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STIELTJES FUNCTIONS OF FINITE ORDER

AND HYPERBOLIC MONOTONICITY

LENNART BONDESSON AND THOMAS SIMON

Abstract. A class of Stieltjes functions of finite type is introduced. These
satisfy Widder’s conditions on the successive derivatives up to some finite
order and are not necessarily smooth. We show that such functions have a
unique integral representation along some generic kernel which is a truncated
Laurent series approximating the standard Stieltjes kernel. We then obtain
a two-to-one correspondence, via the logarithmic derivative, between these
functions and a subclass of hyperbolically monotone functions of finite type.
This correspondence generalizes a representation of HCM functions in terms

of two Stieltjes transforms earlier obtained by the first author.

1. Introduction and statement of the results

This paper is devoted to certain subclasses of real functions defined on (0,∞).
Unless otherwise explicitly stated, all functions will be supposed of this kind in the
sequel. A non-negative function f is called a Stieltjes function (f ∈ S for short) if
there exists a ≥ 0 and a non-negative measure μ(dt) on [0,∞) integrating (1+ t)−1

such that

(1.1) f(x) = a +

∫ ∞

0

1

x+ t
μ(dt).

Introduced by Stieltjes for the purposes of the moment problem, such functions are
important for questions related to potential theory and infinite divisibility; see [10]
and the references therein for a recent account, among other topics. Notice that
in many instances, it is useful to extend Stieltjes functions to the whole cut plane
C\R−. In this paper, however, we will stay within the realm of functions of one
real variable.

It is plain by dominated convergence that a function f ∈ S is also completely
monotone (f ∈ CM for short); in other words f is smooth and

(−1)nf (n) ≥ 0(1.2)

for all n ≥ 0, where, here and throughout, f (n) stands for the n-th derivative of f.
Recall from Bernstein’s theorem (see e.g. Theorem 1.4 in [10]) that f ∈ CM if and
only if there exists a non-negative measure μ(dt) on [0,∞) (the so-called Bernstein
measure) such that

f(x) =

∫ ∞

0

e−xt μ(dt).

Received by the editors April 19, 2016, and, in revised form, November 7, 2016.
2010 Mathematics Subject Classification. Primary 44A15; Secondary 60E05, 60E10.
Key words and phrases. Hyperbolic monotonicity, Stieltjes transform, Widder condition.
The second author would like to thank Jean-François Burnol for several discussions related to

this paper.

c©2018 American Mathematical Society

4201

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7123


4202 LENNART BONDESSON AND THOMAS SIMON

It is also easy to see that if f ∈ S, then xf is a Bernstein function (f ∈ B for short),
that is, a non-negative function whose derivative is completely monotone; see again
[10] for an account. More generally, it was shown by Widder (see Theorem 10.1 in
[14]) that f ∈ S if and only if f is smooth and

(xnf)(n) ∈ CM ∀n ≥ 0.(1.3)

The proof of this result was recently simplified in [13] in the broader framework of
generalized Stieltjes transforms. Another theorem by Widder (see Theorem 12.5 in
[15] or Theorem 18b, p. 366, in [16]) states that a non-negative function f is in S
if and only if it is smooth and such that

(−1)n−1(xnf)(2n−1) ≥ 0 ∀n ≥ 1.(1.4)

Notice that the formal equivalence between (1.3) and (1.4), which is partly explained
in Lemma 12.52 of [15], is not immediate.

Finite type versions of (1.2) and (1.3) have been studied in the literature. Fol-
lowing [17], we will say that a function f is k−monotone (f ∈ Mk for short) for
some k ≥ 2 if it is in Ck−2 and such that (−1)nf (n) is non-negative, non-increasing,
and convex for n = 0, . . . , k − 2. As in [17], we will say that f ∈ M1 if f is non-
negative and non-increasing. These functions have been characterized in Theorem
1 in [17]; see also Lemma 17.4.1, p. 306, in [5], which states that f ∈ Mk if and
only if there exists a non-negative measure μk(dt) such that

f(x) =

∫ ∞

0

(
1− xt

k

)k−1

+

μk(dt).

Notice that this result recovers Bernstein’s theorem by letting k → ∞, identifying
the exponential kernel e−xt at the limit of the integrand, and applying Helly’s se-
lection principle to the sequence {μk}; see the remark on p. 310 in [5] for details.
More recently, in [9], it was shown that a non-negative function f satisfies (1.3) for
n = 1, . . . , k if and only if it is in CM and its Bernstein measure has a k−monotone
density satisfying a certain integrability property; see Theorem 1.3 therein. This
result also retrieves Theorem 10.1 in [14] by the same selection argument; see Corol-
lary 1.5 therein.

In this paper, we will obtain a finite type version of (1.4). This motivates the
following definition, which is inspired by [15] and [17]. Here and throughout, we will
consider derivatives in the measure sense. With this convention, the first derivative
of a convex function on (0,∞) is its right derivative, whereas its second derivative
is a non-negative measure.

Definition 1. For k ≥ 1, a non-negative function f satisfying ( 1.4) for n = 1, . . . , k
is said to be a k−Stieltjes function (f ∈ Sk for short).

Notice that for k ≥ 2, a function f ∈ Sk is of class C2k−3 with (−1)k−1(xkf)(2k−3)

a convex function. Observe also that k–Stieltjes functions need not satisfy (1.3) even
for n = 0, since the condition is on a finite number of derivatives only. On the other
hand, it will be shown in Proposition 2 below that if f ∈ Sk for some k ≥ 2, then
(xf)′ ∈ Mk−1. It is clear that {Sk} is a decreasing family with Sk ↓ S. To state
our results, we need some further notation. We introduce the following family of
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alternating sign polynomials:

Pk(x) =

k∑
n=0

(
2k

n+ k

)
(−x)n.

Observe that Pk(x) is the polynomial part of the finite Laurent series

(1 − x)k(1 − x−1)k. Set P̂k = Pk − Pk(0) and consider the following family of
non-negative kernels on (0,∞)× [0,∞) :

Φk(x, t) =
1

x

(
Pk(tx

−1)1{x≥t} − P̂k(xt
−1)1{x<t}

)
.

Observe that xΦk(x, 0) = Pk(0) =
(
2k
k

)
and that xΦ0(x, t) = 1{x≥t}. The fact

that the kernels Φk(x, t) are everywhere non-negative is a direct consequence of
the decreasing character of the coefficients of Pk, which implies Pk(y) ≥ 0 and

P̂k(y) ≤ 0 for all y ∈ [0, 1]. More generally, it will be proved in Proposition 1 below
that for every k ≥ 2 and t > 0, the functions x 	→ Φk−1(x, t) belong to Sk.

Our first main result is the following characterization.

Theorem 1. For k ≥ 2, one has f ∈ Sk if and only if there exists ak ≥ 0 and a
non-negative measure μk(dt) on [0,∞) integrating (1 + t)−1 such that

f(x) = ak +

∫ ∞

0

Φk−1(x, t)μk(dt).(1.5)

Recall that in the case k = 1, the condition f ∈ S1 means that xf is non-
decreasing, and we hence have the obvious representation

f(x) =
1

x

∫ x

0

μ1(dt) =

∫ ∞

0

Φ0(x, t)μ1(dt)

for some non-negative measure μ1 on [0,∞) which, however, might not integrate
(1 + t)−1. Observe also that by geometric expansion, one has(

2k

k

)−1

Pk(u) −→ 1

1 + u
and

(
2k

k

)−1

P̂k(u) −→ −u

1 + u

for all u ≥ 0 as k → ∞, so that

(1.6)

(
2k

k

)−1

Φk(x, t) −→ 1

x+ t

as k → ∞ for all x > 0 and t ≥ 0. Hence, again, applying Helly’s selection principle
one retrieves Widder’s characterization of S given in (1.4). It is plain that the sets
Sk are convex cones of functions, and the above result together with the argument
of Proposition 1 in [7] shows that they are closed with respect to pointwise limits.
It is not clear whether these closed convex cones have abstract extensions leading
to interesting invariant properties, as is the case for S; see [3, 7]. Recall that the
extension of S to C\R− implies a complex inversion formula which is valid when
μ in (1.1) has a density and which is well-known as the Perron-Stieltjes inversion
formula; see e.g. Theorem 7b, p. 340, in [16]. In our finite type framework there
is also an inversion formula for μk which has a real-variable character and is more
directly connected to the kernels Φk and the conditions (1.4); see Remark 3 below.

The proof of the characterization of S by the set of conditions (1.4), which is
more or less the topic of the whole Chapter 8 in [16], is lengthy. It hinges on the
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construction of a certain jumping operator connected to the Perron-Stieltjes inver-
sion formula. Our proof goes partly along Widder’s lines, but the main difference is
that it relies on the non-smoothness of the kernels Φk. More precisely, applying the
k-th condition (1.4) to Φk−1 yields a Dirac mass; see Remark 1. This observation,
which explains why the truncated Laurent series Φk comprises the relevant approx-
imations of the Stieltjes kernel in our context, allows us to find the measure μk in
a constructive way, starting from the convexity assumption on (−1)k−1(xkf)(2k−3)

and then integrating. The integration procedure works and gives the right growth
order for μk, because the assumption f ∈ Sk forces the function f to have a cer-
tain boundary behaviour at zero; see Proposition 2. Overall, the problem that we
consider in this paper is more complicated than the problems in [9, 13, 16] because
of its non-smooth character, and our arguments are also more intricate.

As mentioned before, Stieltjes functions appear in questions related to infinite
divisibility. This is mainly due to the aforementioned property that f ∈ S ⇒
xf ∈ B, and we refer e.g. to Chapters 7 and 8 in [10] for more on this topic. A
further instance is the following notion, introduced by Thorin and the first author
in the late 1970’s: a function f is said to be hyperbolically completely monotone
(f ∈ HCM for short) if the function f(uv)f(uv−1) is completely monotone in
the variable w = v + v−1, for every u > 0. This apparently technical definition
is actually quite robust, and a remarkable feature of the class HCM is that such
functions appear both as Laplace transforms and densities of infinitely divisible
distributions. It turns out that functions in HCM are pointwise limits of functions
of the type

Cxβ−1
N∏
i=1

(1 + cix)
−γi

with all parameters positive except β ∈ R. The connection with Stieltjes functions
is obtained by the following representation, which is given as (5.2.3) in [4] and is a
consequence of Theorem 5.3.1 therein: one has f ∈ HCM if and only if

f(x) = Cxβ−1h1(x)h2(x
−1),(1.7)

with C ≥ 0, β ∈ R, and −(log hi)
′ ∈ S for i = 1, 2. From this representation, it is

clear that fp ∈ HCM for all p > 0 if f ∈ HCM and that fg ∈ HCM whenever
f, g ∈ HCM. A deeper property is that HCM is also stable by multiplicative con-
volution. We refer to Chapters 3-5 in [4] for more details on this notion.

In this paper, we will obtain a finite type version of (1.7). This motivates the
following definition, which is rephrased from the main definition of [5].

Definition 2. A non-negative function f is called k−hyperbolically monotone (f ∈
HMk for short) if, for every u > 0, the function f(uv)f(uv−1) is k−monotone in
the variable w = v + v−1.

Again, we see that {HMk} is a decreasing family with HMk ↓ HCM. The
Leibniz formula shows that HMk is closed with respect to multiplication, and it
is easy to see that it is also closed with respect to pointwise limits and to the
transformation f → f̃ where f̃(x) = f(x−1). In [5], it was shown among other
results that HMk is closed with respect to multiplicative convolution. We also
refer to [2] for further connections between the class HMk and infinite divisibility.
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In the case k = 1, it is not difficult to see that f ∈ HM1 if and only if

f(u1v
−1
1 )f(u2v

−1
2 ) ≥ f(u1v

−1
2 )f(u2v

−1
1 )

for every u1 < u2 and v1 < v2. This means that the kernel f(xy−1) is totally
positive of order 2 (TP2) on (0,∞) × (0,∞) or equivalently (see Theorem 4.1.8
in [8]), that y 	→ f(ey) is log-concave on its support which is necessarily a closed
interval. Hence, there is a canonical representation: one has f ∈ HM1 if and only
if

f(x) = C exp

[
−
∫ x

x0

ψ(y)

y
dy

]
,(1.8)

with C, x0 > 0 suitably chosen, and ψ a non-decreasing function (possibly taking
the values ±∞). Separating the positive and negative parts of ψ, it is an easy
exercise to transform this representation into

f(x) = Cxβ−1h1(x)h2(x
−1)(1.9)

with C ≥ 0, β ∈ R, and −(log hi)
′ ∈ S1 (possibly taking the value +∞) for i =

1, 2. In particular, we see that fp ∈ HM1 for every p > 0. In the case k ≥ 2,
however, the connection between HMk and totally positive kernels of higher order
is lost in general. Moreover, it is possible to exhibit functions f ∈ HMk such
that fp �∈ HMk for some p > 0; see Remarks 4(b) and 7(b). Having in mind an
exponential representation of the type (1.7) or (1.9), it is hence natural to introduce
the following definition:

Definition 3. A non-negative function f such that fp ∈ HMk for every p > 0 is

called power regular HMk (f ∈ ĤMk for short).

Our second main result is the following characterization.

Theorem 2. For every k ≥ 2, one has f ∈ ĤMk if and only if

f(x) = Cxβ−1h1(x)h2(x
−1)

with C ≥ 0, β ∈ R, and −(log hi)
′ ∈ Sk for i = 1, 2.

This result gives a constructive procedure to find functions in the set ĤMk,
starting either from two functions satisfying (1.4) for every n ≤ k or, by Theorem
1, from two non-negative reals and two non-negative measures on (0,∞) integrat-
ing (1 + t)−1. An example of the latter construction is provided in Section 4.2. It
remains an open problem to find a canonical representation for all k−hyperbolically
monotone functions. This problem seems however rather difficult because HMk is
not closed with respect to positive powers, which shows that the canonical repre-
sentation, if any, should not have an exponential type.

The closedness of ĤMk with respect to positive powers plays a crucial role in
our argument because it allows us to linearize the problem (see Lemma 3), making

any function in ĤMk+1 in one-to-one correspondence with a parametrized set of
k−monotone functions in the hyperbolic variable v + v−1. The remainder of the
proof is then an analysis on this set of functions, whose initial conditions establish
the connection with Sk by a Taylor expansion. An unexpected feature, which is a
consequence of both Theorem 1 and the specific nature of our kernels Φk(x, t), is
that these initial conditions determine the whole k−monotonicity property of these
functions; see Remark 6. Let us finish this introduction with the following further
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characterization of ĤMk, which is a simple consequence of Theorem 1, Theorem
2, and Lemma 2 below, and which we state without proof. An example of this
characterization is provided in Section 4.1. Notice also that the case k = ∞ is a
characterization of HCM.

Corollary. For every k ≥ 2, one has f ∈ ĤMk if and only if

(−1)j−1(xj(− log f)′)(2j−1) ≥ 0

for every j = 1, . . . , k.

The paper is organized as follows. In Section 2 we prove Theorem 1, and in
Section 3 we prove Theorem 2. In Section 4 we consider some explicit interesting
examples, whereas the Appendix is devoted to a technical and rather surprising
lemma related to the “if” part of Theorem 2.

2. Proof of Theorem 1

2.1. Proof of the “if” part. We will first investigate regularity properties of
the kernel Φk(x, t), which are less immediate than those of the finite type kernels
involved in [17] and [9]. For symmetry reasons, it will be more pleasant to consider
the kernel

(2.1) Ψk(x, t) = xΦk(x, t) = ψk(xt
−1),

where we have set ψk(y) = Ψk(y, 1) = Pk(y
−1)1{y≥1}−P̂k(y)1{y<1}. The kernel Ψk

and the function ψk will play some role in other parts of the paper. Our analysis
relies on two lemmas which will be useful in other parts of the paper as well. The
first one is obtained by an elementary induction, starting from the last derivative.

Lemma 1. Let P be a real polynomial of degree l. Suppose (−1)iP (i)(0) > 0 and
(−1)iP (i)(1) > 0 for all i = 0, . . . , l. Then P is l−monotone on [0, 1]. In particular,
P is positive on [0, 1].

The second one has a symmetry character and is reminiscent of Lemma 3.11 in
[15]. It consists of two identities between differential operators which are easily
checked on polynomials, and thus on all functions by an identification of the coef-
ficients. Alternatively, these identities can be obtained from the Leibniz formula.
We introduce the linear differential operator

Θn(h) = xn(xn−1h)(2n−1)

acting on any function h which is regular enough. Further let h̄(x) = −h(x−1).

Lemma 2. For any h regular enough, one has

Θn(h)(x) = (x2n−1h(n)(x))(n−1) = Θn(h̄)(x
−1).

We can now state the main result of Section 2.1.

Proposition 1. For every k ≥ 1, t > 0, the function x 	→ Φk(x, t) belongs to Sk+1.

Proof. We begin with an analysis of the function ψk, which is smooth on (0,∞)
except possibly at y = 1. Evaluating

Pk(1) =

(
2k
k

) k∑
n=0

(−k)n
(k + 1)n

=

(
2k
k

)
2F1

(
−k, 1

k + 1
; 1

)
=

1

2

(
2k
k

)
= −P̂k(1),
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where we have used the standard notation for Pochhammer symbols and the hyper-
geometric function and applied the Chu-Vandermonde identity (see e.g. Corollary
2.2.3 in [1]), shows that ψk is continuous at y = 1. Similarly, we compute

P
(i)
k (1) = P̂

(i)
k (1) = (−1)i i!

(
2k

k + i

)
2F1

(
i− k, i+ 1

k + i+ 1
; 1

)
= (−1)i i!

(
2k − i− 1

k − 1

)

for all i = 1, . . . , k. On the other hand, setting Qk(y) = P̂k(y
−1), we obtain after

some analogous computations

Q
(i)
k (1) = (−1)i+1 i!

(
2k

k + 1

)
2F1

(
1− k, i+ 1

k + 2
; 1

)
= (−1)i+1 i!

(
(k − i+ 1)k−1

(k − 1)!

)
for all i ≥ 1. For i = 1, . . . , k, we get

Q
(i)
k (1) = (−1)i+1 i!

(
2k − i− 1

k − 1

)
= −P̂

(i)
k (1),

whereas for i = k + 1, . . . , 2k − 1, we have Q
(i)
k (1) = 0 = P̂

(i)
k (1). All of this shows

that ψk is of class C2k−1 at y = 1, and the function x 	→ Φk(x, t) is hence C2k−1 on
(0,∞), too.

We next prove that

Ξn,k(x) = (−1)n−1(xn−1ψk(x))
(2n−1) ≥ 0(2.2)

for all n = 1, . . . , k and x > 0. Suppose first that x < 1. Then, since

xn−1ψk(x) = −xn−1 P̂k(x) = −
(
2k

k

) k−1∑
i=0

(−k)i+1

(k + 1)i+1
xi+n,

we obtain

Ξn,k(x) = (2n− 1)!

k−n∑
i=0

(
2k

k − n− i

)(
2n+ i− 1
2n− 1

)
(−x)i.

For every i = 0, . . . , k − n we next evaluate

(−1)iΞ
(i)
n,k(0)

(2n− 1)!i!
=

(
2k

k − n− i

)(
2n+ i− 1
2n− 1

)
and

(−1)iΞ
(i)
n,k(1)

(2n− 1)!i!
=

(
2k − 2n− i
k − n− i

)(
2n+ i− 1
2n− 1

)
,

where the first identity is immediate and the second one is obtained by the Chu-
Vandermonde identity. Lemma 1 implies then that (2.2) holds for all n = 1, . . . , k
and x < 1. When x > 1, we compute

Ξn,k(x) = (−1)n−1(xn−1(ψk(x)− Pk(0)))
(2n−1)

= (−1)n−1(xn−1Qk(x))
(2n−1) = x−2nΞn,k(x

−1),

where the first equality is obvious and the third one follows from Lemma 2. Putting
everything together implies that (2.2) holds for every n = 1, . . . , k and all x ∈
(0,∞). In particular, the function x 	→ Φk(x, t) satisfies (1.4) for every n = 1, . . . , k.

We finally consider the continuous function

πk(x) = (−1)k(xkψk(x))
(2k−1) = −xΞk,k(x) + (−1)k(2k − 1)(xk−1ψk(x))

(2k−2),
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where in the second equality we have used the chain rule. If x < 1, we have
Ξk,k(x) = (2k − 1)! and πk has hence constant derivative −(2k)!. If x > 1, Lemma
2 (or a direct computation) shows that Ξk,k(x) = (2k − 1)!x−2k, and this easily
implies that πk has zero derivative. In particular, the function πk is convex, which
means that the function x 	→ Φk(x, t) fulfils the required convexity property for
Sk+1. �

It is easy to see that Proposition 1 proves the “if” part of Theorem 1. Suppose
indeed that f has the representation (1.5) for some k ≥ 2. Since a+g ∈ Sk whenever
g ∈ Sk for every a ≥ 0, it suffices to consider the case ak = 0. Moreover, at each
x > 0, it is plain by definition that the i−th derivative of x 	→ Φk−1(x, t) is bounded
in t by Ki,x(t

i ∧ t−i) for some finite constant Ki,x.
1 Since μk integrates all such

functions by assumption, we can apply the dominated convergence theorem, and
the linearity of the integral for the convexity property, to conclude by Proposition
1 that f belongs to Sk. �

Remark 1. The end of the proof of Proposition 1 shows that

π
(2)
k = (2k)! δ1

where, here and throughout, we have set the standard notation δa for a Dirac mass
at a. This property allows us to construct the kernel Φk in a recursive way by
successive integration, choosing the appropriate boundary terms in order to ensure
the required regularity and so that (1.4) holds at all intermediate levels. In this
respect, the functions x 	→ Φk(x, t) can be viewed as the “fundamental solutions”
of (1.4) up to order k + 1 since we have

(−1)k(xk+1Φk(x, t))
(2k+1) = (2k)! t−k δt.

We refer to Section 4.3 for another recursive formula connecting Φk and Φk+1.

2.2. Proof of the “only if” part. We begin with a proposition having indepen-
dent interest and crucial for our purposes. For simplicity, we will set

g = xf and ϕn = x2n−1g(n)

for every suitable n ≥ 1.

Proposition 2. Suppose f ∈ Sk. Then g′ ∈ Mk−1. Moreover, one has ϕ
(j)
k (0+) = 0

for all j = 0, . . . , k − 3, and (−1)k−1ϕ
(k−2)
k (0+) ≥ 0.

Proof. Observe first that by the first equality in Lemma 2, if f ∈ Sk, then

(−1)n−1ϕ(n−1)
n ≥ 0

for every n = 1, . . . , k− 1, and (−1)k−1ϕ
(k−1)
k is a non-negative measure on (0,∞).

We now proceed by induction on k.
If k = 2, then ϕ′

2 is a negative measure, which implies that ϕ2(0+) > −∞.
Supposing ϕ2(0+) > 0, then recalling ϕ2 = x3g(2), we see by integration that
g′(0+) = −∞. This is a contradiction since g is non-decreasing by the fact that f
also belongs to S1. Hence ϕ2(0+) ≤ 0 and g(2) ≤ 0, which implies that g′ ∈ M1 as
required.

1Here and throughout we use the notation a∧ b for the minimum of two real numbers a and b.
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If k = 3, then ϕ
(2)
3 is a non-negative measure, which implies that ϕ′

3(0+) < +∞
and ϕ3(0+) > −∞. If ϕ3(0+) < 0, then by integration one has g(2)(0+) = +∞,
a contradiction to the case k = 2. Moreover, the case k = 2 also implies that
ϕ3+3xϕ2 ≤ 0, and since ϕ2(0+) > −∞, we must have ϕ3(0+) ≤ 0. This shows that
ϕ3(0+) = 0. Supposing now that ϕ′

3(0+) < 0, this again implies the contradiction
g(2)(0+) = +∞. Hence we have ϕ3(0+) = 0, ϕ′

3(0+) ≥ 0, and g(3) ≥ 0, which
together with the case k = 2 implies that g′ ∈ M2.

We now set k ≥ 4 and suppose that the property has been shown up to rank

k−1. Since (−1)k−1ϕ
(k−1)
k is a non-negative measure, a direct induction shows that

all right derivatives ϕ
(j)
k (0+) exist for j = 0, . . . , k − 2. A further induction based

on L’Hôspital’s rule and the fact, given by the case k = 3, that ϕ3(0+) = 0 shows

that ϕ
(j)
k (0+) = 0 for j = 0, . . . , k − 3.

Supposing (−1)k−1ϕ
(k−2)
k (0+) < 0, we obtain (−1)k−1g(k−1)(0+) = −∞ and

contradict the induction hypothesis. Hence (−1)k−1ϕ
(k−2)
k (0+) ≥ 0, and by inte-

gration we get (−1)k−1ϕk ≥ 0, which implies that (−1)k−1g(k) ≥ 0 and hence that
g′ ∈ Mk−1, too. �

Remark 2.
(a) As it turns out later, we will also have (−1)k−1ϕ

(k−2)
k (0+) = 0, because

bk = 0 with the notation of equation (2.6) below. However, this fact seems more
difficult to prove directly with the above induction argument.

(b) We believe that f ∈ Sk ⇒ g(i) ∈ Mk−i for all i = 1, . . . , k − 1. This would
give more precision on the implication (1.4) ⇒ (1.3).

We can now prove the “only if” part of Theorem 1. Suppose that f ∈ Sk and
consider the following non-negative measure on (0,∞) :

ρk = (−1)k−1ϕ
(k−1)
k ,

with the above notation. For every x > 0, we have

(2.3)

∫ x

0

ρk(dt) = (−1)k−1ϕ
(k−2)
k (x) + (−1)k−2ϕ

(k−2)
k (0+) < ∞

by Proposition 2. Suppose next that ρk has a density, which is then the function

(−1)k−1ϕ
(k−1)
k (x) = (−1)k−1Θk(g)(x)

= (−1)k−1Θk(ḡ)(x
−1) = (−1)k−1ϕ̄

(k−1)
k (x−1),

where the first two equalities come from Lemma 2 and where we have used the
symmetric notation ϕ̄n = x2n−1ḡ(n). Changing the variable implies that∫ ∞

x

t−2ρk(dt) =

∫ x−1

0

ρ̄k(dt)

for every x > 0, where ρ̄k is the measure with density (−1)k−1ϕ̄
(k−1)
k . By approxi-

mation, this equality remains true when ρk is not necessarily absolutely continuous.
Moreover, it is clear from the above argument applied to ḡ that the right-hand side
is also finite for every x > 0. Thus we have shown that ρk integrates 1 ∧ t−2, and
hence the measure

νk(dt) = ((2k − 2)!t)−1ρk(dt)
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integrates t∧t−1 on (0,∞). Recalling the notation in (2.1) for Ψk−1, we next observe
that

((2k − 2)!t)−1Ψ
(k)
k−1(x, t) = ((2k − 2)!t)−1 dk

dxk

(
ψk−1(tx

−1)
)
1{x≥t}

=
(−1)k−1

(k − 2)!xk+1

k−2∑
n=0

(
k − 2
n

)
(−tx−1)n1{x≥t}.

Therefore, we can compute
(2.4)∫ ∞

0

Ψ
(k)
k−1(x, t) νk(dt) =

(−1)k−1

(k − 2)!xk+1

k−2∑
n=0

(
k − 2
n

)
(−x)−n

(∫ x

0

tn ρk(dt)

)
.

Integration by parts with the help of Proposition 2 yields∫ x

0

tn ρk(dt) = (−1)k−1
n∑

i=0

(−1)i
n!xn−i

(n− i)!
ϕ
(k−2−i)
k (x)

for every n ≥ 1, the case n = 0 being evaluated in the above (2.3). Plugging all
these expressions into (2.4) and switching the two finite sums, we get∫ ∞

0

Ψ
(k)
k−1(x, t) νk(dt) =

1

x2k−1

k−2∑
i=0

(
i∑

n=0

(−1)n
(
i

n

))
xiϕ

(i)
k (x)

i!
− ϕ

(k−2)
k (0+)

(k − 2)!xk+1

=
ϕk(x)

x2k−1
− ϕ

(k−2)
k (0+)

(k − 2)!xk+1
= g(k)(x) − ϕ

(k−2)
k (0+)

(k − 2)!xk+1
·(2.5)

Since g′ ∈ Mk−1 by Proposition 2, it is obvious that g(i)(∞) exists and is finite for
every i = 1, . . . , k − 1. Moreover we have

g(2)(x−1) = −x4ḡ(2)(x) + 2xg′(x−1) → 0

as x → 0, by Proposition 2 applied to ḡ. This yields g(2)(∞) = 0, and clearly we
have g(i)(∞) = 0 as well for every i = 3, . . . , k − 1. Moreover, since for every i ≥ 1
and x > 1 one has

Ψ
(i)
k−1(x, t) ≤ Ki x

−1(xt−11{x≤t} + tx−11{t<x})

for some finite constant Ki, the integrability properties of νk show that∫ ∞

0

Ψ
(i)
k−1(x, t) νk(dt) → 0, x → ∞,

for every i = 1, . . . , k−1. Hence, by monotone convergence, we can integrate (k−1)
times the identity (2.5) from x to ∞ and obtain

g′(x) = ak + bk x
−2 +

∫ ∞

0

Ψ′
k−1(x, t) νk(dt)(2.6)

with ak = g′(∞) ≥ 0 and

bk =
(−1)k−1ϕ

(k−2)
k (0+)

(k − 2)!
≥ 0.

Integrating now (2.6) from ε > 0 to x, we get

g(x) − g(ε) = ak(x− ε) + bk(ε
−1 − x−1) +

∫ ∞

0

(Ψk−1(x, t)−Ψk−1(ε, t)) νk(dt).
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When ε ↓ 0, the left-hand side increases to g(x)−g(0+) < ∞, whereas (by Proposi-
tion 1 and monotone convergence) the three terms on the right-hand side increase to
some limit which must be finite. This shows that bk = 0 and, since Ψk−1(0+, t) = 0,

g(x) = g(0+) + ak x +

∫ ∞

0

Ψk−1(x, t) νk(dt).

In particular, the measure νk(dt) must integrate (1 + t)−1. Dividing both sides by
x and setting

μk(dt) = νk(dt) + g(0+)

(
2k

k

)−1

δ0(dt),

we have finally built a drift coefficient ak ≥ 0 and a non-negative measure μk(dt)
on [0,∞) integrating (1 + t)−1, such that f has the required representation

f(x) = ak +

∫ ∞

0

Φk−1(x, t)μk(dt), x > 0.

�

Remark 3. The above proof gives the following formula for the unique non-negative
measure μk corresponding to f ∈ Sk :

μk = g(0+)

(
2k

k

)−1

δ0 + (−1)k−1((2k − 2)!t)−1ϕ
(k−1)
k ,

with the notation g = xf and ϕk = x2k−1g(k). This can be viewed as a Stieltjes
inversion formula of finite type. This should be compared to Theorem 9, p. 345,
and Theorem 10c, p. 350, in [16], which give an analogous inversion formula for
(1.1) in the case when μ therein has a density.

3. Proof of Theorem 2

We begin with the following characterization of ĤMk, which has independent
interest and which will be used in both “if” and “only if” parts of the proof.
For every non-negative differentiable function f, let ψf (x) = −x(log f)′(x) and
introduce for every fixed u > 0 the function

Δu(f)(w) =
ψf (uv)− ψf (uv

−1)

v − v−1

for v > 0, which is clearly a function of w = v + v−1 ∈ [2,∞) only.

Lemma 3. For k ≥ 2, one has

f ∈ ĤMk ⇐⇒ Δu(f) ∈ Mk−1 ∀u > 0.

Proof. Set Fu(w) = log(f(uv)f(uv−1)) for a given differentiable function f. The
crucial point is the following observation, which is obtained from the fact that
dw/dv = v−1(v − v−1) and the chain rule:

dFu

dw
= −Δu(f).(3.1)

This implies that if Δu(f) ∈ Mk−1 for all u > 0, then pFu ∈ Mk for all p, u > 0.
Moreover, it is easy to see from Faà di Bruno’s formula that h ∈ Mk ⇒ eh ∈ Mk

for any given function h. This concludes the “if” part of the lemma.
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The “only if” part is analogous to the proof of Theorem 3.6(iii), p. 19, in [10].
Rewriting

fp(uv)fp(uv−1) =

∞∑
n=0

pn

n!
(Fu(w))

n

and differentiating term by term, we see that if f ∈ ĤMk, then

(−1)j
∞∑

n=1

pn

n!
((Fu(w))

n)(j) ≥ 0

for every j = 1, . . . , k and every p, u > 0. Dividing by p and letting p → 0, we get

(−1)jF (j)
u = (−1)j−1Δu(f)

(j−1) ≥ 0

for every j = 1, . . . , k and u > 0, as required. �

Remark 4.
(a) The above proof shows that

ĤMk = {f : ∃ pn ↓ 0 such that fpn ∈ HMk} .

There are examples of functions in HMk such that fp �∈ HMk for some p < 1, as
we will see below. It is an open question whether fp ∈ HMk for every p ≥ 1 as
soon as f ∈ HMk.

(b) It is easy to see from (3.1) that if f ∈ ĤMk for some k ≥ 2, then ψf cannot
take infinite values, so that necessarily f(x) > 0 for all x > 0. This is in sharp
contrast with the case k = 1. Observe in particular from Example 17.2.3 in [5] that
the k−monotone function

x 	→ (t− x)k−1
+ ,

which is in HMk for every t > 0, cannot be in ĤMk if k ≥ 2 since it does not have
full support.

We next state a crucial computational lemma.

Lemma 4. For every f regular enough and k ≥ 0, u > 0, one has{
Δu(f)

(k)(w)
}
w=2

=
k!

(2k + 1)!
(u2k+1ψ

(k+1)
f (u))(k).

Proof. We will use the polynomial identity

n∑
k=0

zk =

[n/2]∑
k=0

(
n− k

k

)
(−z)k(1 + z)n−2k,

where [x] means the integer part of x, which is an easy consequence of the Chu-
Vandermonde identity. Setting now x = v − 1, y = v−1 − 1, and X = w − 2, we
deduce that

xn+1 − yn+1

x− y
=

n∑
k=0

xkyn−k

=

[n/2]∑
k=0

(
n− k

k

)
(−xy)k(x+ y)n−2k =

[n/2]∑
k=0

(
n− k

k

)
Xn−k,
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where we have used x+y = −xy = X. Putting this together with a Taylor expansion
of y 	→ ψf (uy) around y = 1, we obtain

Δu(f)(w) =

N∑
n=0

⎛
⎝[n/2]∑

k=0

(
n− k

k

)
Xn−k

⎞
⎠ un+1ψ

(n+1)
f (u)

(n+ 1)!
+ O(XN+1)

=
N∑

n=0

⎛
⎝ n∑

k=[(n+1)/2]

(
k

n− k

)
Xk

⎞
⎠ un+1ψ

(n+1)
f (u)

(n+ 1)!
+ O(XN+1)

=

N∑
k=0

(
k∑

n=0

(
k

n

)
un+k+1ψ

(n+k+1)
f (u)

(n+ k + 1)!

)
Xk + O(XN+1)

=
N∑

k=0

(
(u2k+1ψ

(k+1)
f (u))(k)

(2k + 1)!

)
Xk + O(XN+1),

where in the last equality we have used the Leibniz formula and the first equality
in Lemma 2. This concludes the proof. �
3.1. Proof of the “only if” part. We first consider the smooth case. Let k ≥ 2

and suppose that f ∈ C2k−1∩ĤMk. A combination of Lemmas 3 and 4 shows that

(−1)n−1(u2n−1ψ
(n)
f (u))(n−1) ≥ 0

for every u > 0 and n = 1, . . . , k. A perusal of Section 2.2 shows that all this leads
to the representation (2.6) for g = ψf , that is,

ψ′
f (x) = ak + bk x

−2 +

∫ ∞

0

Ψ′
k−1(x, t) νk(dt)

for some ak, bk ≥ 0 and νk a non-negative measure integrating t ∧ t−1. However,

thinking e.g. of the function f(x) = e−x−1

which is HCM, we may have here
ψf (0+) = −∞. We hence integrate this into

ψf (x) = c + ak x +

∫
[1,∞)

Ψk−1(x, t) νk(dt)

− bk x
−1 +

∫
(0,1)

(Ψk−1(x, t)− Pk−1(0)) νk(dt)

for some constant c ∈ R. It is not difficult to show that Ψk−1(x, t) − Pk−1(0) =

Ψk−1(x
−1, t−1), using Pk−1(1) = −P̂k−1(1). Hence, we can rewrite

ψf (x) = c +

(
ak x+

∫
[1,∞)

Ψk−1(x, t) νk(dt)

)

−
(
bk x

−1 −
∫
(0,1)

Ψk−1(x
−1, t−1) νk(dt)

)

= c +

(
ak x+

∫
[1,∞)

Ψk−1(x, t) νk(dt)

)

−
(
bk x

−1 −
∫
(1,∞)

Ψk−1(x
−1, t) ν̂k(dt)

)
,
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where ν̂k is a non-negative measure on (1,∞) integrating t−1. Dividing by x, we
deduce that

−(log f)′(x) = c x−1 +

(
ak +

∫
[1,∞)

Φk−1(x, t) νk(dt)

)

− x−2

(
bk −

∫
(1,∞)

Φk−1(x
−1, t) ν̂k(dt)

)
,

which is, by Theorem 1 and setting β = 1− c, the required representation of f.

Suppose last that f ∈ ĤMk but is not necessarily C2k−1. We introduce the
approximation

ψε(x) = x−1

∫ ∞

0

ψf (y)φε(yx
−1) dy = E[ψf (xLε)],

where h is a positive mollifier (for example h(x) = κe−(1−x2)−1

1{|x|≤1}, where κ is

the normalizing constant), hε(x) = ε−1h(xε−1), and

φε(x) = x−1hε(log x)

is the density of a random variable Lε with compact support [e−ε, eε]. The above

integral is finite for every x, ε > 0 since f ∈ ĤM2 and is hence positive every-
where (see Remark 4(b) above), so that ψf is locally bounded on (0,∞). The same
argument clearly shows that ψε is smooth. Setting

Δε
u(w) =

ψε(uv)− ψε(uv
−1)

v − v−1
,

we get by Lemma 3 and the linearity of the expectation that Δε
u ∈ Mk−1. Hence,

the above argument shows that the representation

ψε(x) = cε +

(
ak,ε x +

∫ ∞

1

Ψk−1(x, t) νk,ε(dt)

)

−
(
bk,ε x

−1 −
∫ ∞

1

Ψk−1(x
−1, t) ν̂k,ε(dt)

)

holds for every ε > 0, for some non-negative measures νk,ε(dt) and ν̂k,ε(dt) inte-
grating t−1 at infinity. Since ψε → ψf pointwise as ε ↓ 0, the conclusion follows
from Helly’s selection theorem. �

Remark 5. The above proof shows that C∞ ∩ ĤMk is dense in ĤMk for the
pointwise topology. It is interesting to mention that C∞ ∩ HMk is also dense in
HMk for the same topology. Indeed, if f ∈ HMk, the approximation

fε(x) =

∫ ∞

0

f(y)hε(xy
−1) y−1dy, where hε(x) =

e−
(log x)2

2ε2

√
2πεx

is the density of a log-normal distribution with variance parameter ε2, is well-defined
since f ∈ HM1 has the representation (1.8) and since hε integrates any polynomial
function at zero and infinity. Observe that by the change of variable x 	→ et, this
amounts to the standard convolution approximation with a Gaussian kernel. In
particular, one has fε ∈ C∞ and fε → f pointwise as ε ↓ 0. Finally, Example 17.2.5
and Property (iv), p. 302, in [5] show that fε ∈ HMk for all ε > 0.



STIELTJES FUNCTIONS OF FINITE ORDER 4215

3.2. Proof of the “if” part. Since xβ−1 ∈ HCM and since the class ĤMk is
closed with respect to pointwise multiplication and to the transformation f 	→
f̃(x) = f(x−1), it is enough to show that f ∈ ĤMk whenever −(log f)′ ∈ Sk. By
Lemma 3, Theorem 1, and monotone convergence, this amounts to showing that

Δk,u ∈ Mk(3.2)

on (2,∞) for every k ≥ 1 and u > 0 where, recalling the definition of ψk at the
beginning of Section 2.1, we have set

Δk,u(w) =
ψk(uv)− ψk(uv

−1)

v − v−1

and we have changed the parameter k − 1 to k for simplicity of notation.
Suppose first that u = 1. For every v > 1, one has

Δk,1(w) =
1√

w2 − 4

((
2k

k

)
+ 2

k∑
n=1

(
2k

k + n

)
(−v)−n

)

=
1√

w2 − 4

((
2k

k

)
+ 2

k∑
n=1

(
2k

k + n

)(√
w2 − 4− w

2

)n)
,

and the same formula holds for v < 1. Setting x = (2 − w)−1 < 0, we next claim
that

Δk,1(w) = x1−k

(
k−1∑
n=0

(
2n

n

)
xn − (1− 4x)−1/2

)
.

Indeed, both sides equal 1−
√
(w − 2)(w + 2)−1 for k = 1 and satisfy the recurrence

relationship

uk+1 = x−1uk +

(
2k

k

)
, k ≥ 1.

If w > 6, viz. 4x ∈ (−1, 0), we can transform the latter expression into

Δk,1(w) = x1−k
∑
n≥k

(
2n

n

)
xn = −x

(
2k

k

)
2F1

(
1, k + 1/2

k + 1
; 4x

)
,(3.3)

where we have used the truncated binomial series formula (see e.g. Formula 2.8(9),
p. 109, in [6]) for the second equality. Applying Euler’s integral formula for the
hypergeometric function (see e.g. Theorem 2.2.1 in [1]), we finally get

Δk,1(w) =
(2k)!√

πk!Γ(k + 1/2)

∫ 1

0

(
tk−1/2(1− t)−1/2

w − 2 + 4t

)
dt,

a formula which remains true for w > 2 by analytic continuation. This shows that
Δk,1 ∈ CM on (2,∞) and readily implies (3.2).

The proof in the case u �= 1, which is inspired by that of the main theorem in
[5], is more subtle. Supposing first that w ∈ (2, u+ u−1), we have either u > v > 1
or 1 > v > u−1 for u > 1, so that

Δk,u(w) =
Pk(u

−1v−1)− Pk(u
−1v)

v − v−1

for u > 1. The same formula holds with u replaced by u−1 for u < 1. This shows that
Δk,u(w) is a polynomial of degree k − 1 in w. Moreover, it follows from Lemma 4,
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the first equality in Lemma 2, and (2.2) that for every j = 0, . . . , k − 1,

(−1)jΔ
(j)
k,u(2) ≥ 0.

Hence, by Lemma 1, we will have (−1)jΔ
(j)
k,u ≥ 0 on (2, u + u−1) for every j =

0, . . . , k − 1 as soon as

(−1)jΔ
(j)
k,u(u+ u−1) ≥ 0(3.4)

for every j = 0, . . . , k − 1. The latter is a consequence of the following simple
surprising formula, whose proof is postponed to the Appendix.

Lemma 5. For every w ≥ u+ u−1 > 2, one has

Δ
(k)
k,u(w) =

(−1)k(2k)!(w − u− u−1)k

k!(w2 − 4)k+1/2
·

We can now finish the proof of the “if” part of Theorem 2. It is plain by
definition that Δk,u(w) and all its successive derivatives tend to zero as w → ∞.
Hence, integrating successively from w to ∞ the closed formula of Lemma 5 shows
that

(−1)jΔ
(j)
k,u(w) ≥ 0

for every w ≥ u + u−1 and j = 0, . . . , k. This implies (3.2) on [u + u−1,∞), and
also on (2, u+ u−1) from the above considerations, since (3.4) holds true. �

Remark 6. The above proof shows the remarkable equivalence

Δu(f) ∈ Mk−1 ⇐⇒ (−1)i
{
Δu(f)

(i)(w)
}
w=2

≥ 0 ∀ i = 0, . . . , k − 1,

for every u > 0. In other words, the property f ∈ ĤMk is characterized only by
the initial behaviour of the functions Δu(f), u > 0.

4. Examples

In this section we perform some explicit computations related to our main results
for some interesting classes of functions. We also define a family of positive self-
decomposable distributions whose Laplace transforms are hyperbolically monotone
of some finite order, but not in HCM.

4.1. Cauchy-type functions. We consider the functions

fα(x) =
1

1 + 2 cos(πα)x+ x2

with α ∈ [0, 1). Such Cauchy-type functions appear in many situations, pure and
applied. To give but one example, fα(x) is a generating function of Tchebyshev
polynomials of the second kind. More generally, fp

α(x) is, for every p > 0, a gener-
ating function of Gegenbauer polynomials; see e.g. formula (6.4.10) in [1].

Proposition 3. For every k ≥ 1, one has

fα ∈ ĤMk ⇔ 2αk ≤ 1.
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Proof. It is clear that f0 ∈ HCM, and we hence exclude the case α = 0 in the
sequel. Computing

gα(x) = −(log fα)
′(x) = 2(cos(πα) + x)fα(x)

= x−1

(
2− 1

1 + xei πα
− 1

1 + xe− i πα

)
implies, after some simplifications, that

(−1)n−1(xngα(x))
(2n−1)

(2n− 1)!
= (fα(x))

2n
(
einπα(x+ e− iπα)2n+e− inπα(x+ eiπα)2n

)
.

Hence, by the corollary in Section 1, we have

fα ∈ ĤMk ⇔ einπα(x+ e− iπα)2n + e− inπα(x+ ei πα)2n ≥ 0 ∀n ≤ k, x > 0,

which is equivalent to cos(nπα) ≥ 0 for all n ≤ k, and hence to 2αk ≤ 1. �

Remark 7.
(a) In this example, we have gα > 0 with (xgα)

′(∞) = 0 and (xgα)(0+) = 0. By
Theorem 1 and Remark 3, if 2αk ≤ 1 we have the representation

gα(x) =

∫ ∞

0

Φk−1(x, t) νk,α(dt),

where νk,α(dt) has density

fk,α(t) = (−1)k−1((2k − 2)!t)−1(t2k−1(tgα(t))
(k))(k−1)

= (−1)k−1(2k − 2)!−1 tk−1(tkgα(t))
(2k−1)

= (2k − 1) tk−1(fα(t))
2k (ei kπα(t+ e− iπα)2k + e− i kπα(t+ ei πα)2k),

which may be rewritten as

fk,α(t) =
(4k − 2)tk−1

(1 + 2 cos(πα)t+ t2)2k
×
(

2k∑
n=0

(
2k

n

)
cos((n− k)πα) tn

)
.

Observe that as expected, this function is non-negative if and only if 2αk ≤ 1 and
gα then belongs to Sk.

(b) It can be proved by elementary yet lengthy computations that

fp
α ∈ HM2 ⇔ cos(πα) ≥ 1√

2(p+ 1)

and

fp
α ∈ HM3 ⇔ cos(πα) ≥

√
3

2(p+ 2)
,

which shows that it might happen that fp
α ∈ HMk and fq

α �∈ HMk for some q < p
and k = 2, 3. Observe also that fp

α ∈ HM1 ⇔ cos(πα) ≥ 0. It is interesting to
notice from formula (6.4.11) in [1] that√

3

2(p+ 2)
, resp.

1√
2(p+ 1)

, resp. 0,

is the largest positive root of the Gegenbauer polynomial Cλ
3 (x), resp. C

λ
2 (x), resp.

Cλ
1 (x), with λ = p. Observe also that Proposition 3 can be rephrased as

fα ∈ ĤMk ⇔ cos(πα) ≥ μk,0+,
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where μk,0+ = cos(π/2k) is the largest positive root of the Tchebyshev polynomial
of the first kind Tk(x), which is itself a renormalized limit of Cλ

k (x) as λ ↓ 0; see
formula (6.4.13) in [1]. Recalling Remark 4(a), it is hence natural to conjecture
that

(4.1) fp
α ∈ HMk ⇔ cos(πα) ≥ μk,p,

where μk,p is the largest positive root of the Gegenbauer polynomial Cλ
k (x) with

λ = p.
(c) It is proved in [11, 12] that

fα(xy
−1) ∈ TPk ⇔ α < 1/k or α ∈ {1/k, . . . , 1/2}

for every k ≥ 2, which shows that one may have fα(xy
−1) ∈ TPk and fα(x) �∈

ĤMk−1 if k ≥ 3. This contrasts with the case k = 2, where the two properties are
equivalent, as recalled in the introduction. On the other hand, the above conjecture
(4.1) reads

fα(x) ∈ HMk−1 ⇔ α ≤ 1/k

for p = 1, which shows that the two properties might have a similar characteriza-
tion in this framework. Observe also that Conjecture 2.1 in [11] relates the TP∞
character of the kernel fp

α(xy
−1) to the above largest positive root μk,p.

(d) The “imaginary extension” fiα(x) admits the factorization

fiα(x) =
1

1 + 2 cosh(πα)x+ x2
=

1

(eπα + x)(e−πα + x)

and is hence clearly HCM for every real α. In particular, the kernel fiα(xy
−1)

is always TP2. On the other hand, the further total positivity properties of this
interesting kernel do not seem easy to investigate at first sight.

4.2. GIG-type densities. We consider the probability density functions

f(x) = Cxβ−1 exp(−axα − bx−α)

on (0,∞), with a, b, α > 0, β ∈ R, and C > 0 the normalizing constant. In the
case α = 1, these densities correspond to the classical generalized inverse Gauss-
ian (GIG) distributions and are also prototypes of functions in HCM, having the
decomposition

f(x) = Cxβ−1 fa(x)fb(x
−1)

with −(log fa)
′ ≡ a and −(log fb)

′ ≡ b both in S. In the case α > 1, it is easy to
see that these densities are in HM1 but not in HM2. In the case α < 1, it follows
from general results that these densities are all in HCM; see [4], p. 60. More
precisely, setting a = b = 1 without loss of generality, we have the decomposition
f(x) = Cxβ−1hα(x)hα(x

−1) with

−(log hα)
′(x) = αxα−1 =

α sin(πα)

π

∫ ∞

0

tα−1

t+ x
dt ∈ S.

It is interesting to compare this formula with the finite type decompositions ob-
tained in the present paper. For every k ≥ 2, Remark 3 shows after some simplifi-
cations that we also have

αxα−1 =

∫ ∞

0

Φk−1(x, t) fk,α(t) dt
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with

fk,α(t) =
α2

(2k − 2)!

k−1∏
i=1

(i2 − α2) tα−1.

Observe that the Eulerian product formula for sines implies that(
2k − 2

k − 1

)
fk,α(t) →

(
α sin(πα)

π

)
tα−1, k → ∞,

as expected from (1.6).

4.3. Finite type Stieltjes functions. In this paragraph we consider the functions
x 	→ Φk(x, 1), which serve as building blocks for Sk+1 and hence belong to Sn for
every n = 2, . . . , k. The proof of Proposition 1 implies after some computations
that

(4.2) Φk(x, 1) =
1

(2n)!

∫ ∞

0

Φn(x, t) t
−1fn,k(t ∧ t−1) dt

for every n = 1, . . . , k − 1, where fn,k(u) = (−1)nun+1(unψk(u))
(2n+1), and we

recall the definition of ψk given at the beginning of Section 2.1. In particular,
making n = k − 1 shows that for k ≥ 1 we have the recursive formula

Φk(x, 1) = (2k − 1)

∫ ∞

0

Φk−1(x, t) t
−1 (tk ∧ t−k) dt.

Letting k → ∞ in (4.2) also implies, after some simplifications, the curious formula

1

1 + x
= (2n+ 1)

∫ ∞

0

Φn(x, t)
tn

(1 + t)2n+2
dt

for every n ≥ 1, which is also a consequence of Remark 3 and the first equality in
Lemma 2. Observe also that letting n → ∞, by (1.6) and Stirling’s formula this
identity becomes a trivial one:

1

1 + x
=

∫ ∞

0

1

t+ x
δ1(dt).

4.4. A family of positive self-decomposable distributions. We observe that
the infinite positive measure νk(dx) with density

x−2Φk(x
−1, 1) = x−1ψk(x

−1)

is a Lévy measure on (0,∞); that is, it integrates 1∧x. Besides, since x 	→ ψk(x
−1)

is a non-increasing function by (2.2) with n = 1, the infinitely divisible positive
random variable Xk with log-Laplace transform

− logE[e−λXk ] = ϕk(λ) =

∫ ∞

0

(1− e−λx) νk(dx), λ > 0,

is self-decomposable; see [4], p. 18, or Proposition 5.15 in [10]. On the other hand,
the fact that ψk is not smooth and hence not completely monotone prevents the
Bernstein function ϕk from being complete, so that a fortiori it is not Thorin-
Bernstein either, with the terminology of Chapters 7 and 8 in [10]. Hence, the
function

λ 	→ E[e−λXk ]
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is not in HCM by Theorem 5.4.1 in [4]. However, by Theorems 1 and 2 the latter

function is in ĤMk+1, because

ϕ′
k(λ) =

∫ ∞

0

e−λx ψk(x
−1) dx =

∫ ∞

0

Φk(λ, t) e
−t dt.

Let us stress however that in general, non-increasing functions in ĤMk for some
finite k are not necessarily in CM, as shown by the example

1

1 + 2 cos(πα)λ+ λ2
=

1

sin(πα)

∫ ∞

0

e−λx (e− cos(πα)x sin(sin(πα)x)) dx,

which is for α ∈ (0, 1/2k) in ĤMk by Proposition 3, but not in CM.

Appendix

In this section we prove Lemma 5, using an idea close to the argument of pp. 307-
310 in [5]. For u > 1, the condition w ≥ u+ u−1 implies either v ≥ u or v ≤ u−1.
For v ≥ u we have

(A.1) Δk,u(w) =
Pk(u

−1v−1) + P̂k(uv
−1)

v − v−1
=

Qk(v)

vk(v − v−1)
,

where as before P̂k(x) = Pk(x)−Pk(0) and, here and throughout, Qi(v) denotes any
polynomial of degree at most i in v. By the chain rule, using repeatedly dw/dv =
v−1(v − v−1), we deduce that

Δ
(k)
k,u(w) =

Q3k(v)

v2k(v − v−1)2k+1
·

On the other hand, since Pk(x) is the polynomial part of the Laurent series

(1−x)k(1−x−1)k, we have Pk(x)+P̂k(x
−1) = (1−x)k(1−x−1)k = (−x)−k(x−1)2k,

which entails

Δk,u(w) = (−1)k
ukv−k(v − u−1)2k

v − v−1
+

P̂k(uv
−1)− P̂k(uv)

v − v−1
·

Observing that the second term on the right-hand side is a polynomial of degree

k−1 in w, we deduce that the k-th derivative Δ
(k)
k,u(w) must factorize with (v−u−1)k

and, by symmetry as a function of w, with (v − u)k as well. We hence obtain

(A.2) Δ
(k)
k,u(w) =

(v − u)k(v − u−1)kRk(v)

v2k(v − v−1)2k+1
,

where Rk(v) is a polynomial of degree at most k in v. To get out an expression for
Rk(v), we again use symmetry and consider the case v ≤ u−1, where

(A.3) Δk,u(w) =
Pk(u

−1v) + P̂k(uv)

v−1 − v
= −Qk(v

−1)vk

(v − v−1)
,

and Qk is the same polynomial as in (A.1). It is clear that the sum of the two
quantities in (A.1) and (A.3) is a polynomial of degree at most k − 1 in w, whose
k-th derivative in w is hence zero. This leads to

Δ
(k)
k,u(w) = − (v − u)k(v − u−1)kRk(v)

v2k(v − v−1)2k+1

for v ≤ u−1, with the same polynomial Rk(v) as in (A.2). Now replacing v by v−1

in (A.2) and equating the two expressions, we obtain Rk(v) = v2kRk(v
−1), which
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implies that Rk(v) = Ck,uv
k for some non-zero constant Ck,u depending on k, u

only. Putting everything together, for v ≥ u we have

(A.4) Δ
(k)
k,u(w) =

Ck,u(v − u)k(v − u−1)k

vk(v − v−1)2k+1
=

Ck,u(w − u− u−1)k

(w2 − 4)k+1/2
,

and this formula is also clearly true for v ≤ u−1. In order to identify the constant
Ck,u, we let w → ∞ and obtain from (A.1) the behaviour

Δk,u(w) ∼ Pk(0)w
−1 =

(
2k

k

)
w−1.

Comparing with (A.4), we finally obtain Ck,u = (−1)k(2k)!/k! as required. �
Remark 8. An alternative proof of Lemma 5 can be obtained with the help of the
following exact formula:

Δk,u(w) = −x

k∑
i=0

(
2k

k + i

)
2F1

(
i+ 1, k + 1/2

k + i+ 1
; 4x

)
(xy)i

for every w ≥ u+ u−1 with the notation x = (2− w)−1 and y = u+ u−1 − 2. This
identity, which extends (3.3), turns out to be equivalent to some bilinear formula of
the Meixner type for the hypergeometric function; see [6], p. 84. Complete details
have been written down and are available upon request. Applying Euler’s formula
and making some simple hypergeometric transformations, we also get

Δ
(k)
k,u(w) =

(−1)k(2k)!(w − u− u−1)k

k!(w2 − 4)k+1/2
·

The unexpected point in Lemma 5 is the simplicity of the expression of Δ
(k)
k,u(w),

compared to that of Δk,u(w) and all its other derivatives in w.
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