momentum map μ : M → g∗. Suppose that M is contractible and μ is proper.
Then (M,ω) is equivariantly symplectomorphic to a symplectic vector space with a
linear symplectic G action. In particular, a compact Lie group action on R2n with
proper momentum map is always linearizable.

Proofs of Corollaries 1.6, 1.7, and 1.8. These corollaries follow from Theorem 1.5
and from properties of centred Hamiltonian G models that we list in Section 7. For
Corollary 1.6, see Lemmas 7.2, 7.3, and 7.4. For Corollary 1.7, Lemma 7.5. For
Corollary 1.8, note that ω is exact if M is contractible, and see Lemma 7.6. �
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1.9. Example. None of the following exact symplectic manifolds admit an action
of a compact Lie group G with a proper momentum map. In particular, none of
them admit a proper real valued function whose Hamiltonian flow is periodic.

(a) The cotangent bundle of any manifold with negative Euler characteristic,
for example, T ∗X where X is a closed oriented connected surface of genus
≥ 2 or the product of such a surface with a closed connected manifold of
positive Euler characteristic.

(b) Any open subset of R2n, with coordinates x1, y1, . . . , xn, yn and the stan-
dard symplectic structure

∑n
j=1 dxj∧dyj , on which x1 and y1 are bounded.

This follows from Corollary 1.6: manifolds of the first form have a negative Euler
characteristic, and manifolds of the second form have a finite Gromov width [6].

Properness of the momentum map cannot be dropped. Without this assumption,
trivial actions provide counterexamples to the conclusions of Theorem 1.5 and of
Corollaries 1.6 and 1.8. In Section 8 we give more interesting examples, of exotic
Hamiltonian actions on symplectic vector spaces. For example, for any compact
connected non-abelian Lie group G, there exists a symplectic vector space R2n

with a Hamiltonian G action that is not isomorphic to a linear action. Thus, the
conclusion of Corollary 1.8 fails to hold in this situation. See Corollary 8.3.

Exactness of the symplectic form cannot be dropped. Without this assumption,
actions on closed symplectic manifolds provide counterexamples to the conclusions
of Theorem 1.5 and of Corollaries 1.6 and 1.7.

The strategy of the proof of Theorem 1.5 is as follows. After shifting the mo-
mentum map by a constant, we may assume that the momentum map is obtained
from an invariant primitive of ω as described in Section 2. (Here we use our hy-
pothesis that ω is exact.) Referring to Reyer Sjamaar’s de Rham theory for singular
symplectic quotients [26], we argue that ω descends to an exact symplectic form
on μ−1(0)/G and conclude (by compactness) that this quotient is a finite set. So
μ−1(0) is a finite union of G-orbits. By the local normal form theorem there exists
a G-equivariant symplectomorphism F between some neighbourhood U of μ−1(0)
and an open subset V in a finite union

⊔
Yj of centred Hamiltonian G-models Yj .

The negative Liouville flows on M and on Yj shrink any compact set into U and
V , respectively. (The Liouville vector field XM on M comes from our invariant
primitive of ω. We use that μ intertwines XM with the Euler vector field on g∗;
see Lemma 5.6.) Combining these flows with F , we obtain a G-equivariant sym-
plectomorphism between M and

⊔
Yj . If M/G is non-empty and connected, there

is exactly one Yj .
In the literature, there are many classification results for Hamiltonian group

actions whose complexity—half the dimension of a generic non-empty reduced
space—is low. See [5, 12] (symplectic toric manifolds, even without compactness
or properness), [23] (compact symplectic 2-manifolds, no action), [11] (Hamilton-
ian circle actions on compact symplectic four-manifolds), [15] (“tall” complexity
one Hamiltonian torus actions, proper momentum maps), [17,20] (complexity zero
non-abelian group actions on compact symplectic manifolds), [2] (complexity one
non-abelian group actions on compact symplectic six-manifolds). Additional refer-
ences are listed in the introduction to [15].

What is special about our Theorem 1.5 is that it gives a situation in which we can
characterize Hamiltonian G manifolds of arbitrary complexity. This work follows
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two earlier results that apply to actions of arbitrary complexity:

(i) Delzant [5, Section 1] proved that a Hamiltonian circle action on a com-
pact symplectic 2n-manifold whose fixed point set has exactly two con-
nected components, of which one is an isolated fixed point, is equivariantly
symplectomorphic to a standard circle action on CP

n.
(ii) Let a torus T act on a compact symplectic manifold (M,ω) with a momen-

tum map μ : M → t∗. Let T be a convex open subset of t∗ that contains
μ(M) and such that μ is proper as a map to T . Let x ∈ M be a point;
suppose that μ−1(μ(x)) = {x} and that μ(x) is contained in the momentum
image of every component of the fixed point set MK for every subgroup
K of T . Then M is equivariantly symplectomorphic to the open subset
{z ∈ Cn | μ(x) + π

∑
j |zj |2ηj ∈ T } of the standard Cn, where η1, . . . , ηn

are the isotropy weights at p, and where our normalization convention is
such that we identify the circle with R/Z (rather than R/2πZ). This is
proved in [15, Section 2].

We end this section with a discussion of the adjective “centred”.

1.10. Remark. Let (M,ω, μ) be a Hamiltonian Gmanifold. Suppose that μ is proper
as a map to some convex open subset T of g∗. Let α ∈ g∗ be a point that is fixed
under the coadjoint action. We say that the Hamiltonian G manifold is centred
about α if, for every subgroup K of G, the point α is contained in the momentum
map image of every component of the fixed point set MK .

(i) Every centred Hamiltonian G model whose momentum map is proper (to
T := g∗) is centred about α = 0 according to this definition.

(ii) This definition of “centred” is consistent with the notion of “centred” that
was introduced in [13, Def. 1.4] and used in [14]. The only difference is
that in [13,14] we restricted to the special case that G is a torus and M is
connected and we fixed a choice of T . (The definition in [13, Def. 1.4] is
phrased slightly differently from that of [14, Def. 2.2], but it is equivalent
to it. See [14, Rmk. 2.7].)

2. Exact Hamiltonian G manifolds

A symplectic manifold (M,ω) is called exact if the symplectic form ω is exact,
that is, if it has a primitive: a one-form λ such that ω = dλ. If an exact form ω is
preserved under the action of a compact Lie group G, then, by averaging, we can
choose its primitive λ to be G invariant. In this situation, consider the map

μ : M → g∗

such that, for every ξ ∈ g∗, the component

μξ := 〈μ, ξ〉 : M → R

is given by plugging the corresponding vector field ξM into the one-form λ:

(2.1) μξ = ι(ξM )λ.

This map is a momentum map for the G-action on (M,ω). (Indeed, by Cartan’s
formula LξMλ = (dι(ξM ) + ι(ξM )d)λ. The right-hand side is dμξ + ι(ξM )ω, and
the left-hand side is zero.) A Hamiltonian G manifold (M,ω, μ) is exact if μ is
obtained in this way from an invariant primitive of ω.
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The following lemma is used in the proof of Lemma 3.4. A variant of it for
singular reduced spaces appears in Lemma 4.2.

2.2. Lemma (Reduction of exact symplectic manifolds). Let G be a compact Lie
group and let (M,ω, μ) be an exact Hamiltonian G manifold. Suppose that the G
action on the level set Z := μ−1(0) is free. Consider the inclusion-quotient diagram:

Z � � i ��

π

��

M

Mred

Then

(i) there exist unique smooth manifold structures on Z and Mred such that i is
an immersion and π is a submersion;

( ii) there exist a unique one-form λred and a unique two-form ωred on Mred

such that

π∗λred = i∗λ and π∗ωred = i∗ω;

(iii) the two-form ωred on Mred is symplectic, and ωred = dλred.

Proof. The only difference from the standard Marsden-Weinstein reduction [22] is
that we also obtain a reduction of the one-form λ and not only of the two-form ω.
Indeed, the one-form i∗λ on Z is G invariant because λ is G-invariant, and it is
G-basic (that is, descends to Mred) because, additionally, ιξM i∗λ = μξ ◦ i = 0 for
all ξ ∈ g. �

3. Centred Hamiltonian G models

In this section we describe centred Hamiltonian G models (Y, ωY , μY ) with more
detail than in Definition 1.4, and on every such model we specify a particular G-
invariant one-form λY such that dλY = ωY and whose corresponding momentum
map is μY .

The construction involves three ingredients: a compact Lie group G, a closed
subgroup H ⊂ G, and a linear symplectic representation of H on a symplectic
vector space (V, ωV ) with a quadratic momentum map μV : V → h∗.

We begin with some notation. We denote an element of the cotangent bundle
T ∗G by either β or (a, β), interchangeably, where β ∈ T ∗

aG. For g ∈ G, we denote by
(a, β) �→ (ga, gβ) the lifting to T ∗G of the diffeomorphism a �→ ga of G. Similarly,
we denote by (a, β) �→ (ah, βh) the lifting to T ∗G of the diffeomorphism a �→ ah
of G. (That is, if Lg′ : G → G and Rh′ : G → G denote, respectively, the left and
right translation maps a �→ g′a and a �→ ah′, then gβ and βh are the images of
β under the linear maps L∗

g−1 : T ∗
aG → T ∗

gaG and R∗
h−1 : T ∗

aG → T ∗
ahG.) These

transformations commute, so expressions such as gβh are well defined. With this
notation, the left invariant trivialization of the cotangent bundle carries (a, ϕ) ∈
G × g∗ to (a, aϕ) ∈ T ∗G, and the coadjoint action of a ∈ G on g∗ = T ∗

e G is
Ad∗(a) : ϕ �→ aϕa−1.

Let λtaut be the tautological one-form on T ∗G, so that dλtaut = ωT∗G is the
canonical symplectic form. The G action on T ∗G that is induced from the action
g �→ Lg on G has the momentum map

μL : T
∗G → g∗; (a, aϕ) �→ Ad∗(a)(ϕ).
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The H action on T ∗G that is induced from the action h �→ Rh−1 on G has the
momentum map

μR : T ∗G → h
∗; (a, aϕ) �→ −ϕ|h,

where ϕ �→ ϕ|h is the natural map g∗ → h∗. Moreover, the momentum maps that
are obtained from λtaut vanish along the zero section, so they coincide with the
momentum maps μL and μR.

Before proceeding, we recall the definition of the Euler vector field.

3.1. Definition. The Euler vector field on a vector space W is the vector field
that, under the natural trivialization of TW , is given by the identity map. Equiv-
alently, it is the velocity vector field of the flow t �→ etv on W .

Note that if XV is the Euler vector field on a vector space V and α is a differential
form on V with constant coefficients, then LXV

α = kα where k is the degree of α.
We now turn to the symplectic vector space (V, ωV ) with the H action and with

the quadratic momentum map μV : V → h∗. Let λV = 1
2 ι(XV )ωV , where XV

is the Euler vector field on V . Then λV is an H-invariant one-form on V , and
dλV = ωV . (The latter follows from Cartan’s formula, closedness of ωV , and the
identity LXV

ωV = 2ωV .) Moreover, the momentum map that is obtained from λV

vanishes at the origin, so it coincides with the quadratic momentum map μV .
We now consider the product T ∗G×V , whose elements we write as (a, aϕ, v) with

a ∈ G, ϕ ∈ g∗, and v ∈ V . We have the left G action L̃g : (a, aϕ, v) �→ (ga, gaϕ, v),
with the momentum map

(3.2) μ̃L : T ∗G× V → g
∗; (a, aϕ, v) �→ Ad∗(a)(ϕ),

and the anti-diagonal H action Dh : (a, aϕ, v) �→ (ah−1, aϕh−1, h · v), with the
momentum map

(3.3) μ̃D : T ∗G× V → h∗; (a, aϕ, v) �→ −ϕ|h + μV (v).

The left G action and anti-diagonal H actions commute. The H momentum map
μ̃D is invariant with respect to the G action, and the G momentum map μ̃L is
invariant with respect to the anti-diagonal H action.

In Definition 1.4, we defined the centred Hamiltonian G model (Y, ωY ) that is
constructed from this data to be the symplectic reduction of T ∗G×V with respect
to the H action. Explicitly,

Y = (T ∗G× V )//H := Z/H,

where

Z := μ̃−1
D (0)

(
=

{
(a, aϕ, v)

∣∣∣ ϕ(ξ) = μξ
V (v) for all ξ ∈ h

})
.

3.4. Lemma.

(1) There exist unique manifold structures on Z and on Y such that the inclu-
sion map i : Z → T ∗G×V is an immersion and the quotient map π : Z → Y
is a submersion.

(2) There exist a unique one-form λY and a unique two-form ωY on Y such
that π∗λY = i∗(λtaut ⊕ λV ) and π∗ωY = i∗(ωT∗G ⊕ ωV ).

(3) The two-form ωY is symplectic, and dλY = ωY .

Moreover,

(4) The left G action on T ∗G× V descends to a G action on the model Y .
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(5) The G momentum map μ̃L : T
∗G × V → g∗ descends to a G momentum

map

μY : Y → g∗.

(6) The G momentum map μY coincides with the momentum map that is ob-
tained from the one-form λY .

Proof. For items (1)–(3), note that H acts freely on the zero level set Z, and apply
Lemma 2.2. Item (4) follows from the fact that, on T ∗G × V , the left G action
preserves theH momentum map μ̃D and commutes with the anti-diagonalH action.
Item (5) follows from the fact that μ̃L is H invariant. Item (6) follows from the
fact that, on T ∗G × V , the G momentum map μ̃L coincides with the momentum
map that is obtained from the one-form λtaut ⊕ λV . �

We now record a property of centred models that we use in Lemma 6.1 below.

3.5. Definition. The central orbit in a centred Hamiltonian G-model Y =
(T ∗G× V )//H is the image in Y of (the zero section of T ∗G)×(the origin of V ).

3.6. Lemma. Let (Y, ωY , μY ) be a centred Hamiltonian G model. Suppose that
there exists a neighbourhood U ′ of the central orbit in Y such that U ′ ∩ μ−1

Y (0)

consists of only the central orbit. Then μ−1
Y (0) consists of only the central orbit,

and the map μY : Y → g∗ is proper.

Proof. In the notation of (3.2) and (3.3), μ−1
Y (0) is the quotient of μ̃−1

L (0)∩μ̃−1
D (0) by

the anti-diagonal H action. Because μ̃−1
L (0)∩ μ̃−1

D (0) = (the zero section in T ∗G)×
μ−1
V (0) and μV is quadratic, we deduce that μ−1

Y (0)/G
(∼= μ−1

V (0)/H
)
is connected.

By assumption, the central orbit is an isolated point in μ−1
Y (0)/G. This implies

that μ−1
Y (0) consists of only the central orbit.

In particular, μ−1
V (0) = {0}. So m := min

{
‖μV (v)‖ | ‖v‖ = 1

}
(with respect

to any norm on V ) is positive. By homogeneity, ‖μV (v)‖ ≥ m‖v‖2 for all v. This
implies that μV : V → h∗ is proper. From this and the compactness of G we further
deduce that (μ̃L, μ̃D) : T ∗G× V → g∗ × h∗, and hence μY : Y → g∗, is proper. �

We end this section with an alternative description of the model Y that we use
in Section 7.

Fix an Ad-invariant inner product on g, and use it to embed h∗ in g∗ as the
orthogonal complement of h0, the annihilator of h in g∗. Consider the action of
h ∈ H on G × (h0 ⊕ V ) by right multiplication by h−1 on the G factor, by the
coadjoint action on the h0 factor, and by the given representation on the V factor.
Our alternative model is the quotient

G×H

(
h
0 × V

)
,

with G acting by left multiplication on the G factor. We have a pullback diagram:

G× (h0 × V ) ��

��

μ̃−1
D (0)

��

⊂ T ∗G× V

G×H (h0 × V ) �� (T ∗G× V )//H = Y.

The bottom right term is the model Y . The top arrow is the map

(3.7) (a, ν, v) �→ (a,Ad∗(a)(ν + μV (v)), v).
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The bottom arrow is a G equivariant diffeomorphism; pulling back ωY by it, we get
a G invariant symplectic form on G ×H (h0 ⊕ V ) whose pullback to G × (h0 ⊕ V )
coincides with the pullback of ωT∗G ⊕ ωV under the top arrow.

3.8. Lemma.

(1) The pullback of this symplectic form on G×H (h0 × V ) under the inclusion
map v �→ [1, 0, v] of V is ωV .

(2) The zero section G×H {0} of G×H (h0 × V ) is isotropic.
(3) The momentum map for the G-action on G×H (h0×V ) with respect to the

symplectic form described above is

[a, ν, v] �→ Ad∗(a)(ν + μV (v)).

Proof. To prove item (1), observe that this pullback form agrees with the pullback
of ωT∗G ⊕ ωV under the map V � v �→ (1, μV (v), v) ∈ T ∗G × V . This pullback
equals ωV , since the fiber T ∗

1G is Lagrangian in T ∗G. This proves (1).
Item (2) follows from the definition of the symplectic form. Item (3) follows from

the fact that this momentum map is the composition of μY (defined by (3.2) and
Lemma 3.4(5)) with the map induced by (3.7). �

The notion of a centred Hamiltonian G model comes from the local normal form
theorem. (A special case of) the local normal form theorem can then be stated as
follows.

3.9. Theorem. Let a compact Lie group G act on a symplectic manifold (M,ω)
with a (G-equivariant) momentum map μ : M → g∗, and let G · x be an orbit that
is contained in the zero level set μ−1(0). Then there exist a centred Hamiltonian
G-model Y and a G-equivariant symplectomorphism from an invariant open neigh-
bourhood of G · x in M to an invariant open subset in Y that takes G · x to the
central orbit in Y .

The local normal form theorem is the main ingredient in the work of Sjamaar-
Lerman [25] and in Sjamaar’s de Rham theory for symplectic quotients [26] (see
Section 4). The theorem in its more general form applies to neighbourhoods of
orbits that are not necessarily in the zero level set μ−1(0) and, unless the orbit is
isotropic, it involves Hamiltonian G models that are more general than the centred
Hamiltonian G models of Definition 1.4. The theorem, due to Guillemin-Sternberg
and Marle, can be found in [7, 21]. We use the local normal form theorem in
Section 4 and in the proof of Lemma 6.1.

4. The zero level set of the momentum map

and Sjamaar’s de Rham theory for symplectic quotients

The purpose of this section is to prove Proposition 4.3, which is later used in the
proof of Lemma 6.1.

We will use a de Rham theory for singular symplectic quotients that was in-
troduced by Sjamaar in [26]. To explain it, we first recall some facts from the
paper [25] of Sjamaar and Lerman; specifically, see [25, Theorems 2.1 and 5.9].

Let G be a compact Lie group, and let (M,ω, μ) be a Hamiltonian G manifold.
The reduced space μ−1(0)/G is locally connected; this is a consequence of the

local normal form theorem (Theorem 3.9). So the connected components of the
reduced space are open and closed in the reduced space, and their preimages in M
are closed in M .
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Let x ∈ μ−1(0)/G. There exist a conjugacy class C of closed subgroups of G
and a neighbourhood U of x in μ−1(0)/G, such that the set of orbits in U with
stabilizers in C is open and dense in U . (We say that a G orbit has stabilizers in
C if the stabilizers of the points in the orbit are in C. If this is true for one point
in the orbit, then it is true for all the points in the orbit.)

Fix a connected component X of μ−1(0)/G.
It follows that there exists a unique conjugacy class CX of closed subgroups of

G such that the “principal stratum”

Xprinc := {x ∈ X | x has stabilizers in CX}
is open and dense in X. Moreover, Xprinc is a manifold, in the following sense.
Let Zprinc be the preimage of Xprinc in μ−1(0). Then there exist unique manifold
structures on Xprinc and on Zprinc such that the inclusion map Zprinc → M is an
immersion and such that the projection map Zprinc → Xprinc is a submersion.

The dimension of X is the dimension of Xprinc.
Following Sjamaar [26], we define a differential form on X to be a differen-

tial form on Xprinc whose pullback to Zprinc extends to a differential form on M .
(Because the preimage Z of X in μ−1(0) is closed in M , a differential form on
Zprinc extends to a differential form to M if and only if every point on Z has a
neighbourhood on which this differential form extends.)

The space of differential forms on X is a differential graded algebra, with the
usual operations of exterior derivative and wedge products. We denote it Ω(X).

The symplectic form ω on M descends to a two-form ωX on X. When Z is
a manifold and the G action on Z is free, this is exactly the Marsden-Weinstein
reduction.

4.1. Lemma. Let G be a compact Lie group, let (M,ω, μ) be a Hamiltonian G
manifold, and let X be a connected component of μ−1(0)/G. If X is compact and
of dimension ≥ 2, then the two-form ωX is not exact in the differential complex
Ω(X).

Proof. Let k = 1
2 dimX. Assume that k ≥ 1. By [26, Cor. 7.6], the class of ωk

X in

the cohomology of the differential complex Ω(X) is non-zero. So ωk
red, and hence

ωred, is not exact. �
4.2. Lemma. Let G be a compact Lie group, let (M,ω, μ) be an exact Hamiltonian
G manifold, and let X be a connected component of μ−1(0)/G. Then the reduced
form ωX is exact in Ω(X).

Proof. Let λ be a G invariant one-form on M such that ω = dλ and such that
μξ = λ(ξM ) for all ξ ∈ g. Let Zprinc be the preimage of Xprinc in μ−1(0). Because
μ = 0 on Zprinc, the pullback of the one-form λ to Zprinc is horizontal and therefore
G-basic. Hence this pullback descends to a one-form λX on X. Because ω = dλ on
M , we have ωX = dλX on X. �
4.3. Proposition. Let G be a compact Lie group, and let (M,ω, μ) be an exact
Hamiltonian G manifold. Let X be a connected component of the reduced space
μ−1(0)/G. Suppose that X is compact. Then X consists of one point, which is
isolated in μ−1(0)/G.

Proof. By Lemma 4.1, if X is compact and dimX > 0, then ωX is not exact in
Ω(X). By Lemma 4.2, ωred is exact in Ω(X). Thus, dimX = 0. Because X is
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connected, X consists of a single point. Because μ−1(0)/G is locally connected,
this point is isolated in μ−1(0)/G. �

4.4. Remark. It follows that if M/G is connected and μ is proper, then μ−1(0)
consists of at most one G orbit. This is because these additional assumptions imply
that μ−1(0)/G is connected. (This follows from Kirwan’s Morse-type theory for the
norm-square of the momentum map, or it can be deduced from connectedness and
convexity results for abelian groups as in [18]. In [18] it is assumed that G and M
are connected; we get the general case by applying this special case to the action
of the identity component of G on a connected component of M .)

5. Retracting M

In our main theorem, Theorem 1.5, we assumed that the momentum map μ :M →
g∗ is proper. When (M,ω, μ) is exact, it is enough to assume that μ is proper as
a map to an open subset T of g∗ that is starshaped about the origin. This weaker
property comes up, for example, when we start with a Hamiltonian G action on a
compact symplectic manifold and obtain M by restricting to the momentum map
preimage of T . From now on we will work with this weaker assumption, but the
reader is welcome to restrict attention everywhere to the special case T = g∗.

We recall some facts about vector fields and flows. Good references are the
textbooks by John Lee [19] and by Bröcker and Jänich [1].

Recall that a flow on a manifold or manifold with boundary Y is a smooth map
(t, y) �→ ρt(y) to Y , defined on a flow domain—an open subset D of R × Y such
that for every y ∈ Y the set {t ∈ R | (t, y) ∈ D} is an interval that contains the
origin—such that ρt+s(y) = ρt(ρs(y)), in the sense that if the right-hand side is
well defined, then so is the left-hand side and they are equal. We say that a flow is
defined for all t ≥ 0 if its flow domain contains R≥0 × Y .

By the fundamental theorem of ordinary differential equations, if X is a vector
field on Y , then there exists a unique flow on Y , called the flow of X, that has
the following properties. For any x0 ∈ X, interval I of the form [0, b) or (a, 0], and
smooth curve x : I → Y , the curve satisfies x(0) = x0 and ẋ = X ◦ x if and only if
I ⊆ {t ∈ R | (t, x0) ∈ D} and x(t) = ρt(x0) for all t ∈ I.

Given a map f : Y1 → Y2, we say that a flow ρY1
t on Y1 lifts a flow ρY2

t on Y2 if

the flow domain of ρY1
t is the preimage under (t, y) �→ (t, f(y)) of the flow domain

of ρY2
t and if f(ρY1

t (y)) = ρY2
t (f(y)) whenever the left and right-hand sides of this

equation are defined.
We recall that if an integral curve for a vector field does not exist for all times,

then it leaves every compact set:

5.1. Lemma. Let M be a smooth manifold without boundary, X a vector field on
M , x0 ∈ M , t > 0, and x : [0, t) → M a smooth curve such that

(5.2) x(0) = x0, ẋ = X ◦ x.
If the closure of x([0, t)) is compact, then x extends to a smooth solution of (5.2)
that is defined on [0, t′) for some number t′ > t.

Proof. This follows for example from the argument on p. 84 in [1] or in the “Escape
Lemma” [19, Lemma 17.10]. �

The next lemma will be used in the proofs of Lemmata 5.7 and 6.2 below.
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5.3. Lemma. Let X1 be a vector field on Y1, let X2 be a vector field on Y2, and
let f : Y1 → Y2 be a smooth map whose differential intertwines X1 with X2. Then
the image of the flow domain of X1 under the map idR ×f is contained in the flow
domain of X2.

If f is proper, then the flow of X1 lifts the flow of X2. In particular, if the flow
of X2 is defined for all t ≥ 0, then so is the flow of X1.

Proof. Let ρYi : Di → Yi be the flow of Xi. Fix any y01 ∈ Y1 and y02 ∈ Y2 such that
f(y01) = y02 . Let (ai, bi) = {t ∈ R | (t, y0i ) ∈ Di}, and define yi : (ai, bi) → Yi by

yi(t) = ρYi
t (y0i ). We claim that (a1, b1) ⊆ (a2, b2) and that for all t in this interval

we have f(y1(t)) = y2(t).
Because f(y01) = y02 and the differential of f intertwines X1 with X2, and because

the curve y1 satisfies

(5.4) y1(0) = y01 and ẏ1 = X1 ◦ y1,
the curve y′2 := f ◦ y1 : (a1, b1) → Y2 satisfies y′2(0) = y02 and ẏ′2 = X2 ◦ y2. By the
properties of the flow of X2, it follows that (a1, b1) ⊆ (a2, b2) and y′2(t) = y2(t) for
all t ∈ (a1, b1).

Assume now that f is proper. It remains to show that (a1, b1) = (a2, b2). Seeking
a contradiction, assume that b1 < b2; the case a1 > a2 is similar. Then [0, b1] ⊂
[0, b2). Since f is proper, the set f−1(y2([0, b1])) is compact. It contains y1([0, b1)).
It follows from Lemma 5.1 that y1 extends to a solution of (5.4) that is defined on
[0, b′1) for some b′1 > b1. This contradicts the definition of b1 and properties of the
flow of X2. �

5.5. Definition. Let (M,ω) be an exact symplectic manifold and λ a one-form
such that dλ = ω. The corresponding Liouville vector field is the vector field
XM on M that satisfies ι(XM )ω = λ.

The following lemma will be used in the proofs of Lemmata 5.8 and 6.2.

5.6. Lemma. Let G be a compact Lie group, and let (M,ω, μ) be an exact Hamil-
tonian G manifold. Let λ be a G invariant one-form on M such that dλ = ω and
μξ = ι(ξM )λ for all ξ ∈ g. Let XM be the corresponding Liouville vector field.
Then:

• XM is G invariant.
• LXM

λ = λ.
• The momentum map μ intertwines XM with the Euler vector field on g∗

(see Definition 3.1).

Proof.

• The G invariance of XM follows from the G invariance of λ and of ω.
• We have

LXM
λ = ι(XM )dλ+ dι(XM )λ = ι(XM )ω + dι(XM )ι(XM )ω = ι(XM )ω + 0 = λ.

• For each ξ ∈ g we have

LXM
μξ = ι(XM )dμξ = −ι(XM )ι(ξM )ω = ι(ξM )ι(XM )ω = ι(ξM )λ = μξ.

This implies that μ intertwines XM with the Euler vector field on g∗. �

Fix an Ad∗-invariant inner product on g∗. The next lemma will be used in the
proof of Lemma 5.8.
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5.7. Lemma. Let M be a G manifold and μ : M → g∗ a map that intertwines the
G action on M with the coadjoint G action on g∗. Let T be an open subset of g∗

that is Ad∗-invariant and is starshaped about the origin. Suppose that the image of
μ is contained in T and that μ is proper as a map to T .

Let V be an open ball in g∗ centred at the origin and contained in T , and let B
be a closed ball in g∗ centred at the origin and contained in V . Suppose that there
exists a vector field on M � μ−1(0) that lifts the Euler vector field on g∗.

Then there exists a G equivariant map ϕ : M → M whose image is contained in
μ−1(V ), whose restriction to some neighbourhood of μ−1(B) is the identity map on
that neighbourhood, and such that ϕ is G-equivariantly smoothly homotopic to the
identity map on M .

Proof. Let ε1 and ε3 be, respectively, the radii of the balls B and V . Let ε2 be
strictly between ε1 and ε3, and let V ′ be the open ball of radius ε2 in g∗ that is
centred at the origin.

There exists a vector field on [0,∞) whose flow (t, x) �→ ρt(x) is defined for all
t ≥ 0 and which satisfies ρt|[0,ε2] = Identity|[0,ε2] for all t and ρ1([0,∞)) ⊂ [0, ε3)
when t = 1. The flow

ρTt (β) :=

{
ρt(|β|) · β

|β| , β �= 0,

0, β = 0,

on T is defined for all t ≥ 0 and satisfies ρTt |V ′ = Identity|V ′ for all t and ρ1(T ) ⊂ V
when t = 1.

Let XT be the vector field on T that generates the flow ρT . The assumptions
on ρT imply that XT is a multiple of the Euler vector field on g∗ by a smooth
Ad∗-invariant function h : T → R that vanishes on B. Take a vector field on M
that lifts the Euler vector field on g∗. By averaging, we may assume that it is G
invariant; let XM be its multiple by the function h ◦ μ. Then XM is a G-invariant
vector field on M that vanishes on μ−1(B) and the map μ intertwines XM with
XT . By Lemma 5.3, the flow ρMt of the vector field XM is defined for all t ≥ 0 and
lifts the flow ρTt . The time one map ϕ := ρM1 has the required properties. �

The next lemma will be used in the proof of Proposition 6.3.

5.8. Lemma. Let (M,ω, μ) be an exact Hamiltonian G manifold. Let T be an open
subset of g∗ that is Ad∗-invariant and is starshaped about the origin. Suppose that
the image of μ is contained in T and that μ is proper as a map to T . Let B be a
closed ball in g∗ centred at the origin and contained in T . Then:

(1) Every connected component of M meets μ−1(B).
(2) Let V be an open ball in T that is centred at the origin and that contains

B. Let λ̂ be a G invariant one-form on μ−1(V ) such that dλ̂ = ω. Then
there exists a G invariant one-form λ on M such that dλ = ω and such

that λ = λ̂ on μ−1(B).

Proof. By Lemma 5.6, the Liouville vector field on M lifts the Euler vector field on
g∗. Part (1) then follows from Lemma 5.7.

Let λ′ be a G invariant one-form on M such that dλ′ = ω; such a one-form exists

because ω is exact. The difference λ̂− λ′ is a closed one-form, defined on μ−1(V ).
By Lemma 5.6, the Liouville vector field on M lifts the Euler vector field on g∗.
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By Lemma 5.7, there exists a G-equivariant smooth map ϕ : M → M whose image
is contained in μ−1(V ) and such that ϕ|μ−1(B) = identityμ−1(B). Then

λ := λ′ + ϕ∗(λ̂− λ′)

is defined on all of M . Because dλ′ = ω and d(λ̂ − λ′) = 0, we have dλ = ω.

Because ϕ|μ−1(B) = Identityμ−1(B), we have λ = λ̂ on μ−1(B). This completes the

proof of part (2). �

6. Proof of the main result

In this section we finally prove Theorem 1.5. The proof is based on Theorem 6.8
below.

Recall that an isomorphism of Hamiltonian G manifolds is an equivariant sym-
plectomorphism that intertwines the momentum maps. We call two Hamiltonian G
manifolds isomorphic if there is an isomorphism between them. The restriction
of a Hamiltonian G manifold (M,ω, μ) to an Ad∗-invariant open subset T ⊂ g∗ is(
μ−1(T ), ω|μ−1(T ), μ|μ−1(T )

)
.

The following lemma is used in the proof of Theorem 6.8.

6.1. Lemma (Local isomorphism). Let G be a compact Lie group and let (M,ω, μ)
be an exact Hamiltonian G manifold. Suppose that M/G is connected. Let T ⊂ g∗

be an Ad∗-invariant open subset that is starshaped about the origin. Suppose that
the image of μ is contained in T and the map μ : M → T is proper. Then there
exist an Ad∗-invariant open neighbourhood W of the origin 0 ∈ g∗ and a finite
disjoint union of centred Hamiltonian G models,

⊔
(Yj , ωYj

, μYj
), whose restriction

to W is isomorphic to the restriction of (M,ω, μ) to W .

Proof. Since μ : M → T is proper, the level set μ−1(0) is compact. By Proposition

4.3, μ−1(0) is a finite union of G orbits, μ−1(0) =
⊔N

j=1 G · xj .

Every orbit in the zero level set of the momentum map is isotropic. (More gen-
erally, in any Hamiltonian G manifold (M ′, ω′, μ′), for any orbit O ⊂ M ′, its image
is a coadjoint orbit μ(O) ⊂ g∗, and the pullback of the Kirillov-Kostant-Souriau
form under the momentum map μ′|O : O → μ′(O) coincides with the pullback of
the ambient symplectic form ω′ by the inclusion map O ↪→ M ′. See Kazhdan-
Kostant-Sternberg [16].)

The local normal form theorem for isotropic orbits (see Theorem 3.9) implies
that, for each j, there exist a centred Hamiltonian G model (Yj , ωYj

, μYj
), a G-

invariant neighbourhood U ′
j of the central orbit in Yj , and a G-invariant neighbour-

hood Uj ofG·xj inM such that
(
Uj , ω|Uj

, μ|Uj

)
is isomorphic to

(
U ′
j , ωYj

|U ′
j
, μYj

|U ′
j

)
.

In particular, each U ′
j ∩ μ−1

Yj
(0) consists of a single orbit. By Lemma 3.6, for

each j, the level set μ−1
Yj

(0) consists of only the central orbit, and the momentum

map μYj
: Yj → g∗ is proper. Because

⊔
j μYj

:
⊔

j Yj → g∗ and μ : M → g∗ are

proper, there exists an Ad∗-invariant neighbourhood W of 0 in g∗ whose preimage
under

⊔
j μYj

is contained in the neighbourhood
⊔

j U
′
j of

⊔
j μ

−1
Yj

(0) and whose

preimage under μ is contained in the neighbourhood U of μ−1(0). The restrictions
of (M,ω, μ) and

⊔
j(Yj , ωYj

, μYj
) to W are isomorphic. This proves Lemma 6.1. �

The following lemma will be used in the proof of Proposition 6.3.
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6.2. Lemma. Let G be a compact connected Lie group, and let (M,ω, μ) be an
exact Hamiltonian G-manifold. Let T ⊂ g∗ be an Ad∗-invariant open subset that
is starshaped about the origin. Assume that the image of μ is contained in T and
that the map μ : M → T is proper. Let λ be a G invariant one-form on M such
that dλ = ω and μξ = ι(ξM )λ for all ξ ∈ g. Let X be the vector field on M that
satisfies

ι(X)ω = −λ;

this is the negative of the Liouville vector field corresponding to λ. Let Ψt be the
flow of the vector field X. Then:

• The flow Ψt is defined for all t ≥ 0.
• The flow Ψt is G equivariant.
• We have Ψ∗

tλ = e−tλ for all t ≥ 0.
• For each neighbourhood B′ of the origin 0 in g∗ and for each t ≥ 0, the flow
Ψt restricts to a diffeomorphism

Ψt : μ
−1(etB′ ∩ T ) → μ−1(B′ ∩ e−tT )

with inverse

Ψ−t : μ
−1(B′ ∩ e−tT ) → μ−1(etB′ ∩ T ).

Proof. By Lemma 5.6, μ intertwines X with the negative of the Euler vector field
on g∗. Because T is starshaped about the origin, the flow of the restriction to T of
the Euler vector field is defined for all t ≥ 0. Because μ : M → T is proper and by
Lemma 5.3, we deduce that the flow of X is also defined for all t ≥ 0.

By Lemma 5.6, X is G invariant. This implies that Ψt is G equivariant.
By Lemma 5.6, LXλ = −λ. This implies that Ψ∗

tλ = e−tλ.
The last claim follows from Lemma 5.3 and the fact that multiplication by e−t

restricts to a diffeomorphism from etB′ ∩ T to B′ ∩ e−tT . �

The following proposition will be used in the proof of Theorem 6.8.

6.3. Proposition (Local to global). Let G be a compact Lie group, and let (M,ω, μ)
and (M ′, ω′, μ′) be exact Hamiltonian G-manifolds. Let T ⊂ g∗ be an Ad∗-invariant
open subset that is starshaped about the origin. Assume that the images of μ and
μ′ are contained in T and that the maps μ : M → T and μ′ : M ′ → T are proper.
Finally, assume that there exists an Ad∗-invariant neighbourhood W of 0 such that
the restrictions of (M,ω, μ) and (M ′, ω′, μ′) to W are isomorphic. Then (M,ω, μ)
and (M ′, ω′, μ′) are isomorphic.

Proof. By assumption, there exist a neighbourhood W of the origin in g∗ and an

isomorphism F0 : μ
−1(W ) → μ′−1

(W ) between the restrictions of (M,ω, μ) and
(M ′, ω′, μ′) to W .

Fix an Ad∗-invariant inner product on g∗. Without loss of generality, assume
that the neighbourhood W is a ball in g∗ that is centred at the origin.

Choose a G-invariant primitive λ′ of ω′ that gives rise to the momentum map
μ′:

(6.4) dλ′ = ω′ and ι(ξM ′)λ′ = μ′ξ for all ξ ∈ g.

The pullback

(6.5) λ̂ := F ∗
0 λ

′
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is a G-invariant one-form on μ−1(W ), satisfying

(6.6) dλ̂ = ω|μ−1(W ) and ι(ξM )λ̂ = μξ|μ−1(W ) for all ξ ∈ g.

Let B be a closed ball that is centred at the origin and is contained in W . By
part (2) of Lemma 5.8, we may find a G-invariant one-form λ on M such that

dλ = ω and such that λ and λ̂ coincide on μ−1(B). By this and (6.6),

ι(ξM )λ|μ−1(B) = μξ|μ−1(B) for all ξ ∈ g.

By part (1) of Lemma 5.8 we deduce that the momentum map that is obtained
from λ coincides with μ. So

(6.7) dλ = ω and ι(ξM )λ = μξ for all ξ ∈ g.

We define X to be the unique vector field on M satisfying ι(X)ω = −λ and
take Ψt to be its flow. Similarly, we define X ′ to be the unique vector field on M ′

satisfying ι(X ′)ω′ = −λ′ and take Ψ′
t to be its flow. By Lemma 6.2, these flows are

defined for all t ≥ 0.
Let B′ be the interior of B. The restriction of F0 to μ−1(B′) is a G equivariant

diffeomorphism

FB : μ−1(B′) → μ′−1
(B′)

that satisfies F ∗
Bλ

′ = λ. This implies that FB intertwines X with X ′ and hence Ψt

with Ψ′
t.

For every t ≥ 0, define F̃t by the requirement that the following diagram com-
mutes:

μ−1(etB′ ∩ T )
F̃t−−−−→ μ′−1

(etB′ ∩ T )

Ψt

⏐⏐� ⏐⏐�Ψ′
t

μ−1(B′ ∩ e−tT )
FB−−−−→ μ′−1

(B′ ∩ e−tT ).

By Lemma 6.2, the vertical arrows in this diagram are G equivariant diffeomor-
phisms, and they satisfy Ψ∗

tλ = e−tλ and Ψ′
t
∗
λ′ = e−tλ′. The bottom arrow is also

a G equivariant diffeomorphism, and it satisfies F ∗
Bλ

′ = λ. These facts imply that

F̃t is an equivariant diffeomorphism and that F̃ ∗
t λ

′ = λ. By (6.7) and (6.4), F̃t is
an isomorphism of Hamiltonian G manifolds.

For all t ≥ 0 and s ≥ 0 we have

Ψ′
t+s ◦ F̃t = Ψ′

s ◦Ψ′
t ◦ F̃t because Ψ′ is a flow

= Ψ′
s ◦ FB ◦Ψt from the definition of F̃t

= FB ◦Ψs ◦Ψt because FB intertwines the flows

= FB ◦Ψt+s because Ψ is a flow.

By the definition of F̃t+s, this implies that F̃t+s|etB′∩T = F̃t.

So the union over t ≥ 0 of the maps F̃t gives a map F̃ : M → M ′. Because F̃t is
a isomorphism for each t, we have that F̃ is also an isomorphism. �
6.8. Theorem (Isomorphism). Let G be a compact Lie group and let (M,ω, μ) be
an exact Hamiltonian G manifold. Suppose that M/G is connected. Let T ⊂ g∗ be
an Ad∗-invariant open subset that is starshaped about the origin. Suppose that the
image of μ is contained in T and the map μ : M → T is proper. Then there exists
a centred Hamiltonian G model (Y, ωY , μY ) whose restriction to T is isomorphic to
(M,ω, μ).
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Proof. By Lemma 6.1 and Proposition 6.3, there exists a finite disjoint union of
centred Hamiltonian G models,

⊔
j(Yj , ωYj

, μYj
), whose restriction to T is isomor-

phic to (M,ω, μ). If M/G is connected, since each (Yj |T )/G is non-empty, there
can be only one Yj in this union. This proves Theorem 6.8. �

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. Let a compact Lie group G act on a symplectic manifold
(M,μ) with momentum map μ : M → g∗. Assume that M/G is connected, μ is
proper, and ω is exact.

Let μ′ be the momentum map that is obtained from some invariant primitive of ω.
Then (M,ω, μ′) is an exact Hamiltonian G manifold. By Theorem 6.8, there exists
a centred Hamiltonian G model (Y, ωY , μY ) whose restriction to T is isomorphic to
(M,ω, μ′), hence equivariantly sympectomorphic to (M,ω). �

7. Properties of centred Hamiltonian G models

In this section we present properties of centred Hamiltonian G models that we
used to prove Corollaries 1.6, 1.7, and 1.8 of Theorem 1.5.

Let G be a compact Lie group. Let (Y, ωY , μY ) be a centred Hamiltonian G-
model associated with a closed subgroup H of G and a linear action of H on a
symplectic vector space V with a quadratic momentum map μV : V → h∗.

We recall from Lemma 3.8 that the model Y can be identified with the vector
bundle

(7.1) G×H

(
h
0 × V

)
over G/H, obtained as the quotient of G×

(
h0 × V

)
by the anti-diagonal H action,

such that the embedding v �→ [1, 0, v] of V as a subspace of the fibre is symplectic,
the zero section G×H {0} is isotropic, and the momentum map on the model is

[a, ν, v] �→ Ad∗(a)(ν + μV (v)),

where h0 is the annihilator of h in g∗ and where we identify h∗ with the orthogonal
complement of h0 in g∗ with respect to some Ad-invariant inner product.

7.2. Lemma. The model Y is homotopy equivalent to G/H, and the Euler charac-
teristic of Y is non-negative.

Proof. In the model (7.1), the map [a, ν, v] �→ [a, tν, tv], for t ∈ [0, 1], gives a defor-
mation retraction of Y to the zero section. The zero section, in turn, is naturally
identified with G/H. This proves the first sentence. The second sentence follows
from the first because, by H. Hopf and H. Samelson [9, p. 241], the Euler charac-
teristic of G/H is non-negative. �

7.3. Lemma. The fixed point set in the model Y is connected. Moreover, if the
momentum map Y → g∗ is proper, then this fixed point set is either empty or
contains exactly one point.

Proof. Consider the model as described in (7.1). If H �= G, then the fixed point set
is empty. Assume H = G. Then the model is isomorphic to the vector space V with
the linear action of H and with the momentum map μV . The fixed point set V H

is connected because it is a linear subspace of V . Now assume that the momentum
map μ is proper. Then its zero level set μ−1({0}) is compact. The fixed point set
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V H then contains just one point, because it is contained in μ−1({0}), and a vector
subspace of V that is contained in a compact subset of V must be trivial. �

Recall that the Gromov width of a 2n-dimensional symplectic manifold (M,ω)
is defined to be the number

sup
{
πr2

∣∣B2n
r symplectically embeds into M

}
,

where B2n
r ⊂ R2n denotes the open ball of radius r centred at the origin, equipped

with the standard symplectic structure.

7.4. Lemma. The Gromov width of Y is infinite.

Proof. Recall that the model Y is obtained as a symplectic reduction of T ∗G× V ,
where the two-form and momentum map on T ∗G × V are induced from the one-
form λtaut ⊕ λV that is described in Section 3. Define a flow ρt on T ∗G × V

by fibrewise multiplication by et on T ∗G and multiplication by e
1
2 t on V . Then

ρ∗t (λtaut⊕λV ) = et(λtaut⊕λV ), and ρt commutes with the anti-diagonalH action by
which we quotient to get Y . It follows that ρt descends to the symplectic reduction
Y = (T ∗G× V )//H and satisfies ρ∗tλY = etλY , hence ρ∗tωY = etωY .

By Darboux’s theorem, for some ε > 0 there exists a symplectic embedding
i : B2n

ε → Y . The composition x �→ ρt(i(e
− 1

2 tx)) is a symplectic embedding of B2n
r

into Y where r = εe
1
2 t. Because πr2 = πε2et can be made arbitrarily large by

appropriate choices of t, the Gromov width of Y is infinite. �

We now present two situations in which we get even more precise information
on the models that can occur in Theorem 1.5.

7.5. Lemma (Circle actions). Suppose that G is the circle group S1 and that its
action on Y is faithful. Then Y is equivariantly symplectomorphic to one of the
following examples:

(a) The cylinder S1 × R, with the standard symplectic form dq ∧ dp where q
mod Z is a coordinate on S1 ∼= R/Z and p is a coordinate on R. The circle
S1 acts by rotations on the S1 factor.

(b) The vector space Cn, with the standard symplectic form. The circle S1 ⊆ C

acts by λ · (z1, . . . , zn) = (λm1z1, . . . , λ
mnzn), where m1, . . . ,mn are either

all positive integers or all negative integers.

Proof. Because the S1 action is faithful on Y , the H action is faithful on V . (This
uses the fact that S1 is abelian.) Because μY : Y → g∗ is proper, the momentum
map μV : V → h∗ is proper. These two facts imply that either H = {1} and
V = {0} or H = S1 and V ∼= Cn where H acts on all the coordinates with positive
weights or on all the coordinates with negative weights. �

7.6. Lemma. Suppose that the model Y is contractible. Then (Y, ωY , μY ) is equiv-
ariantly symplectomorphic to (V, ωV , μV ).

Proof. By Lemma 7.2, since Y is contractible, so is G/H. Because G is a compact
connected Lie group and H a closed subgroup, the quotient G/H is a closed man-
ifold. Being a contractible closed manifold, G/H is a point. So H = G. It now
follows from the description (7.1) that Y is isomorphic to V . �



1426 YAEL KARSHON AND FABIAN ZILTENER

8. Exotic actions on symplectic vector spaces

If we drop the assumption that the momentum map be proper, the conclusions of
Theorem 1.5 and of its consequences can fail dramatically, even when the symplectic
manifold is a symplectic vector space. We show this through examples of exotic
Hamiltonian actions on symplectic vector spaces. Corollaries 8.2, 8.3, and 8.4 give
examples where, respectively, the conclusions of Corollary 1.6(ii), of Corollary 1.8,
and of Theorem 1.5 fail.

Our main ingredient is the following result, which was communicated to us by
K. Pawa�lowski.

8.1. Proposition. Let G be a compact connected non-abelian Lie group. Then there
exists a smooth G action on a Euclidean space without fixed points. Moreover, let
F be a closed, stably parallelizable manifold. Then there exists a smooth G action
on a Euclidean space whose fixed point set is diffeomorphic to F .

Recall that a manifold is called stably parallelizable if the direct sum of its
tangent bundle with some trivial vector bundle is trivializable. Examples include
the empty set, finite sets, Lie groups, spheres of any dimension, and toric manifolds.

Proof of Proposition 8.1. Let Y be a finite dimensional countable G–CW complex,
with finitely many orbit types and with no fixed points, which is contractible.

The construction of such a Y is described by Wu-chung Hsiang and Wu-yi Hsiang
in [10, Theorem 1.9] and is based on earlier ideas of Conner, Floyd, and Montgomery
[3,4]. The idea is to take a representation V of G without a trivial summand and an
equivariant map f : S(V ) → S(V ) of degree zero on its unit sphere, as constructed
in [10, Proposition 1.4], and to take Y to be the tower of mapping cylinders of f .

Let X be the topological join of Y with F . Then X is a contractible finite
dimensional countable G–CW complex with finitely many orbit types and with
fixed point set F .

Let B be the union of F with the equivariant 0–cells in X � F . Let m be
such that the direct sum of TF with a trivial vector bundle is isomorphic to the
trivial bundle F × Rm, and let E = X × Rm → X be the trivial bundle. We now
apply a theorem of Pawa�lowski [24, Theorem 3.1], which is based on Pawa�lowski’s
equivariant thickening procedure [24, Theorem 2.4]. Given these X, F , B, and E,
this theorem yields a smooth G manifold M that contains B as a smooth invariant
submanifold and such thatMG = F and a homotopy equivalenceM → X. As noted
in [24, Remarks 2.5 and 3.2], we can assume that dimM ≥ 5, and the construction
yields an M that is contractible and simply connected at infinity. By a result of
Stallings [27, Corollary 5–1], M is diffeomorphic to a Euclidean space. �

8.2. Corollary. Let G be a compact connected non-abelian Lie group. Then there
exists a Hamiltonian G action on a symplectic vector space without fixed points.
Moreover, let F be a closed, stably parallelizable manifold. Then there exists a
Hamiltonian G action on a symplectic vector space whose fixed point set is sym-
plectomorphic to T ∗F .

Proof. By Proposition 8.1 there exists a smooth G action on a Euclidean space X
whose fixed point set is diffeomorphic to F . The fixed point set of the induced G
action on the cotangent bundle T ∗X is symplectomorphic to the cotangent bundle
T ∗F of the fixed point set F . This is a consequence of the slice theorem for compact
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group actions. We obtain Corollary 8.2 by taking V to be the direct sum X ⊕X∗,
identified with the cotangent bundle T ∗X, with the cotangent lifted G action. �
8.3. Corollary. Let G be a compact connected non-abelian Lie group. Then there
exists a Hamiltonian G action on a symplectic vector space that is not isomorphic
to a linear action.

Proof. In Corollary 8.2, take an action without fixed points. �
8.4. Corollary. Let G be a compact connected non-abelian Lie group. Then there
exists a Hamiltonian G action on a symplectic vector space (V, ωV ) with the follow-
ing properties.

(i) There exist two points in V such that no G invariant subset of V that
contains both points admits an equivariant open embedding into any centred
Hamiltonian G model.

(ii) There exists a connected bounded G invariant open subset of V that does
not admit an equivariant open embedding into any centred Hamiltonian G
model.

Proof. By Corollary 8.2, there exists aG action on a symplectic vector space (V, ωV )
with exactly two fixed points. By Lemma 7.3, the fixed point set of any centred
Hamiltonian G model is connected. For (i), note that a manifold with a G action
with two isolated fixed points does not admit an equivariant open embedding into
any manifold with a G action whose fixed point set is connected. For (ii), take the
invariant open subset to be G · B where B is an open ball that contains the two
fixed points. �
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