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NEVANLINNA-PICK INTERPOLATION PROBLEM

IN THE BALL

�LUKASZ KOSIŃSKI AND W�LODZIMIERZ ZWONEK

Abstract. We solve a 3-point Nevanlinna-Pick problem in the Euclidean ball.
In particular, we determine a class of rational functions that interpolate this
problem.

1. Introduction

The Nevanlinna-Pick problem for a domain D of Cn may be stated as follows:
Given distinct points z1, . . . , zN in D and numbers λ1, . . . , λN in the unit disc D

decide whether there is an analytic function F : D → D that interpolates, i.e.,
F (zj) = λj, j = 1, . . . , N . The problem is very classical; its original version was
stated for D = D and solved by Pick in 1916 (see [21]).

This problem has been considered in different domains, and many attempts
have been made to extend it in different directions. In general, the analogue of
Nevanlinna-Pick’s theorem does not hold for domains other than the disc. So far
it is not clear how to get any solvability criterion for an arbitrary domain D. An
important result towards understanding this problem was achieved by Sarason, who
found deep relations between the Nevanlinna-Pick problem and several results in
operator theory (see [23]). Cole, Lewis, and Wermer in [9] considered the problem
for any uniform algebra. In a sequence of influential papers (see [2–5] and also a
monograph [6]) Agler and McCarthy used the operator theory approach to carry
out an analysis of the Nevanlinna-Pick problem for the bidisc. However, methods
developed there did not work for any other domains. They even failed for higher
dimensional polydiscs D

n. Some results for D
n and the Euclidean ball Bn were

obtained by Hamilton [13]. Interpolation in the Euclidean ball was also investigated
by Amar and Thomas [7, 8]. Recently, the first author of this paper found an
alternate approach to the Nevanlinna-Pick problem in the polydisc (see [16]) and
N = 3, which resulted in solving the problem in this situation. This approach also
allowed Knese to prove the von Neumann inequality for 3 × 3 matrices (see [15]).
In our paper we adopt the methods from [16] to deal with the Nevanlinna-Pick
problem for the Euclidean ball.

Roughly speaking we show that a 3-point Nevanlinna-Pick problem in the Eu-
clidean ball may be expressed in terms of a dual problem D → Bn. We also find
a class of rational functions of degree at most 2 interpolating every such problem.
Extremal functions in this class are, up to a composition with an automorphism of
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Bn, of the form (10) or (11). The precise statement of the result is postponed to
the next section.

2. Definitions and results

2.1. Interpolation problems. Extremal maps. The definitions we present here
are taken from [17] and [24].

LetD be a domain in Cn and letN ≥ 2. Fix pairwise distinct points λ1, . . . , λN ∈
D and points z1, . . . , zN ∈ D. We call the interpolation data

D → D, λj �→ zj , j = 1, . . . , N,

extremally solvable if it is solvable; i.e., there is a map h ∈ O(D, D) such that
h(λj) = zj , j = 1, . . . , N , and there is no f holomorphic on a neighborhood of D
with the image in D such that f(λj) = zj , j = 1, . . . , N .

Note that the latter condition is equivalent to the fact that there is no h ∈
O(D, D) such that h(λj) = zj , j = 1, . . . , N , and h(D) is relatively compact in D.

This leads us to the following definition (see [17]). Let f : D → D be an analytic
disc. Let λ1, . . . , λN ∈ D be pairwise distinct points. We say that f is a weak
N-extremal with respect to λ1, . . . , λN if the problem

D → D, λj �→ f(λj), j = 1, . . . , N,

is extremally solvable.
Naturally, we shall say that f is a weak N-extremal if it is a weak extremal with

respect to some N pairwise distinct points in the unit disc.
The idea of the above definition has roots in [1], where authors introduced the

notion of N-extremal maps, demanding that the above problem is extremal for all
choices of pairwise distinct points λ1, . . . , λN . Our definition of extremals is weaker;
however, for many domains classes of N -extremals and weak N -extremals coincide
(see [17]). This is the case for among others homogenous (i.e., with transitive
group of holomorphic automorphisms) and balanced domains. In particular, both
definitions are equivalent for the Euclidean ball. Similar maps were also investigated
by Edigarian [11].

The dual problem to the one presented above (we call it the N-Pick problem for
D) is to interpolate the following problem:

D → D, zj �→ λj , j = 1, . . . , N,

i.e., to find an F ∈ O(D,D) such that λj = F (zj), j = 1, . . . , N . The problem is
extremal if there is no G ∈ O(D,D) with G(zj) = λj , j = 1, . . . , N , and the image
G(D) lies relatively compactly in D.

The two problems present two different generalizations of the classical Nevan-
linna-Pick problem in the unit disc which are mutually dual.

In the paper we show a very close relation between them for D = Bn and N = 3.

2.2. Case N = 2. Lempert theorem. Recall that in the case N = 2 the mutual
relationship between the above two problems is well understood. In the case of the
ball and the polydisc the description of extremal problems is obtained very easily.
In a much more general case of bounded convex domains the same description of
the extremality of the problems

(1) D → D, zj �→ λj , j = 1, 2,
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and

(2) D → D, μj �→ zj , j = 1, 2,

is a consequence of the Lempert theorem (see [19]). More precisely, for the fixed
z1, z2 ∈ D the extremality of (1) and (2) implies the existence of the interpolating
functions f ∈ O(D, D) and F ∈ O(D,D) such that F ◦ f is an automorphism of
D (in the language we shall use, Blaschke products of degree 1). Moreover, for the
given distinct points z1, z2 ∈ D the existence of the extremal interpolation function
F and corresponding points λ1, λ2 in the problem (1) (respectively, the existence
of the extremal interpolation function f and μ1, μ2 in the problem (2)) implies the
existence of f and μ1, μ2 (respectively, F and λ1, λ2) as above. One of our aims is
to find an analogue to this description in the case of N = 3 and D being the unit
ball Bn.

2.3. Complex N-geodesics. The above observations make us recall the following
definition (see [17]). An analytic disc f : D → D is called a complex N-geodesic if
there is a holomorphic function F : D → D such that b := F ◦ f is a non-constant
Blaschke product of degree at most N − 1. The function F is called a left inverse
to the complex N -geodesic f .

Recall that if f : D → D is a complex N -geodesic, F : D → D is its left inverse,
and b := F ◦ f , then for any pairwise distinct λ1, . . . , λN ∈ D the interpolation
problems

D → D, f(λj) �→ b(λj), j = 1, . . . , N,

and
D → D, λj �→ f(λj), j = 1, . . . , N,

are extremal.

2.4. Solution of the extremal 3-point problem in the ball. In our paper we
deal with D := Bn and N = 3. The main result of the paper is the following.

Theorem 1. Let F ∈ O(Bn,D) and let z1, z2, z3 ∈ Bn be pairwise different. A
3-point Pick problem in Bn,

Bn → D, zj �→ λj := F (zj), j = 1, 2, 3,

is extremal if and only if there is an f ∈ O(D,Bn) such that either f passes through
the points z1, z2, z3 and F ◦ f is a non-constant Blaschke product of degree at most
2 or f passes through at least two of the points z1, z2, z3 and F ◦ f is a Blaschke
product of degree 1.

Actually, we prove much more than what is stated above. Before we may state
the most general results we need to introduce some notion and recall known facts.
However, at this place to show that the results we have are to a wide extent effective,
we present a theorem describing a class of interpolating functions. This description
follows directly from Theorems 3 and 5, which contain more detailed results.

Theorem 2. If the 3-point Pick interpolation problem

(3) Bn → D, zj �→ λj , j = 1, 2, 3,

is extremal, then, up to a composition with automorphisms of Bn and D, it is
interpolated by a function which belongs to one of the classes

FD :=

{
x = (x1, . . . , xn) �→

2x1(1− τx1)− τω2x2
2

2(1− τx1)− ω2x2
2

, |τ | = 1, |ω| ≤ 1

}
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and

FND :=

{
x = (x1, . . . , xn) �→

x2
1

2− a2
+

2
√
1− a2x2

2− a2
: a ∈ [0, 1)

}
.

2.5. Geometry of the unit ball. To proceed with the presentation of main results
let us recall some well-known facts on the unit ball (see e.g. [14] and [22]). First
recall that the group of automorphisms of Bn is generated by idempotent mappings
χw, w ∈ Bn, and unitary mappings. For the fixed w the mapping χw is the
automorphism interchanging w and 0, w ∈ Bn. In the special case of the unit disc
(n = 1) we put ma := χa, a ∈ D. Then ma is the idempotent Möbius map. Recall
that the automorphisms of the unit ball map the parts of complex lines lying in
the ball onto the same type of sets. Moreover, any three points from the ball may
be mapped by some automorphism into a given two-dimensional intersection of an
affine subspace with the ball.

We also need to know the effective formula for the Carathéodory distance of
the unit ball - the uniquely determined holomorphically invariant function (for the
definition of the Carathéodory distance and its properties see e.g. [14]):

c∗
Bn

(w, z) =

√
1− (1− ||w||2)(1− ||z||2)

|1− 〈w, z〉|2 , w, z ∈ Bn,

where 〈·, ·〉 denotes the standard inner product in Cn.

2.6. Reformulation of the extremal 3-point Pick problem in the ball.
Thanks to the transitivity of the group of automorphisms of the ball, while con-
sidering the 3-point Pick problem in the ball we may, without loss of generality,
restrict ourselves to the problem

Bn → D, 0 �→ 0, z �→ σ, w �→ τ,

where z �= w, z �= 0, w �= 0, and (σ, τ ) �= (0, 0).
Let us come back to the formulation of our main problem. In order to do it we

repeat reasoning from [16] which allows us to formulate the problems in a more
handy way.

Let us denote Dn := {(z, w) ∈ Bn × Bn : z �= w, z �= 0, w �= 0}.
A standard Montel-type argument shows that for any (z, w) ∈ Dn and any

(σ, τ ) ∈ C2 \ {(0, 0)} there is exactly one t = tz,w,(σ,τ) > 0 such that the problem

(4) Bn → D, 0 �→ 0, z �→ tσ, and w �→ tτ

is extremal. It is simple to see that the mapping

Dn × (C2 \ {(0, 0)}) � (z, w, σ, τ ) �→ tz,w,(σ,τ) ∈ R>0

is continuous. Moreover, for fixed nodes z, w the mapping [σ : τ ] �→ (tz,w,(σ,τ)σ,

tz,w,(σ,τ)τ ) gives a 1−1 correspondence between the projective plane P1 and the set
of target points for which (4) is extremally solvable modulo a unimodular constant.
When we refer to the extremal 3-point Pick problem corresponding to the data
(z, w, [σ : τ ]) we mean the problem

Bn → D, 0 → 0, z �→ tz,w,(σ,τ)σ, w �→ tz,w,(σ,τ)τ.

In particular, the target points tz,w,(σ,τ)σ and tz,w,(σ,τ)τ are determined up to a
unimodular constant.
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2.7. Degenerate and non-degenerate cases. An extremal 3-point Pick problem
in D,

D → D, zj �→ λj , j = 1, 2, 3,

is called non-degenerate if no 2-point subproblem is extremal.
We divide the set Dn × P

1 into three sets A, B and C with A ∩ B = ∅, A ∪ B =
Dn × P1, and A open.

We say that an element (z, w, [σ : τ ]) ∈ Dn×P1 belongs to the setA (respectively,
B) if and only if its corresponding extremal 3-point Pick problem is non-degenerate
(respectively, degenerate). Moreover, we define C to consist of points (z, w, [σ : τ ])
such that 0, z and w lie in the range of a 2-extremal. In other words this means
that points 0, z, and w are co-linear. It is clear that C is a proper analytic set.

Our aim will be the effective description of B from which we shall conclude that
A \ C is connected and thus so is A. We shall see that for any extremal function
F ∈ O(Bn,D) corresponding to the extremal 3-point Pick problem (w, z, [σ : τ ])
there will be an f : D → Bn such that F is a left inverse to f (and thus f is a
complex 3-geodesic). In the case (z, w, [σ : τ ]) ∈ B we may effectively pick the
extremal function F from a given class of functions (to be defined later), whereas
the existence of extremal functions f corresponding to the extremals F for points
fromA will follow from some topological argument (relying on connectivity ofA\C).
This idea is the same as in the recent paper [16] concerning the same problem but
in the polydisc. In the latter case we shall be able to find the class of extremal
functions, too.

2.8. Description of the degenerate case. The description of the set B is given
below. Note that the degeneracy of the extremal 3-point Pick problem

Bn → D, w �→ F (w), z �→ F (z), u �→ F (u),

where F ∈ O(Bn,D), means that for two distinct points, say w, z, we have c∗
Bn

(w, z)
= c∗

D
(F (w), F (z)). Composing nodes with automorphisms of Bn we lose no general-

ity assuming that w = 0, F (0) = 0, and F (z1, 0
′) = z1 for some, and consequently,

applying the Schwarz lemma, for any z1 ∈ D \ {0}. Therefore, the description of
B reduces to the description of the possible values of F (u) for fixed u ∈ Bn where
F ∈ O(Bn,D) satisfies F (z1, 0) = z1, z1 ∈ D.

In other words the problem of description of B reduces to the description, for
the fixed w ∈ Bn, of the set

B(w) := {F (w) : F ∈ O(Bn,D), F (z1, 0
′) = z1, z1 ∈ D}.

One more reduction is possible: due to the form of the group of automorphisms of
Bn, the point w may be assumed to be from B2 × {0}. It is therefore sufficient to
discuss the case n = 2.

Summarizing, the set B(w) comprises the possible values σ of the degenerate
extremal 3-point Pick problem in B2,

B2 → D, (0, 0) �→ 0, (z1, 0) �→ z1, w �→ σ,

for some (any) z1 ∈ D∗.
Note that having given a function G ∈ O(B2,D) such that G(z1, 0

′) = z1, z1 ∈ D,
any function of the form

z �→ τG(τz1, ωz2),

where |τ | = 1, |ω| ≤ 1 maps B2 to D and points (z1, 0) to z1.



3936 �LUKASZ KOSIŃSKI AND W�LODZIMIERZ ZWONEK

Define

F1,1(z) :=
2z1(1− z1)− z22
2(1− z1)− z22

, z ∈ B2.

Note that F1,1 ∈ O(B2,D) - it is a straightforward consequence of elementary
transformations. It is also worth mentioning that we deduced the formula for the
function F1,1 as a function playing a special role in describing the set B(w) using
the fact that it lies in the closure of the set of non-degenerate points.

For |τ | = 1, |ω| ≤ 1 define

(5) Fτ,ω(z) := τF1,1(τz1, ωz2) =
2z1(1− τz1)− τω2z22
2(1− τz1)− ω2z22

.

Then Fτ,ω ∈ O(B2,D) and Fτ,ω(z1, 0) = z1. The functions just introduced show
non-uniqueness of left inverses to complex geodesics in the ball, and their form is
much simpler than the one studied in [18].

The fact that B(w) has non-empty interior is one of the main results of [7]. Our
next theorem precisely describes this set.

Theorem 3. Let w ∈ B2. Then

(6) B(w) = mw1

(
B
(
0,

w2√
1− |w1|2

))

= mw1

(
�

(
0,

|w2|2
2− 2|w1|2 − |w2|2

))
,

where �(λ0, r) := {λ ∈ C : |λ − λ0| ≤ r}, λ0 ∈ C, r ≥ 0. In particular, the set
B(w) is a closed Euclidean disc.

Moreover, the extremal 3-point Pick interpolating functions in the degenerate
case may be chosen from a nice class of functions. More precisely,

B(w) = {Fτ,ω(w) : |τ | = 1, |ω| ≤ 1}.
In Theorem 3 not only do we have the effective description of the set B(w) (and

thus B) but also we find the class of extremal mappings which deliver all the possible
values in the degenerate case.

In any case it will follow from the above theorem that the set A is connected
(see Lemma 13). This fact will be crucial in the proof of the next theorem.

2.9. Description of the non-degenerate case. Let Un(C) denote the n
2-dimen-

sional Lie group of unitary matrices.
Below we present a construction that allows us to derive Theorem 1 in the non-

degenerate case. As already mentioned, it is sufficient to express it for n = 2.
Let us consider a mapping Φ defined on the set

Ω := {(x, y, a, U, c) ∈ D∗ × D∗ × (0, 1)× U2(C)× (−1, 1) : x �= y}
by the formula

(7) Φ(x, y, a, U, c) := (ϕa,U,c(x), ϕa,U,c(y), [xmγ(x) : ymγ(y)]),

where γ = 2c
1+|c|2 , ϕa,U,c(λ) := χw(U(amc(λ), (1 − a2)1/2m2

c(λ))), λ ∈ D. Recall

that mc is the idempotent Möbius map switching 0 and c, and χw, where w =
U((1 − a2)1/2c, ac2), is an idempotent automorphism of the Euclidean unit ball
switching 0 and w.

Let us formulate a result which is contained in the proof of Theorem 5.8 in [24].



NEVANLINNA-PICK INTERPOLATION PROBLEM IN THE BALL 3937

Proposition 4 (See [24]). Let a, U, c, γ be as above. Then there is a holomorphic
mapping F : B2 → D such that

F (ϕa,U,c(λ)) = λmγ(λ), λ ∈ D.

In particular, ϕa,U,c is a 3-complex geodesic (that is not a 2-extremal), and F is its
left inverse.

The above proposition implies that the image of Φ lies in the set A \ C (see
Lemma 8 for details). Our aim is to show more. Namely, we have

Theorem 5. With the notation as above, Φ(Ω) = A \ C.

In other words, there is a correspondence (in fact 2 : 1) between the three
extremals and the non-degenerate 3-point Pick problem in the ball. Moreover, as
we shall see the solution of the non-degenerate extremal 3-point Pick problem in
the ball may also be taken from a relatively simple class of functions.

An analogous result holds in the polydisc (see [16]). However, there are some
differences between the case of the ball and that of the polydisc. First note that
unlike in the case of the polydisc the case of the unit ball may be easily reduced
(due to the form of holomorphic automorphisms) to the two-dimensional case. For
instance the proof in the polydisc was different in dimension 2, 3, and at least
4. Second, the situation in the ball differs from that in the polydisc since the
degenerate case in the ball is a big one.

3. Degenerate case - proof of Theorem 3

At first we clarify the situation when the degeneracy is ‘strong’. Roughly speak-
ing the result below says that if two of three 2-point subproblems corresponding to
(z, w, ξ) are extremal, then (z, w, ξ) lies in C. More precisely:

Lemma 6. Assume that two of three 2-point subproblems of the 3-problem Pick
problem

Bn → D, zi �→ σi, i = 1, 2, 3,

are extremal. Then z1, z2, z3 ∈ Bn lie on a common complex affine line.

Proof. Let F be a function interpolating the above 3-point Pick problem. Since
automorphisms of the Euclidean ball map complex affine lines into complex affine
lines we may assume that z3 = 0, z1 = (z′1, 0), and the subproblems comprising
z1, z3, and z2, z3 are extremal. We may also assume that σ3 = 0 and σ1 = z1.
Suppose the claim does not hold, so z2 = λ0v for some λ0 ∈ D\{0}, where ||v|| = 1
and |v1| < 1. Then it is clear that F (λ, 0) = λ and F (λv) = eiθλ for some θ ∈ R

and all λ ∈ D.
Consequently,

(c∗
Bn
((z′1, 0), λv))

2 ≥ c∗
D
(F (z′1, 0), F (λv))2 = (c∗

D
(z′1, e

iθλ))2, λ ∈ D,

which is equivalent to

|1− eiθλz1|2 ≤ |1− λv1z1|2, λ ∈ D.

Substituting λ in the unit circle such that Re(eiθλz̄1) = −|z1| we get a contradiction.
�

Now we proceed to the proof of Theorem 3.
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Proof of Theorem 3. We shall make use of the invariance of the sets B(w) under
automorphisms, so at first we study the case of w ∈ {0} × D. To do this define

u(z2) := sup{|F (0, z2)| : F ∈ O(B2,D), F (z1, 0) = z1}, z2 ∈ D.

It is simple to see that u(z2) = u(|z2|).
We claim that

(8) u(z2) ≤
|z2|2

2− |z2|2
, z2 ∈ D.

Fix 1 > z2 ≥ 0. Take F ∈ O(B2,D) such that F (z1, 0) = z1, z1 ∈ D. Without
loss of generality assume that x := F (0, z2) ≥ 0. The holomorphic contractibility
of the Carathéodory distance gives

(c∗
B2
((z1, 0), (0, z2)))

2 ≥ (c∗
D
(F (z1, 0), F (0, z2)))

2 = c∗
D
(z1, x)

2

for any z1 ∈ D. The last inequality may be written in the form

1− (1− |z1|2)(1− |z2|)2 ≥
∣∣∣∣ z1 − x

1− xz1

∣∣∣∣
2

, z1 ∈ D.

Consider only z1 ∈ (−1, 1). Then the last inequality is equivalent to

x2(1− z22)(1 + z21 − z21z
2
2)− 2xz1(1− z21)(1− z22)− z22(1− z21) ≤ 0, z1 ∈ (−1, 1).

Consequently,

x2(1 + z21 − z21z
2
2)− 2xz1(1− z22)− z22 ≤ 0, z1 ∈ (−1, 1).

Passing z1 → −1 we get that

x2(2− z22) + 2x(1− z22)− z22 ≤ 0.

The last is equivalent to the inequalities −1 ≤ x ≤ z2
2

2−z2
2
, which finishes the claim.

The inequality (8) implies that for any w2 ∈ D we get the inclusion B(0, w2) ⊂
{σ : |σ| ≤ |w2|2

2−|w2|2 }. To see the opposite inclusion fix w2 ∈ D. Then manipulating

with |τ | = 1, |ω| ≤ 1 we easily find that for any |σ| ≤ |w2|2
2−|w2|2 there is a function

F := Fτ,ω such that F (0, w2) = σ. In fact, Fτ,ω(0, w2) =
−τ̄ω2w2

2

2−ω2w2
2
, and now observe

that the continuous function

(9) D � ω �→ ω2w2
2

2− ω2w2
2

attains the values 0 (for ω = 0) and some point of the absolute value equal to
|w2|2

2−|w2|2 (for |ω| = 1 such that ω2w2
2 = |w2|2), and thus the connectedness of the

image of the function implies for any |σ| ≤ |w2|2
2−|w2|2 the existence of τ and ω as

desired. This gives the desired description of B(0, w2).

Recall that χ(w1,0)(z) =

(
mw1

(z1),

√
1−|w1|2

1−w1z1
z2

)
, z ∈ B2.

Note that for any function F ∈ O(B2,D) such that F (z1, 0) = z1, z1 ∈ D, the
function G := mw1

◦F ◦χ(w1,0) ∈ O(B2,D) and it satisfies the equality G(z1, 0) = z1,
z1 ∈ D, too.
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Since χ(w1,0)(w) =

(
0, w2√

1−|w1|2

)
this implies that

B(w) = mw1

(
B
(
0,

w2√
1− |w1|2

))
,

which gives the desired description. In particular, for any w ∈ B2 the set B(w) is
the closed Euclidean disc lying in D. More precisely it is a closed disc with respect
to the Poincaré distance (the function c∗

D
) centered at w1.

The above procedure also allows us to construct functions that give all the values
F (w) from the set A(w). It follows from the above reasoning (and the result for
w ∈ {0} × D) that these extremal values will be attained by functions from the
class

{mw1
◦ Fτ,ω ◦Ψ(w1,0) : |τ | = 1, |ω| ≤ 1}.

But this class (formally depending on w) is the same for all w, and consequently
it coincides with that for (0, w2) (some or any). To see this, it is sufficient to make
elementary calculations to get that

mw1
◦ Fτ,ω ◦Ψ(w1,0)(z) =

2
(
1− z1

w1−τ
1−τw1

)
z1 + ω2 τ−w1

1−τw1
z22

2
(
1− z1

w1−τ
1−τw1

)
+ ω2 τw1−1

1−τw1
z22

.

It is easy to observe that the last form is the function Fτ̃ ,ω̃, where τ̃ = w1−τ
1−τw1

,

ω̃2 = −ω2 τw1−1
1−τw1

. �

One may conclude more from the proof of Theorem 3. Note that in contrast with
the situation in the polydisc in the case of the ball the set of degenerate extremal
3-point Pick problems is a ‘big’ one in the sense that the set B has non-empty
interior. Moreover, as formulated in Theorem 3 the class of functions which gives
all the possible values in this case is, up to automorphisms of the ball, recovered
from a nice class of functions:

(10) FD = {Fτ,ω : |τ | = 1, |ω| ≤ 1},
where Fτ,ω is given by (5). It is interesting to note that in order to parametrize the
boundary ∂B the corresponding class of functions may be chosen from the above
one with the additional assumption that |ω| = 1.

4. Non-degenerate case - proof of Theorem 5

4.1. 3-complex geodesics. It was proven in [24, Theorem 5.8] that any 3-extremal
in the unit ball is a complex 3-geodesic. We recall the reasoning that led to this
result.

Let f : D → B2 be a 3-extremal in the unit ball which is not a 2-extremal. Recall
that then f is, up to a composition with an automorphism of Bn, of the form

λ �→ (aλ,
√
1− a2λmα(λ)),

where a ∈ [0, 1) and α ∈ D (see [17, Section 3]).
It was also proved in [17] that any such f with α = 0 admits a left inverse of the

form

F (z) =
z21

2− a2
+

2
√
1− a2z2
2− a2

,

thus showing that such an f is a complex 3-geodesic.
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Later, Warszawski in [24, Theorem 5.8] showed additionally that any 3-extremal
f that is not a 2-extremal is actually equivalent with a 3-complex geodesic of the
form

λ �→ (amc(λ),
√
1− a2m2

c(λ)), a ∈ [0, 1).

A more detailed result on 3-geodesity of 3-extremals (not being 2-extremals) proven
in [24] is presented in Proposition 4.

Remark that the above facts show that one may choose a relatively small class
(modulo automorphisms of the unit ball) of left inverses that would be good for all
3-extremals. This class of functions equals (up to automorphisms)

(11) FND =

{
z21

2− a2
+

2
√
1− a2z2
2− a2

: a ∈ [0, 1)

}
.

These observations will be crucial in our subsequent considerations.

4.2. Left inverses. As we have already mentioned the function F given by the

formula F (z) = αz21 + βz2 with α = 1
2−a2 , β = 2

√
1−a2

2−a2 is a left inverse to λ �→
(aλ, bλ2), where a, b ≥ 0, a2 + b2 = 1. Elementary calculations also show that |F |
attains its maximum on the topological boundary of ∂B2 along the algebraic set
{z ∈ ∂B2 : bz1 = a2z2}.

This brings us to the following general situation: let D be a smooth domain in
Cn and let F ∈ O(D) be such that F (D) ⊂ D. Assume that there exists g ∈ O(D)
such that {z ∈ ∂D : |F (z)| = 1} = {z ∈ ∂D : g(z) = 0} ∩ ∂D. Some methods
coming from analytic geometry will allow us to show that there is α ∈ N such that

FK(z) :=
F (z)√

1−Kgα(z)
∈ D, z ∈ D,

whenever K > 0 is small enough.
Actually, let Z := {|F | = 1} ∩ ∂D. �Lojasiewicz inequality (see e.g. [20]) gives

(12) C dist(z, Z)α ≤ 1− |F (z)|2

for z ∈ ∂D. On the other hand, since Z is the zero set of g on ∂D, for any x ∈ Z
we get that |g(z)| = |g(z) − g(x)| ≤ C ′|z − x|, so the following trivial inequality
holds:

(13) |g(z)| ≤ C ′ dist(z, Z).

Now (12) and (13) together give

K|g(z)|α + |F (z)|2 < 1, z ∈ ∂D,

where K is small enough. The maximum principle finishes the proof of our claim.
Below we shall provide the reader with an elementary proof of the above fact for

D being the unit ball and F given as above by the formula F (z) = αz21 + β2z2 and
the function g given by the formula g(z) = bz1 − a2z2. Beyond being elementary it
has other advantages as it gives explicit formulas for α and K satisfying the claim.

Let us fix the situation that we study. Let

a ∈ (0, 1), b :=
√
1− a2, F (z) :=

1

2− a2
(z21 + 2bz2).

As already mentioned F maps B2 into D and

(14) F (aλ, bλ2) = λ2, λ ∈ D.
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Lemma 7. With the notation as above for any 0 ≤ ε < 1 the function

Fε(z) :=
F (z)√

1− ε2

(2−a2)2 (bz
2
1 − a2z2)2

maps B2 into D.

Proof. To show the above property it is sufficient to show that

|z21 + 2bz2|2 + ε2|a2z2 − bz21 |2 < (2− a2)2

on B2.
For ε > 0 such that 2b ≥ ε2a2b it is sufficient to show that

f(x) ≤ f(b) = (2− a2)2, x ∈ [0, 1],

where f(x) := (1− x2 + 2bx)2 + ε2(a2x− b(1− x2))2.
Since f is a polynomial of degree 4 with the positive leading coefficient, f(0) =

1+ ε2b2, f(1) = 4b2+ ε2(1− b2)2, f(b) = (1+ b2)2, f ′(b) = 0, f ′′(b) = −4(2−a2)+
2ε2(2 − a2)2 we easily conclude the desired inequality for ε such that f ′′(b) < 0,
and this is the case for 0 < ε < 1. �

In the sequel we shall need the following observation:

Lemma 8. Let us keep the notation as in Subsection 2.9. Let x, y ∈ D \ {0} be
such that x �= y. Then the problem

B2 → D, 0 �→ 0, ϕ(x) �→ xmγ(x), ϕ(y) �→ ymγ(y),

where ϕ = ϕa,U,c, is extremal, non-degenerate, and omits C. In other words
Φ(x, y, a, U, c) ∈ A \ C for any (x, y, a, U, c) ∈ Ω.

Proof. Extremality is clear, as Blaschke products are 3-extremals in D.
We shall show that the subproblem

B2 → D, 0 �→ 0, ϕ(x) �→ xmγ(x)

is not extremal. The proof for two other 2-point subproblems is based on the same
idea.

Note that extremality of the above 2-point subproblem is equivalent to the equal-
ity (use (14) and the definition of the ϕ).

c∗
B2
((ac2, (1− a2)1/2c), (am2

c(x), (1− a2)1/2mc(x))) = c∗
D
(c2,m2

c(x)).

Put y = mc(x) and b = (1 − a2)1/2. The last equality means that there is a
geodesic ψ in B2 such that ψ(c2) = (ac2, bc) and ψ(y2) = (ay2, by). Let Fε be
functions constructed in Lemma 7 such that Fε(bλ, aλ

2) = λ2, 0 ≤ ε < 1. Note
that Fε ◦ ψ is the identity for any 0 ≤ ε < 1, so due to the form of Fε we get
the equality aψ2

1 ≡ b2ψ2 on D. This means that the image of ψ lies in the variety
{(λ, a/b2λ2), λ ∈ D}. Since geodesics lie on affine lines we find that a = 0. But
then c∗

B2
((0, c), (0, y)) = c∗

D
(c2, y2), a contradiction.

Finally, we shall show that 0, ϕ(x), and ϕ(y) are not co-linear. Since auto-
morphisms of B2 map affine lines into affine lines the assertion is equivalent to an
obvious fact that (amc(0), bm

2
c(0)), (amc(x), bm

2
c(x)), and (amc(y), bm

2
c(y)) do not

lie on an affine line. �
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4.3. Openness of the range of Φ.

Lemma 9. The continuous mapping Φ : Ω → A \ C is two-to-one. Moreover,
Φ(x, y, a, U, c) = Φ(−x,−y, a, U,−c).

In particular, Φ is locally injective on any domain composed of points such that
x �= y.

Proof. It follows from the definition that the equality Φ(x, y, a, U, c) =
Φ(−x,−y, a, U,−c) holds for any (x, y, a, U, c) ∈ Ω. What remains to be proven is to
show that if Φ(x1, y1, a1, U1, c1) = Φ(x2, y2, a2, U2, c2), then either (x1, y1, a1, U1, c1)
= (x2, y2, a2, U2, c2) or (x2, y2, a2, U2, c2) = (−x1,−y,a1, U1,−c1).

Assume that Φ(x1, y1, a1, U1, c1) = Φ(x2, y2, a2, U2, c2). To simplify the notation
let us denote ϕi = ϕai,Ui,ci and γi =

2ci
1+|ci|2 , bi = (1 − a2i )

1/2, wi = Ui(aici, bic
2
i ),

χi = χwi
, i = 1, 2. Notice that if the problem

B2 → D, 0 �→ 0, ϕ1(x1) �→ x1mγ1
(x1), ϕ1(y1) �→ y1mγ1

(y1)

is interpolated by a function F , then the problem

B2 → D, 0 �→ 0, ϕ2(x2) �→ x2mγ2
(x2), ϕ2(y2) �→ y2mγ2

(y2)

is interpolated by a function ωF for some unimodular ω. Applying this observation
to F := mc21

◦ Fε ◦ U−1
1 ◦ χ1, where Fε is a left inverse to λ �→ (a1λ, (1− a21)

1/2λ2)
constructed in Lemma 7, 0 ≤ ε < 1, we get that there is some ω ∈ ∂D such that

(15) Fε ◦ U−1
1 ◦ χ1 ◦ ϕ2(λ) = mc21

(ωλmγ2
(λ)), λ ∈ D,

and any ε <
√
2.

Claim 10. Let ψ ∈ O(D,B2). Assume that there is a Blaschke product of degree 2
such that

Fε ◦ ψ ≡ B

for any 0 ≤ ε < 1. Then B ≡ ηm2 for some Möbius map m and unimodular
constant η. Moreover, ψ2 ≡ b1m

2 and ψ2
1 ≡ a21m

2.

Proof of the claim. Since the equality Fε ◦ ψ(λ) = B(λ) for λ ∈ D holds for all ε
small enough we get from the form of Fε that b1ψ

2
1(λ) = a21ψ2(λ) for λ ∈ D. Direct

computation gives equalities

B(λ) = Fε(ψ(λ)) = F (ψ(λ)) = ψ2
1(λ)/a

2
1, λ ∈ D,

and the claim follows. �

We come back to the proof of the lemma. Making use of the claim we see that

(16) mc21
(ωλmγ2

(λ)) = ηm2
α(λ), λ ∈ D,

for some idempotent Möbius map mα and unimodular constant η. Differentiating
(16) at the point α we find that γ2 = 2α

1+|α|2 ; in particular, α ∈ R. Putting λ = 0

to (16) one gets c21 = ηα2 and, therefore, η = 1 and c21 = α2. Consequently,
γ2 = ± 2c1

1+|c1|2 , which means that c2 = ±c1. Putting λ = 1 to (16) one gets ω = 1.

Replacing, if necessary, (x2, y2, c2) with (−x2,−y2,−c2) we may assume that
c2 = c1. What we have to do now is show that x1 = x2, y1 = y2, U1 = U2, and
a1 = a2.

Note that Claim 10 implies that

U−1
1 ◦ χ1 ◦ ϕ2(λ) = J ◦ U−1

1 ◦ χ1 ◦ ϕ1(λ), λ ∈ D,
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where J is either the identity matrix or J = diag(−1, 1). Substituting λ = 0 in
the above equality we infer that J fixes (a1c1, b1c

2
1), whence one deduces that J is

the identity. Consequently, ϕ2 ≡ ϕ1 so

χ2 ◦ U2(a2λ, b2λ
2) = χ1 ◦ U1(a1λ, b1λ

2), λ ∈ D.

Thus χ2(0) = χ1(0), so χ2 ≡ χ1. Since U1 and U2 are isometries, the above relations
imply that ||(a1, b1λ)|| = ||(a2, b2λ)|| for any λ ∈ D. Remembering that ai, bi are
positive, we simply deduce that a1 = a2, so U1 = U2 trivially. Finally, the equalities
x1 = x2 and y1 = y2 follow immediately from the relations ϕ1(x1) = ϕ2(x2) and
ϕ1(y1) = ϕ2(y2). �

4.4. Closedness of the range of Φ.

Lemma 11. The range Φ(Ω) is closed in A \ C.

Proof. We are using the notation as in Proposition 4. Let a sequence ((xn, yn, an,
Un, cn)) in Ω, convergent to (x0, y0, a0, U0, c0) in Ω̄, be such that the sequence
(Φ(xn, yn, an, Un, cn)) =: ((xn, yn, ξn)) is convergent to (z0, w0, ξ0) ∈ A \ C. Put
σn := xnmγn

(xn) and τn := ynmγn
(yn). Assume additionally that sequences (σn)

and (τn) are convergent to σ0 and τ0. We easily get that σ0, τ0 ∈ D. Additionally,
it follows from the continuity argument that the problem

B2 → D, 0 �→ 0, z0 �→ σ0, w0 �→ τ0

is extremal.
And once more since the sequence (Φ(xn, yn, an, Un, cn)) converges to an element

from A \ C we get that a0 ∈ (0, 1).
Note that if we show that c0 ∈ (−1, 1), then we are done.
Therefore, we may assume that cn converges to 1 (the case c0 = −1 follows from

the fact that Φ is even with respect to the variables x, y, c). In such a case the
sequence (γn) tends to γ0 = 1. We shall consider three cases.

The first one is when x0 = y0 = 1. Then

c∗
D
(σ0, τ0) = lim c∗

D
(mγn

(xn),mγn
(yn))

= lim c∗
D
(xn, yn) ≥ lim c∗

B2
(zn, wn) = c∗

B2
(z0, w0).

On the other hand we have the trivial inequality c∗
D
(σ0, τ0) ≤ c∗

B2
(z0, w0). Both

these relations imply that the 2-point problem

B2 → D, z0 �→ σ0, w0 �→ τ0

is extremal, so (z0, w0, ξ0) ∈ B, a contradiction.
Now suppose that x0 ∈ D. Then σ0 = x0, which implies that the 2-point problem

0 �→ 0, z0 �→ σ0 is extremal, a contradiction also. If y0 ∈ D we proceed similarly.
We are left with the case when x0, y0 ∈ ∂D and either x0 �= 1 or y0 �= 1. But

this means that either τ0 or σ0 does not lie in the unit disc, which leads to a
contradiction also. �
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4.5. Connectedness of non-degenerate set.

Lemma 12. Suppose that z, w ∈ B2 do not lie on a line passing through 0. Then
the set of points ξ = [σ : τ ] such that (z, w, ξ) ∈ A is connected.

Proof. To prove the assertion we shall show that points ξ for which (z, w, ξ) ∈ B
form a union of three disjoint simply-connected and closed sets.

Two of them are closed discs consisting of points ξ = [σ : τ ] such that one of the
following 2-point interpolation subproblems

0 �→ 0, z �→ tz,w,(σ,τ)σ or 0 �→ 0, w �→ tz,w,(σ,τ)τ

is extremal (use Theorem 3).
To get the assertion it thus suffices to show that the set of ξ such that

z �→ tz,w,(σ,τ)σ, w �→ tz,w,(σ,τ)τ

is extremal is simply-connected. The reason for this is that all the sets constructed
here are disjoint, according to Lemma 6.

Let us compose nodes and points with proper automorphisms so that we are
in a position that allows us to apply Theorem 3 again. Then one can see that
we aim to describe [σ : τ ] such that mσ(τ ) = ||x|| = x1 > 0 (and thus x2 = 0)

and c∗
D
(τ, z1) ≤ |z2|2

2−2|z1|2−|z2|2 =: r, where x = (x1, x2) = (x1, 0) = U(χz(w)) with

suitably chosen unitary matrix U .
But then τ = σ−x1

1−x1σ̄
. What we need is to show that the set{

τ

σ
=

σ − x1

σ − x1σ̄σ
: σ ∈ D, c∗

D
(σ, z1) ≤ r

}
⊂ Ĉ

is simply-connected (if σ = 0 the fraction with 0 in the denominator is understood
to be ∞).

We shall prove it. Since

σ − x1

σ − x1σ̄σ
= 1− x1

1− |σ|2
σ − x1|σ|2

we easily reformulate the problem.
Consider the function

ψ : D � σ �→ σ − x1|σ|2
1− |σ|2 ∈ C.

Since any closed Poincaré disc in D is the Euclidean disc, to finish the proof of
the lemma it is sufficient to show that for any closed disc K ⊂ D the set ψ(K) is
simply-connected.

To prove it note that the (real) Jacobian of ψ equals

1 + |σ|2 − 2Re(x1σ)

(1− |σ|2)3 > 0, σ ∈ D.

Consequently ψ is a local diffeomorphism. Note also that ψ is proper onto its image
(equal to C). Consequently, ψ is a finite topological covering, which easily implies
the desired conclusion. �

Lemma 13. The set of non-degenerate points (z, w, ξ) is connected.
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Proof. Note that the set C1 of (z, w) lying on the same complex line is analytic, so
removing it does not affect the connectedness.

Thus the result is a consequence of the trivial fact that the natural projection

A \ C � (z, w, ξ) �→ (z, w) ∈ Dn \ C1
is open and Lemma 12, which says that fibers of the above projection are connected.

�

Proof of Theorem 5. It follows from Lemmas 9 and 11 that the range of the map-
ping Φ is open and closed in A\C, which is connected, according to Lemma 13. �

5. Proof of Theorem 1

Proof of Theorem 1. The existence of f as in the theorem easily implies the ex-
tremality of the 3-point Pick problem. So assume the problem formulated in the
theorem is extremal.

First recall that if the problem

(17) Bn → D, zj �→ μj := F (zj), j = 1, 2, 3,

is degenerate, then by Lempert’s theorem there is a complex geodesic f in Bn

passing through (at least) two of the nodes such that F ◦ f is a Möbius map (see
Section 2.2). Thus the theorem in this case is clear.

Let us assume that (17) is non-degenerate. As mentioned in Section 2.6 one may
assume that z3 = 0 and λ3 = 0.

The assertion is clear if (z1, z2, [μ1 : μ2]) lies in the range of Φ, which is equal to
A \ C (see Theorem 5).

Therefore, it suffices to show that the theorem holds if (z1, z2, [μ1 : μ2]) is in C.
Recall that this means that z1 and z2 lie on a complex line. Let zj = λjv, j = 1, 2,
for some v ∈ Cn, ||v|| = 1. Let U be a unitary matrix such that U(1, 0, . . . , 0) = v.
Define B(λ) := F (U(λ, 0, . . . , 0)) and f(λ) := U(λ, 0, . . . , 0), λ ∈ D. f interpolates
the extremal 3-point problem

D → Bn, 0 �→ 0, λj → λjv, j = 1, 2.

Then the problem

D → D, 0 �→ 0 = B(0), λj �→ B(λj), j = 1, 2,

is extremal. Actually, otherwise there would be a g ∈ O(D,D) with g(0) = 0,
g(λj) = B(λj) = F (zj), j = 1, 2, and g(D) lying relatively compactly in D. Then
define G with G(z) := g(π(U−1(z))), z ∈ Bn, where π is the projection onto the
first variable. Then G ∈ O(Bn,D), G(0) = 0, G(zj) = F (zj), j = 1, 2, and G(Bn)
lies relatively compactly in D, which contradicts the extremality of F . Therefore,
B is a Blaschke product of degree at most 2, which completes the proof. �

6. Relations with the Green function with two poles

For a domain D ⊂ Cn, p, q, z ∈ D, p �= q, define lD(p; q; z) as the minimum of
three values:

inf{|λσ| : ∃f ∈ O(D, D) : f(0) = z, f(λ) = p, f(σ) = q},
inf{|λ| : ∃f ∈ O(D, D) : f(0) = z, f(λ) = p},
inf{|λ| : ∃f ∈ O(D, D) : f(0) = z, f(λ) = q}.
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We also define

cD(p; q; z) := sup{|F (z)| : F ∈ O(D,D), F (p) = F (q) = 0}.

Then cD ≤ lD. Let D be additionally bounded and z �= p, q. Then we may find
an F ∈ O(D,D) with F (p) = F (q) = 0 and F (z) = cD(p, q, z) =: τ . Note that the
3-point Pick problem

D → D, p �→ 0, q �→ 0, z �→ τ

is then extremal and F interpolates it. It is then simple to see that the existence of
a holomorphic f : D → D passing through three points p, q, and z such that F ◦ f
is a non-Blaschke product of degree at most 2 or the existence of a holomorphic
f : D → D passing through at least two of the points p, q, z such that F ◦ f is
a non-constant Blaschke product of degree 1 (note that in the latter case f must
necessarily pass through z!) implies the equality

(18) cD(p; q; z) = lD(p; q; z).

The above equality implies that the Green function with logarithmic poles at p and
q at z coincides with both log cD(p; q; z) = log lD(p; q; z), and thus this shows that
in such a case the conjecture of Coman with two poles does hold (see [10]).

In view of Theorem 1 the equality (18) holds for D = Bn, and thus this gives
another proof showing that the conjecture of Coman holds for the unit ball with
two logarithmic poles (see [10], [12]).
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