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MORSE STRUCTURES ON OPEN BOOKS

DAVID T. GAY AND JOAN E. LICATA

Abstract. We use parameterized Morse theory on the pages of an open book

decomposition supporting a contact structure to efficiently encode the contact
topology in terms of a labelled graph on a disjoint union of tori (one per binding
component). This construction allows us to generalize the notion of the front
projection of a Legendrian knot from the standard contact R

3 to arbitrary
closed contact 3-manifolds. We describe a complete set of moves on such
front diagrams, extending the standard Legendrian Reidemeister moves, and
we give a combinatorial formula to compute the Thurston–Bennequin number
of a nullhomologous Legendrian knot from its front projection.

1. Introduction

Every contact 3-manifold is locally contactomorphic to the standard contact
(R3, ξstd = ker(dz + x dy)), but this fact does not necessarily produce large charts
that cover the manifold efficiently. This paper uses an open book decomposition of
a contact manifold to produce a particularly efficient collection of such contacto-
morphisms, together with simple combinatorial data describing how to reconstruct
the contact 3-manifold from these charts. This data is recorded in a Morse dia-
gram, and we use this perspective to define front projections for Legendrian knots
and links in arbitrary contact 3-manifolds. Our main tool is parameterized Morse
theory on the pages of open books, viewed as Weinstein manifolds. We now give
more precise statements, along with a minimal set of definitions.

Let (M, ξ) be an arbitrary closed contact 3-manifold with supporting open book
decomposition (B, π), where B is the binding and π : M \B → S1 is the fibration.
Let W = (0,∞)×S1×S1 with coordinates x ∈ (0,∞), y, z ∈ S1, and with contact
structure ξW = ker(dz + x dy).

Theorem 1.1. There is a 2-complex Skel ⊂ M with the property that, after modify-
ing ξ by an isotopy through contact structures supported by (B, π), the complement
(M \ (Skel ∪ B), ξ) is contactomorphic to a disjoint union of n = |B| copies of
(W, ξW ).

We construct Skel by equipping an ordinary open book (B, π) with a certain pair
(F, V ), where F is a real-valued function on M and V a vector field on M \B. We
call such a pair a Morse structure. The precise definition is given in Section 3, but
we indicate the flavor of this object here.
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Definition 1.2. An efficient Morse–Smale pair on a surface Σ is a pair (f, V )
satisfying the following properties:

• f is a Morse function with one index 0 critical point, finitely many index 1
critical points, and no index 2 critical points;

• V is gradient-like for f , such that ascending and descending manifolds
intersect transversely in level sets.

An efficient Morse-Smale homotopy is a 1-parameter family (ft, Vt) such that ft
is Morse for all t, Vt is gradient-like for ft for all t, and (ft, Vt) is an efficient
Morse–Smale pair for all but finitely many values of t, when handle slides occur.

Note that for an efficient Morse–Smale pair, Σ cannot be a closed surface, and
descending manifolds for index 1 critical points all flow to the index 0 critical point.
Furthermore, in an efficient Morse–Smale homotopy, there are no births or deaths
of cancelling pairs of critical points.

A Morse structure (F, V ) compatible with (M,B, π), has two key features, as
well as some technical conditions which are stated precisely in Definition 3.1. First,
the restriction of a Morse structure (F, V ) to a single page Σt is an efficient Morse–
Smale pair for all but finitely many values of t, and the fibration parameter t
determines an efficient Morse–Smale homotopy (ft, Vt).

Second, on each page, Vt is required to be Liouville for a symplectic form on Σt.
Flow along Vt in the complement of Skel produces the contactomorphism claimed
in Theorem 1.1, and the 2-complex Skel (the skeleton) referred to in Theorem 1.1
is the union over all pages of all critical points and their descending manifolds.

A Morse structure similarly determines a co-skeleton inM , the union of the index
1 ascending manifolds on each page. This 2-complex Coskel intersects the boundary
of a regular neighborhood of the binding in a trivalent graph Γ, and the isotopy type
of this graph on the parameterized tori determines the original contact open book
(M, ξ,B, π) as a compactification of �n(W, ξW ), up to diffeomorphism. We call this
collection of decorated tori a Morse diagram. (Some examples of Morse diagrams

A B A B
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Figure 1. Three examples of Morse diagrams. Left: L(2, 1) with
the universally tight contact structure. Center: An open book with
punctured torus pages with monodromy a product of a negative
Dehn twist around a nonseparating curve followed by a boundary
parallel positive Dehn twist. Right: An overtwisted S3 where the
monodromy is a single left-handed Dehn twist around the core of
an annulus.
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A B A B

Figure 2. The bold curves are front projections of Legendrian
knots. The right-hand example is the boundary of an overtwisted
disc in S3, while the other two examples represent nontrivial ho-
mology classes in the closed 3-manifold.

are shown in Figure 1.) At all but finitely many t values, the Morse diagram is
decorated with 2k paired points, for some positive integer k, which trace out paired
curves as t varies. At a value t0 corresponding to a handle slide—which we will call
a handle slide t-value—the Morse diagram has 2k− 2 ordinary points and 2 double
points. The double points are endpoints of a single curve with a discontinuity at
the t-value t0; as t → t+0 , the edge approaches one edge in a different pair from the
left (respectively, right), and as t → t−0 , the edge approaches the paired edge from
the right (left). See the central picture in Figure 1 for an example of a handle slide
on a Morse diagram.

We will see in Section 5 that up to diffeomorphism, the Morse diagram coming
from a Morse open book uniquely determines (M, ξ,B, π) as a compactification of
�n(W, ξW ). Furthermore, any Morse diagram is the compactification data for some
(M, ξ,B, π).

In addition to combinatorially encoding the contact manifold, the Morse diagram
functions as a target for defining the front projection of a Legendrian link in an
open book with a Morse structure.

Definition 1.3. A front on a Morse diagram Γ ⊂ �nS1 ×S1 is a collection of arcs
and closed curves F immersed, with semicubical cusps, in �nS1 × S1, satisfying
the following properties:

(1) The slopes at all interior points on F are negative (using coordinates (s, t)
on S1 × S1 and measuring slope as dt/ds).

(2) The endpoints of arcs of F lie on the interiors of curves of Γ and have slope
0.

(3) Suppose that e and e′ are two edges of Γ with the same label. For every
arc of F ending on e at height t, approaching e from the left (respectively,
right), there is an arc of F ending on e′ at height t, approaching e′ from
the right (left).

Figure 2 shows some fronts on the Morse diagrams of Figure 1.

Theorem 1.4. Let Λ be a Legendrian link in (M, ξ) that is disjoint from the binding
and transverse to Skel. Then the image of Λ under the flow by ±V to �nS1 × S1

is a front on the Morse diagram. Furthermore, any front on this Morse diagram
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is the image of such a Legendrian Λ, and any two Legendrians with the same front
are equal.

In Section 6.1 we describe a list of moves on fronts, which we call isotopy moves,
and we show the following.

Theorem 1.5. In the setting of Theorem 1.4, two Legendrian links in (M, ξ) are
Legendrian isotopic if and only if their fronts are related by a sequence of isotopy
moves.

In Section 7, we show how to detect whether or not a front is the front projection
of a nullhomologous Legendrian knot. If it is, we show how to construct Seifert
surfaces for such fronts, define the total writhe W of a front F(Λ), and then prove
the following.

Theorem 1.6. If Λ is a nullhomologous Legendrian knot, then the Thurston–
Bennequin number tb(Λ) is equal to W (F(Λ))− 1

2 |cusps|.

The techniques of the paper apply equally well to links as to knots, and we leave
the extension of the statements to the reader.

2. Background and notation

All our manifolds are oriented and connected unless otherwise stated, and contact
structures are co-oriented.

As a matter of convenience we will sometimes identify S1 with R/Z and some-
times with R/2πZ. The choice should be clear from context, and we will use a
Roman letter variable name, such as t, in the R/Z case and a Greek letter variable
name, such as θ, in the R/2πZ case. We will use (ρ, μ, λ) for polar coordinates
on the solid torus R

2 × S1, with μ, λ ∈ R/2πZ and (ρ, μ) being standard polar
coordinates on R

2, i.e., μ for “meridian” and λ for “longitude”.
Here and throughout, suppose that (B, π) is an open book decomposition of a

closed connected oriented 3-manifold M . That is, B is an oriented link in M and
π : M \ B → S1 is a fibration with the property that for all t ∈ S1, the closure of
π−1(t) is a Seifert surface for B. Each compact connected surface Σt = B ∪ π−1(t)
is a page of the open book.

The utility of open books for the study of contact geometry comes from the
following notion of compatibility between open book decompositions and contact
structures on a fixed manifold.

Definition 2.1. A contact form α on M is compatible with (B, π) if

• for all t, dα|Σt
is a symplectic form; and

• α|B > 0, where B is oriented as the boundary of any Σt, and Σt is oriented
by dα.

A contact structure ξ on M is supported by (B, π) if there exists a contact form for
ξ which is compatible with (B, π).

When we refer to a 4-tuple (M, ξ,B, π), we always imply that ξ is supported by
(B, π). Diffeomorphisms between such 4-tuples are contactomorphisms respecting
the open book structure.

Theorem 2.2 (Thurston–Winkelnkemper [11], Giroux [7]). Each open book sup-
ports a unique isotopy class of contact structures.
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Definition 2.3. Given a surface Σ with boundary, themapping class group Mod(Σ)
is the group of orientation preserving self-diffeomorphisms of Σ which are equal to
the identity on ∂Σ, modulo isotopies fixing ∂Σ pointwise.

Definition 2.4. A vector fieldX onM \B is amonodromy vector field if dπ(X) = 1
and if, for each component of B, there are solid torus coordinates (ρ, μ, λ) ∈ D2×S1

with respect to which π = μ and X = ∂μ.

Note that monodromy vector fields exist (use partitions of unity) and that a
monodromy vector field allows one to read off the monodromy of an open book as
the return map on a page, and thus to identify (M,B, π) with the abstract open
book Σ × [0, 1]/∼, where (p, 1) ∼ (φ(p), 0) for all p ∈ Σ and (p, s) ∼ (p, t) for all
p ∈ ∂Σ and for all s, t ∈ [0, 1]. In particular, this also allows us to identify every
page Σt with a fixed model page Σ = Σ0. Furthermore, different monodromy vector
fields produce isotopic return maps so that the monodromy is well defined as an
element of the mapping class group Mod(Σ).

3. Morse structures and Morse diagrams

In preparation for constructing Morse structures, we briefly depart from the
world of contact geometry and consider open books as topological objects.

Definition 3.1. Let M be a closed, connected, oriented 3-manifold with an open
book (B, π). A Morse structure on (M,B, π) is a pair (F, V ), where F : M →
(−∞, 0] is a smooth function and V is a smooth vector field on M satisfying the
following properties:

(1) F−1(0) = B.
(2) There is a solid torus neighborhood of each component of B, with coordi-

nates (ρ, μ, λ), on which B = {ρ = 0}, π = μ, F = −ρ2, and V = −(ρ/2)∂ρ.
(3) On the interior of each page Σt \B, the function ft := F |Σt\B is Morse.
(4) V is tangent to each page Σt, and Vt := V |Σt

is gradient-like for ft.
(5) Using a monodromy vector field X to identify each page Σt with a fixed

page Σ, the family (ft, Vt) on Σ\∂Σ is an efficient Morse–Smale homotopy.

A Morse open book on M is a 4-tuple (B, π, F, V ) such that (F, V ) is a Morse
structure on (M,B, π).

Remark 3.2. The factor of 1/2 in (2) is not significant here, but becomes convenient
when we bring the contact geometry back to the story in Section 4.

Proposition 3.3. Every open book decomposition has a Morse structure.

Proof. We need only show that, given a surface Σ with the correct genus and
number of boundary components and a mapping class Φ ∈ Mod(Σ), there exists an
efficient Morse–Smale homotopy (ft, Vt) on Σ with φ∗(f0, V0) = (f1, V1) for some
representative φ of Φ. Once we do this, the rest follows by constructing the mapping
torus M(Σ, φ) and gluing in a solid torus neighborhood of each component of the
binding.

First choose an initial Morse function f0 and a representative φ, and let f1 =
φ∗f0. Theorems 1.3 and 1.4 in [6] assert that we can eliminate extraneous minima
and maxima (index 0 and 2 critical points in this case) in a generic path connecting
Morse functions; apply this to get ft. Then standard Cerf theory gives us Vt,
interpolating from some chosen V0 to V1 = φ∗V0. �
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There are two natural subcomplexes in M associated to a Morse open book
(B, π, F, V ).

Definition 3.4. The skeleton, denoted Skel, is the union over all pages of the
descending manifolds of the index 1 critical points of (ft, Vt), together with the
index 0 critical point. The co-skeleton, denoted Coskel, is the union over all pages
of the ascending manifolds of the index 1 critical points.

Remark 1. The intersection of Skel and Coskel is a 1-complex consisting of the
index 1 critical points in all pages together with a flow line between two index 1
critical points at each handle slide t-value. (Recall from the introduction that this
is the t value of a page where a handleslide occurs.)

Given a Morse open book (B, π, F, V ) on M , fix coordinates (ρ, μ, λ) on a solid
torus neighborhood of each component of B as in Definition 3.1. Let n = |B|, and
embed �nS1 × S1 in M as {ρ2 = ε} = F−1(−ε), for suitably small ε, mapping
coordinates (s, t) on S1 × S1 to (λ, μ) on {ρ2 = ε}. Denote these embedded tori as
�n

i=1Ti .
Definition 3.5. The Morse diagram associated to (B, π, F, V ) is the collection of
decorated tori

(�Ti,Coskel ∩ �Ti),
together with a pairing of curves on the tori corresponding to the same index 1
critical points.

Figure 1 shows a few examples of Morse diagrams; the pairing data is indicated
by edge labelings.

We may characterize the kinds of decorated tori that can occur as Morse dia-
grams. We do so here, and when necessary, we may distinguish between the terms
embedded Morse diagram, which denotes tori in the contact manifold whose decora-
tion comes from the intersection with the co-skeleton as described in Definition 3.5,
and abstract Morse diagram, which denotes any collection of decorated tori satis-
fying the description below.

Definition 3.6. An abstract Morse diagram is a collection of tori �nS1 ×S1 with
a finite trivalent graph Γ such that

• the edges of Γ are monotonic with respect to projection to the second S1

factor;
• for each fixed value c of the second factor, there is a pairing on edges
intersecting �nS1 × c, and the pairing is constant away from vertices;

• surgery on �nS1 × c with attaching spheres given by paired points on the
edges yields a single S1;

• trivalent vertices occur in pairs on the same slice �nS1 × c. As t → c−, an
edge labelled A approaches an edge labelled B from the left (respectively,
right), while as t → c+, an edge labelled A approaches the other edge
labelled B from the right (left).

An isotopy of Morse diagrams is a smooth 1-parameter family of such graphs
with pairings. We call the edges of Γ trace curves in order to emphasize how the
graph is “traced out” on the tori as t varies.

Proposition 3.7. Every abstract Morse diagram is a Morse diagram associated
to some Morse open book. If two Morse open books have isotopic Morse diagrams,
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then the 3-manifolds are diffeomorphic via a diffeomorphism respecting the open
books.

Note that we do not claim that the diffeomorphism respects the Morse structures,
although if needed, one could describe an appropriate equivalence relation on Morse
structures to make this true. The main issue is that the Morse diagram does not
record the relative ordering of the critical values of ft.

Proof. It suffices to give a construction starting from a Morse diagram which makes
it clear that the Morse diagram determines the diffeomorphism type of the page
and the mapping class of the monodromy (up to conjugation).

We start by recalling the standard construction of a handle structure on a surface
built by attaching k 2-dimensional 1-handles to a disc. Glue each handle [−1, 1]×
[−1, 1] to the disc along {±1} × [−1, 1]; the co-core of the handle is the arc {0} ×
[−1, 1], and we note that the co-core intersects the boundary of the new surface in
a pair of points. Similarly, concatenating the core curves [−1, 1] × {0} with rays
to the center of the disc produces a wedge of circles onto which the new surface
deformation retracts, and we refer to each such loop as a core.

On the Morse diagram, the 0-slice �nS1 × {0} intersects the trace curves in 2k
paired marked points. Construct a model surface Σ with handle decomposition as
above with the property that, when we identify boundary components of Σ with
components of the 0-slice of the Morse diagram, the co-cores of the handles induce
a pairing of marked points on the boundary of Σ that is the same as the pairing of
marked points on the 0-slice. Remove an open neighborhood of the center of the

original disc and denote the resulting surface by Σ̃.
The union of the cores and co-cores of Σ form a collection H of properly embed-

ded arcs in Σ̃. Before continuing, we note a few useful properties of this set. These

curves cut Σ̃ into a collection of discs. They are pairwise nonisotopic, intersect
minimally, and have the property that for any three arcs γi, γj , and γk, at least
one of the pairwise intersections is empty. According to Proposition 2.8 in [5], the

mapping class group of Σ̃ acts faithfully on the graph formed by any set of curves
satisfying these properties.

Now consider the product Σ̃ × [0, 1] and let H0 = H × {0}, on Σ̃ × {0}. By
construction, H0 ∩ ∂Σ × {0} agrees with the decoration on the Morse diagram at
t = 0. Perform the necessary isotopies and handle slides on the co-cores so that,

for each t, Ht comes from a handle structure on Σ̃ × {t} with the property that
the order of the marked points of Ht ∩ ∂Σ× {t} agrees with the order of the trace
curves on the corresponding t-slice of the Morse diagram (i.e.,

∐
S1 × {t}). The

cores are determined up to isotopy by the co-cores, and the co-cores are determined
by the Morse diagram, so this process determines Ht up to isotopy for t ∈ [0, 1].

In order to form a mapping torus from Σ̃ × [0, 1] which identifies H0 and H1, we

require a diffeomorphism φ of Σ̃ with the property that φ∗(H0) is isotopic to H1.
The proposition noted above implies that the mapping class of such a φ is uniquely
determined; extended to Σ, this is the monodromy of the open book.

The construction above allowed for choice in the original handle structure, but
the surfaces associated to any two such choices are related by a diffeomorphism
identifying the initial handle structures. Making another such choice, the construc-
tion above recovers the conjugate of φ by this diffeomorphism, which determines a
diffeomorphic open book.
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We have shown that the 3-manifold with its open book is determined by the
Morse diagram. To see that the Morse diagram actually comes from a Morse
structure, realize the 1-parameter family of handle decompositions by pairs (ft, Vt).
This involves further choices, for which we do not claim any uniqueness. �

4. Contact structures, Morse structures, and Morse diagrams

Since a Morse diagram determines an open book, and an open book determines a
unique isotopy class of contact structures, we immediately have the fact that Morse
diagrams describe contact 3-manifolds. However, to achieve the contactomorphism
of Theorem 1.1 and the consequent generalized front projections, we need a more
rigid relationship between Morse structures and contact topology.

Definition 4.1. Suppose that (F, V ) is a Morse structure on (M,B, π) and that ξ
is a contact structure on M supported by (B, π). We say that (F, V ) is compatible
with ξ if there is a contact form α for ξ on M \B satisfying the following conditions:

(1) On the interior of each page Σt \ B, ωt := (dα)|Σt\B is symplectic and Vt

is Liouville for ωt.
(2) There is a monodromy vector field X such that α(X) = 1.
(3) In the given local solid torus coordinates (ρ, μ, λ) near each component of

B, α = (1/ρ2)dλ+ dμ.

Note that the form α will not extend across B.

Lemma 4.2. Given (M,B, π) and a contact form α on M \ B, suppose that, in
local coordinates (ρ, μ, λ) near each component of B, we have B = {ρ = 0}, π = μ,
and α = (1/ρ2)dλ+ dμ. Then kerα extends across B and, if dα is positive on the
interior of each page, is a contact structure supported by (B, π).

Proof. The 1-form α = (1/ρ2)dλ + dμ has the same kernel as dλ + ρ2dμ and,
hence, the associated contact structure extends over the core {0} × S1 ⊂ D2 × S1.
In fact, both have the same kernel as (1/(1 + ρ2))dλ+ (ρ2/(1 + ρ2))dμ, which also
extends over the core and has its Reeb vector field transverse to pages. Furthermore,
by choosing functions (f(ρ), g(ρ)) that interpolate appropriately between (1/(1 +
ρ2), ρ2/(1 + ρ2)) and (1/ρ2, 1), one can produce a single contact form that agrees
with α outside a solid torus neighborhood of the binding, extends across the binding,
and is supported by (B, π). �
Proposition 4.3. Given any contact 3-manifold (M, ξ) with supporting open book
(B, π), there is a Morse structure on (M,B, π) compatible with a contact structure
ξ∗ which is isotopic to ξ through contact structures supported by (B, π).

Proof. Rather than constructing (F, V ) from ξ, we construct a 3-manifold with
open book (M ′, B′, π′) diffeomorphic to (M,B, π), starting from the page and mon-
odromy of (M,B, π), and along the way we construct (F ′, V ′) and α′ on M ′ \ B′

satisfying the conditions in Definition 4.1. In the construction it will be clear that
F ′ and V ′ extend across B′, and by Lemma 4.2, α′ extends to a contact structure ξ′

compatible with (B′, π′). Pull all this data back to (M,B, π) by the diffeomorphism,
and we get a contact structure ξ∗ on M supported by (B, π) and a Morse structure
(F, V ) for (B, π) compatible with ξ∗. Finally, by Theorem 2.2, ξ∗ is isotopic to ξ
through contact structures supported by (B, π).

Having explained the structure of the proof, we will now give the construction
but will drop the “primes” from our notation to simplify the exposition.
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Recall that the page Σ0 of the given (M,B, π) is the compact surface π−1(0)∪B.
Let Σ = π−1(0), the noncompact interior of Σ0. Let (−ε, 0]×B parametrize a collar
neighborhood of B = ∂Σ0 so that ∂Σ0 = {0}×B. Let E = (−ε, 0)×B, the union of
the “ends” of Σ, and reparameterize E as (−ε,∞)×B using an arbitrary orientation
preserving diffeomorphism (−ε, 0) → (−ε,∞). Use coordinates (r, s) on E, where
r ∈ (−ε,∞) and s is an R/Z coordinate on each component of B.

Choose a Morse function f on Σ which equals r on E, with a single index 0
critical point p ∈ Σ \ E and with no index 2 critical points.

Lemma 4.4. There exists a 1-form δ and a vector field V on Σ satisfying the
following conditions:

(1) On E, δ = (1 + r)ds and V = (1 + r)∂r.
(2) On all of Σ, dδ > 0.
(3) (f, V ) is an efficient Morse–Smale pair.
(4) V is Liouville for dδ.

The proof of the lemma follows from a standard Weinstein handle construc-
tion [12], and we leave the details to the reader. We now use the language of
Weinstein cobordisms, following Cieliebak and Eliashberg [2] to extend this struc-
ture to the rest of the mapping torus.

AWeinstein cobordism is a 4-tuple (W,ω, V, f), whereW is a compact cobordism
from ∂−W to ∂+W , ω is a symplectic form on W , f : W → [a, b] ⊂ R is a Morse
function with ∂+W = f−1(b) and ∂−W = f−1(a), and V is a Liouville vector
field for ω which is gradient-like for f . In particular, V points in along ∂−W
and out along ∂+W . A Weinstein homotopy is a smooth family (W,ωt, Vt, ft) with
t ∈ [0, 1] which is a Weinstein cobordism except at finitely many t where birth-death
singularities may occur for ft, and hence for Vt as well.

Returning to the noncompact page Σ with Morse function f , let W =
f−1([f(p) + ε, 0]) for sufficiently small ε > 0, so that there are no critical val-
ues in (f(p), f(p) + ε], and thus ∂−W = ∂ν(p) for some disk neighborhood ν(p)
of the unique index 0 critical point p. We claim that there exists a diffeomor-
phism φ : Σ0 → Σ0 representing the monodromy of (M,B, π) which is the iden-
tity on Σ0 \W , such that, restricting φ to W , there exists a Weinstein homotopy
(W,dδ, Vt, ft) satisfying the following conditions:

(1) (f0, V0) = (f, V ).
(2) Dφ(V1) = V0.
(3) f0 ◦ φ = f1.
(4) (ft, Vt) = (f0, V0) on a neighborhood of ∂W .
(5) (ft, Vt) is an efficient Morse–Smale homotopy.

Lemma 4.5 below asserts the existence of such a homotopy in the case that φ is
a Dehn twist along a nonseparating or boundary parallel simple closed curve in
W , and its proof occupies Section 4.1 below. The claim then follows from the fact
that the mapping class group of a surface is generated by Dehn twists along such
curves [8].

Identifying the homotopy parameter with the t-parameter in Σ× [0, 1], any such
Weinstein homotopy defines a smooth function F and a gradient-like vector field V
on the mapping torus Σ× [0, 1]/(p, 1) ∼ (φ(p), 0). Furthermore, we define a 1-form
on each page Σ× {t} by taking the contraction of dδ with Vt:

δt := ιVt
dδ.
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By construction, this defines a 1-form Λ on the mapping torus (via Λ(∂t) = 0 and
Λ|Σt

= δt), and for sufficiently large K, α = Λ+Kdt is contact. The standard con-
struction of a contact form on a mapping torus uses a linear interpolation between
δ0 and φ∗δ0 where we have used Λ, but we see that this construction agrees with
our α on the end(s) E (and on a neighborhood of the transverse knot traced out
by the index 0 critical point p). We extend α across the binding of the open book
as described next; this extension is a slight modification of the extension described
in [9].

In order to construct a closed 3-manifold M(Σ0, φ), and thus transport this data
to (M,B, π), use coordinates (r, s, t) on the ends E× [0, 1]/∼ of the mapping torus
and glue in solid tori D2 × S1, with coordinates (ρ, μ, λ), with 0 ≤ ρ2 ≤ K/(1− ε),
via the map

ψ(ρ, μ, λ) = ((K/ρ2)− 1, λ, μ).

Note that ψ∗α = (K/ρ2)dλ+Kdμ; globally rescaling by 1/K gets the desired local
model (1/ρ2)dλ + dμ. A simple calculation shows that V has the correct local
model, and an appropriate reparameterization of (−ε,∞) as (−ε, 0) is all that is
needed to modify F to have the correct local model. The monodromy vector field
is ∂t. �

4.1. Homotopy existence. This section gives a technical construction of the ho-
motopy whose existence was claimed above. Instead of considering an arbitrary
monodromy map, we restrict ourselves to the case where φ is a single Dehn twist
τC about a curve C. We assume C is either nonseparating or boundary parallel;
this suffices to establish the general case, as the relative mapping class group of a
surface is generated by such Dehn twists [8].

To use the lemma presented below in the proof above, one needs to choose
appropriate minor reparameterizations in the collar neighborhood direction, which
is mapped via the Morse function to [0, 1] here, but may also need to be mapped
to some [−a, 0], for example. Also, here the Liouville vector field is presented in
the form ∂ζ instead of, for example, (1 + r)∂r. This leads to an exponential ekζ

appearing in the symplectic form. A further standard reparameterization takes care
of this.

Lemma 4.5. Suppose we are given the following data:

(1) A compact, connected, oriented 2-dimensional cobordism W from ∂0W to
∂1W , with each ∂iW a compact, oriented, nonempty, possibly disconnected,
1–manifold.

(2) A fixed parametrization of a collar neighborhood κ of ∂W as κ = ([0, ε] ×
∂0W )� ([1− ε, 1]× ∂1W ).

(3) A Morse function f : W → [0, 1] with f−1(i) = ∂iW for i = 0, 1, and with
only critical points of index 1, with distinct critical points having distinct
critical values, with f |κ being projection onto the first factor [0, ε] � [1 −
ε, 1] ⊂ [0, 1].

(4) An area form β on W with β|κ = ekζdζ∧dθ, where ζ is the [0, 1] coordinate
on κ, θ ∈ [0, 2π] is a fixed oriented angular coordinate on each component
of ∂W , and k is some positive constant. (We may need k > 1 if there are
many more components of ∂0W than ∂1W , for example.)

(5) A vector field V on W which is gradient-like for f and is Liouville for β
(i.e., dγ = β where γ = ıV β), with V |κ = ∂ζ . Here we also assume that the
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ascending and descending manifolds, with respect to V , of distinct critical
points of f , are disjoint.

(6) A simple closed curve C ⊂ W \κ which is either nonseparating or boundary
parallel.

Then there exists a 1-parameter family of pairs (ft, Vt), with t ∈ [0, 1], satisfying
the following properties:

(1) f0 = f and V0 = V .
(2) ft = f0 and Vt = V0 for t ∈ [0, ε], while ft = f1 and Vt = V1 for t ∈ [1−ε, 1].
(3) For each t ∈ [0, 1], ft is Morse, has critical points only of index 1, and is

projection on [0, ε]� [1− ε, 1] on the collar neighborhood κ.
(4) For each t ∈ [0, 1], Vt is gradient-like for ft, Liouville for β, and equals ∂ζ

on κ.
(5) For all but finitely many values of t, distinct critical points of ft have dis-

tinct critical values, and at each of those finitely many values of t, precisely
two critical values of distinct critical points cross transversely.

(6) For all but finitely many values of t (distinct from the special values of t in
the preceding item), the ascending and descending manifolds, with respect
to Vt, of distinct critical points of ft, are disjoint. At those finitely many
values, handle slides occur.

(7) For some curve C ′ isotopic to C and some Dehn twist τC′ about C ′,
(β, f1, V1) = τ∗C′(β, f0, V0).

Remark 4.6. We emphasize in the above that Dehn twists about curves are only
well-defined up to isotopy, and we do not achieve an exact given Dehn twist, but
only a carefully constructed representative of its isotopy class.

Proof of Lemma 4.5. We will construct the homotopy in stages. From time t = 0
to t = 1/3, we construct a homotopy so that a curve C ′ isotopic to C is contained
in the level set f−1

1/3(1/2), with (β, f1/3, V1/3) having a nice form in a neighborhood

of C ′. From time t = 1/3 to t = 2/3 we implement the Dehn twist about C ′

so that (β, f2/3, V2/3) = τ∗C′(β, f1/3, V1/3). Then from time t = 2/3 to t = 1
we run the original 0 ≤ t ≤ 1/3 homotopy backwards, but pulled back via the
Dehn twist τC′ , giving us a homotopy from (β, f2/3, V2/3) = τ∗C′(β, f1/3, V1/3) to
(β, f1, V1) = τ∗C′(β, f0, V0).

To construct the t ∈ [0, 1
3 ] stage of the homotopy, we first consider only the

Morse theory. With C as above, we can construct a Morse function g on W such
that C ⊂ g−1(1/2), with only critical points of index 1. Then there exists a generic
homotopy from f = f0 to g, which will be Morse for all but finitely many times,
at which times births or deaths occur. However, it is standard that, because we
have no index 0 or 2 critical points at the beginning and end of this homotopy,
we can eliminate index 0 and 2 critical points at all intermediate times. (See, for
example, Theorems 3 and 4 in [6].) In this low-dimensional case, we are left with
only index 1 critical points. In particular, there are in fact no births or deaths and
the homotopy is Morse at all times.

Now we consider V = V0, together with f , as inducing a handle decomposition
of W . The handle decomposition is not enough to recover the isotopy classes of the
level sets of f , but these can be recovered from the handle decomposition together
with the ordering of the critical points according to height (i.e., the value of f).
In other words, any two Morse functions with gradient-like vector fields inducing
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Figure 3. Weinstein homotopy in W ′ realizing a handle slide on W .

isotopic ordered handle decompositions have isotopic level sets. A gradient-like
vector field for g also induces an ordered handle decomposition, and standard Cerf
theory then implies that there is a sequence of handle slides and reorderings of
handles which transforms the initial ordered handle decomposition for f to the
ordered handle decomposition for g.

Now we will produce a homotopy (ft, Vt) for 0 ≤ t ≤ 1/3 with the property that
the sequence of handle slides and handle reorderings is combinatorially the same
as the sequence produced by Cerf theory to transform f to g. In order to show
that such a homotopy exists, we appeal to the discussion of Weinstein homotopies
developed in [2]. The existence of a homotopy reordering critical points follows
immediately from their Lemma 12.20.

The existence of a homotopy realizing a handle slide follows from their Lemma
12.18, as we briefly explain. Consider two index-one critical points X and Y with
f(X) = a < f(Y ) = b, and suppose that in the desired handle slide, the handle
corresponding to Y slides over the handle corresponding to X. This means that,
in any level set between a and b, the descending manifold for Y slides across the
ascending manifold for X. Let W ′ = f−1[a+ε, b−ε], seen as a Weinstein cobordism
by restricting the auxiliary data from W . Locally, the descending manifold of Y
intersects ∂W ′ in a pair of points p+ ∈ f−1(a+ ε) and p− ∈ f−1(b− ε). The points
p± are isotropic 0-manifolds in the contact 1-manifold ∂W ′, so any smooth isotopy
of these points is trivially a Legendrian isotopy. Lemma 12.18 in [2] states that any
Legendrian isotopy of p− can be realized by a Weinstein homotopy preserving the
property that p− is the image of p+ under the negative flow of V . Applying this
result to an isotopy passing p− past the point where the ascending manifold of X
intersects ∂−W

′ = f−1(a+ ε) realizes the desired handle slide, see Figure 3.
After constructing the homotopy described above, some curve isotopic to C is

contained in a level set of f1/3, and we can clearly arrange this to be f−1
1/3(1/2). A

further isotopy of f1/3 near this level set ensures that df1/3(V1/3) = 1 near C ′. This
immediately allows us to parametrize a neighborhood ν of C ′ as ν = [1/2− ε, 1/2+
ε]× C ′ so that in ν, f1/3 is a projection onto the first factor ζ ∈ [1/2− ε, 1/2 + ε],

V1/3 = ∂ζ , and β = elζdζ∧dθ, for some constant l > 0 and some angular coordinate
θ ∈ [0, 2π] on C ′. (Technically, we now have this result at time t slightly greater than
1/3, but we may reparameterize so that this has been achieved by time t = 1/3.)

Now consider an ambient isotopy ψt : ν → ν defined in the coordinates above
by ψt(ζ, θ) = (ζ, θ+ ht(ζ)), where ht : [1/2− ε, 1/2+ ε] → [0, 2π], for t ∈ [1/3, 2/3],
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Figure 4. The functions implementing a Dehn twist.

is a family of functions as in Figure 4. Note that ψ0 is the identity, that ψ1 is
a Dehn twist about C ′, and that ψ∗

t β = β and ψ∗
t f1/3 = f1/3. Furthermore,

ψ∗
t (V1/3) = V1/3 near ∂ν. So now we define our homotopy for 1/3 ≤ t ≤ 2/3 as

ft = f1/3 and Vt = ψ∗
t (V1/3).

Thus, at time t = 2/3 we have (β, f2/3, V2/3) = τ∗C′(β, f1/3, V1/3). Then, for
2/3 ≤ t ≤ 1, let (ft, Vt) = τ∗C′(f1−t, V1−t), and we are done. �
Remark 2. Lemma 4.5 is stronger than required. In the case that the original Morse
function has n index 0 critical points which are fixed by φ, the lemma produces a
Weinstein homotopy on the cobordism defined by deleting a neighborhood of each
point. One natural source of such a cobordism is the presence of a transverse link
T in the contact manifold. Any such link may be transversely braided with respect
to the open book [10], and one may take the intersections of T with the pages as
the index 0 critical points in the Morse functions ft.

5. Contactomorphism

We now prove Theorem 1.1, which we restate here for the sake of readability.
Recall that W = (0,∞)×S1 ×S1 with coordinates x ∈ (0,∞), y, z ∈ S1, and with
contact structure ξW = ker(dz + x dy). We are given some (M, ξ,B, π).

Theorem 1.1. There is a 2-complex Skel ⊂ M with the property that, after modify-
ing ξ by an isotopy through contact structures supported by (B, π), the complement
(M \ (Skel ∪ B), ξ) is contactomorphic to a disjoint union of n = |B| copies of
(W, ξW ).

Proof. For the first claim, use Proposition 4.3 to isotope ξ and then produce a
Morse structure (F, V ) on (M,B, π) compatible with ξ. This then gives Skel, and
we now claim that each component of (M \ (Skel ∪ B), ξ) is contactomorphic to
(W, ξW ) = ((0,∞)× S1 × S1, ker(dz + xdy)), via a contactomorphism taking π to
z and V to x∂x.

To see this, note that there is one component ofM\(Skel∪B) for each component
of B. Fix one such component Y . We define a contactomorphism Ψ : Y → W as
follows. First we define Ψ on an open neighborhood U of the relevant component of
B, using local solid torus coordinates (ρ, μ, λ) as in Definition 4.1, and coordinates
(x, y, z) on W :

Ψ(ρ, μ, λ) = ((1/ρ2), λ, μ).

Direct calculation verifies that α = (1/ρ2)dλ+dμ becomes dz+xdy, V = −(ρ/2)∂ρ
becomes x∂x, and π = μ becomes π = z. Thus Ψ behaves as advertised on U and
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Ψ(U). Now Ψ is uniquely determined on the rest of Y and W by the requirement
that DΨ(V ) = x∂x, since all of Y can be reached from U by flowing along V . Since
V is tangent to pages and x∂x is tangent to constant z slices, it is clear that we
will have Ψ∗z = π everywhere on Y .

It remains only to verify that Ψ is a contactomorphism everywhere. Write Ψ∗α
as adx + bdy + cdz, where, in principle, a, b, and c are functions of x, y, and z.
Recall that there is a vector field X on M (the monodromy vector field) such that
dμ(X) = α(X) = 1. Thus dz and Ψ∗α agree on DΨ(X) which is transverse to
constant z levels, so the function c is identically 1, i.e., Ψ∗α = dz+ adx+ bdy. The
1–form adx + bdy is the restriction of Ψ∗α to constant z levels, i.e., “pages”, so
now we show that this restriction must simply be xdy. To see this, first note that
DΨ(V ) = x∂x is Liouville (on each page) for dx ∧ dy = Ψ∗dα on Ψ(U), while x∂x
is Liouville for dx ∧ dy on all of W and DΨ(V ) is Liouville for Ψ∗dα on all of W .
Since all of W is reached from Ψ(U) by flowing along DΨ(V ) = x∂x, this implies
that, restricting to pages, Ψ∗dα = dx ∧ dy. But then, again restricting to pages,
Ψ∗α = ıDΨ(V )Ψ∗dα = ıx∂x

dx ∧ dy = xdy. �

Remark 3. As asserted in the introduction, (M,B, π, ξ) is completely determined as
a compactification of �nW by the Morse diagram associated to the Morse structure
(F, V ), and in fact any Morse diagram arises this way. This follows directly from
the fact that Proposition 4.3 gives an explicit construction of (M,B, π, ξ) starting
from handle slide data recorded by the Morse diagram.

In the remainder of the paper it is convenient to work with the contactomorphism
Γ = Ψ−1 : W → Y . Before concluding this section, we briefly describe an extension
of Γ which will prove useful for Section 7.

Let W̃ = [0,∞]× S1 × S1 ⊃ W and extend Γ to W̃ so that {x = ∞} maps onto
a component of the binding and {x = 0} maps onto (a subset of) the skeleton.

For each component Bi of the binding we let W̃i be a corresponding copy of

W̃ . Taking all of these together gives a surjective map Γ̃ : �iW̃i → M . This is
a quotient map coming from an obvious equivalence relation on �i{x = ∞} and

a subtle equivalence relation on �i{x = 0}. The map Γ̃ factors through a space

which we will call M̃ , a 3-manifold with boundary defined by taking only the obvious

equivalence relation on �i{x = ∞} so that the interior of M̃ is naturally identified

with the complement of the skeleton in M . In fact, M̃ is nothing more than a
disjoint union of compact solid tori, one for each component of the binding, but the

important structure is the map M̃ → M ; we view M̃ as a manifold-with-boundary
compactification of M \ Skel, distinct from the closed manifold compactification,
which is M itself.

6. Front projections for Legendrian knots

In this section we show how Morse structures may be used to define front pro-
jections of Legendrian knots.

Definition 6.1. If Λi is a Legendrian curve in the complement of the skeleton
and the binding, the front projection F(Λi) is the result of flowing Λi by ±V to
the Morse diagram for the open book. The front projection of a Legendrian knot
Λ ⊂ M \B is the front projection of the curves Λ \ (Λ ∩ Skel(F, V )).
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Recall that the tori �Ti of the Morse diagram separate a neighborhood of the
binding from the rest of the manifold. When part of Λi lies on the binding side of
some Ti, flowing by −V sends it to the Morse diagram, while curves on the opposite
side of Ti flow via V to the Morse diagram. Generically, one may assume that Λ is
disjoint from B, and this definition of front projection allows us to avoid requiring
a larger perturbation. In practice, one can assume a small enough neighborhood so
that the knot lies on the “flow by V ” side.

Proposition 6.2. The front projection F(Λ) (after possibly perturbing Λ by an
arbitrarily small Legendrian isotopy) is a collection of smooth curves F(Λi) away
from finitely many semicubical cusps. Endpoints of F(Λ) occur in pairs with the
same t-coordinate on opposite sides of paired trace curves. The tangent at each
endpoint has slope 0 and away from such endpoints, the slope of the tangent to
F(Λ) lies in (−∞, 0). The Legendrian knot Λ may be recovered from F(Λ).

Proof. After perturbing by a small Legendrian isotopy, we may assume that Λ is
disjoint from the binding and the critical points of the Morse structure on each page,
that Λ is transverse to the interiors of the 2-cells of both Skel and Coskel, and that
Λ is tangent to V at only finitely many points. The transverse intersections with
Skel and Coskel occur at discrete, distinct values of t which are not handle slide
t-values.

In this case, the first assertion of the proposition follows from the analogous
statement for front projections in R

3 which generalizes immediately to W , via the
contactomorphism Γ defined above. Recall that the vector field V is identified
with x∂x under this contactomorphism, so that standard front projection for W =
(0,∞)× S1 × S1 (projection onto the (y, z)-torus S1 × S1) corresponds to flowing
along V to the front diagram. This contactomorphism also immediately shows that
the part of Λ disjoint from Skel can be recovered from F(Λ). Since Λ is determined
by F(Λ) outside a discrete set of points where it intersects Skel(F, V )), continuity
implies that it is determined everywhere.

Note that, in the front projection for W , since x ∈ (0,∞), the slopes x = −dy/dz
are constrained to be negative.

If Λ intersects the skeleton at a generic page, the two end points which result
from cutting Λ at this intersection will flow under V to opposite ends of the co-
core dual to the intersecting core. In the Morse diagram, F(Λ) therefore teleports
across the corresponding paired trace curves. To see that the slope of F(Λ) is 0
near each teleporting endpoint, it suffices to recall the extension of Γ defined at the

end of Section 5 which maps the torus x = 0 in W̃ = [0,∞]× S1 × S1 ⊃ W to the
skeleton. �

The discussion above implies that the Legendrian Reidemeister moves which are
familiar from the front projection in R

3 carry over to the setting of open book front
projections. However there are a variety of other moves which change the planar
isotopy type of the front projection, and these are explored in the next section.

To conclude, recall the statement of Theorem 1.4 from the introduction.

Theorem 1.4. Let Λ be a Legendrian link in (M, ξ) that is disjoint from the bind-
ing, transverse to Skel, and tangent to V at only finitely many points. Then the
image of Λ under the flow by ±V to �n×S1×S1 is a front on the Morse diagram.
Furthermore, any front on this Morse diagram is the image of such a Legendrian
Λ, and any two Legendrians with the same front are equal.
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Proof. Proposition 6.2 establishes the first statement in the language developed
since the introduction. The fact that any abstract front is the front projection of
a Legendrian knot follows from the fact that one may directly construct such a
Legendrian by flowing via ∓V back into the manifold for a time interval given by
the slope on the front. We note that this allows us to easily construct examples, as
any curves satisfying the conditions of Definition 1.3 are in fact front projections
of Legendrian knots; this is a useful property shared by other instances of front
projection (e.g., (R3, ξstd) and universally tight lens spaces) [1]. �

6.1. Fronts and Legendrian isotopy. Figure 5 shows a collection of moves which
change the surface isotopy type of the graph formed by F(Λ) and the trace curves
on a Morse diagram. In case the figure is not self-explanatory, these moves will be
described in more detail in the proof of Theorem 1.5 below. These moves, together
with surface isotopy preserving the property of being fronts and the ordinary Leg-
endrian Reidemeister moves [3] for front projections, make up the complete set of
isotopy moves.

Theorem 1.5. Two Legendrian links in (B, π, F, V ) are Legendrian isotopic if and
only if their fronts are related by a sequence of isotopy moves.

Proof. We need to prove two things: (1) each isotopy move on a front in fact cor-
responds to a unique Legendrian isotopy on the corresponding Legendrian, and (2)
any Legendrian isotopy Λu between Legendrian links Λ0 and Λ1 can be perturbed
so that there is a sequence of isotopy parameter values 0 = u0 < u1 < · · · < um = 1
such that, for each i, F(Λui

) is a front and differs from F(Λui−1
) by a single isotopy

move. As we go through the proof below, we will describe each move in sufficient
detail such that (1) will be clear from the description of the move.

To prove (2), we begin by noting that for any open cover {Uj} of M , we can
perturb the isotopy so as to ensure the following: there is a suitably small open
cover {Vk} of the domain �pS1 of Λ0 and a suitably small open cover {Wl} of the
parameter space [0, 1] such that, for each u∗ ∈ [0, 1], there is at most one Wl × Vk,
with u∗ ∈ Wl, on which Λu is not independent of u, and the image of Wl × Vk

is contained in exactly one Uj , i.e., the motion of Λu happens entirely inside Uj .
Furthermore, we may assume sufficient transversality so that, for all but finitely
many values of u, Λu satisfies all the genericity conditions spelled out in the first
paragraph of the proof of Proposition 6.2. At those finitely many values of u, exactly
one of these genericity conditions will be violated, and this violation will occur in a
transverse fashion. (To properly set up this transversality one should work with the
Legendrian isotopy as a map of [0, 1]×�pS1 into [0, 1]×M .) Both the statement
about the isotopy being constant outside small Wl × Vk’s and the transversality
statement follow from the fact that Legendrian curves and Legendrian isotopies
have as much local flexibility as curves and isotopies of curves in R

2, thanks to
Darboux’s theorem and the standard theory of fronts and Legendrians in R

3 → R
2.

The genericity conditions from the proof of Proposition 6.2, which will be violated
transversely, are as follows:

• Λ is transverse to the interiors of the 2–cells of Coskel.
• Λ is disjoint from the binding.
• Λ is transverse to the interiors of the 2–cells of Skel.
• Λ is disjoint from critical points of the Morse structure on each page.
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• The transverse intersections with Skel and Coskel do not occur at handle
slide t-values.

These are ordered so as to correlate with moves shown in Figure 5.
We will see that each move addresses the failure of one of these conditions.

Because of our assumption about how the isotopy changes with respect to a cover
of M , we can always assume that the transverse violation of each condition occurs
in some standard chart, so we simply present a standard model for each failure and
show that it corresponds to one of the isotopy moves.

6.1.1. Isotopies within standard solid tori. Recall that the solid torus W is a quo-
tient of

(
R

3, ker(dz + xdy)
)
. Front projection to an x = c plane is classically

understood, and the contactomorphism Γ identifies the Morse diagram torus Ti

H2

K1

S1 S2

H1

H3

B1

K2 K3

S3

Figure 5. These moves, together with their reflections preserv-
ing the negative slope of F(Λ), join the Legendrian Reidemeister
moves to give a complete set. On each partial Morse diagram, t
is vertical and s is horizontal. Note that moves K2 or B1 are not
completely local; the nearly horizontal segment in the left-hand
picture of K2 is replaced in the right-hand picture by a sequence
of nearly horizontal segments which teleport at each trace curve,
and replacing the short nearly vertical segment in the left-hand
picture of B1 with the long nearly vertical segment may create
crossings. The orientations on curves in the H diagrams are for
ease of comparison with those in Figure 7.
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with the image of such a plane. This immediately implies that Legendrian isotopies
confined to a single component of M \ (Skel ∪ B) can be viewed as the image of
Legendrian isotopies in the standard contact R

3. Thus the list of isotopy moves
must contain the ordinary Legendrian Reidemeister moves for front projections,
respecting cusps, and teleporting endpoints. However, Legendrian isotopy can give
rise to new moves changing the planar isotopy type of this graph formed by F(Λ)
and the trace curves.

Move S1: Translation in the t direction is a Legendrian isotopy. If there is
a segment of F(Λ) which crosses a trace curve at height t1 and another segment
which teleports across it at height t1 ± ε, any local isotopy which would move the
crossing point past t1 ± ε in the absence of the teleporting point is allowed to pass
the crossing through the teleporting point.

Move S2: Translation in the s direction is also a Legendrian isotopy, but such
a translation which creates or destroys a pair of intersection points between Λ and
the interior of a 2-cell of Skel may result in an instantaneous tangency. In the front
projection, this appears as a cusp passing through a trace curve, and we denote
this move by S2.

Move S3: Since translation in the s direction is a Legendrian isotopy, a crossing
on the front projection can pass through a trace curve. Note that although this
move changes the planar isotopy type of the graph on the Morse diagram, it does
not represent a failure of Λ to be generic.

In fact, the move H1 shown in Figure 5 also arises from an isotopy restricted to
a single solid torus, but we include this discussion with the rest of the handle slide
moves below.

6.1.2. Isotopy across the binding. The requirement that Λ be disjoint from the
binding leads to a new move on the front projection associated to a Legendrian
isotopy passing Λ through B. Every component of the binding has a standard
contact neighborhood, and in fact, this move has already appeared in the literature
in the case of front projections of a Legendrian knot in universally tight lens spaces.
See, for example [1].

Move B1: Let γ be a nearly vertical segment of F(Λ). Then γ may be re-
placed by its approximate vertical complement, connected to F(Λ) \ γ by a pair of
cusps. Recall that we can ensure an arbitrarily negative slope in F(Λ) by isotoping
the corresponding segment of Λ to lie sufficiently close to the binding; the move
corresponds to passing this segment across the binding.

Remark 6.3. A useful consequence of B1 is that Λ is always Legendrian isotopic
to some Λ′ contained in the complement of a fixed page, and further, that we may
easily construct a front projection F(Λ′) by applying this move to all intersections
of F(Λ) with some curve of fixed t value. We will use this in Section 7.1.

6.1.3. Isotopy across the skeleton. In the remainder of the proof, we examine the
remaining ways in which an isotopy can violate one of the genericity conditions
established above. Such violations occur when an isotopy moves a segment of Λ
between two components of M \ Skel.

Move K1: We first consider the effect of pushing an arc of Λ across the skeleton,
violating the generic conditions that Λ be transverse to the interior of the 2-cells of
Skel. Recall that each solid torus is contactomorphic to a quotient W of the subset
of (R3, ξstd) defined by 0 < x ≤ 1, where a sequence whose limit lies on x = 0 maps
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to a sequence whose limit lies on the skeleton. In R
3, an arc lying completely in

the region where x > 0 can approach x = 0 only if its front projection has a cusp;
thus in the open book case, the front projection of a Legendrian arc approaching
the skeleton shows a cusp approaching a trace curve. The skeleton separates two
solid tori, playing the role of the x = 0 plane for each of them, so after the arc has
passed through the point of tangency, we can understand its front projection by
considering a Legendrian arc in R

3 with both endpoints on x = 0 and its interior
lying in x > 0. Again, the front projection of such an arc must have a cusp, and
if we restrict our isotopy sufficiently, then there will be only one such cusp. Thus
move K1 teleports a cusp across a trace curve.

Remark 4. Analyzing the characteristic foliation offers an alternative proof that the
front projection of a Legendrian arc crossing the skeleton results in a teleporting
cusp; we will use this perspective in the proof of the next move and in the study of
isotopies across handle slides.

Move K2: Next, we consider the effect of a Legendrian isotopy passing Λ
through an index 0 critical point. The flowlines on each page are the leaves of the
characteristic foliation of kerα, so the union of index 0 critical points on all the
pages is easily seen to form a transverse knot in M . Some tubular neighborhood of
any transverse knot is standard, which implies the existence of a Legendrian isotopy
moving Λ across c0 × S1. If we assume that the initial segment is disjoint from the
skeleton, then the new connecting segment will intersect the piece of the skeleton
above each core curve twice. On the front projection, this corresponds to replacing
a nearly horizontal segment of F(Λ) by a nearly horizontal curve which teleports
across every pair of trace curves twice and connects to the rest of the projection
via a pair of cusps. This move is analogous to move B, reflecting the fact that both
involve isotopy across a transverse knot.

Move K3: Finally, consider an isotopy in which Λ crosses an index 1 critical
point c1; after possibly applying K1, we may assume that γ ⊂ Λ intersects both the
skeleton and the co-skeleton once near c1. As in the discussion of K2 above, we note
first that the union of index 1 critical points with the same label form a transverse
curve in M , and thus there is some Legendrian isotopy passing γ through this curve.
We argue first that the image of γ after some isotopy of this type intersects the
core and co-core on the other side of the critical point as shown in move K3.

In fact, our argument that the front move K3 represents a valid Legendrian
isotopy is essentially one of continuity. As long as γ remains distinct from the
critical point c1, the “before” and “after” pictures in K3 depict Legendrian knots.
As γ approaches c1 from either side, the slopes of the cusps approach 0 and the cusps
themselves approach the trace curve. The pointwise limit of both front diagrams is
a curve with an everywhere negative slope which teleports across the paired trace
curves at the point where the cusps approach. This is the front projection of a
Legendrian curve interpolating between the initial and final figures in the move K3.

Having established that K3 represents a valid front projection move, we would
like to conclude that it models any generic isotopy of Λ across an index 1 critical
point. Consider a t-interval sufficiently small that the characteristic foliation near c1
varies only by isotopy, and consider the Lagrangian projection of the isotopy shown
in K3. See Figure 6. Observe that there is a single point of tangency between the
projection of γ and the characteristic foliation which corresponds to the cusp. We
may assume such points of tangency are isolated, and perhaps after conjugating by
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Figure 6. Passing a segment of Λ across an index 1 critical point.

a pair of K1 moves, we may restrict the isotopy under consideration to a sufficiently
small neighborhood in M × I to include the passage of just a single such tangency
across c1, recovering K3 as desired.

Note that this move has two versions depending on whether the initial cusp is
an “up” or “down” cusp; this property is preserved by the isotopy.

6.1.4. Handle slide moves. Although the vector field V (and hence, the contact
structure) changes continuously in the t-direction, the evolution of the flowlines is
not continuous as the t-parameter passes through a handle slide value. For segments
of Λ away from the handle-sliding curves, the front projection changes only by the
moves described above, so in this final section we study the effect on the front
projection of an isotopy passing Λ through the cores and co-cores on a page where
a handle slide occurs. If t∗ is a handle slide value, then on Σt∗ there is a flowline
from an index 1 critical point c1 to an index 1 critical point b1. Let X denote
the union of this flowline together with the descending manifold from c1 and the
ascending manifold from b1.

Suppose that u parameterizes a Legendrian isotopy which passes a segment γ ⊂ Λ
transversely through X in the complement of the critical points, and let u∗ denote
the value of the isotopy parameter where γu∗ meetsX. Since transversality of curves
is an open condition, there exist nonempty intervals [u1, u2] � u∗ and [t1, t2] � t∗
such that γ(u) is transverse to the curves of the characteristic foliation on Σt for
all u ∈ [u1, u2] and t ∈ [t1, t2]. Up to isotopy preserving intersections with the
characteristic foliation, it follows that the projections of γui

to Σti agree with
the numbered arcs in Figure 7. Treating a given arc as fixed, we examine how
its intersections with flowlines of V change as the handle slide occurs. The front
projection of the numbered arc before and after the isotopy may be read off from
each of these pictures simply by comparing the intersections between the oriented
Legendrian arc and the (co-)skeleton; arcs 1 and 2 correspond to move H3, arc 3
corresponds to move H1, and arcs 4 and 5 correspond to move H2. �

7. Computing the Thurston–Bennequin number

As an application of the front projection introduced in the preceding section, we
define an algorithm to construct a Seifert surface for a nullhomologous Legendrian
knot Λ and use this to compute the Thurston–Bennequin number of Λ from its
front projection F(Λ). In the remainder, we assume that Λ is oriented. Throughout
this section, we let Σ denote the abstract compact surface homeomorphic to the
embedded page Σ0.
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Figure 7. Moves H1, H2, and H3 come from comparing the in-
tersection of a fixed numbered arc with the characteristic foliation
before and after a handle slide. The red and purple curves are
cores, and the blue and yellow co-cores correspond to the identi-
cally colored trace curves of Figure 5. Similarly, the oriented green
curves correspond to the oriented curves of F(Λ) in Figure 5.

7.1. Detecting nullhomologous knots. In this section we explain how the front
projection F(Λ) can be used to detect when Λ is nullhomologous in the closed 3-
manifold. As noted in Remark 6.3, the existence of the move B1 that isotopes a
Legendrian curve across the binding implies that we may assume Λ is disjoint from
Σ0; in fact, we will assume that Λ lies in Σ× [ε, 1− ε] for some ε > 0.

Let P = {p1, . . . , pn}, where pi is a point on the ith boundary component of Σ
in the complement of the co-cores for (f0, V0). The inclusion of Σ into M induces a
surjective map H1(Σ) → H1(M). In order to describe the kernel K of this map, we
consider a different inclusion-induced map, i∗ : H1(Σ) ↪→ H1(Σ, P ). Note that i∗
is injective, since H1(P ) = 0. The monodromy φ induces a map φ∗ : H1(Σ, P ) →
H1(Σ, P ), and K is equal to im(φ∗− id) ⊂ H1(Σ). See Section 2.1 in [4]. Note that
im(φ∗ − id) ⊂ H1(Σ) because φ fixes P .

With the assumption that Λ ∩ Σ0 = ∅, we may define a projection π : Λ → Σ0

which collapses the t coordinate. It follows that Λ is nullhomologous in M if and
only if [π(Λ)] ∈ K ⊂ H1(Σ0), and we next explain how to detect the homology
class of π(Λ) from F(Λ).

First, we choose a set of generators for H1(Σ0, P ) as follows: once oriented, the
cores form a basis for H1(Σ0), and we extend this to a generating set for H1(Σ0, P )
by including the flowline from the index 0 critical point to each marked point pi on
the boundary. The concatenation of any pair of flowlines, one with its orientation
reversed, provides the desired generating set. For convenience, choose the marked
point pi so that the planar presentation of each component of the Morse diagram
has pi × [0, 1] as its left (and right) vertical edge. For later convenience, we will
orient the left edge up and the right edge down; this will allow us to formally treat
the edges as if they were paired trace curves. Note that when the boundary of Σ is
connected, H1(Σ, P ) = H1(Σ).
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Figure 8. Labeling the trace curves and vertical edges by homol-
ogy class.

The co-cores are dual to this basis for H1(Σ0), so counting signed intersections
with the co-cores detects the first homology class of any closed curve on Σ0. Inter-
sections of π(Λ) with co-core curves are in bijection with intersections between F(Λ)
and the trace curves. This bijection preserves signs, so with a little bookkeeping,
we may compute the homology class of π(Λ) from the front projection.

Each oriented co-core has an incoming and an outgoing end; on the Morse di-
agram, orient the trace curve corresponding to the former upwards and the trace
curve corresponding to the latter downwards. It follows that if Λ lies in Σ × [0, a]
for a less than the smallest handle slide t-value, counting the signed intersections
between F(Λ) and the trace curves computes its homology class in H1

(
Σ × [0, 1]

)
in terms of the initial basis.

In order to extend this technique to Λ ⊂
(
Σ× [ε, 1− ε]

)
, we need to know what

homology class to assign to an intersection between F(Λ) and a trace curve after
some number of handle slides have occurred. Suppose that handle B slides over
handle A; since the trace curves come from intersections of the co-cores with em-
bedded tori, on the front projection one of the trace curves labelled A will teleport
from one trace curve labelled B to the other trace curve labelled B. Suppose also
that this A trace curve and the B trace curve at which A enters the teleport have
the same orientation (i.e., up or down) in the Morse diagram. Then after the handle
slide the corresponding trace curves come from co-cores dual to the classes A and
A + B, respectively. This is shown twice in the example on the right in Figure 8.
On the other hand, if A and B have opposite orientations at the teleport, then the
resulting co-cores will be dual to the classes A and A−B.

Similarly, label the initial arc from pi to pj by the homology class Pij ∈ H1(Σ0, P ).
If a co-core labelled A crosses the marked point pi—on the trace diagram, this looks
like a “handle slide” across the paired left and right edges of the planar Morse
diagram—the corresponding arc on the surface changes from the class Pij to the
class Pij +A, just as if the edges were in fact trace curves. As with the trace curve
labels, we label the edge of each component of the Morse diagram by the half-edge
Pi, with the understanding that a class in H1(Σ, P ) is represented by a difference
of half-edges. See Figure 9. To compute the kernel K, we again take the difference
between top and bottom labels, but this time, of differences of edges.

Split each trace curve and each edge of the planar Morse diagram into intervals
separated by teleporting points of the trace curves and label each interval with
the appropriate homology class. In order to determine the homology class of Λ in
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Figure 9. Two Morse diagrams for L(2, 1). On the left, we com-
pute that K is generated by (P1 − P2) −

(
A + 2P1 − P2

)
, and on

the right, by (P1 − P2)−
(
(A+ P1)− (−A+ P2)

)
.

+-
Figure 10. Sign convention for crossings

Σ× [ε, 1− ε], it suffices to sum the signed labels of the intersection points between
F(Λ) and the trace curves.

To determine the homology class of the same knot, now viewed as a submanifold
ofM , we compute the image of this under the quotient by im(φ∗−id). We depict the
Morse diagram as planar for convenience, but of course, the top and bottom edges
are identified: φ∗ applied to the t = 1 label is the t = 0 label. Thus the differences
between the labels at the top and bottom of each trace curve and vertical edge
generate im(φ∗ − id).

This discussion establishes the following lemma, where the sign convention for
the fourth point is shown in Figure 10.

Lemma 7.1. With notation as above, the following statements hold:

(1) H1(Σ × [0, 1]) ∼= H1(Σ) is generated by the trace curve labels along the
bottom edge.

(2) K = im(φ∗ − id) is generated by the differences between the top and bottom
labels, including the labels of the vertical edges. Although Pi labels appear
at the top and bottom, they will necessarily cancel out in the differences.

(3) H1(M) ∼= H1(Σ)/K.
(4) [π(Λ)] ∈ H1(M) is equal to the signed sum of labels of intersections between

F(Λ) and the trace curves. If this signed sum is 0, then Λ is nullhomologous
in Σ× [0, 1]. If this signed sum lies in K, then Λ is nullhomologous in M .
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B+A

P

P

B+A

Figure 11. [Λ] is dual to the co-core labeled A.

+- + -
Figure 12. Incoming arrows are labeled “+” and outgoing arrows
are labelled “−”. (The orientation of the trace curve is irrelevant.)

Example 7.2. We illustrate this with an open book with punctured torus pages,
shown in Figure 11 with the trace curves assigned their homological labels. The
signed sum of the intersection labels between F(Λ) and the trace curves is −2A+B.
The top and bottom labels agree for all but the downward pointing blue trace
curve, so im(φ∗ − id) is generated by the difference between these two labels: A.
H1(M) ∼= Z, and Λ generates the first homology of the manifold.

7.1.1. The total writhe. Once we determine that a knot contained in the cylinder
Σ× [ε, 1− ε] is nullhomologous, we can compute its Thurston–Bennequin number.
In order to do so, we will define a quantity called the total writhe of the front
projection. This is closely related to the ordinary writhe of a diagram, but it also
counts some crossings between F(Λ) and the trace curves.

Suppose first that [π(Λ)] = 0 ∈ H1(Σ). Assign signs to each teleporting endpoint
of F(Λ) as shown in Figure 12 and divide each trace curve into intervals separated
by these teleporting endpoints of F(Λ) and by teleporting trace curves. (For clarity,
we will refer to the latter as handle slides in the remainder of this section.) Assign
multiplicities to each interval as follows. Assign the bottom interval of each trace
curve multiplicity 0.

If there are no handle slides, define the multiplicity of any interval to be the sum
of the multiplicity of the interval below and the sign of the teleporting endpoint
separating them. Observe that corresponding intervals on paired trace curves will
have multiplicities of the same absolute value, but of opposite signs.
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Figure 13. A Morse diagram for a nullhomologous knot indicat-
ing the multiplicities of each trace curve interval.

When a handle slide occurs, add the multiplicities of the two converging branches
to define the multiplicity of the interval above the trivalent point. This, together
with the condition on matching multiplicities of paired trace curves, determines
the multiplicity of the two branches emanating from the paired trivalent point. See
Figure 13.

Let P and N denote the total number of positive and negative self-crossings
of F(Λ), respectively. Let T denote the sum of signed crossings between F(Λ)
(viewed as the over strand) and the upward-oriented trace curves (viewed as the
under strand), where each summand is multiplied by the multiplicity of the trace
curve interval where a crossing occurs. We again refer to Figure 10 for the sign
convention.

Definition 7.3. When Λ is nullhomologous in Σ× [0, 1], the total writhe of F(Λ)
is the sum

W
(
F(Λ)

)
= P −N + T.

In the case that [π(Λ)] �= 0 ∈ H1(Σ), we introduce a new link X with the
properties that X and Λ are homologous, and X ∪Λ is nullhomologous in Σ× [0, 1],
as above. Although many such links satisfy these conditions, the specific link desired
is constructed by adding curves with one of two standardized forms to the Morse
diagram. We next introduce two carefully chosen kinds of curves and we will define
the link X as a link whose front projection consists solely of these curves.

(1) A Type 1 pair consists of a curve lying in the t-interval (1−ε, 1] together with
its orientation-reversed translation to the t-interval [0, ε). The endpoints of
each curve should form a teleporting pair.

(2) Each member of a Type 2 pair is a curve which begins on the left-most trace
curve on a component of the Morse diagram at some t-value in (1 − ε, 1),
travels left nearly to the edge of the diagram, travels vertically down to a
t-value in (0, ε), and then travels right to terminate on the left-most trace
curve. The two curves of a Type 2 pair should lie on different components of
the trace diagram and should have opposite orientations along their vertical
segments.
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Any curves satisfying the description above will suffice for our purposes, but for
convenience, we will usually choose these curves to be as simple as possible, as
shown in Figure 14.

Let F(X) be a collection of curves of Types 1 and 2 such that [π(X)] = −[π(Λ)] ∈
H1(Σ), as computed by summing the labels of all intersection points with the
labelled trace curves. That such a link exists is easily seen from the following
argument: choose a Seifert surface for Λ and cut it along its intersection with
Σ0∪N(B) and pull the resulting surface into the interior of the cut manifold. Each
pair of boundary components produced by the cut will consist of closed curves
representing the homology classes Y ∈ H1(Σ) and φ∗(Y ) near the top and bottom
of the cylinder, respectively, and their front projections will form a Type 1 pair.
When cutting yields a single boundary component, it will have the form

(
γ × (1−

ε)
)
∪
(
φ(γ)× ε

)
∪
(
{p, q} × [ε, 1− ε]

)
, where γ is an arc connecting points p and q

near ∂Σ. The front projection of such a curve will appear as a pair of Type 2 curves
on the Morse diagram. Note that when the binding is connected, we may tube the
initial Seifert surface so that it is disjoint from the binding and thus eliminate any
Type 2 curves.

Compute the total writhe as above, now using the teleporting endpoints of
F(X ∪ Λ) to assign multiplicities to intervals of the trace curves.

Definition 7.4. For Λ nullhomologous in the mapping torus M(Σ, φ) and F(X)
as above, let P and N denote the counts of positive and negative crossings between
F(Λ) and itself, while T denotes the the sum of signed crossings between F(Λ) and
the trace curves weighted by the multiplicities induced by F(Λ ∪ X). Then the
total writhe of F(Λ ∪X) is the sum

W
(
F(Λ ∪X)

)
= P −N + T.

Lemma 7.5. The total writhe of F(Λ ∪X) is independent of the choice of X.

It follows that the total writhe is in fact an invariant of the original front projec-
tion F(Λ), and consequently we write W (F(Λ)) instead. The proof is at the end
of the section. With this notation in hand, we recall the formula for computing the
Thurston–Bennequin number stated in the Introduction.

2
1

Λ

Λ

ABA

A+B

B

Figure 14. Left: One curve of a Type 2 pair and both elements
of Type 1 pair. Center and Right: Examples of F(Λ ∪X).
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Theorem 1.6. Let Λ be a nullhomologous Legendrian knot. Then the Thurston–
Bennequin number of Λ is computed by

tb(Λ) = W
(
F(Λ)

)
− 1

2
|cusps|.

Example 7.6. The Morse diagram on the right in Figure 14 describes an open book
with annular pages whose monodromy is a single left-handed Dehn twist about the
core: an overtwisted S3. In fact, Λ is the boundary of an overtwisted disc. There is
a single negative crossing between F(Λ) and the trace curve on the first component
of the diagram—recall that the trace curve is the undercrossing strand. However,
the multiplicity of this interval of the trace curve is −1, as a consequence of the
Type 2 pair, so the contribution to the total writhe is T = 1. Adding this to (−1)
times half the number of cusps computes that the Thurston–Bennequin number of
Λ is 0.

7.2. Seifert surfaces I. In order to prove Theorem 1.6, we will need to construct
a Seifert surface S for Λ and count the signed intersections between S and a vertical
(i.e., t) translation Λ′ of Λ. When Λ is nullhomologous in the cylinder Σ × [0, 1],
the procedure for constructing a Seifert surface is somewhat simpler than in the
case that Λ is nullhomologous only in the mapping torus M(Σ, φ). In this section,
we assume that [π(Λ)] = 0 ∈ H1(Σ), and we defer the latter case to Section 7.3.

Our approach mimics the classical construction in R
3, with some extra care

required to deal with the fact that the front projection of Λ will generally not be
an immersed loop. A summary of our approach is as follows: cutting M along its
skeleton separates Λ into properly embedded arcs. We connect the endpoints of

these arcs via new segments lying on the boundary of M̃ := M \ Skel to form a link

denoted Λ̃; see the discussion at the end of Section 5. These segments are chosen

to appear in pairs which cancel when M̃ is mapped back into M . It thus suffices to

build a Seifert surface for the link in M̃ . The process described below is illustrated
in Figure 15.

Step 1. Recall that M̃ is a compactification of M \ Skel, so our link has a natural

preimage in M̃ consisting of properly embedded arcs. In this step, with a little

care, we will connect the endpoints of these arcs by additional segments in ∂M̃ .

Flowing by ±V—which is front projection in the case of Legendrian curves—

collapses surfaces in ∂M̃ to intervals, so as an aid to visualization, we replace each
trace curve T by a ribbon T × [−1, 1] ⊂

∐
Ti. Strictly speaking, the result is

no longer a front projection, but the honest front projection may be recovered by
projecting each ribbon to T × {0}.

Recall that the definition of the total writhe involved first decomposing the trace
curves into intervals bounded by teleporting endpoints and trivalent points of the
trace pattern.

Lemma 7.7. On each connected component of the trace pattern, the sum of signs
of the teleporting endpoints is 0.

The proof is deferred until the end of the section.
We assigned each interval Ti of T a multiplicity mi(T ), and we place mi(T ) dis-

joint positively oriented segments in the ribbon neighborhood of Ti. (We interpret
mi < 0 as indicating that the segments are oriented negatively.) The lemma implies
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Figure 15. Steps 1 and 2 of the Seifert algorithm applied to the
example in the center of Figure 14.

Figure 16. Steps 1 and 2 of the Seifert algorithm applied to a
knot linking c0 × S1.

that the teleporting endpoints of F(Λ) on each connected component of the trace
pattern may be paired, and these added segments are chosen to connect paired

endpoints. The result is a collection of immersed closed curves F(Λ̃). We claim
also that these connections may be chosen so as not to introduce any new crossings
into the diagram; if an initial choice of connections creates crossings, the oriented
resolution of these crossings will satisfy the claim.

To complete the construction of Λ̃, lift the added segments to disjoint segments

on ∂M̃ which connect to each other and to the points where Λ intersects ∂M̃ . Since
the segments appear in oppositely oriented pairs on ribbons associated to paired

trace curves, these lifts may be chosen so that the natural map of M̃ onto M glues

cancelling segments. This ensures that any Seifert surface for Λ̃ in M̃ will glue to
a Seifert surface for Λ in M , as desired.

Step 2. Now apply the classical Seifert’s Algorithm to F(Λ̃): take the oriented

resolution at each crossing to transform F(Λ̃) into a collection of disjoint simple
closed curves.

Recall that the original curve π(Λ) was nullhomologous in Σ0. If it had a nonzero
winding number with respect to the index 0 critical point c0, then some of the
resolved curves will also share this property; although nullhomologous, they will
not bound a region on the front projection.
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To remedy this, introduce additional simple closed curves to the link whose
winding number with respect to the index 0 critical point is the negative of that
of Λ. Furthermore, these curves may be chosen to lie sufficiently close to c0 on
pages with a sufficiently large t-coordinate that no new crossings are introduced
in the front projection. The front projection of a curve contained on a fixed page
and linking c0 will appear on the front projection as a horizontal line, but it is
important to note that it teleports at each trace curve, rather than crossing it.
After introducing these new components, the curves in the resolved front projection
will bound discs and annuli. See Figure 16.

Next, lift these to discs and annuli in M̃ . This must be done with some care; in
the case of nested cycles C1 inside C2, note that the interior of the disc bounded
by C2 should be assumed to lie closer to the binding than C1. This condition is

required by the fact that segments of C1 may lie on the boundary of M̃ , preventing
the interior of the disc bounded by C2 from being pushed “behind” C1. For later
use, we further assume that a collar neighborhood of Λ in each disc agrees with

Λ× [r0, r1] for some small interval [r0, r1] in the r direction. Finally, reconstruct Λ̃
as the boundary of this surface by gluing in twisted bands to recover the resolved

crossings. Call the result S̃.

Step 3. Finally, we map M̃ to M , gluing segments of ∂S̃ identified in the quotient.
To complete the construction of a Seifert surface for our original knot Λ, we remove
the link’s components added in Step 2 by filling each one in with a disc lying in the
page. This construction of a Seifert surface for ΛH renders the proof of Theorem 1.6
straightforward in the case that Λ is nullhomologous in Σ× [0, 1].

Proof of Theorem 1.6, Part 1. Here we address the case when we have [Λ] = 0 ∈
H1(Σ×[0, 1]). The Thurston–Bennequin number of Λ is the linking number between
Λ and a vertical push-off Λ′ of Λ, or equivalently, the signed intersection number
of Λ′ and a Seifert surface for Λ. By construction, this agrees with the intersection

number between Λ′ and the Seifert surface S̃ for Λ̃ in M̃ constructed above.
Recall that the surface S̃ was constructed from discs chosen to have a positive

tangent component in the ∂r direction near Λ. This implies immediately that for
each pair of left/right cusps in F(Λ), there is a single negative intersection point

between S̃ and Λ′; this is easily seen using the contactomorphism between standard
pieces and a quotient of (R3, ξstd).

Twisted bands also contribute intersection points between S̃ and Λ′, and the sum
of these contributions is the total writhe of the original diagram. Each crossing in
the original front projection leads to an intersection point whose sign is most easily
computed via the following movie picture.

Furthermore, each crossing between a curve of F(Λ) and a curve of F(Λ̃) \F(Λ)
contributes an intersection point; note that the latter will always be the under-
strand. Rotating the under-strand in Figure 17 counterclockwise to vertical shows
that the sign of the intersection is multiplied by −m.

As noted above, the simple closed curves added in Step 2 do not affect the
intersection number between Λ′ and S. �

7.3. Seifert surfaces II. We now turn our attention to the case of a Legendrian
knot Λ which is nullhomologous in M but not in Σ× [0, 1]. As described above, a
Seifert surface for Λ may be cut along Σ0 ×N(B) to yield a new Seifert surface for
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Figure 17. The right-hand picture shows five rt-cross-sections of
the twisted band and curve shown on the left. On each slice, the
transverse arrow points in the positive direction of the surface, so
that the sign of the intersection is −1. The solid dot is included
to show that a push-off of the under-crossing strand does not in-
troduce any other intersections.

a link Λ ∪X. The components of the link come in three distinct types, which we
have identified as Type 1 pairs, Type 2 components, and Λ itself.

Remark 5. These new boundary components are not Legendrian, but one may
nevertheless consider their image on the Morse diagram after flowing by V , and
thus we continue to use “front projection” to describe the resulting curves on the
Morse diagram.

Proof of Theorem 1.6, Part 2. To conclude the proof, we consider the case when
[Λ] �= 0 ∈ H1(Σ× [0, 1]) but [Λ] = 0 ∈ H1(M).

Having replaced the original Λ by a link which is nullhomologous in Σ × [0, 1],
we are free to carry out the construction of a Seifert surface and, hence, the com-
putation of the Thurston–Bennequin number, exactly as in Section 7.2. We note
that F(Λ′) will be disjoint from any Type 1 curves and will represent the “under”
strand in any intersections with Type 2 curves, so the introduction of X affects the
count of intersections only inasmuch as it changes the multiplicities along the trace
curves. �

7.4. Proof of Lemmas 7.5 and 7.7. Recall that Lemma 7.5 asserted the inde-
pendence of the total writhe of F(Λ ∪X) from the choice of X, while Lemma 7.7
claimed that the signed sum of teleporting endpoints is zero on each connected
component of the trace curves. In fact, both results will follow easily once the
multiplicities are interpreted topologically.

Proof of Lemma 7.7. The multiplicities assigned to intervals of the trace curves
were defined combinatorially, but their role in the construction of a Seifert surface
makes the definition more transparent. The construction described above intro-

duces the oriented segments of Λ̃ \ Λ to ∂M̃ , and the multiplicity of an interval is

a signed count of how many segments lie on the part of ∂M̃ whose neighborhood
flows to the trace curve. The sign comes from the fact that each added segment

connects a pair of endpoints of Λ which intersect ∂M̃ with opposite signs and at
different t-values, so the front projection of this oriented curve points in either the
positive or negative t direction.

Lemma 7.7 is equivalent to the statement that the endpoints with opposite signs
may be joined by such arcs. In particular, it is clear that this count depends only

on Λ̃ and not on its extension to Λ̃. Since Λ is nullhomologous in Σ× [0, 1], there
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exists some Seifert surface for Λ, and its preimage in Λ̃ defines an extension Λ̃ which
suffices to ensure the existence of the multiplicity function. �

Proof of Lemma 7.5. To show that the total writhe is independent of the choice of
X extending Λ, suppose that X1 and X2 are two such choices. We may modify
the links, preserving intersection numbers between F(Xi) and the trace curves, so
that X1 −X2 consists of a pair of nullhomologous links contained, respectively, in
Σ× (0, ε] and Σ× [1− ε, 1). We will prove this claim below; in the case where the
Xi consist only of Type 1 components, no modification is necessary.

Assuming the claim, we note that each link contained in the product Σ× (a, b)
has a Seifert surface which may also be assumed to lie in the product Σ × (a, b).

Thus the signed count of intersections between this Seifert surface and ∂M̃ is 0
near the original Λ, and thus the multiplicities contributing to the total writhe of
Λ are unaffected.

We conclude by describing how to modify the Type 2 components of X1−X2 so
that they are disjoint from Σ0. As a first step, isotope each Type 2 component across
the binding so that it lies in a neighborhood of Σ0 and intersects it twice. Since
the collection is nullhomologous, the signed intersection number with Σ0 is 0, so
we may perform saddle resolutions to remove all the intersections with Σ0 without
altering the intersections between the front projection and the trace curves. The
resulting modified link satisfies the claim. �
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