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COMBINATORIAL CALABI FLOWS ON SURFACES

HUABIN GE

Abstract. For triangulated surfaces, we introduce the combinatorial Calabi
flow which is an analogue of the smooth Calabi flow. We prove that the solution
to the combinatorial Calabi flow exists for all time and converges if and only
if the Thurston’s circle packing exists. As a consequence, the combinatorial
Calabi flow provides a new algorithm to find circle packings with prescribed
curvatures. The proofs rely on careful analysis of the combinatorial Calabi
energy, combinatorial Ricci potential and discrete dual-Laplacians.

1. Introduction

An important question in modern geometry is to find canonical metrics on a given
manifold. Seeking constant curvature metrics, E. Calabi studied the variational
problem of minimizing the so-called “Calabi energy” in any fixed cohomology class
of Kähler metrics and proposed the Calabi flow [2,3]. Hamilton introduced the Ricci
flow ([20]), which has been used to solve the Poincaré conjecture. For dimension
two, i.e., the smooth surface case, it is proved that both the Calabi flow and the
normalized Ricci flow exist for all time and converge to a constant scalar curvature
metric (see [4], [5], [6], [7], [9], [30], and [32]).

Given a triangulated surface, Thurston introduced the circle packing metric,
which is a type of piecewise flat cone metric with singularities at the vertices.
Thurston found that there are combinatorial obstructions for the existence of a circle
packing metric with constant combinatorial curvatures (see section 13.7 in [33]).
Motivated by the idea of Hamilton, Bennett Chow and Feng Luo [8] introduced the
combinatorial Ricci flow. They proved that the combinatorial Ricci flow exists for
all time and converges exponentially fast to Thurston’s circle packing on surfaces.
They also reproved the equivalence between Thurston’s combinatorial condition
(see (1.3) in [8], or (1.3) in this paper) and the existence of a constant curvature
circle packing metric.

Inspired by the work of Bennett Chow and Feng Luo in [8], we consider the
2-dimensional combinatorial Calabi flow, which is the negative gradient flow of
combinatorial Calabi energy. We interpret the Jacobian of the curvature map as
a type of discrete Laplace operator, which comes from the dual structure of cir-
cle patterns. We get a uniform estimate of the bound for all entries of discrete
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Figure 1. Circle packing metric Figure 2. Two adjacent triangles

dual-Laplacians, which implies the long time existence of the solutions of the com-
binatorial Calabi flow. Then we prove that the combinatorial Calabi flow converges
exponentially fast if and only if Thurston’s combinatorial conditions are satisfied.
It is shown that the combinatorial Calabi flow finds Thurston’s circle patterns auto-
matically. As a consequence, we can design algorithms to seek circle packing metrics
with prescribed combinatorial curvatures. In fact, any algorithm minimizing the
combinatorial Calabi energy or the combinatorial Ricci potential can achieve this
goal.

1.1. Circle packing metrics. Suppose X is a closed surface with a triangu-
lation T = (V,E, F ), where V , E, F denote the sets of vertices, edges, and
faces respectively. A circle packing metric is defined to be a positive function
r : V → (0,+∞) on the vertices. A weight on the triangulation is defined to be a
function Φ : E → [0, π/2]. Throughout this paper, a function defined on vertices is
an N -dimensional column vector, where N = |V | is the number of vertices. More-
over, all vertices, marked by v1, . . . , vN , are ordered one by one and we often write
i instead of vi if there is no confusion. Thus we may think of circle packing metrics
as points in RN

>0, where RN
>0 means N times of Cartesian product of (0,∞). A

triangulated surface with a weight Φ is denoted as (X,T,Φ).
Let l : E → (0,+∞) be a positive function assigning each edge {i, j} ∈ E a

length lij . We call l a piecewise linear metric if for every triangle {i, j, k} ∈ F ,
the three edge lengthes lij , ljk and lik satisfy triangle inequalities. For a fixed
triangulated surface (X,T,Φ), every circle packing metric r determines a piecewise
linear metric on X by setting the length of edge {i, j} ∈ E as (see Figure 1)

lij =
√
r2i + r2j + 2rirjcos(Φij).

As a consequence, each face in F is isometric to a Euclidean triangle. More specif-
ically, each face {i, j, k} ∈ F is a Euclidean triangle with edge lengths lij , ljk, lki
because lij , ljk, lki satisfy triangle inequalities ([33], Lemma 13.7.2). Furthermore,
the triangulated surface (X,T ) is composed by gluing Euclidean triangles coher-
ently.

1.2. Combinatorial curvatures and constant curvature metrics. Given a
triangulated surface (X,T,Φ) with a circle packing metric r, all inner angles of the

triangles are determined by r1, . . . , rN . Denote θjki as the inner angle at vertex i in
the triangle {i, j, k} ∈ F ; then the well-known combinatorial (or “discrete”) Gauss
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curvature Ki at vertex i is defined as

(1.1) Ki = 2π −
∑

{i,j,k}∈F

θjki ,

where the sum is taken over each triangle with i as one of its vertices. Notice that

θjki can be calculated by cosine law, thus θjki and Ki are explicit functions of the
circle packing metric r.

For every circle packing metric r on (X,T,Φ), we have the combinatorial Gauss-
Bonnet formula [8]

(1.2)
N∑
i=1

Ki = 2πχ(X).

Notice that, the combinatorial Gauss-Bonnet formula (1.2) is still valid for all piece-
wise linear surfaces (X,T, l), where l : E → (0,+∞) is a piecewise linear metric,
that is, the length structure l makes each face in F isometric to a Euclidean tri-
angle. The average combinatorial curvature is kav = 2πχ(X)/N , which does not
change as the metric (circle packing metric or piecewise linear metric) varies, and is
an invariant that depends only on the topological (the Euler characteristic number
χ(X)) and combinatorial (N = |V |) information of (X,T ).

Finding canonical metrics on manifolds is a central topic in geometry and topol-
ogy. The constant curvature circle packing metric (denoted as rav), a metric that
determines the constant combinatorial curvature Kav = K(rav) = kav(1, . . . , 1)

T , is
a good candidate for privileged metrics. Thurston first studied this class of metrics,
and found that there are combinatorial obstructions for the existence of constant
curvature metrics [33]. Given a triangulated surface (X,T,Φ), for any nonempty
proper subset I ⊂ V , let FI be the subcomplex whose vertices are in I, and let
Lk(I) be the set of all such pairs (e, v), where (e, v) is made up of an edge e and
a vertex v satisfying the following three conditions: (1) the end points of e are not
in I; (2) v is in I; (3) e and v form a triangle. Thurston proved:

Theorem 1.1 (Thurston). Given a triangulated surface (X,T,Φ), there exists a
constant combinatorial curvature circle packing metric if and only if the following
combinatorial and topological condition is satisfied:

(1.3) 2πχ(X)
|I|
|V | > −

∑
(e,v)∈Lk(I)

(π − Φ(e)) + 2πχ(FI), ∀I : φ �= I � V.

Moreover, if a constant curvature metric exists, it is unique up to a scalar multi-
plication. In other words, if r1 and r2 are both constant curvature metrics, there is
a positive real number c such that r1 = cr2.

In [8], Bennett Chow and Feng Luo introduced the combinatorial Ricci flow,

(1.4)
dri
dt

= −Kiri

and its normalization

(1.5)
dri
dt

= (Kav −Ki)ri.

The combinatorial Ricci flow, which is an analogue of Hamilton’s Ricci flow on
surfaces [21], can be used to deform Thurston’s circle pattern to a pattern with
constant cone angles. It provides a new proof of Thurston’s theorem on the existence
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of a constant circle packing metric, and suggests a natural algorithm to find circle
packing metrics with prescribed curvatures. In fact, Chow and Luo proved

Theorem 1.2 (Chow-Luo). For any initial metric r(0), the solution to the flow
(1.5) exists for all time. Additionally, the flow (1.5) converges if and only if there
exists a metric of constant curvature. Furthermore, if the flow converges, it con-
verges exponentially fast to the metric of constant curvature.

Remark 1. Unless specially stated, the convergence in this paper is defined accord-
ing to the Euclidean topology. More concretely, we say r(t) converges to some r∗

as t goes to +∞, if the Euclidean L2 norm ‖r(t)− r∗‖ converges to zero as t goes
to +∞.

In this paper, we introduce the combinatorial Calabi flow, which is the negative
gradient flow of the combinatorial Calabi energy. The combinatorial Calabi flow
is an analogue of a smooth Calabi flow on surfaces. We prove that the solution
of the combinatorial Calabi flow exists for t ∈ [0,+∞) by a careful estimation
of discrete dual-Laplacians. Moreover, if the solution to the combinatorial Calabi
flow converges to some circle packing metric r∗, r∗ has a constant curvature. On
the other hand, if there exists a constant curvature metric r∗ (that is, a metric
r∗ whose curvature K(r∗) a constant), the solution to the combinatorial Calabi
flow converges to a constant curvature metric rav, which only differs from r∗ by a
scaling.

2. The 2-dimensional combinatorial Calabi flow

2.1. Definition of the combinatorial Calabi flow. For smooth surfaces, the
Calabi flow [2–6,9, 27–30,32, 34] is defined as

∂g

∂t
= ΔKg,

where K is the Gaussian curvature. The Laplace-Beltrami operator plays an im-
portant role in the study of the smooth Calabi flow. Before giving the definition of
the combinatorial Calabi flow, we need to define the combinatorial Laplace operator
first, which is an analogue of the smooth Laplace-Beltrami operator.

Set ui = ln ri, where i = 1, . . . , N , then the coordinate transformation u =
u(r) maps r ∈ RN

>0 to u ∈ RN homeomorphically. We denote this coordinate
transformation as a map ln : RN

>0 → RN , r 	→ u = ln r, and the inverse Exp.
Similar to [12] and [13], we interpret the discrete Laplacian as the Jacobian of the
curvature map K = K(u).

Definition 2.1. Given a triangulated surface (X,T,Φ), the discrete dual-Laplacian
“Δ”, which is a special type of the discrete Laplacian, is defined as −LT , where

L = (Lij)N×N =
∂(K1, . . . ,KN )

∂(u1, . . . , uN )
=

⎛
⎜⎜⎜⎜⎝

∂K1

∂u1
· · · ∂K1

∂uN

· · · · ·
· · · · ·
· · · · ·

∂KN

∂u1
· · · ∂KN

∂uN

⎞
⎟⎟⎟⎟⎠ .
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Both Δ and L operate on functions f (defined on vertices, hence is a column
vector) by a matrix multiplication, i.e.

(2.1) Δfi = (Δf)i = −(LT f)i = −
N∑
j=1

∂Kj

∂ui
fj = −

N∑
j=1

∂Kj

∂ri
rifj .

Remark 2. As a special discrete Laplacian (Chung [10]), the discrete dual-Laplacian
Δ defined above comes from the dual structure of the circle packings. Glickenstein
[14,16] studied this type of discrete Laplacians systematically. See Appendix A for
more explanations.

Definition 2.2. Given a triangulated surface (X,T,Φ), the combinatorial Calabi
flow is defined as

(2.2)
dui

dt
= ΔKi

with u(0) ∈ RN .

It is more convenient to write the combinatorial Calabi flow (2.2) in a matrix
form as

(2.3)
du

dt
= ΔK = −LTK.

Note that, the equation (2.3) is an autonomous ODE system.

Remark 3. We shall show that L is symmetric. Hence there is no need to use the
transpose of L in (2.3). However, in higher dimensions or other situations, L may
be nonsymmetric. We use LT in equation (2.3) to avoid the negative gradient flow
of the combinatorial Calabi energy undefined in those situations. See 5.4 in [12] for
a more detailed description.

Remark 4. Using the matrix language, Bennett Chow and Feng Luo’s combinatorial
Ricci flow [8] is du

dt = −K. The normalized combinatorial Ricci flow is du
dt =

Kav −K.

2.2. The combinatorial Calabi flow is variational.

Definition 2.3. Given a triangulated surface (X,T,Φ) with a circle packing metric
r, the combinatorial Calabi energy is defined as

(2.4) C(r) = ‖K −Kav‖2 =

N∑
i=1

(Ki − kav)
2.

Consider the combinatorial Calabi energy C as a function of u. We then have

∇uC =

⎛
⎜⎜⎜⎜⎝

∂C
∂u1

·
·
·
∂C
∂uN

⎞
⎟⎟⎟⎟⎠ = 2

⎛
⎜⎜⎜⎜⎝

∂K1

∂u1
· · · ∂KN

∂u1

· · · · ·
· · · · ·
· · · · ·

∂K1

∂uN
· · · ∂KN

∂uN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

K1

·
·
·

KN

⎞
⎟⎟⎟⎟⎠ = 2LTK.

This implies the following proposition.

Proposition 2.4. The combinatorial Calabi flow (2.2) is the negative gradient flow
of combinatorial Calabi energy, and the Calabi energy (2.4) is descending along this
flow.
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Now it is time to say a bit about the motivation to introduce the combinatorial
Calabi flow. First, the combinatorial Calabi flow is a negative gradient flow of the
L2 norm of the discrete Gaussian curvature, which is more natural than the energy
for the combinatorial Ricci flow, where the combinatorial Ricci flow is the negative
gradient flow of the combinatorial Ricci potential (4.3). Compared with the combi-
natorial Ricci potential (4.3), the combinatorial Calabi energy is easier to calculate.
Additionally, the combinatorial Calabi energy is nonnegative and attains its mini-
mum at constant curvature metrics, which is unique (up to a scalar multiplication)
by Thurston’s Theorem 1.1. This gives natural monotonicity of the functional,
which could be useful in higher dimensions or other situations; see for example the
author and Xu’s work [12]. Second, the combinatorial Calabi flow naturally finds
the constant curvature metrics automatically without any renormalization. Third,
the combinatorial Calabi flow is a fourth order flow (see 3.1, [14] for a definition
of fourth order discrete differential operator), which is often employed in physical
situations. Robinson-Trautman metrics [28] play an important role in the early
understanding of gravitational radiation. It is pointed out by Tod [34] that the
Robinson-Trautman equation, the essential part of Einstein field equations deter-
mined by Robinson-Trautman metrics, is equivalent to the Calabi flow equation
(see [6, 9, 27, 29, 30]). The combinatorial Calabi flow seems to be the first discrete
curvature flow studied in this way.

2.3. Main properties of the combinatorial Calabi flow. BecauseKi and ΔKi

are explicit functions of r1, . . . , rN , the local existence of the combinatorial Calabi
flow (2.2) follows from Picard’s existence and uniqueness theorem in the standard
ODE theory. By a careful estimation of a discrete dual-Laplacian and a combi-
natorial Ricci potential, the long time existence is proved in Section 3, and the
convergence is proved in Section 4. The main result in this paper is stated as
follows.

Theorem 2.5. Given a triangulated surface (X,T,Φ), for any initial circle packing
metric r(0) ∈ RN

>0, the solution of the combinatorial Calabi flow (2.2) exists for t ∈
[0, +∞). Additionally, r(t) converges if and only if there exists a constant curvature
circle packing metric rav. Furthermore, if the solution of the combinatorial Calabi
flow (2.2) converges, it converges exponentially fast to a constant curvature circle
packing metric.

Combining Thurston’s Theorem 1.1 and Chow-Luo’s Theorem 1.2, we get the
following corollary.

Corollary 2.6. The following four statements are mutually equivalent:

(1) The solution of the combinatorial Calabi flow (2.2) converges.
(2) The solution of Chow-Luo’s combinatorial Ricci flow (1.5) converges.
(3) There exists a constant curvature circle packing metric rav.

(4) 2πχ(X) |I|
|V | > −

∑
(e,v)∈Lk(I)(π − Φ(e)) + 2πχ(FI), ∀I : φ �= I � V.

Furthermore, if any of the four statements is satisfied, the solutions of the combi-
natorial Calabi flow (2.2) and the combinatorial Ricci flow (1.5) converge exponen-
tially fast to the unique (up to a scalar multiplication of rav) constant curvature
circle packing metric.
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3. Long time existence

3.1. Discrete Laplacians for circle packing metrics. Any circle packing metric
r determines an intrinsic metric structure on fixed (X,T, Φ) by Euclidean cosine

law. The lengths lij , angles θjki and curvatures Ki are elementary functions of
r = (r1, . . . , rN )T . We denote j ∼ i if the vertices i and j are adjacent. For any
vertex i and any edge j ∼ i, set (see Figure 2)

(3.1) Bij =
∂(θjki + θjli )

∂rj
rj ;

then Bij = Bji, since
∂θjk

i

∂rj
rj =

∂θik
j

∂ri
ri (see Lemma 2.3 in [8]).

Proposition 3.1. For any 1 ≤ i, j ≤ N and i ∼ j, we have

(3.2) 0 < Bij < 2
√
3.

Proof. We just need to prove 0 <
∂θjk

i

∂rj
rj <

√
3. Since it is not the main interest of

this paper, we defer the details to Appendix A. �

Proposition 3.2. Define L = (Lij)1≤i,j≤N as in Definition 2.1; then

Lij =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∼i

Bik , j = i,

−Bij , j ∼ i,

0 , else.

(3.3)

Proof. This can be proved by direct calculations; therefore we omit the details. �

Proposition 3.3. L is a semi-positive definite N×N matrix, whose rank is N−1.
Moreover, the null space of L is Ker(L) = {t(1, . . . , 1)T |t ∈ R}.

Proof. This follows directly from Lemma 3.10 in [8]. �

The differential form ω =
∑N

i=1(Ki − kav)dui is closed, for Lij = Lji. Thus the
integral

∫ u

u0

N∑
i=1

(
Ki − kav

)
dui

is well defined [8], where u0 is an arbitrary point in RN . This integral is cru-
cial for the proof of our main theorem. For convenience, we call this integral the
combinatorial Ricci potential.

For any smooth closed manifold (M, g) with Riemannian metric g, we know
that

∫
M

Δf = 0, where f is an arbitrary smooth function on M . For a combi-

natorial surface (X,T,Φ) with a circle packing metric r, we have
∑N

i=1 ΔKi =
−(1, . . . , 1)TLK = 0. Thus we obtain the following proposition.

Proposition 3.4. As long as the combinatorial Calabi flow exists, both
∏N

i=1 ri(t) ≡∏N
i=1 ri(0) and

∑N
i=1 ui(t) ≡

∑N
i=1 ui(0) are constants.
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3.2. Long time existence of the combinatorial Calabi flow. Notice that

(3.4) ΔKi =
∑
j∼i

Bij(Kj −Ki).

Using the estimation of Bij in (3.2), we obtain the following theorem.

Theorem 3.5. Given a triangulated surface (X,T,Φ), for any initial circle packing
metric r(0), the solution of the combinatorial Calabi flow (2.2) exists for all time
t ∈ [0,+∞).

Proof. Let di denote the degree at vertex vi, which is the number of edges adjacent
to vi. Set d = max(d1 , . . . , dN ); then (2 − d)π < Ki < 2π. By the estimation
of Bij in Propositon 3.1, all |ΔKi| are uniformly bounded by a positive constant

c = 2
√
3 ·N · d · π, which depends only on the triangulation. Then we have

c0e
−ct ≤ ri(t) ≤ c0e

ct

where c0 = c (r(0)), which implies that the combinatorial Calabi flow has a solution
for all time t ∈ [0,∞) for any r(0) ∈ RN

>0. �
Remark 5. The long time existence of r(t) can be deduced without using the uniform
estimation of Bij in (3.2). See Remark 6.

4. Convergence to a constant curvature metric

From the calculation above, it’s easy to see the following proposition is true.

Proposition 4.1. Along the combinatorial Calabi flow, the discrete Gauss curva-
ture evolves according to

(4.1)
dK

dt
= −L2K.

For any c > 0, denote Pc =
{
r = (r1, . . . , rN )T ∈ RN

>0

∣∣∣ ∏N
i=1 ri = c

}
, and de-

note Ua =
{
u = (u1, . . . , uN )T ∈ RN

∣∣∣ ∑N
i=1 ui = a

}
; then Pc = Exp(Ua), where

a = ln c. Note that the constant curvature Kav = kav(1, . . . , 1)
T may not belong

to K(RN
>0). By Proposition 3.4 we know that {r(t)} ⊂ Pc along the combinatorial

Calabi flow (2.2), where c =
∏N

i=1 ri(0). Now we are at the stage of proving con-
vergence results.

4.1. Proof of Theorem 2.5. We have proved the long time existence of the flow
(2.2) in Section 3. Denote r(t), t ∈ [0,∞) as the solution of the combinatorial
Calabi flow (2.2).

First we prove the “only if” part. If r(t) converges, i.e., r(+∞) = lim
t→+∞

r(t) ∈
RN

>0 exists, then both K(+∞) = lim
t→+∞

K(t) ∈ K(RN
>0) and L(+∞) = lim

t→+∞
L(t)

exist. This leads to the existence of C(+∞) and C′(+∞). Combining with the fact
that C(t) is uniformly bounded and using Proposition 3.3, we have

C′(t) = 2

N∑
i=1

K ′
iKi = 2KTK ′ = −2KTL2K ≤ 0,

and then
C′(+∞) = −2KT (+∞)L2(+∞)K(+∞) = 0.
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Hence
K(+∞) ∈ Ker(L2) = Ker(L).

By Proposition 3.3, K(+∞) is a constant, and r(+∞) is a constant curvature
metric.

Next we prove the “if” part. Assume there exists a constant curvature circle
packing metric rav, which implies Kav ∈ K(RN

>0). We want to show r(t) converges,
i.e.

r(+∞) = lim
t→+∞

r(t) ∈ RN
>0.

We carry out the proof in three steps.

Step 1. Denote λ1 as the minimum positive eigenvalue of L. Since the matrix L is
semi-positive definite by Proposition 3.3, λ2

1 is the minimum positive eigenvalue of
L2. By standard tricks in basic linear algebra theory, we have

(4.2) KTL2K = (K −Kav)
TL2(K −Kav) ≥ λ2

1‖K −Kav‖2 = λ2
1C.

Step 2. we show that {r(t) | t ∈ [0,∞)} � RN
>0. Consider the combinatorial Ricci

potential

(4.3) f(u) =

∫ u

uav

N∑
i=1

(
Ki − kav

)
dui , u ∈ RN ,

where uav = ln rav. This integral is well defined, because
∑N

i=1(Ki − kav)dui is a

closed differential form. f
∣∣
Ua

is strictly convex (Theorem B.2), hence the following
map:

∇f
∣∣
Ua

: Ua → RN

u 	→ K −Kav

is injective. Therefore uav is the unique critical point of f
∣∣
Ua

and f is bounded

below by zero (f(u) ≥ f(uav) = 0). Consider ϕ(t) = f
(
u(t)

)
; then

ϕ′(t) = (∇f)T · du
dt

= (K −Kav)
T (−LK) = −KTLK ≤ 0,

hence ϕ(t) is descending as t increases and then 0 ≤ ϕ(t) ≤ ϕ(0) = f
(
u(0)

)
, for any

t ∈ [0,+∞). Hence
{
u(t) | t ∈ [0,+∞)

}
⊂

(
f
∣∣
Ua

)−1 (
[0, ϕ(0)]

)
. Because f

∣∣
Ua

is

proper by Theorem B.2,
(
f
∣∣
Ua

)−1 (
[0, ϕ(0)]

)
is a compact subset of Ua. Therefore{

u(t) | t ∈ [0, +∞)
}
� Ua, or equivalently,

{r(t) | t ∈ [0,∞)} � Pc ⊂ RN
>0.

Step 3. we show that r(t) converges exponentially fast to rav. Due to step 2, λ2
1(t),

the first eigenvalue of L2(t), has a uniform lower bound along the Calabi flow, i.e.,
λ2
1(t) ≥ λ/2 > 0, where λ is a positive constant. Using (4.2), we obtain

C′(t) = −2KTL2K ≤ −2λ2
1(t)C ≤ −λC,

which implies

(4.4) C(t) ≤ C(0)e−λt,

and the curvature Ki(t) converges exponentially fast to kav. Moreover, we can
prove that r(t) and u(t) converge exponentially fast to rav and uav respectively by
similar methods in the proof of Lemma 4.1 in [13]. Finally, we finish the proof. �
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Remark 6. We can prove {r(t) | t ∈ [0, T )} � RN
>0 similarly without assuming

T = +∞. Using the classical extension theorem of solutions in ODE theory, we
obtain T = +∞, which gives a new proof of Theorem 3.5.

4.2. The convergence to admissible curvatures. Theoretically, a metric with
a constant combinatorial Gaussian curvature seems to be the best candidate for a
“good” metric. This is because people often like geometric objects with symmetry.
However, for practical applications, especially in medical imaging and computer
graphics fields (see [24, 35–37]), any prescribed curvatures that meet the needs of
users can be the best candidate for a “good” metric.

Definition 4.2. We call any K ∈ RN a prescribed or target curvature. If K ∈ RN

is realized by some r̄ ∈ RN
>0, or say, K = K(r̄) is exactly the curvature at r̄, then

K is admissible or attainable.

The combinatorial Calabi flow can be used to deform any circle packing metric
to one with admissible curvatures. To do so, it is natural to minimize the modified
discrete Calabi energy

(4.5) C(u) = ‖K −K‖2.
This inspires us to consider the user prescribed combinatorial Calabi flow

(4.6)
du

dt
= −1

2
∇uC = L(K −K),

where K ∈ RN is any prescribed curvature. Similar to Subsection 4.1, we can prove
the following theorem.

Theorem 4.3. For any initial circle packing metric r(0) ∈ RN
>0, the solution of

(4.6) exists for t ∈ [0, +∞). Moreover, the following three statements are mutually
equivalent:

(1) The solution of (4.6) converges.
(2) The prescribed curvature K is admissible, i.e., K ∈ K(RN

>0).

(3) The solution of the user prescribed Ricci flow du
dt = K −K converges.

Furthermore, if any of the above statements is true, the solution of the flow (4.6)
converges exponentially fast to r̄.

By Andreev-Thurston’s classical work, the space of all admissible curvatures
K(RN

>0) can be described completely by the combinatorial and topological infor-
mation of (X,T,Φ). In fact, they get the following theorem.

Theorem 4.4 (Andreev-Thurston). Consider K as a map from RN
>0 to RN ; then

K is injective when restricted to the subset
{
r ∈ RN

>0

∣∣∏N
i=1 ri = 1

}
. In other words,

the metric is determined by its curvature up to a scalar multiplication. Moreover,
K(RN

>0) equals

{
x ∈ RN

∣∣∣
N∑
i=1

xi = 2πχ(X)
}⋂( ⋂

φ 	=I�V

YI

)
,

where

YI =
{
x ∈ RN

∣∣∣∑
i∈I

xi > −
∑

(e,v)∈Lk(I)

(
π − Φ(e)

)
+ 2πχ(FI)

}
.
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Figure 3. O is inside
�ABC, such that H lies
between B and C.

Figure 4. Discrete dual-Laplacian

For a proof of Andreev-Thurston’s theorem, see Thurston [33], Marden-Rodin
[26], Colin de Verdière [11], He [22], Chow-Luo [8] and Stephenson [31].

Appendix A. Proof of Proposition 3.1

We first prove an elementary Euclidean geometry result related to circle packing.

Lemma A.1. Consider a triangle �ABC coming from a configuration of circle
patterns with weight Φ ∈ [0, π

2 ]. Assume O is inside �ABC. OH is the altitude
from O onto side BC. Assume the point H lies between B and C (see Figure 3).

Then |OH| <
√
3|BC|.

Proof. Suppose this lemma is false. Then |OH| ≥
√
3|BC|, and

|OH| ≥
√
3|BC| ⇒

⎧⎨
⎩
|OH| ≥

√
3|BH| ⇒ �BOH ≤ π/6,

|OH| ≥
√
3|CH| ⇒ �COH ≤ π/6.

Hence

�BOC = �BOH + �COH ≤ π/3,

and

�AOC = 2π − (�AOB + �BOC) ≥ 2π −
(
π +

π

3

)
=

2π

3
,

�AOB = 2π − (�AOC + �BOC) ≥ 2π −
(
π +

π

3

)
=

2π

3
.

In �AOB, we have |AB| > |AO|, for AB faces to a bigger angle. Thus we can
select a unique point S between A and B so that |AS| = |AO|. using

�AOB

2
<

π − �BAO

2
<

π

2
,

we get

�SOB = �AOB − π − �BAO

2
∈
[
�AOB − π

2
, �AOB − �AOB

2

]
⊂

[π
6
,
π

2

]
,
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and

�OSB = π − π − �BAO

2
∈
[
π − π

2
, π − �AOB

2

]
⊂

[
π

2
,
2π

3

]
.

Then we obtain

|OB|
|AB| − |AO| =

|OB|
|BS| =

sin�BSO

sin�SOB
≤ 1

( 12 )
= 2,

which implies

|AB| − |AO| ≥ 1

2
|OB|.

Similarly, we have

|AC| − |AO| ≥ 1

2
|OC|.

Next we show

rB ≥ 1

2
|OB|

and

rC ≥ 1

2
|OC|.

If rB ≤ |OB|, we know rA ≤ |OA| by use of r2A − r2B = |OA|2 − |OB|2. We already
know rA + rB ≥ |AB|. Hence

rB ≥ |AB| − rA ≥ |AB| − |OA| ≥ 1

2
|OB|.

Thus we always have rB ≥ 1
2 |OB|, no matter rB ≥ |OB| or rB ≤ |OB|. Similarly,

we have rC ≥ 1
2 |OC|. Then it is easy to see

r2B + r2C ≥ 1

4
(|OB|2 + |OC|2) ≥ 1

4
· 2|OH|2 =

1

2
|OH|2 ≥ 3

2
|BC|2 > |BC|2,

which contradicts the fact

|BC| =
√
r2B + r2C + 2rBrC cosΦBC ≥

√
r2B + r2C .

�

(The above lemma belongs to Ruixiang Zhang and Chenjie Fan.)

Corollary A.2. Given (X,T,Φ), where X is a closed surface, T is a triangulation,
Φ ∈ [0, π/2] is a weight. Then

0 <
∂θjki
∂rj

rj <
√
3.

Proof. Let O be the unique (A2, [8]) intersection point in Figure 4. Denote l∗ij |
ijk

as the directed distance from O to H. The directed distance from O to edge vivj
is positive (negative), when O is inside (outside) ∠vivjvk. Thurston [33] claimed
that l∗ij |
ijk is positive. Hence O is inside the �vivjvk. Note it was shown (A2,

[8]) that
∂θjk

i

∂rj
rj =

l∗ij |�ijk

lij
. Using Lemma A.1 we get the conclusion above. �

Corollary A.3. Proposition 3.1 is true, that is, 0 < Bij < 2
√
3.
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Remark 7. Let l∗ij � l∗ij |
ijk+l∗ij |
ijl. Then it’s easy to see Bij =
l∗ij
lij

. Furthermore,

Δfi = −
N∑
j=1

∂Kj

∂ui
fj = −

N∑
j=1

Lijfj =
∑
j∼i

Bij(fj − fi) =
∑
j∼i

l∗ij
lij

(fj − fi),(A.1)

where f : V → R is a function defined on vertices. Generally, discrete Laplace
operator [10] “Δ” is often written as Δfi =

∑
j∼i ωij(fj−fi), where ωij is a weight

defined on each edge i ∼ j. Here Bij comes from the dual structure of circle
patterns (see [8, 14, 33] for more details) and this is why we call (2.1) and (A.1)
discrete dual-Laplacian. There are other kinds of discrete Laplacians, such as the
cotangent-Laplacian, which is a special kind of discrete dual-Laplacian showed by
Glickenstein [16]. For more details related to discrete Laplacians, see [16–18,22,23].

Appendix B. Combinatorial Ricci potential is proper

Lemma B.1. Assume that ψ ∈ C2(Rn) is a function satisfying

(1) ψ is strictly convex;
(2) there exists at least one point p such that ∇ψ(p) = 0.

Then lim
x→∞

ψ(x) = +∞. Moreover, ψ is proper.

Proof. Set h(t) = inf
|x|=t

ψ(x), t ≥ 0. Then h(t) is a nondecreasing function. We

just need to prove h(t) → +∞, as t → +∞. The process is almost the same with
Lemma B.1 in [13]; we omit the details. Notice that there is another way to prove
Lemma B.1 by remark 2.7 in [1]. �

Theorem B.2. Given (X,T,Φ), where X, T and Φ are defined as before. Assume
there exists a constant curvature metric rav ∈ RN

>0. Thus K(rav), the discrete
curvature at rav, is a constant, which is denoted as kav. Consider the combinatorial
Ricci potential

f(u) =

∫ u

uav

N∑
i=1

(
Ki − kav

)
dui , u ∈ RN ,

where uav = ln rav. Then for arbitrary constant a, f
∣∣
Ua

is proper and

lim
u→∞, u∈Ua

f(u) = +∞.

Proof. Note the kernel of Hessf is (1, . . . , 1), which is perpendicular to the hy-
perplane Ua. Hence Hessf is strictly positive definite when constrained on Ua,
implying that f is strictly convex when constrained on Ua. Further note that ∇f
has a zero point on Ua; then by Lemma B.1, we get the conclusion above. �
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