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SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HÉNON MAPS

AND CONTINUITY OF JULIA SETS IN C2

REMUS RADU AND RALUCA TANASE

Abstract. We prove some new continuity results for the Julia sets J and J+

of the complex Hénon map Hc,a(x, y) = (x2 + c+ ay, ax), where a and c are

complex parameters. We look at the parameter space of dissipative Hénon
maps which have a fixed point with one eigenvalue (1 + t)λ, where λ is a
root of unity and t is real and small in absolute value. These maps have a
semi-parabolic fixed point when t is 0, and we use the techniques that we
have developed in a prior work for the semi-parabolic case to describe nearby
perturbations. We show that for small nonzero |t|, the Hénon map is hyperbolic
and has connected Julia set. We prove that the Julia sets J and J+ depend
continuously on the parameters as t → 0, which is a two-dimensional analogue
of radial convergence from one-dimensional dynamics. Moreover, we prove
that this family of Hénon maps is stable on J and J+ when t is non-negative.
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1. Introduction

Complex analytic maps with a parabolic fixed point or cycle have generated
much interest in dynamics in one complex variable as they play a fundamental role
in understanding the parameter space of rational maps. Moreover, they provide
important models for understanding non-hyperbolic behavior.

In [RT] we studied the family of Hénon maps with a semi-parabolic fixed point
or cycle, and showed that the family has nice stability properties. In this paper
we want to unravel the mystery about how these semi-parabolic maps sit in the
parameter space of Hénon maps and describe the Julia sets of nearby perturbations.

Chapter 2 provides a useful digression to dynamics in one complex variable.
Consider a quadratic polynomial p(x) = x2 + c with a parabolic fixed point and
denote by Jp its Julia set. The parameter c lies in the boundary of the Mandelbrot
set. It is well-known from the work of P. Lavaurs [L] and A. Douady [D] that on a
neighborhood of the parameter c in C the Julia set does not vary continuously in
the Hausdorff topology. Parabolic implosion represents the source of discontinuity

Received by the editors September 3, 2015, and, in revised form, July 22, 2016 and September
6, 2016.

2010 Mathematics Subject Classification. Primary 37F45, 37D99, 32A99, 47H10.

c©2017 American Mathematical Society

3949

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7061


3950 REMUS RADU AND RALUCA TANASE

and of obtaining limit Julia sets with enriched dynamics. Using quasiconformal
techniques, C. McMullen [Mc] (and also P. Häıssinsky [Häı]) showed that Jpn

con-
verges to Jp when pn converges to p horocyclically or radially (i.e. non-tangentially
with respect to the boundary of a Mandelbrot set in the quadratic case). These
tools are harder, if not impossible, to apply to several complex variables, where
an analogue of the Uniformization Theorem does not exist. We first set out to
give a topological proof of the continuity result for polynomial Julia sets under a
stronger radial convergence assumption. The proof involves recovering the Julia set
as the image of the unique fixed point f∗ of a (weakly) contracting operator in an
appropriate function space. In Section 2.5 we prove that f∗ depends continuously
on the parameter, and thus the corresponding Julia sets converge to the Julia set of
the parabolic polynomial, in the Hausdorff topology. After gaining some valuable
insight from the study of the one-dimensional problem, notably from Lemma 2.14,
we pursue the two-dimensional problem and prove some new continuity results in
Chapter 3 for the Julia sets J and J+ of a complex Hénon map.

We consider the family of complex Hénon maps Hc,a(x, y) = (p(x) + ay, ax),
where p is a quadratic polynomial, p(x) = x2 + c, and a is a complex parameter.
When a �= 0, this is a polynomial automorphism of C2. The dynamics of Hénon
maps bears some resemblance to the dynamics of 1-D polynomials, however ex-
tending results from one to several variables requires envisioning new techniques
and approaches, and in many cases the emerging picture is substantially differ-
ent and contains new and thrilling phenomena not present in the one-dimensional
world. In order to describe the dynamics of the Hénon map, one studies the sets
K+ and K− of points which do not escape to infinity under forward and respec-
tively backward iterations. The topological complements of K± in C2 are denoted
by U± and called the escaping sets. The most interesting dynamics occur on the
boundary of the sets K± and U± where chaotic behavior is present. The sets
J± = ∂K± = ∂U± and J = J+ ∩ J− are called the Julia sets of the Hénon map.
The sets J and K = K+∩K− are compact, while the sets J± are closed, connected
and unbounded [BS1].

A quadratic Hénon map is uniquely determined by the eigenvalues λ and ν at a
fixed point so we will sometimes writeHλ,ν in place ofHc,a to mark this dependence.
The precise formula for Hλ,ν is given at the beginning of Chapter 3. We say that a
Hénon map is semi-parabolic if it has a fixed point (or cycle) with one eigenvalue
λ, a root of unity, and one eigenvalue smaller than one in absolute value. Unlike
hyperbolic Hénon maps, semi-parabolic ones are not stable under perturbations.
E. Bedford, J. Smillie and T. Ueda have described some semi-parabolic bifurcations
in C

2 for λ = 1 in [BSU17]. In particular, they show that at a parameter value
with a semi-parabolic fixed point with the eigenvalues λ = 1 and |ν| < 1, the sets
J , J+, K and K+ vary discontinuously with the parameters, while J− and K−

vary continuously with the parameters. The phenomenon described in [BSU17] is a
two-dimensional analogue of parabolic implosion that occurs in complex dimension
one.

In order to state our main results, consider a primitive root of unity λ = e2πip/q

and let λt = (1 + t)λ. For t real and small in absolute value, we look at the
parameter space Pλt

of complex Hénon maps which have a fixed point with one
eigenvalue λt. The equation of the curve Pλt

is given in Proposition 3.2. When
t = 0 these maps are semi-parabolic; when t �= 0, we regard the maps corresponding
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to parameters from Pλt
as perturbations of the semi-parabolic ones. We show in

Section 3.8 that there exists δ > 0 such that for (c, a) ∈ Pλt
and 0 < |a| < δ,

the Julia sets J and J+ depend continuously on the parameters as t approaches
0. An equivalent formulation is given in the theorem below. These results can be
regarded as a natural extension of the concept of radial convergence of Julia sets
[Mc] to higher dimensions, in the context of polynomial automorphisms of C2.

Theorem 1.1 (Continuity). There exists δ > 0 such that if |νt| < δ and νt → ν
as t → 0, then the Julia sets J and J+ depend continuously on the parameters, i.e.,

J+
(λt,νt)

→ J+
(λ,ν) and J(λt,νt) → J(λ,ν)

in the Hausdorff topology.

For the set J+ we are taking the Hausdorff topology on the one-point compacti-
fication of C2. What we prove in Theorem 1.1 is the continuity of Julia sets J and
J+ as we approach a semi-parabolic parameter from the interior of a hyperbolic
component of the Hénon connectedness locus, similar to radial convergence from
1-D dynamics. Our next theorem describes the dynamical nature of the perturbed
semi-parabolic maps.

Theorem 1.2 (Hyperbolicity). There exist δ, δ′ > 0 such that in the parametric
region

HRδ,δ′ = {(c, a) ∈ Pλt
: 0 < |a| < δ and − δ′ < t < δ′, t �= 0}

the Julia set Jc,a is connected and the Hénon map Hc,a is hyperbolic.

By definition, the connectedness locus for the Hénon family is the set of param-
eters (c, a) ∈ C2 such that the Julia set Jc,a is connected. Theorem 1.2 shows that
the parametric region {(c, a) ∈ Pλ : |a| < δ} of semi-parabolic Hénon maps lies
in the boundary of a hyperbolic component of the Hénon connectedness locus. In
fact, when λ �= 1, it lies in the boundary of two such hyperbolic components. A
mechanism for loss of hyperbolicty at the boundary of the horseshoe region through
the development of tangencies between stable and unstable manifolds is described
by E. Bedford and J. Smillie in [BS], and more recently by Z. Arai and Y. Ishii in
[AI]. In Theorem 1.2 we describe a different mechanism for loss of hyperbolicity,
through the creation of a semi-parabolic fixed point. We first do a local analy-
sis in Sections 3.1, 3.2 and 3.3, and show how to deform the local semi-parabolic
structure into a hyperbolic structure; these sections are applicable to holomorphic
germs of diffeomorphisms of (C2, 0) with a semi-parabolic fixed point, and their
perturbations. We complete the proof of Theorem 1.2 in Section 3.5.

Theorem 1.2 proves the existence of a larger region of hyperbolicity for complex
Hénon maps than what was previously known. It is in general very hard to exhibit
regions of hyperbolicity for Hénon maps. Z. Arai developed a computer program for
detecting hyperbolicity, that relies on heavy numerical computations. Otherwise,
the only Hénon maps proven to be hyperbolic using only theoretical arguments
correspond to the horseshoe region and to perturbations of 1-D hyperbolic maps.
It is also known from early works of J. E. Fornæss and N. Sibony [FS], and J.
Hubbard and R. Oberste-Vorth [HOV1,HOV2], that Hénon maps that come from
perturbations of hyperbolic polynomials with connected Julia sets inherit both of
these properties. However, the proof gave no control on the admissible size of
perturbations as we approach the boundary of the Mandelbrot set, i.e., it was not
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known that the size of the region HRδ,δ′ does not decrease to 0 as t → 0. Z. Arai
[A] gave a computer-assisted proof for the existence of hyperbolic plateaus for the
family of complex Hénon maps Hc,a with both parameters c and a real. In our
language, these regions correspond to strips on the right/left side of the real curves
Pn
±1 ∩R2, where Pn

±1 is the set of parameters (c, a) ∈ C2 for which the Hénon map
Hc,a has a cycle of order n with one eigenvalue ±1. The existence of these regions
is established in Theorem 1.2.

Corollary 1.2.1. There exists an ε > 0 such that the real parametric region{
(c, a) ∈ R× (−ε, ε) : a �= 0,

(1 + a)2

4
− ε < c <

(1 + a)2

4

}
is a region of hyperbolicity for the Hénon family Hc,a(x, y) = (x2 + c− ay, x). The
Hénon map is written in the standard parametrization and has Jacobian a.

To compare our results with [B] and [BSU17], suppose λ is 1. Theorems 1.1 and
1.2 answer Questions 3 and 4 of E. Bedford, from [B]. Corollary 1.2.1 is formulated
as a specific answer to Question 3 and the set c = (a+ 1)2/4 from the corollary is
simply the defining equation of parabola P1. When (c, a) ∈ P1, the Hénon map has
a double fixed point with one eigenvalue 1. From the “right” of the real parabola
P1 ∩R

2 we have semi-parabolic implosion described in [BSU17]. More specifically,
in [BSU17] it is shown that there exists a sequence εn → 0 which converges to 0
tangentially to the positive real axis (Re(εn) > 0 and Im(εn) < const. |εn|2) such
that the Julia set Jcn,a corresponding to the sequence cn = (a+1)2/4+ εn does not
converge to the Julia set Jc,a in the Hausdorff topology. By comparison, Theorem
1.1 shows that we have continuity of J and J+ from the “left” of the real parabola
P1 ∩ R2. When (c, a) ∈ P1 ∩ R2 and 0 < |a| < δ we get that Jc−ε,a → Jc,a and
J+
c−ε,a → J+

c,a as ε → 0+. Note that Theorem 1.1 gives no information on what
happens to the “right” of parabola P1; indeed, when λ = 1, both curves P1+t and
P1−t are to the left of P1. This can be seen from the fact that for a = 0 and t �= 0,
the polynomial pt has two distinct fixed points, with multipliers 1 ± t; therefore
regardless of whether t is positive or negative, pt has an attracting fixed point, and
belongs to the interior of the main cardioid of the Mandelbrot set.

This paper is built on previous work done by the authors in [R] and [T]. We use
the tools that we have developed for the study of semi-parabolic germs/Hénon maps
in [RT] to extend the results from [RT] to nearby perturbations of semi-parabolic
germs/Hénon maps. We can actually say more about the stability properties of our
family of Hénon maps when the parameter t is non-negative:

Theorem 1.3 (Stability). The family of complex Hénon maps Pλt
� (c, a) → Hc,a

is a structurally stable family on J and J+ for 0 < |a| < δ and 0 ≤ t < δ′.

We say that the family of Hénon maps Pλt
� (c, a) → Hc,a is structurally stable

on J when t ∈ [0, δ′) and |a| < δ if for any two pairs (ci, ai) ∈ Pλti
, with |ai| < δ

and ti ∈ [0, δ′) for i = 1, 2, we have (Hc1,a1
, Jc1,a1

) conjugate to (Hc2,a2
, Jc2,a2

).
Consequently, the Julia sets Jc1,a1

and Jc2,a2
are homeomorphic. We explain struc-

tural stability on J+ in a similar way, by replacing J with J+. We complete the
proof of Theorem 1.3 in Section 3.8.

Another notion of stability (called weak stability) was introduced by R. Dujardin
and M. Lyubich [DL] for holomorphic families (fz)z∈Λ of moderately dissipative
polynomial automorphisms of C2, where Λ is a connected complex manifold. Weak
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Figure 1. The curves P1, P−1, P2
−1, P4

−1 are examples of para-
metric curves containing semi-parabolic Hénon maps. There exist
regions of hyperbolicity between P1 and P−1 and P−1 and P2

−1

which belong to hyperbolic components of the Hénon connected-
ness locus.

stability is defined in terms of branched holomorphic motions of the set J∗ (the
closure of the saddle periodic points), but an equivalent easier definition is the
following: the family is weakly stable if periodic orbits do not bifurcate. The
equivalence between weak stability and continuity of J∗ is discussed in [DL], and
the relation between weak stability and uniform hyperbolicity on J∗ is analyzed by
P. Berger and R. Dujardin in [BD]. These results do not apply to our context, but
they are of independent interest.

2. Continuity of polynomial Julia sets

In this section we focus only on one-dimensional dynamics. We first discuss con-
tinuity of polynomial Julia sets, which will prove useful in understanding continuity
of Julia sets for Hénon maps. This will be treated in Section 3.

Assume that p is a quadratic polynomial. The filled Julia set of the polynomial
p is

Kp = {z ∈ C : |p◦n(z)| bounded as n → ∞},
and the Julia set of p is Jp = ∂Kp. The filled Julia set Kp is connected iff the orbit
of the unique critical point is bounded. If Kp is connected (or equivalently Jp is
connected), then there exists a unique analytic isomorphism

(1) Ψp : C− D → C−Kp

such that Ψp(z
2) = p(Ψp(z)) and Ψp(z)/z → 1 as z → ∞. If Jp is locally connected,

then Ψp extends to the boundary S1 and defines a continuous surjection (see [Mi])

(2) γp : S1 → Jp.

The Julia set of a hyperbolic or parabolic polynomial is connected and locally
connected (see [DH]). The map Ψ−1

p is the Böttcher coordinate of the polynomial
p, while the map Ψp is called the inverse Böttcher isomorphism (or the Böttcher
chart [H]). The boundary map γp is called the Carathéodory loop of p.
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The continuous map Gp : C → R, defined by Gp(z) = log |Ψ−1
p (z)| for z ∈ C−Kp

and Gp(z) = 0 for z ∈ Kp, is called the Green function of the polynomial p. Each
level set of the Green function {z : Gp(z) = log(R)} with R > 1 is called an
equipotential for the polynomial p. This is the image of the circle of radius R under
Ψp.

2.1. Horocyclic and radial convergence. The topic of convergence of Julia sets
in the Hausdorff topology (of compact sets in P1) is very vast and has been covered
by many authors (A. Douady [D], P. Lavaurs [L], C. McMullen [Mc], P. Häıssinsky
[Häı], etc.). We only recall here a theorem from [Mc] about horocyclic and ra-
dial convergence of rational maps, and give the simplified form of the theorem for
quadratic polynomials.

Definition 2.1 (Hausdorff topology). The compact sets Kn converge to the com-
pact set K in the Hausdorff topology if the following conditions hold:

(a) Every neighborhood of a point x ∈ K meets all but finitely many Kn.
(b) If every neighborhood of x meets infinitely many Kn, then x ∈ K.

Theorem 2.2 ([Mc]). Let f be a geometrically finite rational map and suppose that
fn → f horocyclically (or radially), preserving critical relations. Then Jfn → Jf in
the Hausdorff topology.

Theorem 2.2 can be expressed in a simplified form when we restrict to the fam-
ily of quadratic polynomials. Let p be a quadratic polynomial. The sequence of
polynomials pn converges to p algebraically if deg(pn) = deg(p) for all n, and the
coefficients of pn converge to the coefficients of p.

Definition 2.3 (Horocyclic/radial convergence of multipliers). Let λn → 1 in C∗,

λn = eLn+iθn and θn → 0.

The sequence λn converges to 1 horocyclically if θ2n/Ln → 0. The sequence λn

converges to 1 radially if θn = O(|Ln|), that is, there exists M > 0 such that
|θn| ≤ MLn for n > 0.

Theorem 2.4. Let p be a quadratic polynomial with a parabolic fixed point α0 with
multiplier e2πip/q. Let pn be a sequence of quadratic polynomials, such that pn → p
algebraically. Assume that each pqn has a fixed point αn, such that αn → α0 and
such that the sequence of multipliers λn = (pqn)

′(αn) converges to 1 horocyclically
(or radially). Then

Jpn
→ Jp

in the Hausdorff topology.

The proof of Theorem 2.2 is quite involved and uses quasiconformal theory and it
is not very clear how one could extend it to higher dimensions. We would therefore
like to first outline a more topological proof of continuity in one dimension.

2.2. A topological proof of continuity in dimension one. Let λ = e2πip/q be
a primitive root of unity of order q. Set

λt = (1 + t)λ,

for t real and sufficiently small. Consider the family of quadratic polynomials

(3) pt(x) = x2 + ct, where ct =
λt

2
− λ2

t

4
.
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For t > 0 the polynomial pt is hyperbolic and has a repelling fixed point αt = λt/2
of multiplier λt and a q-periodic attractive orbit. For t = 0 the polynomial p0 has
a parabolic fixed point α0 of multiplier λ. The multiplicity of the fixed point α0

as a solution of the equation p◦q0 (x) = x is q + 1. Finally, when t < 0, pt has an
attracting fixed point αt of multiplier λt and a q-periodic repelling orbit.

We have pt → p0 uniformly as t → 0. The continuity of the corresponding Julia
sets (that we state below as Theorem 2.5) is an easy consequence of McMullen’s
Theorem 2.2. The sequence of multipliers λq

t = (1 + t)q has no imaginary part,
therefore it converges horocyclically and radially to 1.

Theorem 2.5. The Julia set Jpt
of the polynomial pt depends continuously on the

parameter t, that is, Jpt
→ Jp0

in the Hausdorff topology.

We give a new proof of the continuity result for the family pt which does not use
quasiconformal theory. The proof relies on the techniques developed by Douady and
Hubbard in [DH] for proving the local connectivity of Julia sets of polynomials where
all critical points are attracted to attracting or parabolic cycles. An adaptation of
this technique was also used in [Kw] to build semi-conjugacies between Julia sets
of geometrically finite rational maps.

We build a continuous family of bounded metrics μt on the neighborhood of the
Julia set Jpt

, with respect to which the polynomial pt is weakly expanding. Then
we will recover the Julia set Jpt

as the image of the unique fixed point f∗
t of a

weakly contracting operator Ft in an appropriate function space. We will show
that the fixed point f∗

t is continuous with respect to t, and conclude that the Julia
sets Jpt

converge in the Hausdorff topology as t → 0 to the Julia set of the parabolic
polynomial.

We will illustrate the technique for t ≥ 0. The case when t is negative is almost
identical, but it requires a small technical adjustment, which we will discuss in a
more general setting in Chapter 3, where we adapt the construction to a family of
polynomial automorphisms of C2.

2.3. Normalizing coordinates at a repelling fixed point. When t > 0, the
polynomial pt is hyperbolic and expanding with respect to the Poincaré metric on
a suitable neighborhood of Jpt

. In order to make the choice of metrics continuous
with respect to the parameter t when t → 0, we need to correct the metric μt

near the repelling fixed point αt, which becomes parabolic when t = 0. A naive
idea would be to take a small disk Dt around the repelling point αt on which the
polynomial pt is analytically conjugated to its linear part z → λtz, |λt| > 1, hence
naturally expanding with respect to the Euclidean metric. This is not very helpful
however, because the radius of Dt converges to 0 as t converges to 0. This issue can
be dealt with by constructing “normalizing coordinates” around αt, similar to the
parabolic case t = 0. We will build a larger neighborhood Dρ, with ρ independent of
t, around αt, on which the polynomial is not fully linearized, but rather conjugated
to a “normal form”.

Let ε0 = tan(2π/9) and ε1 = ε0/
√
ε20 + 1. The meaning of these constants is

fully explained by equation (30) and the discussion following it.

Proposition 2.6. There exist δ′ > 0 and ρ > 0 such that for all t with |t| < δ′ there
exists a coordinate transformation φt : Dρ′(αt) → Dρ(0) defined in a neighborhood
of the repelling fixed point αt such that in the new coordinates the polynomial pt
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can be written as p̃t(x) = λt(x + xq+1 + Ctx
2q+1 + O(x2q+2)). Suppose t ∈ [0, δ′].

In the region

Δ− = {|x| ≤ ρ : Re(xq) > ε0|Im(xq)|}
the derivative p̃t

′ is expanding, with a factor of

|λt| (1 + (q + 3/2)ε1|x|q) > |λt| ≥ 1.

The compact region

Δ+ = {|x| ≤ ρ : Re(xq) ≤ ε0|Im(xq)|}
satisfies Δ+ ⊂ int(Kp̃t

) ∪ {0} and p̃t(Δ
+) ⊂ int(Δ+) ∪ {0}.

Proof. One performs for the family pt the same sequence of coordinate transfor-
mations as the ones done in [BH] or [DH] in the parabolic case. After a global
coordinate change that brings the fixed point αt to the origin, we can assume that
pt(x) = λtx+ x2. Suppose by induction that for k ≥ 2 the maps pt have the form

x1 = λtx+ atx
k +O(xk+1)

where at �= 0 for |t| < δ′.
Consider the coordinate transformation

X = x+ btx
k with inverse x = X − btX

k + . . . .

In the new coordinate system, we get

X1 = x1 + btx
k
1 = λtx+ (at + btλ

k
t )x

k + . . .

= λt(X − btX
k + . . .) + (at + btλ

k
t )(X − btX

k + . . .)k + . . .

= λtX + (at + bt(λ
k
t − λt))X

k + . . . .

When t �= 0, we have |λt| �= 1, so λt �= λk
t for all k with 2 ≤ k ≤ q. If k is not

congruent to 1 modulo q, then λk
0 �= λ0 as well, so we can set

bt =
at

λt − λk
t

and eliminate the term atx
k. The transformations x + btx

k are injective on a
uniform neighborhood of 0.

This proves that by successive coordinate transformations of the form Xt =
x + btx

k we can eliminate terms with powers that are not congruent to 1 modulo
q, so the first term that cannot be eliminated in this way will have a power of the
form atx

νq+1, for some integer ν ≥ 1. The parabolic multiplicity of the fixed point
α0 is 1, so ν = 1.

Thus the map takes the form

(4) x1 = λt(x+ atx
q+1 +O(xq+2)).

Of course, when t �= 0, we could use the same map Xt = x + btx
q+1 to eliminate

the term atx
q+1, however this would require shrinking the domain of injectivity of

Xt to 0 as t → 0, as well as losing the continuity of Xt with respect to t at t = 0.
We can further reduce equation (4) to

(5) x1 = λt(x+ xq+1 +O(xq+2))

by considering a linear map X = Atx, where At is a constant chosen such that
Aq

t = at.
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In equation (5) we can eliminate all terms of the form atx
k, with q + 1 < k <

2q + 1, using the same coordinate transformation as before, Xt = x + btx
k, where

bt =
at

λt−λk
t
. We thus arrive at the normal form

p̃t(x) = λt(x+ xq+1 + Ctx
2q+1 +O(x2q+2)).

When t = 0 the regions Δ+ and Δ− represent attracting and respectively re-
pelling sectors for the (normalized) parabolic polynomial p̃0. The attractive sector
Δ+ belongs to the interior of the filled-in Julia set int(Kp̃0

) ∪ {0} and all points
in Δ+ converge under forward iterations to the parabolic fixed point 0, which lies
in the Julia set. When t < 0, the sector Δ+ belongs to the basin of attraction of
the attracting fixed point 0. When t > 0, the sector Δ+ belongs to int(Kp̃t

) ∪ {0},
because Δ+ (with 0 removed) is a trapping region for a q-periodic attractive orbit
[BH]. We prove these facts directly for Hénon maps in Propositions 3.6 and 3.7,
and the proofs apply also to the family of polynomials considered in this lemma.

To show that the derivative p̃t
′ is expanding on Δ− when t > 0, we perform the

same computations as in the parabolic case [DH]. The choice of ε0 and ε1 guarantees
that if Re(xq) > ε0Im(xq), then Re(xq) > ε1|x|q. Consider a constant m so that∣∣p̃t′(x)− λt(1 + (q + 1)xq)

∣∣ < m|x|2q on Dρ. Using the normal form for p̃t, we get

|p̃t′(x)| = |λt|
∣∣1 + (q + 1)xq +O(x2q)

∣∣ ≥ |λt|
(∣∣1 + (q + 1)xq

∣∣−m|x|2q
)

≥ (1 + t)
(
1 + (q + 1)ε1|x|q −m|x|2q

)
> (1 + t) (1 + (q + 3/2)ε1|x|q)

for |x| sufficiently small. Hence |p̃t′(x)| > |λt| throughout Δ−, for all t ∈ [0, δ′]. �

Let Δ+
t = φ−1

t (Δ+) and Δ−
t = φ−1

t (Δ−). Recall that αt = φ−1
t (0). By Propo-

sition 2.6, the set Δ+
t − {αt} belongs to the interior of the filled-in Julia set Kpt

.
Moreover, when t > 0, the q-periodic attractive orbit of the polynomial pt is con-
tained in the sector Δ+

t . The Julia set Jpt
near αt is completely contained in the

repelling sectors:

Jpt
∩ Dρ′(αt) = Jpt

∩Δ−
t .

When t ∈ [−δ′, δ′], the polynomial pt has connected Julia set; the critical point
0 of pt is attracted to the q-periodic orbit when t > 0, respectively to the parabolic
fixed point when t = 0, and to the attracting fixed point when t < 0. So there

exists a first iterate nt ∈ N such that p
◦(nt+1)
t (0) ∈ Δ+

t , otherwise said, there exists
a first iterate for which p◦nt

t (ct) ∈ Δ+
t and p◦nt

t (0) /∈ Δ+
t . The function t → nt

is locally constant and we can assume without loss of generality that when δ′ is
small, the number nt is the same for all t ∈ [−δ′, δ′]. Therefore we can remove the

dependence on t and denote nt by N . Denote further by p−◦N
t (Δ+

t ) the connected
component of the N th preimage of the set Δ+

t that contains the fixed point αt.

2.4. A continuous family of bounded metrics. For each value of the param-
eter t we construct a neighborhood Ut of the Julia set Jpt

and a metric μt on Ut

with respect to which the polynomial pt is expanding. The family (Ut, μt) will be
continuous with respect to the parameter t.

The outer boundary of the set Ut is an equipotential of the Julia set Jpt
. The

inner boundary is ∂p−◦N
t (Δ+

t ), where N is defined above. Formally, choose R > 2
and set

Ut = C− p−◦N
t (Δ+

t )− {z ∈ C−Kpt
: |Ψ−1

pt
(z)| ≥ R}.(6)
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Figure 2. The polynomial pt has a fixed point at αt. The corre-
sponding neighborhoods Ut and U ′

t are also shown.

Let U ′
t = p−1

t (Ut). The set U
′
t is contained in Ut by construction (see Figure 2), and

we can put on U ′
t the Poincaré metric of Ut. The map pt : U

′
t → Ut is a covering

map, hence expanding:

|(z, ξ)|Ut
< |(z, ξ)|U ′

t
= |(p(z), p′(z)ξ)|Ut

for z ∈ U ′
t and ξ ∈ TzU

′
t .

However U ′
t is not relatively compact in Ut because ∂U

′
t∩∂Ut = {αt}, so there is no

constant of uniform expansion. On the repelling sectors Δ−
t , one can define a metric

μΔ−
t
as the pull-back of the Euclidean metric from the normalizing coordinates Δ−.

|(z, ξ)|Δ−
t
:= |φ′

t(z)ξ| for z ∈ Δ−
t and ξ ∈ TzΔ

−
t ,

where the latter length is the modulus of the complex number φ′
t(z)ξ.

Definition 2.7. Let μt = inf(μUt
,MμΔ−

t
), where M is a positive real number and

M > sup

{
2μUt

(z, ξ)

μΔ−
t
(pt(z), p′t(z)ξ)

: z ∈ p−1
t (Δ−

t ), z /∈ Δ−
t and t ∈ [0, δ′]

}
.

By choosing M sufficiently large, one can assure that on the boundary of Vt the
infimum is attained by the Poincaré metric μUt

. So the metric μt is continuous on
U ′
t . Note also that the Poincaré metric is infinite at αt while the Euclidean metric

is bounded; therefore there exists a neighborhood of αt, uniform with respect to t,
for which the infimum in Definition 2.7 is attained by the Euclidean metric MμΔ−

t
.

Lemma 2.8. The family of metrics μt depends continuously on the parameter t
and it is dominated above and below by the Euclidean metric. There exist m1 > 0
and m2 > 0 such that

m1|x− y| < dμt
(x, y) < m2|x− y| for any x, y ∈ U ′

t .

Proof. By construction, the neighborhood Ut and the repelling sectors Δ−
t depend

continuously on t. Let ρt denote the density function of the Poincaré metric on Ut,
μUt

(z, dz) = ρt(z)|dz|. The map ρt is positive, C∞-smooth on U ′
t and continuous

with respect to t. Hence μUt
is bounded below by the Euclidean metric on U ′

t . The
metric μUt

on this set is also bounded above on U ′
t , except on a small neighborhood

of the fixed point αt ∈ ∂Ut.
The metric μΔ−

t
is the pull-back of the Euclidean metric by a holomorphic injec-

tive map φt, continuous with respect to t. We have μΔ−
t
(z, dz) = |φ′

t(z)||dz|, where
|φ′

t(z)| > 0 is bounded above and below on Δ−
t . Therefore the infimum metric μt

is bounded above and below with respect to the Euclidean metric. �
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Lemma 2.9. The polynomial pt is strictly expanding with respect to the metric μt

on the set U ′
t when t > 0.

Proof. Let z, z′ ∈ U ′
t and ξ ∈ TzU

′
t , ξ

′ ∈ Tz′U ′
t such that z′ = pt(z) and ξ′ = p′t(z)ξ.

We will show that for each t > 0 there exists a constant kt > 1 such that

μt(z
′, ξ′) > kt · μt(z, ξ).

There are four cases to consider:

(a) μt(z, ξ) = μUt
(z, ξ) and μt(z

′, ξ′) = μUt
(z′, ξ′).

This happens only if both z and z′ are outside a small neighborhood of
the point αt. Outside this neighborhood, the set U ′

t is compactly contained
in Ut, so pt expands strongly with respect to the Poincaré metric. For all
t ∈ [0, δ′] there exists κt > 1 such that

(7) μUt
(z′, ξ′) > κt · μUt

(z, ξ).

The constant κt depends only on the distance between the boundaries ∂Ut

and ∂U ′
t outside a disk of fixed size around the fixed point αt, therefore

inf
t∈[0,δ′]

κt > 1.

(b) μt(z, ξ) = MμΔ−
t
(z, ξ) and μt(z

′, ξ′) = MμΔ−
t
(z′, ξ′).

The normalized polynomial p̃t expands with respect to the Euclidean met-
ric, so by Proposition 2.6 we have

μΔ−
t
(z′, ξ′) > (1 + t) · μΔ−

t
(z, ξ).

Notice that the constant of expansion is 1 if and only if t → 0 and φt(z) → 0
(that is, z approaches the parabolic fixed point α0).

(c) μt(z, ξ) = MμΔ−
t
(z, ξ) and μt(z

′, ξ′) = μUt
(z′, ξ′).

Similar to case (a), the point z′ cannot be too close to the fixed point αt,
so

μUt
(z′, ξ′) > κt · μUt

(z, ξ) ≥ κt ·MμΔ−
t
(z, ξ).

(d) μt(z, ξ) = μUt
(z, ξ) and μt(z

′, ξ′) = MμΔ−
t
(z′, ξ′).

There are two sub-cases to consider
(i) If z ∈ p−1

t (Δ−
t ) ∩Δ−

t , then

MμΔ−
t
(z′, ξ′) > (1 + t) ·MμΔ−

t
(z, ξ) > (1 + t) · μUt

(z, ξ).

(ii) If z ∈ p−1
t (Δ−

t ) but z /∈ Δ−
t , then the conclusion follows from the

choice of the constant M , as shown below:

2μUt
(z, ξ) =

2μUt
(z, ξ)

μΔ−
t
(z′, ξ′)

· μΔ−
t
(z′, ξ′) < MμΔ−

t
(z′, ξ′).

Set kt := min (1 + t, κt). From estimates (a), (b), (c) and (d) we can easily see that

μt(z
′, ξ′) > kt · μt(z, ξ).

We get uniform expansion when t > 0 because kt is strictly greater than 1. �

The metric μt induces a natural path metric on U ′
t . If η : [0, 1] → U ′

t is a
rectifiable path, then its length with respect to the metric μt is given by the formula

(8) �μt
(η) =

∫ 1

0

μt (η(s), η
′(s)) ds.
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The distance between two points x and y from U ′
t with respect to the metric μt is

(9) dμt
(x, y) = inf �μt

(η),

where the infimum is taken after all rectifiable paths η : [0, 1] → U ′
t with η(0) = x

and η(1) = y.

2.5. Contraction in the space of functions. For each value of the parameter t,
we will construct a sequence of equipotentials in the complement of the filled Julia
set Kpt

and show that they converge to the Julia set Jpt
, uniformly with respect to

t. In our setting, the filled Julia set Kpt
is connected. Let Ψpt

: C−D → C−Kpt
be

the inverse Böttcher isomorphism of the polynomial pt as in (1) and let γt : S
1 → Jpt

be the Carathéodory loop of pt as in (2) (i.e., the continuous extension of Ψpt
to

the boundary). We write γt instead of γpt
to simplify notation. By the definition

of the isomorphism Ψpt
we have Ψpt

(z2) = pt(Ψpt
(z)), for z ∈ C− D.

Let R > 2 be a fixed constant, chosen as in equation (6). For each t ∈ [0, δ′],
consider the space of functions

Ft =
{
γt,n : S1 → U ′

t : γt,n(s) = Ψpt

(
R1/2n+1

e2πis
)
, n ∈ N

}
.

For each t, the space Ft is just a sequence of parametrized equipotentials
{γt,n}n≥0, corresponding to the polynomial pt. The Green function Gpt

of the poly-
nomial pt is continuous with respect to t and z. Therefore each map (t, s) �→ γt,n(s)
is continuous with respect to t and s. The polynomial pt maps each equipotential
γt,n to the equipotential γt,n−1 by a two-to-one covering map. We can select a

branch of p−1
t by using the inverse Böttcher isomorphism and setting

p−1
t

(
Ψpt

(
R1/2ne2πi (2s)

))
:= Ψpt

(
R1/2n+1

e2πis
)

for s ∈ S
1 and n ≥ 1.

Therefore, the space Ft comes with a natural operator p−1
t : Ft → Ft, given by the

rule

(10) p−1
t (γt,n−1(2s)) = γt,n(s), s ∈ S

1, n ≥ 1.

Endow the function space Ft with the supremum metric

dμt
(γt,n, γt,k) = sup

s∈S1

dμt
(γt,n(s), γt,k(s))

and let F t be the completion of Ft with respect to the supremum metric dμt
. Notice

also that the metric dμt
is bounded, by Lemma 2.8.

Theorem 2.10 (Browder [Br],[KS]). Let (X, d) be a complete metric space and
suppose f : X → X satisfies

d(f(x), f(y)) < h(d(x, y)) for all x, y ∈ X,

where h : [0,∞) → [0,∞) is increasing, continuous from the right, and h(s) < s for
all s > 0. Then f has a unique fixed point x∗ and fn(x) → x∗ for each x ∈ X.

Definition 2.11. We will call a function h that verifies the hypothesis of Theorem
2.10 a Browder function.

Remark 2.12. Assume that the space X from Theorem 2.10 is bounded. The rate of
convergence to the fixed point is controlled by the function h, namely if we choose
L > 0 such that L− h(L) > diam(X), then the following estimate holds:

d(f◦n(x), x∗) < h◦n(L) for any x ∈ X, n ∈ N.
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We apply Browder’s theorem to the complete metric space (F t, dμt
) with the op-

erator p−1
t , to show that for each t ≥ 0, the sequence {γt,n}n≥0 converges uniformly

as n → ∞ to a continuous function γt. As a consequence of the same Theorem 2.10
and Remark 2.12, we obtain the continuity of the map t → γt with respect to the
parameter t.

For each t ∈ [0, δ′], consider the function ht : [0,∞) → [0,∞) given by

ht(s) := sup
{
dμt

(x, y) : x, y ∈ p−1
t (U ′

t) and dμt
(pt(x), pt(y)) ≤ s

}
.

Clearly the function ht is increasing (i.e., s1 < s2 ⇒ ht(s1) ≤ ht(s2)) and satisfies
the inequality

dμt
(γt,n+1, γt,k+1) < ht(dμt

(γt,n, γt,k)), k, n ∈ N.

The family of metrics μt is continuous with respect to t, so the map t → ht is
continuous with respect to t ∈ [0, δ′]. Moreover, by Lemma 2.9, when t > 0 we have

(11) ht(s) <
s

kt
for s > 0.

Inequality (11) implies that p−1
t is strictly contracting with respect to the metric

dμt
when t > 0. Banach Fixed Point Theorem assures that for each t > 0, the

operator p−1
t has a unique fixed point γt : S

1 → U ′
t , and the sequence γt,n converges

to γt as n → ∞.
In [DH] (and also in [H]) it is shown that the function h0 verifies the hypothesis

of Theorem 2.10, hence the sequence γ0,n converges to the unique fixed point of the

operator p−1
0 : F0 → F0, that is, to a continuous function γ0 : S1 → U ′

0. The image
of γ0 is invariant under the parabolic polynomial p0 and it parametrizes its Julia
set Jp0

.
Notice that the constant kt goes to 1 when t goes to 0, so we haven’t obtained

any information yet about the continuity of the map t → γt with respect to t when
t = 0.

To provide a unified approach to the hyperbolic and parabolic cases, we define
a new map h : [0,∞) → [0,∞), h(s) := sup

t∈[0,δ′]
ht(s).

Lemma 2.13. The map h is increasing and h(s) < s for all s > 0.

Proof. When t = 0, it is proven in [DH] and [H] that h0(s) < s for all s > 0. When
t > 0, inequality (11) yields that ht(s) < s for all s > 0. For a fixed s ∈ R+, the
map t → ht(s) is continuous with respect to t, thus it attains its supremum on
[0, δ′], so h(s) < s. For each t, the function ht is increasing, by definition. It is
obvious then that the function h is also increasing. �

The function h is increasing, so h(s+) = limε→0+ h(s + ε) is well defined. The
function h+ : s �→ h(s+) is right continuous and the following lemma holds:

Lemma 2.14. The function h+ : [0,∞) → [0,∞) is a Browder function, i.e., it is
right continuous, increasing, and h+(s) < s for all s > 0. Moreover

dμt
(γt,n+1, γt,k+1) < h+(dμt

(γt,n, γt,k)) for all t ∈ [0, δ′] and k, n ∈ N.

Proof. The only non-trivial property to check is the fact that h(s+) < s for all
s > 0. By Lemma 2.13 we know that h(s) < s for all s > 0, so h(s+) ≤ s for all
s > 0.
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Suppose that h(s+) = s for some s > 0. Let εn ↘ 0 be a decreasing sequence
of positive numbers such that h(s+) = limεn→0 h(s+ εn). From the definition of h
we have

h(s+ εn) = sup
t∈[0,δ′]

ht(s+ εn).

From the definition of the supremum, for every n > 0 there exists tn ∈ [0, δ′] such
that

(12) htn(s+ εn) > sup
t∈[0,δ′]

ht(s+ εn)− εn = h(s+ εn)− εn.

The function htn satisfies

(13) htn(s+ εn) < (s+ εn) ·
1

ktn
< s+ εn.

The sequence tn is bounded, so after passing to a convergent subsequence, we may
assume that tn → τ for some τ ∈ [0, δ′]. Let us show that τ = 0. Assume that
τ �= 0. From inequalities (12) and (13) we know that

h(s+ εn)− εn < htn(s+ εn) <
1

ktn
· (s+ εn).

Taking the limit as n → ∞, we get

s = h(s+) ≤ 1

kτ
· s.

Since s > 0 we get kτ ≤ 1. Then τ = 0, otherwise we would have kτ > 1.
Pickm an integer, and let n be any integer n ≥ m. The sequence εn is decreasing,

so εn < εm. The function htn is increasing, so

(14) htn(s+ εn) ≤ htn(s+ εm) for any n ≥ m.

From the inequalities (12) and (14) we obtain

h(s+ εn)− εn < htn(s+ εm) for any n ≥ m.

After passing to the limit as n → ∞ and using the continuity of ht with respect to
t, we get

s = h(s+) ≤ h0(s+ εm) for every m ∈ N.

Letting m → ∞ we get s ≤ h0(s+). In the parabolic case h0(s+) < s for every
s > 0. This yields s = 0, which is a contradiction. �

Remark 2.15. Lemma 2.14 is very important, because it provides a reduction of
the hyperbolic case to the parabolic case, hence allowing a uniform treatment of
both cases. Lemma 2.14 uses only minimum information about the parabolic case,
that is, the fact that h0(s+) < s for all s > 0. Another remark is that in the
one-dimensional setting, one could presumably prove that the maps ht are already
right continuous, so ht(s) = ht(s+). However, we will apply this lemma in higher
dimensions (where the maps ht will not necessarily be right continuous), so the
existence of the Browder function h+ from Lemma 2.14 bypasses this problem and
is central for the application of Browder’s Fixed Point Theorem.

Theorem 2.16. For each t, the sequence γt,n converges to a fixed point γt : S
1 → U ′

t

of the operator p−1
t . The rate of convergence to the fixed point is uniform in t.
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Proof. By Lemma 2.14, we can use the same Browder function h+ for any parameter
t ∈ [0, δ′] and apply Theorem 2.10 to show the existence of a unique fixed point γt
for the operator p−1

t . Each map γt : S
1 → U ′

t is continuous.
We show that γt,n converges to γt uniformly with respect to t ∈ [0, δ′]. By

Lemmas 2.14 and 2.8 and Remark 2.12 there exists L > 0 such that

m1‖γt,n − γt‖ < dμt
(γt,n, γt) ≤ (h+)◦n(L) ↘ 0 for any t ∈ [0, δ′],

so the rate of convergence of γt,n to the fixed point γt is bounded by the rate at
which the sequence (h+)◦n(L) decreases to 0. Therefore the sequence of functions
t → γt,n converges as n → ∞ to γt, uniformly with respect to t. �

In Theorem 2.16, we have constructed a sequence of functions γt,n, continuous
with respect to t, and proved that it converges uniformly as n → ∞ to γt. Hence
the limit function γt is continuous with respect to t on [0, δ]. The continuity of the
Julia sets Jpt

from Theorem 2.5 follows immediately as Jpt
= Im(γt).

3. Continuity and stability of Julia sets for Hénon maps

Inspired by the one-dimensional setting from Chapter 2, we now turn back to
dynamics in two complex variables and prove a continuity result in Theorem 1.1 for
Hénon maps with a semi-parabolic fixed point. We will consider the Hénon map
written in the form

Hc,a (x, y) = (p(x) + ay, ax) , where p(x) = x2 + c.

When a �= 0, this map is a biholomorphism of constant Jacobian −a2, whose inverse
is

H−1
c,a (x, y) = (y/a, (x− p(y/a))/a) .

As in [HOV1], for r > 0 large enough, the dynamical space C2 can be divided
into three regions: the bidisk Dr × Dr = {(x, y) : |x| ≤ r, |y| ≤ r},

(15) V + = {(x, y) : |x| ≥ max(|y|, r)} and V − = {(x, y) : |y| ≥ max(|x|, r)}.

The escaping sets U± can be described in terms of V ± as follows:

U+ =
⋃
k≥0

H−◦k(V +)

and U− =
⋃

k≥0 H
◦k(V −). By taking their complements in C2 we obtain K+ =

C2 − U+, the set of points that do not escape to infinity in forward time, and
K− = C

2 − U−, the set of points that do not escape to infinity in backward time.
The Julia set J+ is the common boundary of K+ and U+. Similarly J− is the
common boundary of K− and U−. In fact, in the dissipative case, J− = K− (see
[FM]). The sets J = J+ ∩ J− and K = K+ ∩K− are contained in Dr × Dr.

Definition 3.1. Let q be a fixed point of H and λ and ν be the two eigenvalues
of DHq. The fixed point q is called:

(a) hyperbolic if |ν| < 1 and |λ| > 1;
(b) semi-parabolic if |ν| < 1 and λ = e2πip/q;
(c) attracting if |ν| < 1 and |λ| < 1.
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Let λ = e2πip/q be a root of unity of order q and set λt := (1 + t)λ. In Section
2.2 we considered the family pt of polynomials, pt(x) = x2 + ct, with a fixed point
αt = λt/2 of multiplier λt. The exact formula for the coefficient ct is given by
Proposition 3.2 below. In Theorem 2.5 we showed that the Julia sets Jpt

converge
to the Julia set Jp0

as t → 0.
In 1-D, the multiplier of a fixed point of a quadratic polynomial uniquely iden-

tifies the polynomial. The following proposition provides a description of the pa-
rameter space of Hénon maps for which one eigenvalue of the fixed point is known.

Proposition 3.2. The set Pλt
of parameters (c, a) ∈ C2 for which the Hénon map

Hc,a has a fixed point with one eigenvalue λt is a curve of equation

(16) c = (1− a2)

(
λt

2
− a2

2λt

)
−
(
λt

2
− a2

2λt

)2

.

Notation and conventions. The curve Pλt
has degree 4 in the variable a, and

degree 2 as a function of the Jacobian, which is −a2. For this reason, we will
sometimes call the curves Pλt

complex parabolas. When t = 0, the curve Pλ

contains the Hénon maps that have a semi-parabolic fixed point with one eigenvalue
λ, a root of unity.

For the rest of the paper, we denote by ct(a) the right hand side of equation
(16). The Hénon map is completely determined by the choice of a and t, so we will
use Ha,t in place of Hct(a),a when there is no danger of confusion. We write

(17) Ha,t (x, y) =
(
x2 + ct(a) + ay, ax

)
=
(
x2 + ct + a2w + ay, ax

)
,

where the residual term w is bounded and depends only on a and λt,

w :=
−1 + λt − λ2

t

2λt
+

a2

2λt

(
1− 1

2λt

)
.

The Hénon map is also determined by the eigenvalues λ and ν at a fixed point
and we will sometimes write Hλ,ν in place of Hc,a to stress this dependency. The
formula for Hλ,ν is the following:

Hλ,ν(x, y) =
(
x2 + (λ+ ν)(2 + 2λν − λ− ν)/4± i

√
λν y,±i

√
λν x

)
.

It may seem that there are two choices, but they are in fact conjugated by the affine
change of variables (x, y) �→ (x,−y).

A simple analysis shows that any constant r > 3 works in the definition of
sets V ± from (15) for the whole family of Hénon maps Ha,t for |a| and |t| small.
From now on, we assume that r > 3 is a fixed constant. Moreover, we assume
that |t| < 1/(2q) and |a| < 1/2 as minimal requirements and we will specify other
restrictions when necessary.

Let qa,t denote the fixed point of Ha,t which has one eigenvalue λt. Suppose |a|
and |t| are sufficiently small. We will see that the following bifurcation occurs:

(a) if t = 0, then Ha,0 has a semi-parabolic fixed point qa,0 of multiplicity q+1;
(b) if t > 0, then Ha,t has a hyperbolic fixed point qa,t and a q-periodic attrac-

tive orbit;
(c) if t < 0, then Ha,t has an attracting fixed point qa,t and a q-periodic

hyperbolic cycle.

In the degenerate case a = 0, the fixed point q0,t is (αt, 0), where αt is the fixed
point of the polynomial pt. The Hénon maps become H0,t (x, y) = (pt(x), 0). The
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Julia set of the Hénon map H0,t is just the Julia set of the polynomial pt, so we
write J0,t = Jpt

. Moreover J+
0,t = Jpt

× C.

3.1. Local dynamics – perturbed normal forms. In this section we give a
normal form for perturbations of semi-parabolic germs with semi-parabolic mul-
tiplicity 1. This provides an analogue of Proposition 2.6 for the two-dimensional
setting. Proposition 3.4 is more general. Theorem 3.5 is specialized to the case
of Hénon maps Ha,t that come from perturbations of the family of polynomials pt
discussed in the previous chapter.

Definition 3.3. Let H be a holomorphic germ of (C2,q) whose eigenvalues at the
fixed point q are λ and ν, with 0 < |ν| < 1 and |ν| < |λ|. The strong stable
manifold of the fixed point q corresponding to the eigenvalue ν is

(18) W ss(q) = {z ∈ C
2 : lim

n→∞
|ν|−ndist(H◦n(z),q) = const.}.

We refer to [S] and [MNTU] for a consistent treatment of strong stable manifolds.
For the Hénon map Ha,t, the strong stable manifold W ss(qa,t) contains points that
get attracted to the fixed point qa,t at an exponential rate |νa,t|n. When qa,t

is hyperbolic or semi-parabolic, W ss(qa,t) lives in J+. When the fixed point is
attracting, or semi-Siegel, W ss(qa,t) belongs to the interior of K+. Note also that
when a = 0, W ss(q0,t) = q0,t × C.

We will denote by W ss
loc(qa,t) the local strong stable manifold of qa,t relative to

the polydisk Dr ×Dr that is, the connected component of W ss(qa,t)∩Dr ×Dr that
contains the point qa,t.

Let H be a semi-parabolic germ of transformation of (C2, 0), with an isolated
fixed point at 0 with eigenvalues |ν| < 1 and λ = e2πip/q. The multiplicity of 0 as a
solution of the equation H◦q(x) = x is a number congruent to 1 modulo q. Suppose
therefore that x = 0 is a fixed point of H◦q of multiplicity mq + 1; we call m the
semi-parabolic multiplicity of H.

Proposition 3.4. Let {Ht}|t|<δ′ be an analytic family of germs of diffeomorphisms

of (C2, 0) whose eigenvalues at 0 are λt = (1 + t)λ and νt, with |νt| < min(1, |λt|)
and |νt||λt|2q < 1. If the semi-parabolic multiplicity of H0 is 1, then there exist
local coordinates (x, y) in which Ht has the form Ht(x, y) = (x1, y1), with

(19)

{
x1 = λt(x+ xq+1 + Cx2q+1 + a2q+2(y)x

2q+2 + . . .),
y1 = νty + xh(x, y),

where C is a constant depending on t, and ai(·) and h(·, ·) are germs of holomorphic
functions from (C, 0) to C, respectively from (C2, 0) to C, such that a1(0) = λt and
h(0, 0) = 0. The coordinate transformations depend smoothly on t.

Proof. The case λ = 1 and t = 0 was proved by Ueda [U] and Hakim [Ha]. In
[RT, Proposition 3.3], this was stated for any primitive root of unity λ = e2πip/q

and t = 0.
By straightening the local strong stable manifold of the fixed point 0 we can

assume that Ht is written in the form:

(20)

{
x1 = a1(y)x+ a2(y)x

2 + . . . ,
y1 = νty + xh(x, y),

where aj(·) and h(·, ·) are holomorphic functions with a1(0) = λt and h(0, 0) = 0.
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One can make a holomorphic change of coordinates to make the first 2q + 1
coefficients of the power series in the first coordinate constants. We proceed in
three steps. In the first two steps we show that there exist local coordinates (x, y)
in which the map Ht has the form:

(21)

{
x1 = λtx+ a2x

2 + . . .+ a2q+1x
2q+1 + a2q+2(y)x

2q+2 + . . . ,
y1 = νty + xh(x, y),

where a2, . . . , a2q+1 are constants. In the third step we show how to eliminate the
terms akx

k for 2 ≤ k ≤ 2q+1, k not congruent to 1 modulo q, and obtain equation
(19).
(1) Reduction to a1(y) = λt. Consider as in [Ha] and [U] a coordinate transforma-
tion {

X = u(y)x
Y = y

with inverse

{
x = X/u(Y ),
y = Y,

where u is a germ of analytic functions from (C, 0) to C with u(0) = λt. We need
to find u such that

X1 = u(y1)x1 = u(νty + xh(x, y))
(
a1(y)x+ a2(y)x

2 + . . .
)

= u(νtY +X/u(Y )h(X/u(Y ), Y ))
(
a1(Y )X/u(Y ) + a2(Y )(X/u(Y ))2 + . . .

)
=

u(νtY )a1(Y )

u(Y )
X +O(X2) = λtX +O(X2).

Let b1(Y ) = a1(Y )/λt. The map u satisfies the equation u(Y ) = u(νtY )b1(Y ). We
successively substitute νtY instead of Y in this equation and obtain the unique
solution

u(Y ) =
∞∏

n=0

b1(ν
n
t Y ).

This product converges in a neighborhood of 0 since |νt| < 1 and b1(Y ) = 1+O(Y ).

(2) Reduction to ak(y) constants for 2 ≤ k ≤ 2q + 1. We proceed by induction on
k. The base case k = 1 was discussed above. Suppose that k ≥ 2 and that there
exist local coordinates (x, y) in which Ht has the form{

x1 = λtx+ a2x
2 + . . .+ ak−1x

k−1 + ak(y)x
k + . . . ,

y1 = νty + xh(x, y),

with a2, . . . , ak−1 constant. We would like to find local coordinates so that ak(y) is
also constant. Consider the transformation{

X = x+ v(y)xk

Y = y
with inverse

{
x = X − v(Y )Xk + . . . ,
y = Y,

where v is a germ of analytic functions from (C, 0) to C with v(0) = 0. Using the
coordinates given by this transformation we get

X1 = x1 + v(y1)x
k
1

= λtx+ a2x
2 + . . .+ ak−1x

k−1 +
(
ak(y) + λk

t v(νty)
)
xk +O(xk+1)

= λtX + . . .+ ak−1X
k−1 +

(
ak(Y ) + λk

t v(νtY )− λtv(Y )
)
Xk +O(Xk+1).

We need v such that the coefficient of Xk is constant. This gives the functional
equation λtv(Y ) − λk

t v(νtY ) = ak(Y ) − ak(0). We successively substitute νtY
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instead of Y in this equation and obtain

λtv(Y ) =

∞∑
n=0

(ak (ν
n
t Y )− ak(0))λ

n(k−1)
t .

The series converges in a neighborhood of 0 if |νt||λt|k−1 < 1. This is clearly
achieved when |λt| ≤ 1 since |νt| < 1. If |λt| > 1, then |νt||λt|k−1 ≤ |νt||λt|2q < 1
and the latter inequality is true by hypothesis. Therefore Ht can be written as in
equation (21).

(3) Suppose 2 ≤ k ≤ 2q + 1 is not congruent to 1 modulo q. Assume by induction
on k that Ht can be written as{

x1 = λtx+ akx
k + . . .+ a2q+1x

2q+1 + a2q+2(y)x
2q+2 + . . . ,

y1 = νty + xh(x, y).

Let b = ak

λt−λk
t
and consider the coordinate transformation

(22)

{
X = x+ bxk

Y = y
with inverse

{
x = X − bXk + . . . ,
y = Y.

In the new coordinate system, we get

X1 = x1 + bxk
1 = (λtx+ akx

k + . . .) + b(λtx+ akx
k + . . .)k

= λtx+ (ak + bλk
t )x

k + . . .

= λt(X − bXk + . . .) + (ak + bλk
t )(X − bXk + . . .)k + . . .

= λtX + (ak + b(λk
t − λt))X

k + . . . .

By this procedure, the term containing Xk has been eliminated. The first monomial
that cannot be eliminated in this way will be amq+1X

mq+1 for some integer m. If
we assume that the parabolic multiplicity of the semi-parabolic germ is 1, then
aq+1 �= 0 for t = 0 (hence also for small t) and aq+1X

q+1 will be the first term that
we cannot eliminate by the above procedure. We can further reduce the normal form
to aq+1 = 1 by considering a linear transformation of the form X = Ax, Y = y,
where A is a constant such that Aq = aq+1. We can therefore assume that the
Hénon map can be written as{

x1 = λt(x+ xq+1 + akx
k + . . .+ a2q+1x

2q+1 + a2q+2(y)x
2q+2 + . . .),

y1 = μy + xh(x, y).

By repeating the coordinate transformations (22), we can eliminate all monomials
akx

k with q + 1 < k < 2q + 1. By abuse of notation we still denote by ak the term
λtak. In the new coordinate system, we get

X1 = x1 + bxk
1 = (λt(x+ xq+1) + akx

k + . . .) + b(λt(x+ xq+1) + akx
k + . . .)k

= λt(x+ xq+1) + (ak + bλk
t )x

k + . . .

= λt(X − bXk + (X − bXk)q+1 + . . .) + (ak + bλk
t )(X − bXk + . . .)k + . . .

= λt(X +Xq+1) + (ak + b(λk
t − λt))X

k + . . .

therefore the term containing Xk has been eliminated. �

This following theorem is a generalization of [RT, Theorem 6.2].
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Theorem 3.5. Let r > 3 be a fixed constant. There exist δ, δ′ > 0 such that for any
(c, a) ∈ Pλt

with |a| < δ and |t| < δ′ there exists a coordinate transformation φa,t

from a tubular neighborhood B = Dρ′(αt) × Dr of the local strong stable manifold
of the fixed point qa,t

φa,t : B → Dρ × Dr+O(|a|)

in which Ha,t has the form H̃a,t(x, y) = (x1, y1), with

(23)

{
x1 = λt(x+ xq+1 + Ca,tx

2q+1 + a2q+2(y)x
2q+2 + . . .),

y1 = νa,ty + xha,t(x, y),

and Ca,t is a constant (depending on a and t) and xha,t(x, y) = O(a). Moreover
the transformations φa,t are analytic in a and t, and

lim
a→0

φa,t = (φt(x), y),

uniformly with respect to t. The map φt : Dρ′(αt) → Dρ is the change of coordinates
from Proposition 2.6 for the polynomial pt with a fixed point αt of multiplier λt and

φt ◦ pt ◦ φ−1
t (x) = λt(x+ xq+1 + Ctx

2q+1 +O(x2q+2)).

Proof. We choose δ small enough so that the local strong stable manifold W ss
loc(qa,t)

has no foldings inside Dr × Dr and it can therefore be straightened using a holo-
morphic change of coordinates. The first part of the proof follows directly from
Proposition 3.4. We need to verify the conditions imposed on the eigenvalues at
the fixed point. We have |λt| ∈ (1−δ′, 1+δ′) and |νa,t| = |a|2/|λt| ∈ [0, δ2/(1−δ′)).
The bounds δ and δ′ are chosen small enough so that δ � 1 − δ′. It follows that
|νa,t| � |λt| and |νa,t| < 1. Then |λt||νa,t|2q < (1 + δ′)δ4q(1 − δ′)−2q < 1. This
inequality is not so restrictive. For example, it is verified for δ′ < 1/(2q) and
δ < 1/2. The convergence of the coordinate transformation φa,t as a → 0 follows
immediately by comparing the coordinate transformations done in Proposition 3.4
to those done in Proposition 2.6. �

It is also worth mentioning that the change of coordinates function φa,t from
Theorem 3.5 maps horizontal curves to horizontal curves, that is,

(24) φa,t(Dρ′(αt)× {y1}) ⊂ C× {y2},
which will be useful later on.

3.2. Attracting and repelling sectors. In this section we continue the analysis
of the local dynamics of holomorphic germs of diffeomorphisms of (C2, 0) with a
semi-parabolic fixed point and their nearby perturbations. Consider the set

ΔR =

{
x ∈ C :

(
Re(xq) +

1

2R

)2

+

(
|Im(xq)| − 1

2R

)2

<
1

2R2

}
in the complex plane. There are q connected components of ΔR, which we denote
ΔR,j , for 1 ≤ j ≤ q. Define PR,r = ΔR × Dr and let PR,r,j = ΔR,j × Dr be the
connected components of PR,r.

Proposition 3.6. For R large enough and r small enough there exists a positive
number δ′ such that for all t ∈ (−δ′, δ′)

Ha,t(PR,r,j) ⊂ PR,r,j+p ∪ {0} × Dr for 1 ≤ j ≤ q.

In particular Ha,t(PR,r) ⊂ PR,r ∪ {0} × Dr.
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Proof. Assume that R is large enough and r is small enough so that the map Ha,t

is well defined and has the expansion from Theorem 3.5:{
x1 = λt(x+ xq+1 + Ca,tx

2q+1 + a2q+2(y)x
2q+2 + . . .),

y1 = νa,ty + xh(x, y).

Define the region UR := {X ∈ C | R/q −Re(X) < |Im(X)|} and set

WR,r := UR × Dr.

Suppose (x, y) ∈ PR,r,j . The transformation X = −1/(qxq), Y = y maps each

petal PR,r,j to WR,r. Thus X ∈ UR and |Y | < r. Let Ĥ(X,Y ) = (X1, Y1) be the
corresponding map in the new coordinates:

X1 = − 1

qxq
1

=
X

λq
t (1 + xq + Ca,tx2q + a2q+2(y)x2q+1 + . . .)

q

=
X

λq
t

(
1− q(xq + Ca,tx

2q + . . .) +
q(q + 1)

2
x2q + . . .

)
=

1

λq
t

(
X + 1 +

A

X
+OY

(
1

|X|1+1/q

))
, where A :=

1

q

(
q + 1

2
− Ca,t

)
;

Y1 = νa,ty + xh(x, y) = νa,tY +OY

(
1

|X|1/q

)
.

The notation OY (|X|α) represents a holomorphic function of (X,Y ) in WR,r which
is bounded by K|X|α for some constant K.

One can check that |X| > R
q
√
2
throughout the region UR. Clearly |λt|q > 1/2

for small |t|. There exist constants K ′,K ′′ and K1 = 2K ′q
√
2, K2 =K ′′(q

√
2)1/q

such that ∣∣∣∣X1 −
1

λq
t

(X + 1)

∣∣∣∣ ≤ K ′

|λt|q|X| <
K1

R
,

|Y1 − νa,tY | ≤ K ′′

|X|1/q <
K2

R1/q
.

Choose R large enough and r small enough so that

(25)

⎧⎪⎨⎪⎩
K1

R
<

1

4
,

K2

R1/q
< (1− |νa,t|)r .

The second condition immediately gives

|Y1| ≤ |Y1 − νa,tY |+ |νa,t||Y | < K2

R1/q
+ |νa,t|r < r.

The first condition of (25) implies that

(26)

∣∣∣∣X1 −
1

λq
t

(X + 1)

∣∣∣∣ < 1

4
.

In our case λq
t = (1± t)q is a real positive number. Hence inequality (26) yields the

following estimates:

Re(X1) >
1

(1± t)q
Re(X) +

1

(1± t)q
− 1

4
,

|Im(X1)| >
1

(1± t)q
|Im(X)| − 1

4
.
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Using these estimates and the fact that X ∈ UR, we get

|Im(X1)| >
R/q + 1

(1± t)q
− 1

2
−Re(X1) > R/q − Re(X1),

provided that |t| is small enough so that

(27)
R+ q

R+ q/2
> (1± t)q.

The constant δ′ > 0 is chosen so that this inequality holds for all 0 ≤ t < δ′. It

follows that Ĥ(WR,r) ⊂ WR,r. �

Since the dynamics are different, we will treat the cases t < 0 and t > 0 sepa-
rately. We begin with the latter case, so suppose R, r and t > 0 are as in Proposition
3.6. We show that points in PR,r are attracted by an attractive orbit of period q
under iterations by Ha,t. Each region PR,r,j contains a point of this orbit. The
fixed point 0 is hyperbolic.

Suppose ρt > 0 is a small enough radius such that ρt ≤ q
√
t/(2q). The number

ρt is just a local variable which will be used in the proposition below. Define

DR,r,t = PR,r −
{
(x, y) ∈ C

2 : |x|q ≤ ρt, |y| < r
}

and let DR,r,t,j with 1 ≤ j ≤ q, be the connected components of DR,r,t (see Figure
3).

Proposition 3.7 (Trapping regions – t positive). For R large enough and r
small enough there exists a positive number δ′ such that for all t ∈ (0, δ′)

Ha,t(DR,r,t,j) ⊂ DR,r,t,j+p for 1 ≤ j ≤ q.

In particular Ha,t(DR,r,t) ⊂ DR,r,t and all points of DR,r,t are attracted to an
attractive orbit of period q under iterations by Ha,t.

Proof. We make a change of variables X = −1/(qxq), Y = y and analyze the
situation at infinity. This transformation maps each component DR,r,t,j to a region
WR,r,t := UR,t × Dr, where

UR,t :=

{
X ∈ C : R/q −Re(X) < |Im(X)| and |X| < 1

qρqt

}
.

From equation (26) from the proof of the previous proposition we have

|X1| −
1

(1 + t)q
|X| − 1

(1 + t)q
≤
∣∣∣∣X1 −

1

(1 + t)q
(X + 1)

∣∣∣∣ < 1

4

which gives

|X1| <
1

q(1 + t)qρqt
+

1

(1 + t)q
+

1

4
<

1

qρqt
.

The last inequality holds because

qρqt <
t

2
<

(1 + t)q − 1

(1 + t)q/4 + 1
,

based on our assumption on t and our choice of ρt. With this choice we showed

that Ĥ(WR,r,t) ⊂ WR,r,t and all points of WR,r,t are attracted to an attractive

orbit under iterations by Ĥ. The existence of this orbit follows immediately since
we have a nested intersection of compact sets. �
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Figure 3. (case t > 0) The image of DR,r,t under the map x �→ xq

at a height y = const. A small disk of radius ρt is removed around
the origin.

By choosing a smaller ρt as necessary we can show that all points in PR,r are
attracted by the q-periodic attractive orbit under forward iterations by Ha,t. More-
over, every point that is attracted to this orbit must eventually land in the interior
of one of the regions PR,r,j for 1 ≤ j ≤ q.

Let ε0 = tan(2π/9). To simplify notation, define ρ such that ρq := 1−ε0
R
√

1+ε20
.

The number ρ measures the distance between the origin and one of the points of
intersection of the lines Re(xq) = ε0|Im(xq)| with the boundary of ΔR.

Define the attractive sectors

(28) Δ+ := {x ∈ C : Re(xq) ≤ ε0|Im(xq)| and |xq| < ρq} ,
and the repelling sectors

(29) Δ− := {x ∈ C : Re(xq) > ε0|Im(xq)| and |xq| < ρq} .
Let W+ := Δ+ × Dr ⊂ PR,r and W− := Δ− × Dr.

We will call W− repelling because as we will see, the Hénon map expands hor-
izontally when the Jacobian is small enough. We will call W+ attractive because
points in W+ are attracted to the q-periodic attractive orbit as we have shown
above. There are q components of W± which we denote W±

j for 1 ≤ j ≤ q.

In the regions Δ− and W− we have

(30) Re(xq) > ε1|x|q, where ε1 :=
ε0√
1 + ε20

>
3

5
.

The constants ε0 and ε1 are chosen such that the image of Δ− under x �→ xq has
an angle opening of 5π/9 (see Figure 4).

The definition of the sectors W± for t > 0 is the same as in the case t = 0
[RT, Section 4]. However, when t < 0, we need to modify the definition of the
repelling sector W− so that we have a good horizontal expansion for the Hénon
map. Suppose therefore that t < 0.

Remark 3.8. When λ = 1 the parametric paths described by λt = 1± t are in fact
the same, so we can assume that q ≥ 2.

Assumption on t. Suppose t is sufficiently small so that |t| < 1
24q+12 . A restriction

on t of this form is needed for the local dynamics, but the choice for this bound
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Figure 4. (case t ≥ 0) Repelling and attractive sectors near the
semi-parabolic/hyperbolic fixed point. The attracting sector Δ+

is shown in red and the repelling sector Δ− is shown in green. The
angle of the green sector is 5π/9.

will become clear later on. Let

(31) Rt :=
|t|

(q + 1/3)ε1

be fixed from now on. The constant ε1 > 3/5 is the same as in equation (30).
Suppose further that |t| is small enough so that Rt < 1/(9R), where R is as in
Proposition 3.6.

Define

Dr,t =
{
(x, y) ∈ C

2 : |x|q ≤ Rt, |y| < r
}
.

Proposition 3.9 (Attracting region – t negative). For R large enough and r
small enough there exists a positive number δ′ such that Ha,t(Dr,t) ⊂ Dr,t and all
points of Dr,t are attracted to the origin under iterations by Ha,t for all t ∈ (−δ′, 0).

Proof. We make the change of variables X = −1/(qxq), Y = y and analyze the

situation at infinity. Let Ĥ be the map written in these coordinates. This trans-
formation maps Dr,t to the region

Wr,t :=

{
X ∈ C : |X| ≥ 1

qRt

}
× Dr.

Let (X1, Y1) = Ĥ(X,Y ) for (X,Y ) ∈ Wr,t. Note that λt = 1− |t|, as t is negative.
Similar to equation (26) we have that∣∣∣∣X1 −

1

(1− |t|)qX
∣∣∣∣ < 1

4
.

This gives

1

(1− |t|)q |X| − 1

(1− |t|)q − |X1| ≤
∣∣∣∣X1 −

1

(1− |t|)q (X + 1)

∣∣∣∣ < 1

4

and, after rearranging the terms, we want to obtain the following estimate:

|X1| >
1

(1− |t|)q |X| − 1

(1− |t|)q − 1

4
> |X|+ 1

40
.
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The last inequality is equivalent to

|X|
(

1

(1− |t|)q − 1

)
>

1

(1− |t|)q +
11

40
.

Note that 1
(1−|t|)q − 1 > q|t| for small |t|. Using the fact that |X| ≥ (qRt)

−1 and

the particular choice of Rt we get that

|X|
(

1

(1− |t|)q − 1

)
> (q + 1/3) ε1 ≥ 7

5
>

1

(1− |t|)q +
11

40
,

which is true whenever (1− |t|)q > 8/9. This condition is satisfied because, based
on our assumption on t, we have

(1− |t|)q >

(
1− 1

24q + 12

)q

≥
(
59

60

)2

>
8

9
.

Note that the function x �→ (1−1/(24x+12))x is increasing on [2,∞) and that is why
we can use the middle inequality. We have therefore shown that |X1| > |X|+1/40.

Let (Xn, Yn) = Ĥ(Xn−1, Yn−1) for some (X0, Y0) ∈ Wr,t. By induction we get that
|Xn| > |X0| + n/40. It follows that all points in Wr,t are attracted to (∞, 0). In
order to prove that indeed Yn → 0 as n → ∞ we need to do a similar analysis as
in [RT]; we leave the details to the reader. �

When t < 0, we define the repelling sectors as follows:

(32) Δ−
Rt

:= {x ∈ C : Re(xq) > ε0|Im(xq)| and Rt < |xq| < ρq} ,

where Rt is given in (31). The excluded region belongs to the basin of attraction
of 0 (see Figure 5). Set as before W−

Rt
:= Δ−

Rt
× Dr . The definition of the set

W+ is the same as in the case when t is positive, i.e., W+ = Δ+ × Dr, where Δ+

is given in equation (28). Also, Δ−
Rt

is a subset of Δ−, defined in equation (29).

When t → 0−, the sets Δ−
Rt

converge to Δ−, so the definition of W− when t = 0 is
the same as in [RT].

By choosing t small enough so that Rt <
1
9R < ρq we made sure that the excluded

region {x ∈ C | |x|q < Rt} ∩ΔR is contained in Δ+.
Let B = Dρ′(αt)×Dr be the polydisk from Theorem 3.5 and φa,t the coordinate

transformation defined on B. We define attractive and repelling sectors relative to
B.

Definition 3.10. Let W+
B := φ−1

a,t(W
+) for t ≥ 0 and W+

B := φ−1
a,t(Dρ×Dr −W−

Rt
)

for t < 0 be the attractive sectors inside B. Similarly, let W−
B := φ−1

a,t(W
−) for

t ≥ 0 and W−
B := φ−1

a,t(W
−
Rt
) for t < 0 be the repelling sectors inside B.

Proposition 3.11 (Local dynamics).

a) If t ≥ 0, then the compact region W+
B satisfies

Ha,t(W
+
B ) ⊂ int(K+

a,t) ∪W ss
loc(qa,t).

b) If t < 0, then the compact region W+
B lies in the interior of K+

a,t.

Proof. Using Definition 3.10, the proof follows directly from Propositions 3.6 and
3.9. �
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Figure 5. (case t < 0) The repelling sector Δ−
Rt

is shown in green.
The angle of the green sector is 5π/9. The red region belongs to
the basin of attraction of 0.

3.3. Deforming the local semi-parabolic structure into a hyperbolic struc-
ture. In the parabolic case we have shown in [RT, Propositions 6.8, 9.2] that in the
repelling sectors W− near a semi-parabolic fixed point, the Hénon map is weakly
expanding in horizontal cones and strongly contracting in vertical cones, with re-
spect to the Euclidean metric. We will reuse these cones and show that when t is
non-zero, the Hénon map is strongly expanding in horizontal cones and strongly
contracting in vertical cones, and therefore has a local hyperbolic structure. In this
section we only use the local normal form of the map, so all results are applicable to
holomorphic germs of diffeomorphisms of (C2, 0) with a semi-parabolic fixed point
at 0.

Definition 3.12. Define the vertical cone at a point (x, y) from the set Dρ ×Dr

as
Cv
(x,y) =

{
(ξ, η) ∈ T(x,y)Dρ × Dr, |ξ| ≤ |x|2q|η|

}
.

Define the horizontal cone at a point (x, y) from the set Dρ × Dr to be

Ch
(x,y) =

{
(ξ, η) ∈ T(x,y)Dρ × Dr, |ξ| ≥ |η|

}
.

We consider the interior of a cone to be its topological interior together with the
origin.

Consider the Hénon map H̃a,t : Dρ ×Dr → C2 written in the normal form given

in equation (23). We write H̃a,t whenever we want to stress the dependency on the

parameters a and t, but otherwise we simply write H̃ . We have

H̃a,t (x, y) =
(
λt(x+ xq+1 + ga,t(x, y)), νa,ty + xha,t(x, y)

)
,

where

ga,t(x, y) = Ca,tx
2q+1 + a2q+2(y)x

2q+2 + . . . ,

ha,t(x, y) = b1(y) + . . .+ bk(y)x
k + . . . ,

and ga,t(x, y) = g0,t(x)+O(a) and ha,t(x, y) = O(a). Here the term O(a) is in fact
a holomorphic function in both a and t.

When a = 0, H̃0,t(x, y) = (p̃t(x), 0), where p̃t(x) = λt(x+ xq+1 + g0,t(x)) and

g0,t(x) = C0,tx
2q+1 + a2q+1x

2q+2 + . . . .
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The function g0,t depends only on x and t, hence ∂yg0,0(x, y) ≡ 0. For |a| < δ and
|t| < δ′ we can assume that there exists a constant Ma,t with 0 < Ma,t < 1 such
that

(33)
∣∣∂yga,t(x, y)∣∣ < Ma,t|x|2q+2.

When a = 0 we also know that xh0,t(x, y) ≡ 0. Moreover, by the construction of
the normalizing coordinates, we have xha,t(x, y) = O(a). There exists a constant
Na,t, depending on a, with 0 < Na,t < 1 such that when |a| < δ the following
bounds hold:∣∣∂x(xha,t)(x, y)

∣∣ < Na,t and
∣∣∂y(xha,t)(x, y)

∣∣ < Na,t.(34)

Let ∂xga,t(x, y) = x2qβa,t(x, y), for some function βa,t. As usual, ∂x denotes
the partial derivative with respect to the variable x. Denote by m the supremum
of |βa,t(x, y)| on the set W−, where the supremum is taken after all |a| < δ and
|t| < δ′. Thus

(35) m := sup
(x,y)∈W−, |a|<δ, |t|<δ′

|βa,t(x, y)|

and so
∣∣∂xga,t(x, y)∣∣ < m|x|2q for all (x, y) ∈ W−. The repelling sectors Δ− and

W− = Δ− × Dr are defined in equation (29).
By eventually reducing the radius ρ > 0 from the definition of the set Δ−, we

can assume that

(36) |1 + (q + 1)xq| −m|x2q| > 1 + (q + 2/3)ε1|x|q > 1 for all x ∈ Δ−,

where ε1 is given in equation (30). Consider the polynomial p̃t as in Proposition
2.6 with its corresponding repelling sector Δ−

Rt
(see equations (29) and (32)). The

estimate above allows us to show that |p̃t′(x)| > |λt|(1 + (q + 2/3)ε1|x|q) for all
x ∈ Δ−

Rt
. The polynomial p̃t

′ is clearly expanding if t is non-negative since |λt| =
1 + t ≥ 1, but Lemma 3.15 shows that it is also expanding on Δ−

Rt
for negative t.

Proposition 3.13 (Vertical cones). Consider (x, y) and (x1, y1) in the repelling

sectors W− ⊂ Dρ×Dr (respectively in W−
Rt

for t < 0) such that H̃(x, y) = (x1, y1).
Then

DH̃−1
(x1,y1)

(
Cv
(x1,y1)

)
⊂ Int Cv

(x,y)

and
∥∥DH̃−1

(x1,y1)
(ξ′, η′)

∥∥ ≥ (|νa,t|+ 3/2Na,t)
−1‖(ξ′, η′)‖ for (ξ′, η′) ∈ Cv

(x1,y1)
.

Proof. Let (ξ′, η′) ∈ Cv
(x1,y1)

with (ξ′, η′) �= (0, 0), and set (ξ, η) = DH̃−1
(x,y)(ξ

′, η′).

We need to show that (ξ, η) ∈ Cv
(x,y). A direct computation gives

DH̃(x,y) =

(
λt(1 + (q + 1)xq + ∂xga,t(x, y)) λt∂yga,t(x, y)

∂x(xha,t)(x, y) νa,t + x∂yha,t(x, y)

)
and so

ξ′ = λt (1 + (q + 1)xq + ∂xga,t(x, y)) ξ + λt∂yga,t(x, y)η,(37)

η′ = ∂x(xha,t)(x, y)ξ + (νa,t + ∂y(xha,t)(x, y)) η.(38)

Using the bounds from equations (34) and (33) we get

|ξ′| ≥ |λt|
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| − |λt|Ma,t|x|2q+2|η|,(39)

|η′| ≤ Na,t|ξ|+ (|νa,t|+Na,t) |η|.(40)
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Since (ξ′, η′) belongs to the vertical cone at (x1, y1), we also know that

|ξ′| ≤ |x1|2q|η′| ≤ |λt|2q|x|2q|1 + xq + ga,t(x, y)/x|2q|η′|
≤ |λt|2q|x|2qM2q

1 |η′|,
where M1 is the supremum of |1+xq + ga,t(x, y)/x| on the repelling sectors W− of
the tubular neighborhood Dρ × Dr, that is,

M1 := sup
(x,y)∈W−,
|a|<δ, |t|<δ′

∣∣1 + xq + ga,t(x, y)/x
∣∣.

Since Re(xq) > ε1|x|q on W− we can take M1 > 1, but any constant M1 > 0 would
suffice. We have assumed that |t| < 1/(2q), so |λt|2q < 3|λt| and

(41) |ξ′| < 3|λt||x|2qM2q
1 |η′|.

By combining estimates (39), (40), and (41) we get

|λt|
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| − |λt|Ma,t|x|2q+2|η| ≤ |ξ′|

< 3|λt||x|2qM2q
1 |η′| ≤ 3|λt|M2q

1 Na,t|x|2q|ξ|+ 3|λt|M2q
1 (|νa,t|+Na,t)|x|2q|η|.

After regrouping the terms, we write

|ξ| < A2

A1
|x|2q|η|,

where A1 and A2 are defined as follows:

A1 := |1 + (q + 1)xq| − (m+ 3M2q
1 Na,t)|x|2q,

A2 := 3M2q
1 (|νa,t|+Na,t) +Ma,t|x|2.

Since x is chosen from the repelling sectors we have |1 + (q + 1)xq| −m|x|2q > 1.
The quantities Na,t, Ma,t and νa,t = −a2/λt depend on a and on t, and they tend
to 0 as a → 0, uniformly with respect to t. For |a| and |t| small we can therefore
assume that A1 > 2/3 and A2 < 1/3. Hence (ξ, η) ∈ Cv

(x,y), so

DH̃−1
(x1,y1)

(
Cv
(x1,y1)

)
⊂ Int Cv

(x,y).

We now show that inside the vertical cones the derivative DH̃−1 is expanding
with respect to the Euclidean metric. We have

|η′| ≤ Na,t|ξ|+ (|νa,t|+Na,t) |η| < Na,t
A2

A1
|x|2q|η|+ (|νa,t|+Na,t) |η|

<

(
1

2
Na,t|x|2q + |νa,t|+Na,t

)
|η| <

(
|νa,t|+

3

2
Na,t

)
|η|,

provided that |x| < 1 (which is already assumed since ρ < 1). By definition, as
both (ξ, η) and (ξ′, η′) are taken from the vertical cones, we have

‖(ξ, η)‖ = max(|ξ|, |η|) = |η| and ‖(ξ′, η′)‖ = max(|ξ|′, |η′|) = |η′|.
We obtain ‖(ξ, η)‖ > (|νa,t|+ 3/2Na,t)

−1‖(ξ′, η′)‖. �

For |a| and |t| sufficiently small the expansion factor (|νa,t|+ 3/2Na,t)
−1 can be

easily made larger than 1. Hence DH̃−1 expands in the vertical cones with a factor
strictly greater than 1.
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Proposition 3.14 (Horizontal cones). Consider two points (x, y) and (x1, y1)
in the repelling sectors W− ⊂ Dρ × Dr (respectively in W−

Rt
for t < 0) such that

H̃(x, y) = (x1, y1). Then

DH̃(x,y)

(
Ch
(x,y)

)
⊂ Int Ch

(x1,y1)

and
∥∥DH̃(x,y)(ξ, η)

∥∥ ≥ |λt| (1 + (q + 1/2)ε1|x|q) ‖(ξ, η)‖ for (ξ, η) ∈ Ch
(x,y).

Proof. Consider (ξ, η) ∈ Ch
(x,y), (ξ, η) �= (0, 0), and let (ξ′, η′) = DH̃(x,y)(ξ, η). We

first need to show that (ξ′, η′) ∈ Ch
(x1,y1)

. Consider ξ′ and η′ written as in equations

(37) and (38), from the proof of the previous proposition. Since (ξ, η) belongs to
the horizontal cone at (x, y), we know that |ξ| ≥ |η|. As before, by using equations
(33), (34), and (35), we get the following estimates:

|ξ′| ≥ |λt|
(
|1 + (q + 1)xq| −m|x|2q

)
|ξ| − |λt|Ma,t|x|2q+2|η|

≥ |λt|
(
|1 + (q + 1)xq| −m|x|2q −Ma,t|x|2q+2

)
|ξ|,(42)

|η′| ≤ Na,t|ξ|+ (|νa,t|+Na,t) |η| ≤ (2Na,t + |νa,t|)|ξ|.
In the final analysis we obtain

|η′| ≤ B2

B1
|ξ′|,

where B1 and B2 are defined in the obvious way

B2 := 2Na,t + |νa,t|,
B1 := |λt|

(
|1 + (q + 1)xq| −m|x|2q −Ma,t|x|2q+2

)
.

The bounds Na,t, Ma,t and |νa,t| tend to 0 as a → 0, uniformly with respect to t,
so one can assume that for |a| and |t| small enough we have B2 < 1/2. Moreover,
using the bound from equation (36), we can assume that

(43) B1 > |λt| (1 + (q + 1/2)ε1|x|q) .
Clearly, B1 is bounded below by |λt| > 1− 1/(2q). In conclusion, we get

|η′| < q

2q − 1
|ξ′|,

which implies that (ξ′, η′) ∈ Int Ch
(x′,y′). The norm of the two vectors from the

horizontal cones are ‖(ξ′, η′)‖ = max(|ξ′|, |η′|) = |ξ′| and ‖(ξ, η)‖ = max(|ξ|, |η|) =
|ξ|. We have already shown in equation (42) that |ξ′| ≥ B1|ξ|. Together with the
lower bound on B1 from equation (43) this yields

‖(ξ′, η′)‖ > |λt| ((1 + (q + 1/2)ε1)|x|q) |ξ| = |λt| ((1 + (q + 1/2)ε1)|x|q) ‖(ξ, η)‖,
which is what we needed to prove. �

We now analyze the expansion factor |λt| (1 + (q + 1/2)ε1|x|q) in the horizontal
cones from Proposition 3.14. If t = 0, then |λt| = 1 and the expansion factor

reduces to 1 + (q + 1/2)ε1|x|q. In this case DH̃ expands strictly, but not strongly
in the horizontal cones. The expansion factor goes to 1 when x → 0, i.e., when we
approach the local strong stable manifold of the semi-parabolic fixed point.

If t is positive, then |λt| > 1 and DH̃ expands strongly in the horizontal cones,
by a factor of (1+t) (1 + (q + 1/2)ε1|x|q) ≥ (1+t). If t is negative, then |λt| < 1 and
we need to use the definition of the repelling sector W−

Rt
to get a good expansion.
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The repelling sectors were carefully defined in equation (32), from the previous
section. We use the fact that |x|q > Rt for the choice of Rt from equation (31) to
make the product |λt| ·(1 + (q + 1/2)ε1|x|q) strictly greater than 1 throughout Δ−

Rt
.

So we use the particular choice of Rt to make the second term dominate |λt|, which
is in fact smaller than 1. The following technical lemma deals with this situation.

Lemma 3.15 (Expansion estimate). If t ∈ (−δ′, 0), then

|λt| (1 + (q + 1/2)ε1|x|q) > (1 + ε2|t|)
(
1 +

ε1
16

|x|q
)
,

for all x ∈ Δ−
Rt
, where ε2 := 1

16(q+1) . The inequality is also true for t ∈ [0, δ′) and

x ∈ Δ−.

Proof. The proof is straightforward if t is non-negative. Suppose that t is negative.
Note that |λt| = 1− |t|. We first show that for all x ∈ Δ−

Rt

|λt| (1 + (q + 1/2)ε1|x|q) = (1− |t|) (1 + (q + 1/2)ε1|x|q) > 1 +
ε1
8
|x|q,

which is equivalent to showing that |x|q ((1− |t|)(q + 1/2)ε1 − ε1/8) > |t|. On Δ−
Rt

we have that |x|q > Rt for Rt =
|t|

(q+1/3)ε1
, so

|x|q ((1− |t|)(q + 1/2)ε1 − ε1/8) >
|t|

(q + 1/3)
((1− |t|)(q + 1/2)− 1/8) > |t|.

This is verified for |t| < 1
24q+12 , which is one of the bounds already imposed on t.

We then show by direct computation that

1 +
ε1
8
|x|q > (1 + ε2|t|)

(
1 +

ε1
16

|x|q
)
,

for all x ∈ Δ−
Rt

and some constant ε2. We take ε2 = 1
16(q+1) , but the choice is not

optimal. The computational details are left to the reader. �

3.4. Global analysis of the Julia set. We would first like to show that the
corresponding Hénon map is hyperbolic on its Julia set Ja,t. We must show that
the derivative of the Hénon map has appropriate contraction and expansion in a
family of vertical, respectively horizontal cones. We have already shown this to be
true locally around the fixed point qa,t in Section 3.3.

If we look at the form of the Hénon map, Ha,t(x, y) = (pt(x) + a2w + ay, ax)
given in equation (17), we notice that the presence of the multiplicative factor a
in the second coordinate implies that the derivative of the Hénon map is strongly
contracting in the “vertical direction”, or equivalently, DH−1 is expanding in the
“vertical direction”. If we analyze the first coordinate, we notice that the expanding
properties of DH in the horizontal direction are closely related to the expanding
properties of the polynomial pt on a neighborhood of its Julia set. We will construct
a neighborhood V of J+

a,t for the Hénon map Ha,t inside a polydisk Dr×Dr, and put
a metric on it with respect to which the derivative of the Hénon map is expanding
in the “horizontal direction”.

For the Hénon map Ha,t, the construction of the neighborhood V will be similar
to the construction of the neighborhood U ′

t in the polynomial case in Section 2.4 (see
also [RT, Section 7] for the construction of the neighborhood in the semi-parabolic
case).
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Let αt be a fixed point for the polynomial pt. For |a| < δ consider the normalizing
coordinates of the Hénon mapHa,t on the tubular neighborhoodB = Dρ′(αt)×Dr as
defined in Theorem 3.5. Let qa,t denote the hyperbolic/semi-parabolic/attracting
fixed point. Let W+

B and W−
B be the attractive, respectively repelling sectors inside

B from Definition 3.10. By Proposition 3.11, the set W+
B belongs to int(K+

a,t) ∪
W ss

loc(qa,t). The set H−1
a,t (B) ∩ Dr × Dr has two connected components, so let us

denote by

(44) B′ :=
(
H−1

a,t (B)−B
)
∩ Dr × Dr

the component disjoint from B. Let W+
B′ be the preimage of the attractive sectors

W+
B in B′, that is, W+

B′ := H−1
a,t (W

+
B ) ∩B′.

We start by defining a box neighborhood U ′
t ×Dr, where U ′

t is constructed as in
the one-dimensional case (see equation (6)). Recall that the set U ′

t was defined as
U ′
t = p−1

t (Ut), where

Ut := C− p−◦N
t (Satt)− {z ∈ C−Kpt

: |Ψ−1
pt

(z)| ≥ R}.

We choose R > 2 large enough so that the outer boundary of Ut is in the set V +

defined in (15) (and implicitly in the escaping set U+).
The only difference will be that instead of removing the attractive sectors

p−◦N
t (Δ+

t ), we want to remove a bit less. Construct attractive sectors Satt ⊂ Δ+
t

associated with the polynomial pt in Dρ′(αt), thin enough along the attractive axes
so that (

p
−◦(N+1)
t (Satt) ∩ A

)
× Dr ⊂ W+

B .

We denoted by A the annulus between the disk of radius ρ′ and the disk of radius
ρ′′ < ρ′/2 centered at αt, so A = Dρ′(αt)−Dρ′′(αt). Otherwise said, in the annular

region A, we want the small attractive sectors p
−◦(N+1)
t (Satt) of the polynomial pt

to be compactly contained in the attractive sectors W+
B of the Hénon map. As in

Section 2.4, when writing p−◦N
t (Satt) we do not take into account all preimages of

Satt, but rather only the preimage of Satt that is contained in the immediate Fatou
components of the fixed point αt and has αt in the boundary.

Inside the tubes B and B′, we forget all together about the polynomial dynamics.
So we take out the tubes completely and put back in only the repelling sectors W−

B

and W−
B′ . We can now finally define the set V as

(45) V := (U ′
t × Dr − (B ∪B′)) ∪

(
W−

B ∪W−
B′

)
.

Remark 3.16. Note that the set B′ (and consequently W−
B′) is contained in the

larger set Ut ×Dr and its projection on the first coordinate is compactly contained
in Ut and bounded away from the critical point 0 of the polynomial pt. Denote by
B′′ the polydisk Dρ′′(αt)×Dr. When |a| is small, the set B′′ should be thought of
as a small neighborhood of the local stable manifold W ss

loc(qa,t) of the fixed point
qa,t. By the construction above, the set difference W−

B −B′′ is contained in U ′
t×Dr.

Hence V −B′′ is a subset of Ut × Dr.

For t ≥ 0, let V denote the set V together with the local stable manifold
W ss

loc(qa,t) and together with H−1(W ss
loc(qa,t)) ∩ B′. When t < 0 there is no need

to add the two stable manifolds as they belong to the interior of K+
a,t. However, to

preserve notation, we set V = V in this case.
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Lemma 3.17. J+
a,t ∩ V = J+

a,t ∩Dr ×Dr. Moreover, the Julia set Ja,t is contained

in V and

Ja,t =
⋂
n≥0

H◦n(J+
a,t ∩ V ).

Proof. The outer boundary of the set V is an equipotential of the polynomial pt
cross Dr, which belongs to the escaping set U+

a,t. From the tubular neighborhood B

of the local stable manifold we have removed only the attractive sectors W+
B , which

are contained in the interior of K+
a,t when t < 0 and in the interior of K+

a,t union
the local stable manifold W ss

loc(qa,t) when t ≥ 0. From B′ we only removed the
attractive sectors W+

B′ which are contained in the interior of K+
a,t when t < 0, and

respectively in the interior of K+
a,t union a preimage of the local stable manifold

H−1(W ss
loc(qa,t)) ∩ B′ when t ≥ 0. Outside of B ∪ B′, we have removed a vertical

tube p
−◦(N+1)
t (Satt) × Dr which belongs to the interior of K+

a,t. Therefore, when

t < 0, the set J+
a,t ∩ (Dr × Dr) is contained in the set V . When t ≥ 0, in our

construction process of the neighborhood V , we have lost from J+
a,t ∩ (Dr × Dr)

only two local stable manifolds. These local stable manifolds are no longer in V ,
but they lie in the larger set V ,

J+
a,t ∩ (Dr × Dr) ⊂ V when t ≥ 0.

Any point in J+
a,t ∩ V remains in V under forward iterates of the Hénon map, so

the Julia set Ja,t is contained in V . �

3.5. Vertical and horizontal cones in the product metric. We construct an
invariant family of horizontal and vertical cones on the set V defined in (45), such
that the derivative of the Hénon map expands in the horizontal cones, and contracts
in the vertical cones.

In Section 3.3 we have already constructed such an invariant family of cones
in the repelling sectors of the fixed point qa,t. These cones live only in a small
neighborhood of qa,t, where the map is conjugate to the normal form (3.4).

In this section we define a family of cones on the set V away from a small
neighborhood of qa,t. At the end of this section, we show how to patch together
these two types of cones, from Sections 3.3 and 3.5, to get an invariant family on
the entire set V .

The set Ut×Dr comes equipped with the product metric μUt
×μE of the Poincaré

metric μUt
of the set Ut and the regular Euclidean metric μE on the vertical disk Dr.

Tangent vectors (ξ, η) from T(x,y)C
2 will be measured with respect to the product

metric

‖(ξ, η)‖ := max(μUt
(x, ξ), |η|),

where |η| is the absolute value of the complex number η.
By Remark 3.16, the set V −B′′ is a subset of Ut×Dr, and we can endow V −B′′

with the product metric that we have just constructed on the set Ut ×Dr. Denote
by U ′′

t the projection of V on the first coordinate, which is equal to U ′
t ∪ pr1(W

−
B′).

The set U ′′
t − Dρ′′(αt) is compactly contained in Ut, so the Poicaré metric μUt

is
bounded above and below by the Euclidean metric on the set U ′′

t − Dρ′′(αt), that
is, there exist two positive constants m1 and m2 such that

m1 < ρUt
(x) < m2,(46)
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for any t ∈ [−δ′, δ′] and any x ∈ U ′′
t − Dρ′′(αt). Therefore, the product metric is

bounded on the set V −B′′. If we let ρUt
be the density function of the metric μUt

,

μUt
(x, ξ) = ρUt

(x)|ξ|,
then ρUt

is positive and C∞-smooth on U ′′
t − Dρ′′(αt).

The sets U ′′
t , |t| < δ′, avoid a neighborhood of fixed size of the critical point of

the polynomial pt. Hence there exists a lower bound r1 > 0 such that

(47) r1 < |p′t(x)| for any x ∈ U ′′
t .

Definition 3.18. Let τ < 1. Let the vertical cone at a point (x, y) from V −B′′

be
Cv
(x,y) =

{
(ξ, η) ∈ T(x,y)C

2, μUt
(x, ξ) ≤ τ · |η|

}
.

Define the horizontal cone at a point (x, y) from the set U ′
t × Dr to be

Ch
(x,y) =

{
(ξ, η) ∈ T(x,y)C

2, μUt
(x, ξ) ≥ |η|

}
.

We will show that the vertical cones are invariant under DH−1
a,t and that the

horizontal cones are invariant under DHa,t.

Proposition 3.19 (Vertical cones). Consider (x, y) and (x′, y′) in V −B′′ such
that H(x′, y′) = (x, y). Then

DH−1
(x,y)

(
Cv
(x,y)

)
⊂ Int Cv

(x′,y′)

and
∥∥DH−1

(x,y)(ξ, η)
∥∥ ≥ |a|−1‖(ξ, η)‖ for (ξ, η) ∈ Cv

(x,y).

Proof. Let (ξ, η) ∈ Cv
(x,y) and (ξ′, η′) = DH−1

(x,y)(ξ, η). From the formula of the

inverse of the Hénon map

(x′, y′) =

(
y

a
,
x− pt(y/a)− a2w

a

)
we find ξ′ = 1

aη and η′ = 1
a

(
ξ − 2x′

a η
)
. Assume (ξ, η) �= (0, 0), otherwise the proof

is trivial. The vector (ξ, η) belongs to the vertical cone, so μUt
(x, ξ) = ρUt

(x)|ξ| ≤
τ |η|. This implies that

(48) |ξ| < τ

m1
|η|.

We can evaluate

(49) μUt
(x′, ξ′) = ρUt

(x′)
|η|
|a| ≤

m2

|a| |η|.

Next, by using inequality (48), we compute

(50) |η′| = 1

|a|

∣∣∣∣ξ − 2x′

a
η

∣∣∣∣ > 1

|a|

(
|2x′|
|a| − τ

m1

)
|η|.

The point x′ belongs to U ′′
t , so |2x′| > r1 by equation (47). Choose |a| small so that

r1
|a| −

τ
m1

> max
(
2m2

τ , 1
)
. Combining equations (49) and (50) gives μUt

(x′, ξ′) <

τ
2 |η|. Therefore DH−1

(x,y)

(
Cv
(x,y)

)
⊂ Int Cv

(x′,y′), which proves the cone invariance.

Inequality (50) shows that DH−1 expands in the vertical cone as |η′| > |a|−1|η|.
By definition, since both (ξ, η) and (ξ′, η′) belong to vertical cones, we have

‖(ξ, η)‖ = max (μUt
(x, ξ), |η|) = |η| and ‖(ξ′, η′)‖ = max (μUt

(x′, ξ′), |η′|) = |η′|.
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We therefore obtain ‖(ξ, η)‖ > |a|−1‖(ξ′, η′)‖, as claimed. �
Remark 3.20. When dealing with vertical cones, it is not really necessary to measure
the horizontal component of vectors with respect to the Poincaré metric. Any
bounded metric in the horizontal direction would work, because we can always
choose |a| small to get the invariance of the vertical cone field and the strong
expansion of DH−1 in the vertical cones. The choice of the Poincaré metric is
essential however to show expansion of DH in the horizontal cones.

The scalar 0 < τ < 1 in the definition of the vertical cone will typically be
chosen less than (ρ/2)

2q
, so that on a neighborhood of the boundary of B, the

vertical cones Cv
(x,y) from Definition 3.18 are contained in the pull-back by Dφa,t of

the vertical cones from Definition 3.12 defined in the normalized coordinates.

Proposition 3.21 (Horizontal cones). Let (x, y) and (x′, y′) in V − B′′ such
that H(x, y) = (x′, y′). Then we have

DH(x,y)

(
Ch
(x,y)

)
⊂ Int Ch

(x′,y′)

and
∥∥DH(x,y)(ξ, η)

∥∥ ≥ k‖(ξ, η)‖ for (ξ, η) ∈ Ch
(x,y).

Proof. Let (ξ, η) ∈ Ch
(x,y) with (ξ, η) �= (0, 0) and let (ξ′, η′) = DH(x,y)(ξ, η). We

first need to show that (ξ′, η′) ∈ Int Ch
(x′,y′). Since DH(x,y)(ξ, η) = (2xξ + aη, aξ),

we find ξ′ = 2xξ+ aη and η′ = aξ. The vector (ξ, η) belongs to the horizontal cone
at (x, y), so

(51) |η| ≤ μUt
(x, ξ) = ρUt

(x)|ξ| < m2|ξ|.
Using (x′, y′) =

(
pt(x) + a2w + ay, ax

)
we evaluate

(52) μUt
(x′, ξ′) = ρUt

(
pt(x) + a2w + ay

)
|2xξ + aη|.

Since ρUt
is C∞-smooth, its derivative ρ′Ut

is also bounded on U ′′
t −Dρ′′(αt). There

exists a constant c > 0 (which is just a local variable) such that∣∣ρUt

(
pt(x) + a2w + ay

)
− ρUt

(pt(x))
∣∣

|a| ≤ |aw + y| · sup ρ′Ut
· ρUt

(pt(x))

inf ρUt

< c · ρUt
(pt(x)) .(53)

The polynomial pt is expanding with respect to the Poincaré metric μUt
. As in

Lemma (2.9) part (a), there exists κt > 1 with inf
t∈[−δ′,δ′]

κt > 1 such that

(54) ρUt
(pt(x)) |p′t(x)ξ| > κt · ρUt

(x)|ξ|,
whenever x, pt(x) ∈ U ′′

t −Dρ′′(αt). We now turn back to relation (52). Using (53),
(54), (51) and (47) one gets

μUt
(x′, ξ′) > (1− c|a|) · ρUt

(pt(x)) |2xξ| ·
|2xξ + aη|

|2xξ|

> (1− c|a|) · κt · ρUt
(x)|ξ| ·

(
1− |a| |η|

|2x||ξ|

)
> κt · (1− c|a|) ·

(
1− |a|m2

r1

)
· ρUt

(x)|ξ|.(55)

The constant κt is larger than 1 for all t ∈ [−δ′, δ′]. We write the dependence on t
to preserve notation from equation (7), but we could drop the dependence on t by
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working with inf
t∈[−δ′,δ′]

κt which is also strictly larger than 1. The factors 1 − c|a|

and 1− |a|m2

r1
are independent of t, and they can be made arbitrarily close to 1 by

reducing |a|. In conclusion, for |a| sufficiently small we can assume that

(56) k := inf
t∈[−δ′,δ′]

κt · (1− c|a|) ·
(
1− |a|m2

r1

)
> 1.

From relation (55), we obtain

μUt
(x′, ξ′) > k · ρUt

(x)|ξ| = k · μUt
(x, ξ),

which shows that DH expands in the horizontal cones. Also from (55) we infer
that

|a| · μUt
(x′, ξ′) > k · ρUt

(x)|aξ| > k ·m1 · |η′|,

which proves that DH(x,y)

(
Ch
(x,y)

)
⊂ Int Ch

(x′,y′), so the horizontal cones are in-

variant. �

On the set V − B′′ we have one family of horizontal/vertical cones, Ch
(x,y) and

Cv
(x,y), defined in Definition 3.18. On W−

B we have another family of horizon-

tal/vertical cones

Dφ−1
a,t |φa,t(x,y)(Ch

φa,t(x,y)
) and Dφ−1

a,t |φa,t(x,y)(Cv
φa,t(x,y)

)

defined in Definition 3.12 with respect to the Euclidean metric in the normalized
coordinates given by φa,t. For those points (x, y) ∈ W−

B where both types of cones
are defined, we take the horizontal/vertical cone to be their intersection.

3.6. Combining infinitesimal metrics. On the neighborhood V defined in (45)
we have given two infinitesimal metrics. On the set V − B′′, where B′′ ⊂ B was
defined in Remark 3.16, we put the product of the Poincaré metric μUt

with the
Euclidean metric on Dr,

(57) μP ((x, y), (ξ, η)) := max (μUt
(x, ξ), |η|) ,

where (x, y) ∈ V −B′′ and (ξ, η) ∈ T(x,y)V − B′′.

In the repelling sectors W−
B of the tubular neighborhood B of the local strong

stable manifold of the hyperbolic/semi-parabolic/attractive fixed point (see Defini-
tion 3.10), we have the pull-back Euclidean metric from the normalizing coordinates
φa,t : W

−
B → W− ⊂ Dρ × Dr. Let

μB((x, y), (ξ, η)) := max
(
|ξ̃|, |η̃|

)
,

where (ξ̃, η̃) = Dφa,t

∣∣
(x,y)

(ξ, η) and φa,t : B → Dρ ×Dr is the change of coordinate

function from Theorem 3.5.
Just like in the polynomial case, we can define an infinitesimal pseudo-norm on

the set V ,

(58) μ := inf (MμB , μP ) ,

where M is a positive real number, chosen so that the derivative of the Hénon map
is still expanding in the horizontal cones when we map from the repelling sectors
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W−
B′ of B′ (see (44)) into the repelling sectors W−

B of B. We take M so that

(59) M > sup
(x,y)∈W−

B′
(ξ,η)∈Ch

(x,y)−{(0,0)}

2μP ((x, y), (ξ, η))

μB

(
H(x, y), DH(x,y)(ξ, η)

) .

The supremum from equation (59) is bounded, because μP ((x, y), (ξ, η))=μUt
(x, ξ)

for (x, y) ∈ W−
B′ , (ξ, η) ∈ Ch

(x,y), and the Poincaré metric on B′ is bounded.

Let (x, y) be any point in V . Let (ξ, η), (ξ′, η′) be any vectors from the two
dimensional tangent space T(x,y)V .

Notice that μ is homogeneous, that is, μ((x, y), α(ξ, η)) = |α|μ((x, y), (ξ, η)),
for all complex numbers α, as both μP and μB are homogeneous metrics. It also
satisfies the relation μ((x, y), (ξ, η)) ≥ 0, with equality if and only if (ξ, η) = (0, 0).
However, μ does not necessarily satisfy the triangle inequality

μ((x, y), (ξ + ξ′, η + η′)) ≤ μ((x, y), (ξ, η)) + μ((x, y), (ξ′, η′)).

Nonetheless, μ induces a regular path metric on horizontal curves between points
in V (see (8) and (9)) by integration. If g : [0, 1] → V is a horizontal rectifiable
path g(s) = (g1(s), y), then its length with respect to μ is given by the formula

�μ(g) =
∫ 1

0
μ (g(s), (g′1(s), 0)) ds. The distance between two points (x, y) and (x′, y)

from V with respect to the induced metric μ is

(60) dμ ((x, y), (x
′, y)) = inf �μ(g),

where the infimum is taken after all horizontal rectifiable paths g : [0, 1] → V with
pr2(g) = y, g(0) = (x, y) and g(1) = (x′, y).

Another way to combine the two metrics is by defining a true product metric,
where the second coordinate is measured with respect with the Euclidean metric,
and the first coordinate is an infimum of two metrics. Choose (x, y) ∈ U ′

t × Dr ∩
W−

B and non-zero (ξ, η) ∈ T(x,y)U
′
t × Dr ∩ W−

B as before. Using relation (24), let

(
˜̃
ξ, 0) = Dφa,t

∣∣
(x,y)

(ξ, 0) and define

μ′((x, y), (ξ, η)) := max

(
inf

(
μUt

(x, ξ),M |˜̃ξ|) , |η|
)
.

The constant M is greater than sup

(
2μUt

(x, ξ) /|˜̃ξ1|), where
(ξ1, η1) = DH(x,y)(ξ, η)

and the supremum is taken after all points (x, y) ∈ W−
B′ and non-zero vectors

(ξ, η) ∈ Ch
(x,y).

If we let φa,t = (φ1, φ2), then
˜̃
ξ = ∂xφ1(x, y)ξ. Also μUt

(x, ξ) = ρUt
(x)ξ, where

ρUt
is the density function of the Poincaré metric of Ut. In conclusion, if we define

m(x, y) := inf(ρUt
(x),M |∂xφ1(x, y)|) we get

μ′((x, y), (ξ, η)) := max (m(x, y)|ξ|, |η|) .

With this definition it is easy to see that the triangle inequality is satisfied and
μ′ is an infinitesimal metric, i.e., a norm. Notice also that μ and μ′ coincide when
restricted to horizontal curves, and they induce the same horizontal path metric.
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Lemma 3.22. Let t ∈ [−δ′, δ′] and |a| < δ. Let k be chosen as in Proposition 3.21
and the constant ε2 as in Lemma 3.15. There exists a constant

kt ≥ min(1 + ε2|t|, k) > 1,

independent of a, such that

(61) μ
(
Ha,t(x, y), DHa,t

∣∣
(x,y)

(ξ, η)
)
> kt · μ ((x, y), (ξ, η)) ,

for any (x, y) ∈ V and any non-zero tangent vector (ξ, η) in the horizontal cone at
(x, y).

If t = 0 and |a| < δ, there exists k0(x, y) > 1 such that

(62) μ
(
Ha,t(x, y), DHa,t

∣∣
(x,y)

(ξ, η)
)
> k0(x, y) · μ ((x, y), (ξ, η)) ,

and k0(x, y) goes to 1 precisely when (x, y) tends to the local stable manifold
W ss

loc(qa,0) of the semi-parabolic fixed point.
Moreover, the inequalities (61) and (62) hold true for μ′ instead of μ.

Proof. The proof is identical to the proof of Lemma 2.9. We use the estimates in
the horizontal cones from Propositions 3.14 and 3.21. The choice of the constant
M in (59) is useful when dealing with the analogue of case (d)(i), from Lemma 2.9.
The case t = 0 is given by [RT, Theorem 8.7]. �

A larger region of hyperbolicity. The following theorem is a classical result on
dominated splitting.

Theorem 3.23 ([KH]). A compact f -invariant set Λ is hyperbolic if there exists
β0 < 1 < β1 such that for every x ∈ Λ there is a decomposition TxM = Sx ⊕ Tx,
a family of horizontal cones Ch

x ⊃ Sx, and a family of vertical cones Cv
x ⊃ Tx

associated with that decomposition such that

DfxCh
x ⊂ Int Ch

f(x), Df−1
x Cv

f(x) ⊂ Int Cv
x,

‖Dfx ξ‖ ≥ β1‖ξ‖ for ξ ∈ Ch
x and ‖Df−1

x ξ‖ ≥ β−1
0 ‖ξ‖ for ξ ∈ Cv

x.

We now have all the ingredients to prove the hyperbolicity part of Theorem 1.2.

Theorem 3.24 (Hyperbolicity). There exist δ, δ′ > 0 such that in the parametric
region

HRδ,δ′ = {(c, a) ∈ Pλt
: 0 < |a| < δ and − δ′ < t < δ′, t �= 0}

the Julia set Jc,a is connected and the Hénon map Hc,a is hyperbolic.

Proof. In Section 3.5, we built a family of horizontal and vertical cones, invariant
under DH, respectively under DH−1, such that DH expands with a factor of
β1 > 1 inside the horizontal cones, and DH−1 expands with a factor of 1/β0 > 1
inside the vertical cones. The expansion is measured with respect to the metric μ′

from Lemma 3.22. The proof follows from Propositions 3.13, 3.14, 3.19 and 3.21
and Lemma 3.15 by taking β0 = max(|a|, |νa,t| + 3/2Na,t) � 1 and β1 = kt > 1
for t �= 0. The constant kt is given in Lemma 3.22. We then apply Theorem 3.23
for the set Λ := V , which includes J+ ∩ Dr × Dr, by Lemma 3.17. The set V was
constructed in Section 3.4.

The fact that this hyperbolic region is inside a component of the connectedness
locus follows from Corollary 3.31.1. �
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It is worth mentioning that J = J∗ (the closure of the saddle periodic points)
throughout the parametric region defined by (c, a) ∈ Pλt

, |a| < δ and −δ′ < t < δ′.
This follows from Theorem 3.24 and [BS1] for t �= 0 and [RT] for t = 0.

Period doubling. Let P2n

−1 be the set of parameters (c, a) ∈ C2 for which the
Hénon map Hc,a has a cycle of period 2n with one multiplier λ = −1. Theorem
3.24 can be generalized to show that there are regions of hyperbolicity to the left
and to the right of the real curve P2n

−1 ∩ R
2 (see Figure 1). Moreover, for each n,

there is a region of hyperbolicity connecting P2n

−1 ∩ R2 to P2n+1

−1 ∩ R2 of “vertical”
size (the size of the parameter a) δn > 0. Presumably δn → 0 as we approach the
Feigenbaum parameter.

3.7. The function space F. We will do the same construction as in Section 2.5.
Let R be fixed as in equation (6). Recall that

γt,0 : S1 → U ′
t , γt,0(s) = Ψpt

(
R1/2e2πis

)
is the equipotential of pt that defines the outer boundary of the neighborhood U ′

t

constructed in Section 2.4. Define f0 : S1 × Dr → V as

f0(s, z) = (γt,0(s), z).

The image of f0 is thus a solid torus contained in the escaping set U+ that represents
the outer boundary of the set V .

Definition 3.25. Consider the space of functions:

Fa,t = {fn : S1 × Dr → V : f0(s, z) = (γt,0(s), z), fn(s, z) = Fa,t ◦ fn−1(s, z)

for n ≥ 1},

Where the graph transform Fa,t : Fa,t → Fa,t is defined as Fa,t(f) = f̃ , where the

map f̃ is continuous with respect to s, holomorphic with respect to z, and f̃
∣∣
s×Dr

is the reparametrization f̃(s, z) = (ϕs(z), z) of one of the two vertical-like disk
components of

H−1
a,t (f(2s× Dr)) ∩ V

as a graph of a function over the second coordinate, via the Inverse Function The-
orem.

Remark 3.26. The maps fn are essentially reparametrizations of the backward
iterates of f0 (inside V ) under the Hénon map. The picture to keep in mind is
the following: The image of the map fn ∈ Fa,t, n ≥ 0, is a solid torus Tn contained
in the escaping set U+. In the s-coordinate, the Hénon map behaves like angle
doubling, whereas in the vertical z-coordinate, it behaves like a strong contraction.
Therefore, the Hénon map maps Tn+1 to another solid torus, wrapped around two
times inside Tn.

We say that a complex disk is vertical-like if any tangent vector to it belongs
to the vertical cones (Definitions 3.18 and 3.12) if both of them are defined, or to
the one that is defined. The invariance of vertical cones (Propositions 3.19 and
3.13) and the fact that the Hénon map has degree 2 imply that the preimage of a
vertical-like complex disk contained in the set V ∩ U+ consists of two vertical-like
complex disks. Assume by induction on n ≥ 0, that we have fn(s, z) = (ϕn

s (z), z),
where fn is injective, continuous with respect to s and holomorphic with respect to
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z, and for any s ∈ S1, L = fn(2s×Dr) is a vertical-like disk in the escaping set U+.
Let us show how to construct fn+1. The projection Δ of L on the first coordinate is
almost constant and bounded away from 0, the critical point of pt, so the preimage
H−1

a,t (L) ∩ V is a disjoint union of two vertical-like disks that we would like to first
label as s and s+ 1/2 and then parametrize as graphs over the second coordinate.
As in the polynomial case, there are exactly two possible choices of labelings that
would make the function fn+1 continuous with respect to s ∈ S1. There are two
holomorphic branches of the backward iterate of the polynomial pt defined on Δ.
Let now (ϕn

2s(z), z) be any point of L such that H−1
a,t (ϕ

n
2s(z), z) ∈ V . In particular,

by analyzing the second coordinate of H−1
a,t (ϕ

n
2s(z), z), we see that the condition

|(ϕn
2s(z) − p(z/a) − a2w)/a| < r must be satisfied, which means exactly that the

first coordinate z/a is O(a) close to one of the two preimages of ϕn
2s(z) under the

polynomial pt. The curves fn+1(s × Dr) and fn+1((s + 1/2) × Dr) correspond to
different choices of the branch of p−1

t (see also Section 2.5, equation (10)). The
Inverse Function Theorem can be used to write the two vertical-like disks as graphs
of functions over the second coordinate. Thus fn+1(s, z) = (ϕn+1

s (z), z) where ϕn+1
s

is a holomorphic function, continuous with respect to s. The map fn+1 is injective.

Remark 3.27. This procedure can be used to define external rays for the Hénon
map. External rays are very useful tools, because they give combinatorial models
for the Julia set. In [BS6] and [BS7] it was shown that external rays for polynomial
diffeomorphisms of C2 can be defined when J is connected. A priori we do not
know that our family has connected J , but this will be shown to be true as a result
of our construction, in Corollary 3.31.1. The construction of the space F and of
the operator F for t = 0 is given in [RT, Section 11] and is identical for t real and
small.

On the set V we use the modified metric dμ from (58). On the function space
Fa,t we consider the metric

d(f, g) = sup
s∈S

sup
z∈Dr

dμ (f(s, z), g(s, z)) ,(63)

where dμ (f(s, z), g(s, z)) is defined in (60) as the infimum of the length of hori-
zontal rectifiable paths γ : [0, 1] → V with γ(0) = f(s, z) and γ(1) = g(s, z). The
length is measured with respect to the metric μ.

Theorem 3.28. Suppose that t ∈ [−δ′, δ′] and |a| < δ. If t �= 0, then the operator
Fa,t : Fa,t → Fa,t is a strong contraction, i.e., there exists a constant Kt > 1, which
depends on t, such that

d(Fa,t(f), Fa,t(g)) <
1

Kt
d(f, g) for any f, g ∈ Fa,t.

Proof. We can use the expanding properties of the infinitesimal pseudo-metric μ
constructed in (58) to show that the operator Fa,t contracts distances between
vertical-like disks with respect to the induced metric dμ. We show that there exists
Kt > 1 such that

(64) d (Fa,t ◦ f(s× Dr), Fa,t ◦ g(s× Dr)) <
1

Kt
d (f(2s× Dr), g(2s× Dr))

for all f, g ∈ Fa,t and s ∈ S1.
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We first discuss the strategy in the semi-parabolic case t = 0, which is harder and
treated in [RT]. When t = 0 we showed a similar inequality in [RT, Proposition 11.9]:
for f, g ∈ Fa,0 and s ∈ S

1 there exists a constant 0 ≤ C(f, g, s) < 1 such that

d (Fa,0 ◦ f(s× Dr), Fa,0 ◦ g(s× Dr)) < C(f, g, s)d (f(2s× Dr), g(2s× Dr)) .

The contraction factor C(f, g, s) depends only on the distance from the fibers
f(2s × Dr), g(2s × Dr) to W ss

loc(qa,0) and goes to 1 precisely when these fibers
approach W ss

loc(qa,0), the local stable manifold of the semi-parabolic fixed point
qa,0.

We briefly explain how the factor C(f, g, s) is obtained when t = 0. When the
disks f(2s×Dr), g(2s×Dr) are close toW

ss
loc(qa,0), they become almost vertical (the

vertical cones have angle opening of ≈ |x|2q, where |x| measures the distance to the
stable manifold W ss

loc(qa,0) and is close to 0). Meanwhile, by [RT, Proposition 6.8],
the expansion factor of the derivative of the Hénon map in the horizontal direction is
at least (1+ ε1

16 |x|q) > 1. By using the fact that |x|q dominates |x|2q when |x| is small,
we showed in [RT, Theorem 10.2] that the factor C(f, g, s) is strictly smaller than 1
and goes to 1 precisely when x → 0. When the disks f(2s×Dr), g(2s×Dr) do not
belong to a small neighborhood of W ss

loc(qa,0) we proved in [RT, Proposition 11.9]
that in fact we have a strong contraction factor C(f, g, s) < 1/(k + O(|a|)) < 1.
The constant k > 1 is defined in equation (56).

We now return to the proof of inequality (64). When t �= 0, the same proof
as outlined above works, but the computations are greatly simplified, because the
expansion factor from Lemma 3.22 is at least min (1 + ε2|t|, k), hence strictly greater
than 1.

In a small neighborhood of W ss
loc(qa,t), the disks f(2s × Dr), g(2s × Dr) are

almost vertical. Indeed, by Definition 3.12 and the invariance of vertical cones
from Proposition 3.13, the vertical cones in the repelling sectors W−

B have a narrow
angle opening ≈ |x|2q when x is close to 0. By Proposition 3.14 and Lemma 3.15,
the derivative DHa,t expands horizontally by a factor of (1 + ε2|t|)

(
1 + ε1

16 |x|q
)
,

so the operator Fa,t contracts the distance between vertical-like disks by a factor
of (1 + ε2|t|)C(f, g, s). Away from the local stable manifold W ss

loc(qa,t), we have
the same strong contraction factor 1/(k + O(|a|)) as in the case t = 0. Let Kt be
min (1 + ε2|t|, k +O(|a|)). In conclusion, when t �= 0, we have a strong contraction
factor 1/Kt, strictly less than 1. �

As in the polynomial case, we can reduce the hyperbolic case t ∈ [−δ′, δ′] to the
semi-parabolic case by considering

h : [0,∞) → [0,∞), h(s) := sup
t∈[−δ′,δ′]

ht(s),

where

ht(s) := sup
|a|≤δ

sup
{
d(Fa,t ◦ f(θ × Dr), Fa,t ◦ g(θ × Dr)) : f, g ∈ Fa,t and θ ∈ S

1

and d (f(2θ × Dr), g(2θ × Dr)) ≤ s} .
By definition, for each t, the function ht : [0,∞) → [0,∞) is increasing and

satisfies

d(Fa,t(f), Fa,t(g)) < ht (d(f, g)) for any f, g ∈ Fa,t.

By Theorem 3.28 we know that for t �= 0, ht(s) < 1
Kt

s < s for all s > 0. When

t = 0, we know a bit more: by [RT, Theorem 11.10], h0(s+) < s for all s > 0. We



SEMI-PARABOLIC TOOLS FOR HYPERBOLIC HÉNON MAPS 3989

can therefore apply Lemma 2.14 and conclude that the function h+ : s �→ h(s+) is a
Browder function that works for all t ∈ [−δ′, δ′]. This proves that the construction
can be done uniformly with respect to t and a. Uniformity with respect to |a| < δ
was already shown in the semi-parabolic case t = 0 [RT]. Now Browder’s Theorem
2.10 proves the existence of a unique fixed point f∗

a,t : S
1 ×Dr → V of the operator

Fa,t. We summarize below some basic properties of the fixed point f∗
a,t, which are

direct consequences of our construction.

Proposition 3.29. The operator Fa,t has a unique fixed point

f∗
a,t : S

1 × Dr → J+
a,t ∩ V , f∗

a,t(s, z) = (ϕt,s(z), z).

The map f∗
a,t is surjective, continuous with respect to t and s, and holomorphic with

respect to a and z.

3.8. Stability and continuity of J and J+. The Julia sets J and J+ depend
lower-semicontinuously on the parameters, and discontinuities can occur at a pa-
rameter for which the Hénon map has a semi-parabolic fixed point [BSU17]. In
Theorem 3.32 we prove that in our family of complex Hénon maps Ha,t the sets J
and J+ depend continuously on the parameters as t → 0.

We begin by analyzing the properties of the fixed point f∗
a,t in more detail.

The analysis is similar to [RT, Section 12], but the role of the parameter t is
different. By Proposition 3.29, f∗

a,t(s, z) = (ϕt,s(z), z), where ϕt,s(z) is continuous

with respect to s ∈ S
1 and analytic with respect to z ∈ Dr. The map ϕt,s depends

analytically on the parameter a as well, but we choose to disregard this to simplify
notation. We will point out the dependency on a when needed. For each t, let
σa,t : S

1 × Dr → S
1 × Dr be defined by

(65) σa,t(s, z) = (2s, aϕt,s(z)) .

By Proposition 3.30 below, for sufficiently small |t| and |a| �= 0, the map σa,t is
well-defined, open, and injective.

As in [RT, Lemma 12.2], for each t, the map ϕt,s has the following expansion:

(66) ϕt,s(z) = γt(s)−
az

2γt(s)
+ a2βt(s, z, a),

where γt : S1 → Jpt
is the Carathéodory loop associated to the polynomial pt.

Recall that γt is continuous, surjective, and does not vanish on S1 since the critical
point of the polynomial pt does not belong to the Julia set Jpt

. The tail βt(s, z, a)
is bounded with respect to a and t.

Proposition 3.30. For sufficiently small |t| < δ′ and 0 < |a| < δ the map σa,t is
open and injective. Moreover σa,t(S

1 × Dr) ⊂ S
1 × D|a|r′ , for some r′ < r.

Proof. Since the critical point of pt is far away from the Julia set Jpt
, there exists

ε > 0 such that |γt(s)−γt(s+1/2)| > ε for all s ∈ S
1 and t ∈ [−δ′, δ′]. The expansion

from (66) shows that there exist constantsMt > 0 such that |ϕt,s(z)−γt(s)| < |a|Mt

for all s ∈ S1 and z ∈ Dr. The constant M := sup|t|<δ′ Mt does not depend on

t. Then for |a| < ε
2M the map σt is injective. It is open because locally it is a

homeomorphism. �
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The following theorem is a direct consequence of our construction so far.

Theorem 3.31. Let λ = e2πip/q and λt = (1+ t)λ. There exists δ, δ′ > 0 such that

• for all −δ′ < t < δ′ and
• for all parameters (c, a) ∈ Pλt

with 0 < |a| < δ

the diagram commutes:

S1 × Dr

f∗
a,t−−−−→ J+ ∩ Dr × Dr

σa,t

⏐⏐! ⏐⏐!Hc,a

S1 × Dr

f∗
a,t−−−−→ J+ ∩ Dr × Dr

Proof. The existence of the fixed point f∗
a,t has already been established in the

previous Section 3.7. By construction, we have that H ◦ f∗
a,t(s× Dr) is compactly

contained in f∗
a,t(2s× Dr). Thus we can write

H ◦ f∗
a,t(s, z) =

(
pt(ϕt,s(z)) + a2w + az, aϕt,s(z)

)
= (ϕt,2s(aϕt,s(z)), aϕt,s(z)) = f∗

a,t ◦ σa,t(s, z).

The last equality follows from the fact that

f∗
a,t ◦ σa,t(s, z) = f∗

a,t(2s, aϕt,s(z)) = (ϕt,2s(aϕt,s(z)), aϕt,s(z)) .

Therefore f∗
a,t semi-conjugates H on J+ ∩ V to σa,t on S1 × Dr, as claimed. The

fact that J+ ∩ V = J+ ∩ Dr × Dr follows from Lemma 3.17. �

Corollary 3.31.1. The Julia set J is connected.

Proof. By Theorem 3.31 and Lemma 3.17, we get

(67) J = f∗
a,t

⎛⎝⋂
n≥0

σ◦n
a,t

(
S
1 × Dr

)⎞⎠ .

By Proposition 3.30, the intersection above is a nested intersection of connected,
relatively compact sets, hence connected. Then J is connected, since f∗

a,t is contin-
uous. See Figure 6 for parameter space pictures of the connectivity region. �

The Hénon map Ha,t has a fixed point qa,t with eigenvalues λt and νt. The
product of the eigenvalues equals the Jacobian of the map, so |λt||νt| = |a|2. We
write J(λt,νt) and J+

(λt,νt)
to denote the dependency of the Julia sets J and J+ on

the eigenvalues, rather than on the parameters a and t.

Theorem 3.32 (Continuity). There exists δ > 0 such that if |νt| < δ and νt → ν
as t → 0, then the Julia sets J and J+ depend continuously on the parameters, i.e.,

J+
(λt,νt)

→ J+
(λ,ν) and J(λt,νt) → J(λ,ν)

in the Hausdorff topology.

Proof. By Theorem 3.31, Lemma 3.17, and Proposition 3.29 we know that

(68) J+
(λt,νt)

∩ Dr × Dr = f∗
a,t

(
S
1 × Dr

)
and f∗

a,t is continuous with respect to t and holomorphic in a. Therefore

J+
(λt,νt)

∩ Dr × Dr → J+
(λ,ν) ∩ Dr × Dr
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• 0

(a) t = 0.25

• 0

(b) t = 0.1

• 0

(c) t = 0.025

• 0

(d) t = 0

• 0

(e) t = −0.025

• 0

(f) t = −0.1

Figure 6. Parameter plots inside the curves P(1+t)λ for λ = −1
and several values of t. In each picture, the large region in the
center contains the disk |a| < δ. The black region represents a
rough approximation of the set of parameters (c, a) ∈ P(1+t)λ for
which the Julia set Jc,a is connected. Here the Hénon map is
written in the standard form Hc,a(x, y) = (x2 + c − ay, x). The
pictures were generated using FractalStream.

in the Hausdorff topology, as t → 0. Let H = H(λt,νt) be the Hénon map corre-

sponding to a pair of eigenvalues (λt, νt). Clearly H−1 is continuous with respect
to t. Let n be a positive integer. Taking H−◦n in equation (68) gives

H−◦n
(
J+
(λt,νt)

∩ Dr × Dr

)
= H−◦nf∗

t

(
S
1 × Dr

)
,

which converge in the Hausdorff topology, as t → 0. We have accounted for all of
J+, because globally the set J+ is

⋃
n≥0 H

−◦n(J+ ∩ Dr × Dr).

The Julia set J(λt,νt) can be written as in equation (67). The maps f∗
a,t and

σa,t are continuous in a and t, so J(λt,νt) converges to J(λ,ν) in the Hausdorff
topology. �

Remark 3.33. We have established a continuity result for real values of t, but the
situation is much more general, similar to the one-dimensional case. If t is real,
then the local attractive/repelling sectors from Section 3.2 are “straight”, as in the
semi-parabolic case t = 0. If we allow t to be complex, then we need to adapt
the computations from Sections 3.2 and 3.5 to construct “spiralling petals” for the
Hénon map.
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Suppose t is fixed. For each s ∈ S1, f∗
a,t(s×Dr) is a vertical-like holomorphic disk.

Any two such disks corresponding to distinct angles s1 and s2 are either disjoint or
coincide (since they were obtained as a uniform limit of disjoint holomorphic disks
fn(s1×Dr) and fn(s2×Dr)). In the latter case, their parametrizing maps coincide,
i.e.,

f∗
a,t(s1, z) = (ϕs1(z), z) = (ϕs2(z), z) = f∗

a,t(s2, z)

for all z ∈ Dr. The fixed point f∗
a,t is holomorphic with respect to a, so we can

determine the equivalence classes of f∗
a,t by letting a → 0. When a = 0, we have

J+ ∩ V = Jpt
× Dr so all the identifications are given by the polynomial pt. An

application of Hurwitz’s theorem (see [RT, Propositions 12.4-12.6]) gives

f∗
a,t(s1, z1) = f∗

a,t(s2, z2) if and only if γt(s1) = γt(s2) and z1 = z2.

Definition 3.34. We define an equivalence relation ∼ on S
1 × Dr as follows:

(s1, z) ∼ (s2, z) whenever γt(s1) = γt(s2).

We obtain ϕt,s1(z) = ϕt,s2(z) iff γt(s1) = γt(s2). By equation (66) this also gives
βt(s1, z, a, t) = βt(s2, z, a, t) whenever γt(s1) = γt(s2). The relation ∼ is clearly
closed. Moreover, since all polynomials pt have the same Thurston lamination for
t ∈ [0, δ′) hence the same combinatorial model (see [Th]), the equivalence relation
∼ does not depend on t when t ∈ [0, δ′). Thus, in 1-D, the polynomial pt acting on
Jpt

is conjugate to the parabolic polynomial p0 on Jp0
, for all t ∈ [0, δ′). Note that

this is not true for all t ∈ (−δ′, δ′). For example, if λ = −1, the Julia set of p1−t is
a quasicircle and the associated Thurston lamination is empty. However, the Julia
set of p1+t is homeomorphic to the Julia set of z �→ z2 − 3/4 (the “fat Basilica”)
and the corresponding lamination is non-empty. The same situation is true in 2-D
as we will show below.

Theorem 3.35 (Stability). The family of complex Hénon maps Pλt
� (c, a) →

Hc,a is a structurally stable family on J and J+ for 0 < |a| < δ and 0 ≤ t < δ′.

Proof. In view of equation (66), the map σa,t : S
1 × Dr → S1 × Dr has the form

(69) σa,t(s, z) =

(
2s, aγt(s)−

a2z

2γt(s)
+O(a3)

)
.

By Theorem 3.31, the map Ha,t on J+
a,t ∩ Dr × Dr is semi-conjugate to σa,t on

S1 × Dr. For 0 < |a| < δ and t ∈ [0, δ′) small enough, the maps σa,t are conjugate
to each other. The proof of this fact is the same as that of [RT, Lemmas 12.7, 12.8]
stated below.

Lemma 3.36 ([RT]). Suppose 0 < |a| < δ and t = 0.

a) The map σa,0 : S1×Dr → S1×Dr is conjugate to σ′
a,0 : S1×Dr → S1×Dr,

defined by σ′
a,0(s, z) =

(
2s, aγ0(s)− a2z

2γ0(s)

)
.

b) The maps σ′
a,0 are conjugate to σ′

ε,0 for some ε > 0 independent of a.

It is important to note that in each fiber {s} × Dr the image of σa,t consists of
two disjoint disks. This follows from Proposition 3.30 as γt(s) and γt(s+ 1/2) are
at least ε-apart, for some ε > 0 independent of a and t.

Suppose 0 < |a| < δ and t ∈ [0, δ′). The equivalence classes of f∗
a,t are exactly

the ones given by the equivalence relation ∼, in the sense that (s1, z) ∼ (s2, z) iff
f∗
a,t(s1, z) = f∗

a,t(s2, z). Moreover, by Definition 3.34 and the discussion following
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it, if (s1, z) ∼ (s2, z), then σa,t(s1, z) ∼ σa,t(s1, z). Hence, f∗
a,t and σa,t are well

defined on the quotient S1×Dr/∼ and f∗
a,t : S

1×Dr/∼ → J+
a,t∩Dr×Dr is bijective.

The equivalence relation does not depend on the parameters t or a. We obtain that
(Ha,t, J

+
a,t ∩Dr ×Dr) is conjugate to (σa,t, S

1 ×Dr/∼), which are conjugate to each

other and to (σ′
ε,0, S

1 ×Dr/∼), for all 0 < |a| < δ and t ∈ [0, δ′). Stability on J and

J+ follows from these observations. �

Using the same arguments as in the previous theorem, we also have that the
family Pλt

� (c, a) → Hc,a is a structurally stable family on J and J+ for 0 < |a| < δ
and t ∈ (−δ′, 0). However, this is not so surprising: by Theorem 3.24 this family of
maps is hyperbolic and has connected Julia set J , so the family belongs to the same
hyperbolic component of the Hénon connectedness locus. As in the polynomial case
presented earlier, stability does not hold for all parameters t ∈ (−δ′, δ′).

Using the equivalence relation from Definition 3.34 we can identify the quotient
space S1 × Dr/∼ with Jpt

× Dr and the map σa,t : S
1 × Dr → S1 × Dr defined in

equation (65) with a similar map ψa,t : Jpt
× Dr → Jpt

× Dr of the form

(70) ψa,t(ζ, z) =

(
pt(ζ), aζ −

a2z

2ζ
+O(a3)

)
.

The following theorem is a direct consequence of the construction above and pro-
vides concrete model maps for the Hénon family. The corollaries following the
theorem are immediate consequences.

Theorem 3.37. Let λ = e2πip/q and λt = (1 + t)λ. Suppose pt(x) = x2 + ct is a
polynomial with a fixed point of multiplier λt. There exists δ, δ′ > 0 such that

• for all t ∈ (−δ′, δ′) and
• for all parameters (c, a) ∈ Pλt

with 0 < |a| < δ

there exists a homeomorphism Φa,t : Jpt
× Dr → J+ ∩ Dr × Dr which makes the

diagram

Jpt
× Dr

Φa,t−−−−→ J+ ∩ Dr × Dr

ψt

⏐⏐! ⏐⏐!Hc,a

Jpt
× Dr

Φa,t−−−−→ J+ ∩ Dr × Dr

commute, where

(71) ψt(ζ, z) =

(
pt(ζ), εζ −

ε2z

2ζ

)
for some ε > 0 independent of a and t.

Proof. Most of the work has already been done. The idea of the proof is the same as
in [RT, Theorem 1.1]. As in [RT, Lemma 12.7] we can construct a homeomorphism
ha,t : Jpt

×Dr → Jpt
×Dr conjugating the map ψa,t from equation (70) to the map

ψt from equation (71), for some ε > 0, independent of a and t. The map Φa,t is just
a composition between the homeomorphism ha,t and the map f∗

a,t from Theorem
3.31. �

Corollary 3.37.1. The Julia set J is homeomorphic to
⋂

n≥0 ψ
◦n
t (Jpt

× Dr).
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Corollary 3.37.2. Passing to the inductive limit we obtain a global model for the

Julia set J+. The map Φa,t extends naturally to a homeomorphism qΦa,t which
makes the following diagram:

lim−→(Jpt
× Dr, ψt)

qΦa,t−−−−→ J+

qψt

⏐⏐! ⏐⏐!Hc,a

lim−→(Jpt
× Dr, ψt)

qΦa,t−−−−→ J+

commute.
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I (French), Publications Mathématiques d’Orsay [Mathematical Publications of Or-
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by Joseph Christy. MR869255

[T] Raluca Elena Tanase, Henon maps, discrete groups and continuity of Julia sets, Pro-
Quest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Cornell University. MR3193182

[Th] William P. Thurston, On the geometry and dynamics of iterated rational maps, Complex
dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137, DOI 10.1201/b10617-3. Edited
by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. MR2508255

[U] Tetsuo Ueda, Local structure of analytic transformations of two complex variables. I, J.
Math. Kyoto Univ. 26 (1986), no. 2, 233–261, DOI 10.1215/kjm/1250520921. MR849219

http://www.ams.org/mathscinet-getitem?mr=1150591
http://www.ams.org/mathscinet-getitem?mr=3675959
http://www.ams.org/mathscinet-getitem?mr=1316642
http://www.ams.org/mathscinet-getitem?mr=1307296
http://www.ams.org/mathscinet-getitem?mr=1351520
http://www.ams.org/mathscinet-getitem?mr=1326374
http://www.ams.org/mathscinet-getitem?mr=1904271
http://www.ams.org/mathscinet-getitem?mr=1997970
http://www.ams.org/mathscinet-getitem?mr=1789177
http://www.ams.org/mathscinet-getitem?mr=2193309
http://www.ams.org/mathscinet-getitem?mr=1747010
http://www.ams.org/mathscinet-getitem?mr=3193181
http://arxiv.org/abs/1411.3824v1
http://www.ams.org/mathscinet-getitem?mr=869255
http://www.ams.org/mathscinet-getitem?mr=3193182
http://www.ams.org/mathscinet-getitem?mr=2508255
http://www.ams.org/mathscinet-getitem?mr=849219


3996 REMUS RADU AND RALUCA TANASE

Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New

York 11794-3660

Email address: remus.radu@stonybrook.edu

Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New

York 11794-3660

Email address: raluca.tanase@stonybrook.edu


	1. Introduction
	2. Continuity of polynomial Julia sets
	3. Continuity and stability of Julia sets for Hénon maps
	Acknowledgments
	References

