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RIESZ BASES, MEYER’S QUASICRYSTALS,

AND BOUNDED REMAINDER SETS

SIGRID GREPSTAD AND NIR LEV

Abstract. We consider systems of exponentials with frequencies belonging
to simple quasicrystals in R

d. We ask if there exist domains S in R
d which

admit such a system as a Riesz basis for the space L2(S). We prove that the
answer depends on an arithmetical condition on the quasicrystal. The proof is
based on the connection of the problem to the discrepancy of multi-dimensional
irrational rotations, and specifically, to the theory of bounded remainder sets.
In particular it is shown that any bounded remainder set admits a Riesz basis
of exponentials. This extends to several dimensions (and to the non-periodic
setting) the results obtained earlier in dimension one.

1. Introduction

1.1. Riesz bases. Let S be a bounded, measurable set in R
d, and let Λ be a

discrete set in R
d. In this paper we are interested in the Riesz basis property of the

system of exponential functions

E(Λ) =
{
e2πi〈λ,x〉

}
λ∈Λ

in the space L2(S).
Recall that a system of vectors {fn} in a Hilbert space H is a Riesz basis if every

f ∈ H admits a unique expansion f =
∑

cnfn, with the coefficients {cn} satisfying

A‖f‖2 �
∑

|cn|2 � B‖f‖2

for some positive constants A and B which do not depend on f . It is well-known
that this is equivalent to the system {fn} being simultaneously a frame and a Riesz
sequence in the Hilbert space H (see e.g. [41]).

The Riesz basis property of the exponential system E(Λ) in the space L2(S) can
be reformulated in terms of the Paley-Wiener space PWS, consisting of all functions
f ∈ L2(Rd) whose Fourier transform

f̂(t) =

∫
f(x) e−2πi〈t,x〉dx

is supported by S. Namely, E(Λ) is a Riesz basis in L2(S) if and only if Λ is
a complete interpolation set for PWS . The latter means that the interpolation
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problem f(λ) = cλ (λ ∈ Λ) admits a unique solution f ∈ PWS for every sequence
{cλ} ∈ �2(Λ).

The construction of a Riesz basis of exponentials on a given set S is generally a
difficult problem, and so far has been achieved only in relatively few examples (see
[5, 13, 15, 16, 21–23]). In particular it is not known whether the ball in dimensions
two and higher admits such a basis. On the other hand, no example is known of a
set S which does not have a Riesz basis of exponentials.

1.2. Density. A set Λ ⊂ R
d is called uniformly discrete (or separated) if there is

δ(Λ) > 0 such that |λ − λ′| � δ(Λ) for any two distinct points λ, λ′ ∈ Λ. This
condition is necessary for the system E(Λ) to be a Riesz basis in L2(S), and so will
always be assumed below.

An important role in the subject is played by the Beurling lower and upper
uniform densities of a uniformly discrete set Λ, defined respectively by

D−(Λ) = lim inf
R→∞

inf
x∈Rd

#(Λ ∩ (x+BR))

|BR|
,

D+(Λ) = lim sup
R→∞

sup
x∈Rd

#(Λ ∩ (x+BR))

|BR|
,

where BR denotes the ball of radius R centered at the origin. Landau [18] (see also
[30]) obtained necessary conditions for the system E(Λ) to be a frame, or a Riesz
sequence, in L2(S) in terms of these densities:

If E(Λ) is a frame in L2(S), then D−(Λ) � mesS.

If E(Λ) is a Riesz sequence in L2(S), then D+(Λ) � mesS.

In the case when S is a single interval I ⊂ R, this result is due to Beurling [2]
and Kahane [11], who also proved that the condition D−(Λ) > |I| is sufficient for
E(Λ) to be a frame in L2(I), while the condition D+(Λ) < |I| is sufficient for it to
be a Riesz sequence. However, for disconnected sets S and in the multi-dimensional
case, sufficient conditions in terms of densities alone cannot be given.

If the two densities D−(Λ) and D+(Λ) coincide, then their common value is
called the uniform density of the set Λ and will be denoted by D(Λ). It follows
from Landau’s results above that:

If E(Λ) is a Riesz basis in L2(S), then Λ has a uniform density D(Λ) = mesS.

1.3. Universality. It was discovered by Olevskii and Ulanovskii [31–33] that there
exist “universal” sets Λ, such that the system E(Λ) is a frame (respectively a Riesz
sequence) on any set S of sufficiently small (respectively large) measure:

Given a > 0 there is a uniformly discrete set Λ ⊂ R
d, D(Λ) = a, such that:

(i) E(Λ) is a frame in L2(S) for any compact set S with mesS < D(Λ);
(ii) E(Λ) is a Riesz sequence in L2(S) for any open set S with mesS > D(Λ).

In [31–33] a set Λ with the property (i) was named a “universal sampling set”,
while a set satisfying (ii) was called a “universal interpolation set” (the names are
due to the role which such sets play in the theory of sampling and interpolation
in Paley-Wiener spaces). It was shown that such a set Λ may be constructed by
an arbitrarily small perturbation of a lattice in R

d. It was also proved that the
topological restrictions given on the set S are indeed necessary – if S is allowed to
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be an arbitrary bounded measurable set, then no universal sampling or interpolation
sets exist.

1.4. Quasicrystals. A different construction of universal sampling and interpo-
lation sets, based on Meyer’s “cut-and-project” method [27, 28], was proposed by
Matei and Meyer in [24–26]. Let Γ be a lattice in R

d+1 = R
d×R, and let p1 and p2

denote the projections onto R
d and R, respectively. Assume that the restrictions of

p1 and p2 to Γ are injective, and that their images are dense. Let I be a semi-closed
interval on R, I = [a, b) or I = (a, b], and consider the cut-and-project set Λ in R

d

defined by

(1.1) Λ = Λ(Γ, I) = {p1(γ) : γ ∈ Γ, p2(γ) ∈ I}.

In [24,26] such a set was named a “simple quasicrystal”. It is well-known that Λ is
a uniformly discrete set, with uniform density

D(Λ) =
|I|

det Γ
.

Theorem M (Matei and Meyer). If Λ is a simple quasicrystal defined by (1.1),
then it is a universal sampling and interpolation set; that is, it satisfies both (i) and
(ii) above.

In [25] the question was raised of what can be said in the “critical case” when the
measure of the set S is equal to the density of Λ. In the one-dimensional periodic
setting, this was analyzed in [14]. The goal of the present paper is to extend the
results obtained in [14] to several dimensions and to the non-periodic setting.

1.5. Results. A bounded set S ⊂ R
d is called Riemann measurable if its boundary

has measure zero. Our first main result shows that “most” quasicrystals Λ do not
provide a Riesz basis of exponentials E(Λ) for any Riemann measurable set S.

Theorem 1.1. Let Λ be a simple quasicrystal defined by (1.1) and such that

(1.2) |I| /∈ p2(Γ).

Then there exists no Riemann measurable set S such that E(Λ) is a Riesz basis in
L2(S).

Hence there are only countably many possible values of the window length |I|
for which E(Λ) may serve as a Riesz basis. Our second main result shows that in
the special case when |I| ∈ p2(Γ), the exponential system E(Λ) indeed serves as a
Riesz basis for a family of sets S. To formulate the result we will need the following
notion.

Definition. Two Riemann measurable sets S and S′ in R
d are said to be equi-

decomposable (or scissors congruent) with respect to a group G of rigid motions of
R

d if the set S can be partitioned into finitely many Riemann measurable subsets
that can be reassembled using motions in G to form, up to measure zero, a partition
of S′.

Equidecomposability is a classical notion dating back to Hilbert’s third problem–
the question of whether two polyhedra of equal volume are necessarily equidecom-
posable by rigid motions (see [3] for a detailed exposition of the subject).
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Theorem 1.2. Let Λ be a simple quasicrystal defined by (1.1) and satisfying the
condition

(1.3) |I| ∈ p2(Γ).

Then E(Λ) is a Riesz basis in L2(S) for any Riemann measurable set S such that

(i) mesS = D(Λ);
(ii) S is equidecomposable to a parallelepiped spanned by vectors in p1(Γ

∗),
using only translations by vectors in p1(Γ

∗).

Here we denote by Γ∗ the lattice dual to Γ (see Section 2). Condition (1.3)
ensures that the family of sets S satisfying (i) and (ii) in Theorem 1.2 is non-
empty. In fact, we will see that this family is in a sense “dense” among the sets of
measure D(Λ):

Proposition 1.3. Let Λ be a simple quasicrystal defined by (1.1) and satisfying
(1.3). Let K be a compact set and let U be an open set in R

d, such that K ⊂ U
and mesK < D(Λ) < mesU . Then one can find a Riemann measurable set S such
that K ⊂ S ⊂ U and which satisfies conditions (i) and (ii) in Theorem 1.2.

The results above were outlined in [6]. Special cases of Theorem 1.2 were ob-
tained in [5,19]. The present paper contains a detailed exposition and full proofs of
the results. In Section 9 we also give analogous versions of the results in the peri-
odic setting, where S is a subset of the d-dimensional torus Td, and the quasicrystal
Λ is a subset of Zd.

1.6. Examples. By particular choices of the lattice Γ and the interval I one can
obtain more concrete versions of Theorem 1.2.

Example 1.4. Let α be an irrational number, and define a sequence Λ = {λ(n)}
by

λ(n) = n+ {nα}, n ∈ Z

(where {x} denotes the fractional part of a real number x). Then the system E(Λ)
is a Riesz basis in L2(S) for every set S ⊂ R which is the finite union of disjoint
intervals with lengths in Zα+ Z and of total length 1.

Example 1.5. The sequence Λ = {λ(n,m)} defined by

λ(n,m) = (n,m) + {n
√
2 +m

√
3}(

√
2,
√
3), (n,m) ∈ Z

2,

provides a Riesz basis E(Λ) in L2(S) for every set S ⊂ R
2 which is equide-

composable to the unit square Q = [0, 1)2 using only translations by vectors in

Z(
√
2,
√
3) + Z

2.

These examples are special cases of Theorem 7.2 below (see Section 7.4).

1.7. Outline. The proofs of the results above are based on three main ingredients.
The first one is a key idea from [24–26] that we refer to as a “duality” principle,
which allows us to relate the Riesz basis property of E(Λ) in L2(S) to the same
property of another exponential system E(Λ∗) in L2(I), where I is the interval used
in (1.1) to define Λ, and Λ∗ is a (non-simple) quasicrystal in R which is “dual” to
Λ (see Section 3).
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This reduces the problem on exponential Riesz bases in L2(S) to a similar prob-
lem in L2(I), where I is a single interval. The latter problem is much better
understood due to availability of methods from the theory of entire functions, and
we can use results of Avdonin [1] and Pavlov [37] that give conditions for E(Λ∗) to
be a Riesz basis on the interval I. This is the second main ingredient in our proofs.

To analyze the conditions from Avdonin’s and Pavlov’s results we need our third
main ingredient, which belongs to the theory of equidistribution and discrepancy
for multi-dimensional irrational rotations. It is the theory of bounded remainder
sets, which in dimension one goes back to Hecke [9], Ostrowski [35,36], and Kesten
[12]. Using results from our recent paper [7] dealing with the multi-dimensional
setting, we can prove that E(Λ) is a Riesz basis on any bounded remainder set S
such that mesS = D(Λ).

The paper is organized as follows. Section 2 contains some preliminary back-
ground. In Section 3 the Matei-Meyer duality principle is explicitly formulated and
proved. In Section 4 we apply a linear change of variable to transform a general
cut-and-project set to a canonical form which is more convenient to analyze. In
Section 5 we present relevant background on the concept of a bounded remainder
set. The relation between this concept and one-dimensional cut-and-project sets
is clarified in Section 6. Finally in Sections 7 and 8 the main results are proved.
The analogous results in the periodic setting are discussed in Section 9. In the last
section, Section 10, we mention some open problems.

2. Preliminaries

2.1. Frames and Riesz sequences. A system of vectors {fn} in a Hilbert spaceH
is called a frame if there exist positive constants A and B such that the inequalities

(2.1) A ‖f‖2 �
∑
n

|〈f, fn〉|2 � B ‖f‖2

hold for all f ∈ H. The system {fn} is called a Riesz sequence if the inequalities

(2.2) A
∑
n

|cn|2 �
∥∥∥∑

n

cnfn

∥∥∥2 � B
∑
n

|cn|2

hold for every finite sequence of scalars {cn}, for some positive constants A and
B that do not depend on {cn}. The system {fn} is simultaneously a frame and a
Riesz sequence if and only if it is a Riesz basis in the Hilbert space H (see [41]).

If S is a bounded, measurable set in R
d, then the frame and Riesz sequence

properties of the system of exponential functions E(Λ) in the space L2(S) may be
reformulated in terms of the sampling and interpolation properties of the set Λ in
the Paley-Wiener space PWS . A discrete set Λ ⊂ R

d is called a set of sampling for
PWS if there are constants A and B such that

A ‖f‖2L2(Rd) �
∑
λ∈Λ

|f(λ)|2 � B ‖f‖2L2(Rd)

for all f ∈ PWS. This means that a function f ∈ PWS can be reconstructed in a
stable way from its samples {f(λ)} on Λ. The set Λ is called a set of interpolation
for PWS if the interpolation problem f(λ) = cλ has at least one solution f ∈ PWS

for every sequence {cλ} ∈ �2(Λ). It is known (see [41]) that Λ is a set of sampling
for PWS if and only if the system E(Λ) is a frame in the space L2(S), while the



4278 SIGRID GREPSTAD AND NIR LEV

interpolation property of Λ for the space PWS is equivalent to E(Λ) being a Riesz
sequence in L2(S).

The right hand side inequalities in (2.1) and (2.2) are automatically satisfied for
the system E(Λ) in L2(S) whenever S is a bounded set and Λ is a uniformly discrete
set in R

d (see [41]). Therefore, to show that E(Λ) is a frame or Riesz sequence in
L2(S), it is in this case enough to verify the left hand side inequalities in (2.1) and
(2.2).

2.2. Lattices. By a (full-rank) lattice Γ ⊂ R
k we mean the image of Zk under

an invertible k × k matrix A. The determinant det(Γ) is equal to | det(A)|. The
dual lattice Γ∗ is the set of vectors γ∗ ∈ R

k satisfying 〈γ, γ∗〉 ∈ Z for all γ ∈ Γ.
Equivalently, Γ∗ is the image of Zk under the matrix A−	, the inverse transpose of
A.

2.3. Model sets. Let Γ be a lattice in R
n+m = R

n × R
m, and let p1 and p2

denote the projections onto R
n and R

m, respectively. Assume that the restrictions
of p1 and p2 to Γ are injective, and that their images are dense in R

n and R
m,

respectively. In this case we will say that Γ is a lattice in general position.
Let W be a bounded, Riemann measurable set in R

m. Define a point set in R
n

by
Λ(Γ,W ) := {p1(γ) : γ ∈ Γ, p2(γ) ∈ W} .

Such a set is called a model set, or a cut-and-project set. These sets were introduced
by Meyer in the beginning of the 1970’s [27,28], and have been extensively studied
as mathematical models for quasicrystals. The set W is called the window of the
model set.

It is well-known that Λ(Γ,W ) is a uniformly discrete set, and has uniform density

D(Λ(Γ,W )) =
mesW

det Γ

(see for instance [26, Proposition 5.1]).

2.4. Simple quasicrystals. The model set Λ(Γ,W ) will be called a simple qua-
sicrystal if m = 1 and if the window W is a semi-closed interval [a, b) or (a, b]. This
notion was introduced by Matei and Meyer in [24–26], where it was proved that a
simple quasicrystal is a universal sampling and interpolation set.

Remark that in these papers, the window W was also allowed to be a closed
interval [a, b] or an open one (a, b). Here, however, we define simple quasicrystals
using only semi-closed windows W , since otherwise this would affect the validity of
Theorem 1.2 in the case when both endpoints a, b belong to p2(Γ).

3. Duality

3.1. Let Γ be a lattice in R
n × R

m in general position. Its dual lattice Γ∗ is then
also in general position. Furthermore, let U ⊂ R

n and V ⊂ R
m be two bounded,

Riemann measurable sets. There is a certain “duality” connecting the sampling
and interpolation properties of the two model sets

Λ(Γ, V ) = {p1(γ) : γ ∈ Γ, p2(γ) ∈ V } ⊂ R
n,(3.1)

Λ∗(Γ, U) = {p2(γ∗) : γ∗ ∈ Γ∗, p1(γ
∗) ∈ U} ⊂ R

m.(3.2)

The following result was a key ingredient in Matei and Meyer’s papers [24–26],
although it was not stated there explicitly in this form.
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Theorem 3.1. Suppose that the boundary of the set V does not intersect p2(Γ).
Then the following is true:

(i) If E(Λ∗(Γ, U)) is a frame in L2(V ), then E(Λ(Γ, V )) is a Riesz sequence
in L2(U).

(ii) If E(Λ∗(Γ, U)) is a Riesz sequence in L2(V ), then E(Λ(Γ, V )) is a frame
in L2(U).

In the case when Λ(Γ, V ) is a simple quasicrystal (i.e., m = 1 and V is a semi-
closed interval) the above is true regardless of whether or not the endpoints of V
lie in p2(Γ).

This was used in the proof of Theorem M to reduce the problem on exponential
systems in L2(S) to a similar problem in L2(I), where I is a single interval. Then
the Beurling-Kahane results, which give sufficient conditions for the frame or Riesz
sequence properties in terms of densities, allow to conclude the proof.

By combining (i) and (ii) of Theorem 3.1, we obtain the following:

Corollary 3.2. Under the same conditions as in Theorem 3.1, if the exponential
system E(Λ∗(Γ, U)) is a Riesz basis in L2(V ), then E(Λ(Γ, V )) is a Riesz basis in
L2(U).

We will also use this duality to reduce the problem on exponential Riesz bases
from L2(S) to L2(I). However, the latter problem can no longer be solved by
density considerations, and it requires a more detailed analysis of the exponential
system in question.

The remainder of this section is devoted to the proof of Theorem 3.1. Although
this result is essentially contained in [24,26], we find it useful to include a detailed
exposition of the proof for the specific formulation above.

3.2. We will need two auxiliary lemmas. Fix the two bounded, Riemann measurable
sets U ⊂ R

n and V ⊂ R
m, and choose an infinitely smooth, non-negative function ϕ

on R
m with ‖ϕ‖L2 = 1 and support in them-dimensional ball of radius 1 around the

origin. Moreover, in the special case when m = 1 and V is the semi-closed interval
[a, b) or (a, b], we let ϕ be supported in the interval (0, 1) or (−1, 0), respectively.

For 0 < ε < 1, we define ϕε to be the function

ϕε(x) =
1

εm/2
ϕ(x/ε).

We have ‖ϕε‖L2 = 1, and the Fourier transform ϕ̂ε is given by

ϕ̂ε(t) = εm/2 ϕ̂(εt).

Lemma 3.3. Let f be a Riemann integrable function on U . Then

lim
ε→0

∑
γ∗∈Γ∗, p1(γ∗)∈U

|f(p1(γ∗))ϕ̂ε(p2(γ
∗))|2 = det(Γ)

∫
U

|f(x)|2 dx.

Lemma 3.4. Let {c(γ) : γ ∈ Γ} be a sequence of complex numbers in �1(Γ). Then

lim
ε→0

∫
V

∣∣∣∑
γ∈Γ

c(γ)ϕε(t− p2(γ))
∣∣∣2 dt = ∑

γ∈Γ, p2(γ)∈V

|c(γ)|2,

provided that ∂V ∩ p2(Γ) = ∅. If m = 1 and V is a semi-closed interval, the above
is true regardless of whether or not the endpoints of V lie in p2(Γ).

Proofs of these lemmas can basically be found in [26].
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3.3. We can now give the proof of Theorem 3.1.

Proof of part (i) of Theorem 3.1. Suppose that E(Λ∗(Γ, U)) is a frame in L2(V ).
We will show that E(Λ(Γ, V )) is a Riesz sequence in L2(U). Let

f(x) =
∑
γ∈Γ

c(γ) exp 2πi〈p1(γ), x〉,

where only finitely many coefficients c(γ) are non-zero, and c(γ) = 0 whenever
p2(γ) /∈ V . Since Λ(Γ, V ) is uniformly discrete, we must only show that

(3.3)

∫
U

|f(x)|2 dx � C
∑
γ∈Γ

|c(γ)|2

for some constant C (not depending on the sequence {c(γ)}) .
Consider the function

Gε(t) =
∑
γ∈Γ

c(γ)ϕε(t− p2(γ)).

Notice that for sufficiently small ε, this function is supported on V . If m = 1 and
V is a semi-closed interval, this is clear from the specific choice of support for ϕ.
Otherwise, we assume that ∂V ∩ p2(Γ) = ∅. We then have p2(γ) ∈ intV whenever
c(γ) 
= 0, and the same assertion follows.

Because E(Λ∗(Γ, U)) is a frame in L2(V ), we have

(3.4) C

∫
V

|Gε(t)|2 dt �
∑

γ∗∈Γ∗, p1(γ∗)∈U

∣∣∣Ĝε(p2(γ
∗))

∣∣∣2 ,
for some constant C > 0. Now let ε → 0. By Lemma 3.4, the left hand side of (3.4)
tends to C

∑
γ∈Γ |c(γ)|2. For the right hand side of (3.4), we observe that

Ĝε(p2(γ
∗)) = f(p1(γ

∗))ϕ̂ε(p2(γ
∗)).

Hence, Lemma 3.3 applied to the function f · 1U implies that the right hand side
of (3.4) tends to det(Γ)

∫
U
|f(x)|2 dx. This verifies (3.3), and concludes the proof

of part (i) of Theorem 3.1. �
Proof of part (ii) of Theorem 3.1. Now suppose that E(Λ∗(Γ, U)) is a Riesz se-
quence in L2(V ). We will show that E(Λ(Γ, V )) is a frame in L2(U). Since Λ(Γ, V )
is uniformly discrete, it is sufficient to show that

(3.5)

∫
U

|f(x)|2 dx � C
∑

λ∈Λ(Γ,V )

|f̂(λ)|2

for every f ∈ L2(U) and some constant C > 0 independent of f . Since U is Riemann
measurable, it is in fact sufficient to verify (3.5) for any smooth f supported on U .

Given such f , define the function

Fε(t) =
∑

γ∗∈Γ∗

f(p1(γ
∗))ϕ̂ε(p2(γ

∗)) exp(2πi〈p2(γ∗), t〉).

This is an absolutely convergent trigonometric sum with non-zero coefficients only
for frequencies in Λ∗(Γ, U). Since E(Λ∗(Γ, U)) is a Riesz sequence in L2(V ), we
have

(3.6)
∑

γ∗∈Γ∗

|f(p1(γ∗))ϕ̂ε(p2(γ
∗))|2 � C

∫
V

|Fε(t)|2 dt,
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for some constant C > 0.
Now let ε → 0. Since f is supported by U , Lemma 3.3 implies that the left

hand side of (3.6) tends to det(Γ)
∫
U
|f(x)|2 dx. On the other hand, using Poisson’s

summation formula we can rewrite Fε as

Fε(t) = det(Γ)
∑
γ∈Γ

f̂(p1(γ))ϕε(t− p2(γ)).

When integrating |Fε(t)|2 over V in (3.6), we may restrict the summation to those
terms for which |p2(γ)| < M for some sufficiently large M > 0 (as the other

terms are supported outside of V ). Since f̂ is a Schwarz function, the coefficients

{f̂(p1(γ))} in this restricted sum belong to �1. It thus follows from Lemma 3.4 that
the right hand side of (3.6) tends to the right hand side of (3.5) as ε → 0. This
completes the proof of part (ii) of Theorem 3.1. �

4. Lattices in special form

4.1. In this section we introduce a notion of lattices in special form (see Definition
4.1). Our motivation for introducing these lattices is that this allows us to simplify
the discussion by considering bounded remainder sets only with respect to irrational
rotations on T

d = R
d/Zd, and avoid discussion of general d-dimensional torus

groups.
We will show that any lattice in general position can be mapped onto a lattice

of special form by a linear and invertible transformation. We can then restrict
our attention to lattices of special form, and prove Theorems 1.1 and 1.2 for such
lattices only.

Definition 4.1. Let Γ be a lattice in R
d × R. We say that Γ (with dual Γ∗) is of

special form if

Γ = {((Id+βα	)m− βn, n− α	m) : m ∈ Z
d, n ∈ Z},(4.1)

Γ∗ = {(m+ αn, (1 + β	α)n+ β	m) : m ∈ Z
d, n ∈ Z},(4.2)

where Id denotes the d × d identity matrix, and α, β are column vectors in R
d

satisfying the following conditions:

(i) The vector α = (α1, α2, . . . , αd)
	 is such that the numbers 1, α1, α2, . . . , αd

are linearly independent over the rationals.
(ii) The vector β = (β1, β2, . . . , βd)

	 is such that the numbers β1, β2, . . . , βd,
1 + β	α are linearly independent over the rationals.

Notice that the conditions imposed on the vectors α and β are precisely those
necessary and sufficient for the lattice Γ and its dual Γ∗ to be in general position.
This is most easily seen by considering the dual Γ∗. We have that

p1(Γ
∗) = Z

d + αZ,

and it is well-known that this set is dense in R
d if and only if the numbers

1, α1, α2, . . . , αd are linearly independent over the rationals. This condition also
guarantees that p1 is injective when restricted to Γ∗. Similarly, we see that p2
restricted to Γ∗ is injective if and only if the numbers β1, β2, . . . , βd, 1 + β	α are
linearly independent over the rationals. The same condition implies that p2(Γ

∗) is
a dense set in R. Thus, any lattice of special form is a lattice in general position.

Notice that if Γ is a lattice of special form, then det Γ = det Γ∗ = 1.
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We will now see that it is sufficient to prove Theorems 1.1 and 1.2 for lattices of
the special form (4.1), (4.2). We begin by establishing some preliminary lemmas.

4.2. Let A be an n×n invertible matrix, and let B be an m×m invertible matrix.
These determine a linear and invertible transformation T from R

n × R
m to itself

given by

(4.3) T : (x, y) �→ (Ax,By),

where x ∈ R
n, y ∈ R

m. Let Γ and L be two lattices in general position in R
n×R

m,
and let U ⊂ R

n and V ⊂ R
m be two bounded, Riemann measurable sets.

Lemma 4.2. Assume that T maps L onto Γ. Then the following are equivalent:

(i) E(Λ(L, V )) is a Riesz basis in L2(U).
(ii) E(Λ(Γ, BV )) is a Riesz basis in L2(A−	U).

Proof. Since Γ = T (L), we have that

Λ(Γ, BV ) = {p1(γ) : γ ∈ Γ, p2(γ) ∈ BV } = {Ap1(l) : l ∈ L, p2(l) ∈ V } .
Hence, the set Λ(Γ, BV ) is the image of Λ(L, V ) under the linear and invertible
transformation given by A. The result thus follows from the fact that for any point
set Λ ⊂ R

n, the exponential system E(Λ) is a Riesz basis in L2(U) if and only if
E(AΛ) is a Riesz basis in L2(A−	U). �

We remark that Lemma 4.2 remains true if the words “Riesz basis” are replaced
by “frame” or “Riesz sequence”.

4.3. We now restrict our attention to lattices in R
d × R.

Lemma 4.3. Let L ⊂ R
d × R be a lattice in general position. Then one can find

a lattice Γ of special form (4.1) and a linear and invertible transformation T as in
(4.3) such that T (L) = Γ.

Proof. Rather than showing that there exists a transformation of the form (4.3)
mapping L onto Γ, we will prove the equivalent claim that there exists a transforma-
tion of the form (4.3) mapping L∗ onto Γ∗. To see that these are indeed equivalent,
observe that if the transformation (x, y) �→ (Ax,By) maps L onto Γ, then the dual
lattice Γ∗ is the image of L∗ under the transformation (x, y) �→ (A−	x,B−	y).

The lattice L∗ is the image of Zd+1 under a linear and invertible transformation.
Let this transformation be represented by the matrix M , with

M(m,n) = (am+ bn, c	m+ en), m ∈ Z
d, n ∈ Z,

where a is a d× d matrix, b and c are d× 1 vectors, and e is a scalar.
Let T be the transformation in (4.3) with A = a−1 and B = 1/(e − c	a−1b).

The fact that the set

p1(L
∗) =

{
am+ bn : m ∈ Z

d, n ∈ Z
}

is dense in R
d guarantees that the matrix a is invertible, so A is well-defined. The

scalar B is also well-defined, since e − c	a−1b = detM/ det a 
= 0. One can check
that for this choice of T we have that T (L∗) = Γ∗, where Γ∗ is given in (4.2) with
α := Ab and β := Bc. Finally, since p1(Γ

∗) = Ap1(L
∗) and p2(Γ

∗) = Bp2(L
∗), and

L∗ is in general position, it follows that also Γ∗ must be in general position. This in
turn implies that the vectors α, β must satisfy the conditions in Definition 4.1. �
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4.4. With Lemmas 4.2 and 4.3 established, let us now use these to show that we
can restrict our attention to lattices of special form when proving Theorems 1.1
and 1.2.

Lemma 4.4. If Theorem 1.1 is true for lattices Γ of the special form (4.1), then
it is true for any lattice in general position.

Proof. Assume that Theorem 1.1 holds for any lattice of the special form (4.1).
Let L be a lattice in general position, and let I be an interval. Suppose that
the quasicrystal Λ(L, I) provides a Riesz basis of exponentials in L2(U) for some
Riemann measurable set U . We will show that this implies |I| ∈ p2(L).

By Lemma 4.3, there exists a linear and invertible transformation T as in (4.3)
mapping L onto a lattice Γ of special form (4.1). By Lemma 4.2, the set of ex-
ponentials E(Λ(Γ, BI)) is a Riesz basis in L2(A−	U), and the set A−	U is Rie-
mann measurable. Since Theorem 1.1 holds for the lattice Γ, this implies that
|BI| ∈ p2(Γ). Finally, observe that since T (L) = Γ, we have p2(Γ) = Bp2(L), and
thus |I| ∈ p2(L). �
Lemma 4.5. If Theorem 1.2 is true for lattices Γ of the special form (4.1), then
it is true for any lattice in general position.

Proof. Assume that Theorem 1.2 holds for any lattice of the special form (4.1). Let
L be a lattice in general position, and let I be an interval satisfying the condition
|I| ∈ p2(L). Denote by S a Riemann measurable set with mesS = D(Λ(L, I)),
which is equidecomposable to a parallelepiped spanned by vectors in p1(L

∗) using
only translations by vectors in p1(L

∗). We will show that E(Λ(L, I)) is a Riesz
basis in L2(S).

By Lemma 4.3, there exists a linear and invertible transformation T as in (4.3)
mapping L onto a lattice Γ of special form (4.1). We have that Bp2(L) = p2(Γ),
and thus the condition |I| ∈ p2(L) implies that |BI| ∈ p2(Γ). Since Theorem 1.2
holds for the lattice Γ, it follows that E(Λ(Γ, BI)) is a Riesz basis in L2(U) for any
set U , with mesU = D(Λ(Γ, BI)), which is equidecomposable to a parallelepiped
spanned by vectors in p1(Γ

∗) using only translations by vectors in p1(Γ
∗). Hence,

if we can show that the set A−	S satisfies these two conditions, then the proof will
be concluded by Lemma 4.2.

Let us first verify that mesA−	S = D(Λ(Γ, BI)). To see this, observe that
T (L) = Γ implies that |B detA| detL = det Γ, and hence

D(Λ(Γ, BI)) =
|BI|
det Γ

=
|I|

| detA| detL =
D(Λ(L, I))

| detA| .

Since mesS = D(Λ(L, I)), we get mesA−	S = D(Λ(L, I))/| detA| = D(Λ(Γ, BI)).
Let us now see that A−	S satisfies the appropriate equidecomposability condi-

tion. Recall that if T (L) = Γ, then the dual lattice Γ∗ is the image of L∗ under the
transformation (x, y) �→ (A−	x,B−	y). In particular, the matrix A−	 sends any
vector in p1(L

∗) to a vector in p1(Γ
∗). It follows that A−	 maps any parallelepiped

spanned by vectors in p1(L
∗) (respectively, any set equidecomposable to such a

parallelepiped using translations by vectors in p1(L
∗)) to a parallelepiped spanned

by vectors in p1(Γ
∗) (respectively, a set equidecomposable to such a parallelepiped

using translations by vectors in p1(Γ
∗)). Hence, the set A−	S is equidecomposable

to a parallelepiped spanned by vectors in p1(Γ
∗) using only translations by vectors

in p1(Γ
∗). This completes the proof of Lemma 4.5. �
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4.5. In a similar way, we can show the same for Proposition 1.3.

Lemma 4.6. If Proposition 1.3 is true for lattices Γ of the special form (4.1), then
it is true for any lattice in general position.

Proof. Assume that Proposition 1.3 holds for any lattice of the special form (4.1).
Let L be a lattice in general position, and let I be an interval satisfying |I| ∈
p2(L). Given any open set U ⊂ R

d and compact set K, K ⊂ U , with mesK <
D(Λ(L, I)) < mesU , we want to find a set S, K ⊂ S ⊂ U , where S satisfies the
conditions in Theorem 1.2.

By Lemma 4.3, there exists a linear and invertible transformation T as in (4.3)
mapping L onto a lattice Γ of special form (4.1). We have seen in the proof of
Lemma 4.5 that this implies A−	p1(L

∗) = p1(Γ
∗). In light of this, consider the open

set A−	U and the compact set A−	K, A−	K ⊂ A−	U , satisfying mesA−	K <
D(Λ(L, I))/| detA| < mesA−	U . Since D(Λ(L, I))/| detA| = D(Λ(Γ, BI)), and
since Proposition 1.3 holds for the lattice Γ, we can find a set V , A−	K ⊂ V ⊂
A−	U , where mesV = D(Λ(Γ, BI)) and V is equidecomposable to a parallelepiped
spanned by vectors in p1(Γ

∗) using only translations by vectors in p1(Γ
∗).

Now let S = A	V . Then K ⊂ S ⊂ U and mesS = D(Λ(L, I)). Moreover, since
A	p1(Γ

∗) = p1(L
∗), the set S is equidecomposable to a parallelepiped spanned by

vectors in p1(L
∗) using only translations by vectors in p1(L

∗). Thus, the set S
satisfies the conditions in Theorem 1.2. �

5. Bounded remainder sets

In this section we give a brief introduction to bounded remainder sets in R
d, and

mention their role in our problem. In the next section, this will be used to analyze
the distribution of points in one-dimensional model sets.

5.1. Let α ∈ R
d be a vector such that the numbers 1, α1, α2, . . . , αd are linearly

independent over the rationals. It is well-known that under this condition, the
sequence {nα} is equidistributed on the d-dimensional torus T

d = R
d/Zd, which

means that

(5.1)
1

n

n−1∑
k=0

χS(x+ kα) → mesS (n → ∞)

for any x ∈ T
d and every Riemann measurable set S ⊂ T

d. Here, χS denotes the
indicator function for S. One can also consider S as a set in R

d, in which case χS

should be understood as the multiplicity function for the projection of S on T
d,

that is

χS(x) =
∑
k∈Zd

1S(x+ k).

A quantitative measure of the equidistribution of the sequence {nα} is given by
the discrepancy function

(5.2) Dn(S, x) =

n−1∑
k=0

χS(x+ kα)− nmesS.

By (5.1), we have Dn(S, x) = o(n), n → ∞, for any Riemann measurable set
S ⊂ R

d.



RIESZ BASES, QUASICRYSTALS, AND BOUNDED REMAINDER SETS 4285

However, the discrepancy obeys an even stricter bound for certain special sets
S. We say that S ⊂ R

d is a bounded remainder set (BRS) if there exists a constant
C = C(S, α) such that |Dn(S, x)| � C for every n and almost every x. The classical
example is when S is a single interval in dimension one. In this case, it was shown
by Hecke [9] and Ostrowski [35, 36] that if the length of the interval belongs to
Zα + Z, then it is a BRS. Kesten [12] proved that this condition is also necessary
for an interval to be a BRS.

The relevance of bounded remainder sets to the subject of this paper is clarified
by the following:

Theorem 5.1. Let Λ = Λ(Γ, I) be the simple quasicrystal defined in (1.1), where
Γ is a lattice of special form (4.1). Then E(Λ) is a Riesz basis in L2(S) for every
Riemann measurable bounded remainder set S with mesS = |I|.

When we say that S is a bounded remainder set, we mean with respect to the
vector α in the definition of the special lattice Γ.

5.2. With the exception of the one-dimensional case, the problem of explicitly de-
scribing bounded remainder sets has until recently remained quite open. Szüsz gave
the first non-trivial examples of bounded remainder sets in two dimensions in 1954
by constructing a family of parallelograms of bounded remainder [40]. Liardet later
generalized Szüsz’s construction to all dimensions [20].

In our recent paper [7], a comprehensive study of multi-dimensional bounded re-
mainder sets was done. First we extended to higher dimensions the Hecke-Ostrowski
result on intervals.

Theorem 5.2. Let P be a parallelepiped in R
d, spanned by vectors v1, . . . , vd be-

longing to Zα+ Z
d. Then P is a bounded remainder set.

This result guarantees the existence of a large collection of bounded remainder
sets, which in particular encompasses the examples previously given by Szüsz and
Liardet.

On the other hand, we also proved that the Riemann measurable bounded re-
mainder sets can be characterized by equidecomposability to a parallelepiped of the
above form.

Theorem 5.3. Let S ⊂ R
d be a Riemann measurable set. Then S is a bounded

remainder set if and only if there is a parallelepiped P spanned by vectors belonging
to Zα+Z

d, such that S and P are equidecomposable (by Riemann measurable pieces)
using only translations by vectors in Zα+ Z

d.

It is not difficult to show that if two sets S and S′ are equidecomposable using
translations by vectors in Zα+Z

d, and if one of them is a BRS, then so is the other
(see [7, Proposition 4.1]). We proved in [7] that also the converse is true:

Theorem 5.4. Let S and S′ be two Riemann measurable bounded remainder sets
of the same measure. Then S and S′ are equidecomposable using translations by
vectors in Zα+ Z

d only.

Hence, if S is a Riemann measurable BRS, then S is equidecomposable to any
parallelepiped P spanned by vectors belonging to Zα+Z

d, such that mesP = mesS.
It is known (see [7, Proposition 2.4]) that the measure of any bounded remainder

set must be of the form

(5.3) n0 + n1α1 + · · ·+ ndαd,



4286 SIGRID GREPSTAD AND NIR LEV

where n0, . . . , nd are integers. Conversely, we have the following result.

Theorem 5.5. Any positive number γ of the form (5.3) can be realized as the
measure of some bounded remainder parallelepiped spanned by vectors belonging to
Zα+ Z

d.

This follows from Theorem 5.2 and [7, Proposition 3.7].

5.3. We complete this section by showing that the bounded remainder sets are,
in a certain sense, dense among the sets of a given measure in R

d. The following
theorem is essentially Proposition 1.3 for lattices of special form.

Theorem 5.6. Let γ be a positive number of the form (5.3). Suppose that U ⊂ R
d

is an open set, K is compact, K ⊂ U , and mesK < γ < mesU . Then there exists
a Riemann measurable bounded remainder set S, K ⊂ S ⊂ U , such that mesS = γ.

Proof. We can assume that the set U is bounded. If not, let UR be the intersection
of U with the ball of radius R centered at the origin. For a sufficiently large R, we
have K ⊂ UR and mesUR > γ, and we may thus continue with UR in place of U .

We first construct two bounded remainder sets A and B satisfying K ⊂ A ⊂
B ⊂ U and mesA < γ < mesB. The set Zα+ Z

d is dense in R
d, so for any ε > 0

we can find by Theorem 5.2 a bounded remainder parallelepiped Pε of diameter
smaller than ε spanned by vectors in Zα+Z

d. Consider a tiling of Rd by translated
copies of Pε. Let A be the union of all parallelepipeds intersecting K, and let
B be the union of those contained in U . Then A and B are bounded remainder
sets. Choosing ε sufficiently small, we can guarantee that K ⊂ A ⊂ B ⊂ U and
mesA < γ < mesB.

We complete the proof by showing that there exists a bounded remainder set S
satisfying A ⊂ S ⊂ B and mesS = γ. Since A and B are both bounded remainder
sets and A ⊂ B, their difference B \A is also a BRS. Theorem 5.5 ensures that we
can construct two disjoint parallelepipeds, P and Q, spanned by vectors in Zα+Z

d,
where mesP = γ − mesA and mesQ = mesB − γ. Their union P ∪ Q is a BRS
of measure equal to that of B \ A, and by Theorem 5.4 the sets P ∪Q and B \ A
are equidecomposable using translations by vectors in Zα + Z

d. It follows that P
is equidecomposable to some subset R ⊂ B \ A, and by Theorem 5.3 the set R
is a BRS. Now let S = A ∪ R. The set S is a BRS satisfying A ⊂ S ⊂ B, and
mesS = mesA+mesP = γ. �

6. Model sets and bounded remainder sets

In this section we study the distribution of points in a one-dimensional model
set. We assume that the window of the model set is a Riemann measurable bounded
remainder set (with respect to the projected lattice). We show that in this case, the
model set can be obtained by a bounded perturbation of an arithmetic progression,
and moreover that the perturbations are of the same size on the average. These
results will allow us later on to apply the theorem of Avdonin in the proof of
Theorem 1.2.

6.1. Let Γ be a lattice in R
d×R, and let S be a bounded, Riemann measurable set

in R
d. In this section we study the distribution of points in the one-dimensional

model set Λ := Λ∗(Γ, S) defined by (3.2). We may restrict ourselves to lattices
Γ of the special form (4.1) (in view of the results in Section 4, the general case
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can be reduced to this one by applying a linear transformation). Then using the
expression (4.2) for the dual lattice Γ∗, one can check that in this case the model
set is given by

(6.1) Λ =
{
n+ 〈nα+m,β〉 : n ∈ Z, m ∈ Z

d, nα+m ∈ S
}
,

where α and β are the vectors used to define Γ. Notice that Λ has uniform density

D(Λ) = mesS.

6.2. Recall that S is a bounded remainder set (BRS) with respect to α if there is a
constant C = C(S, α) such that the discrepancy Dn(S, x) defined by (5.2) satisfies
the condition |Dn(S, x)| � C for every n and almost every x. In this case, one may
arrange this condition to hold for all x in a given countable set, by replacing S with
an appropriate translation S + t (for this matter almost every t will do). Let us
assume that the discrepancy is bounded for all the points of the form {jα}, which
amounts to the condition

(6.2) sup
n>0

sup
j∈Z

∣∣∣ j+n∑
k=j+1

χS(kα)− nmesS
∣∣∣ < ∞.

Remark that in the converse direction, a Riemann measurable set S which satisfies
the condition (6.2) must be a bounded remainder set; see [7, Proposition 2.2].

Lemma 6.1. Assume that condition (6.2) is satisfied. Then the model set (6.1)
can be enumerated as a sequence {λj}, j ∈ Z, in such a way that

(6.3) sup
j∈Z

∣∣∣λj −
j

mesS

∣∣∣ < ∞.

In other words, the model set Λ can be obtained by a bounded perturbation of
the points in the arithmetic progression (1/mesS)Z. The property of a cut-and-
project set being at bounded distance from a lattice has been considered by some
authors; see e.g. [4, 8, 39] and the references therein.

Proof of Lemma 6.1. Define

(6.4) Sn := S ∩ (nα+ Z
d), Λn := {n+ 〈x, β〉 : x ∈ Sn}, n ∈ Z.

One can see from (6.1) that the sets {Λn} form a partition of Λ (it is not excluded
that some of the Λn are empty). Let {sn}, n ∈ Z, be a sequence of integers such
that

(6.5) sn+1 − sn = #Λn,

and choose an enumeration {λj : j ∈ Z} of the set Λ in such a way that

(6.6) Λn = {λj : sn � j < sn−1}.

We will show that condition (6.3) is satisfied for this enumeration.
By (6.4), (6.5) we have sn+1 − sn = χS(nα). Hence (6.2) implies that for n > 0,

(6.7) sn = s0 +

n−1∑
k=0

χS(kα) = nmesS +O(1),

and in a similar way one can see that the same is true also for n � 0.
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Now given j, there is n = n(j) such that sn � j < sn+1, and so λj ∈ Λn. We
have

(6.8) λj −
j

mesS
= (λj − n) +

(
n− sn

mesS

)
+

(
sn − j

mesS

)
.

Since S is a bounded set, there is a constant R such that Λn ⊂ [n − R, n + R] for
every n ∈ Z. Hence the first term on the right hand side of (6.8) is bounded. The
second term is also bounded, due to (6.7). Finally, the third term is bounded as
well, since the number of elements in each set Λn is bounded. Thus, we obtain
(6.3). �

6.3. It is well-known that a set S is a bounded remainder set if and only if there
exists a bounded, measurable function g on the d-dimensional torus T

d = R
d/Zd

such that

(6.9) χS(x)−mesS = g(x+ α)− g(x) a.e.

A simple proof of this fact can be found in [7, Proposition 2.3]. The equation (6.9) is
known as the cohomological equation for the function χS . The function g is unique
a.e. up to an additive constant, and is called the transfer function for S.

We proved in [7] that if the bounded remainder set S is Riemann measurable,
then the transfer function g may be chosen to be a Riemann integrable function:

Theorem 6.2 (see [7, Theorem 6]). Let S be a Riemann measurable bounded re-
mainder set. Then there is a bounded, Riemann integrable function g : Td → R

satisfying (6.9).

The proof of this result is based on the characterization of the Riemann measur-
able bounded remainder sets given in Theorems 5.2 and 5.3 above.

By applying an appropriate translation to the set S, we may arrange the equality
(6.9) to hold for all the points x of the form {nα}, that is,
(6.10) χS(nα)−mesS = g((n+ 1)α)− g(nα), n ∈ Z.

In fact, since (6.9) holds for almost every x, almost every translation of S will satisfy
the above. Notice that condition (6.10) and the boundedness of g imply (6.2).

6.4. Let Λ = {λj} be the enumeration given by Lemma 6.1. Then by (6.3) we have

(6.11) sup
j∈Z

|δj | < ∞, where δj := λj −
j

mesS
.

We will now see that the perturbations δj are in fact of the same size on the average:

Lemma 6.3. Assume that there is a Riemann integrable function g satisfying
(6.10). Then there exists a constant c such that

(6.12) sup
k∈Z

∣∣∣ 1
N

k+N∑
j=k+1

δj − c
∣∣∣ → 0 (N → ∞).

Proof. We continue to use the same notations introduced in the proof of Lemma
6.1. First we are going to derive a simple expression for the sum

∑
δj with j going

through the “block” sn � j < sn+1. Indeed, we have∑
sn�j<sn+1

δj =
∑

sn�j<sn+1

(λj − n)−
∑

sn�j<sn+1

(
j

mesS
− n

)
def
= S1(n)− S2(n).
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We evaluate each one of the sums S1(n) and S2(n) separately. Consider the function

φ(x) :=
∑
m∈Zd

〈x+m,β〉1S(x+m).

This function is 1-periodic; hence it may be viewed as a function on T
d = R

d/Zd.
By (6.4), (6.6) we have S1(n) = φ(nα). The second sum S2(n) can be calculated
explicitly,

(6.13) S2(n) = (sn+1 − sn)

(
sn+1 + sn − 1

2mesS
− n

)
.

Using condition (6.10) we get that for n > 0,

(6.14) sn = s0 +

n−1∑
k=0

χS(kα) = nmesS + g(nα) + c1,

and similarly the same is true also for n � 0 (with the same constant c1). Substi-
tuting this expression for sn in (6.13) yields that S2(n) = ψ(nα), where

ψ(x) :=
χS(x)(g(x) + g(x+ α) + c2)

2mesS
.

We conclude that ∑
sn�j<sn+1

δj = h(nα), n ∈ Z,

where h : Td → R is the Riemann integrable function given by h(x) := φ(x)−ψ(x).
Now to prove (6.12) it will be enough to consider the case where k = sn − 1

and k+N = sn+r − 1, that is, where the sum in (6.12) goes through r consecutive
“blocks”. This is due to the fact that the δj are known to be bounded by (6.11),
and the number of elements in each “block” is bounded as well. So, consider the
sum ∑

sn�j<sn+r

δj =

n+r−1∑
m=n

∑
sm�j<sm+1

δj =

n+r−1∑
m=n

h(mα).

The points {mα} are well-equidistributed on T
d, and h is Riemann integrable;

hence

sup
n∈Z

∣∣∣ n+r−1∑
m=n

h(mα)− r

∫
Td

h(x) dx
∣∣∣ = o(r), r → ∞

(see [17, pp. 46, 52]). From (6.14) it follows that sn+r − sn = rmesS + O(1), and
hence

1

sn+r − sn

∑
sn�j<sn+r

δj =
1

mesS

∫
Td

h(x) dx+ o(1), r → ∞,

uniformly with respect to n. It follows that (6.12) holds with

c =
1

mesS

∫
Td

h(x) dx,

and this concludes the proof of Lemma 6.3. �
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7. Model sets that give Riesz bases

We are now equipped to present the proof of Theorem 1.2. The result states
that a simple quasicrystal Λ(Γ, I) for which |I| ∈ p2(Γ) provides a Riesz basis
of exponentials in L2(S) for any Riemann measurable set S satisfying the two
conditions

(i) mesS = D(Λ);
(ii) S is equidecomposable to a parallelepiped spanned by vectors in p1(Γ

∗),
using only translations by vectors in p1(Γ

∗).

By Lemma 4.5 it will be enough to consider the case when Γ and Γ∗ are of the
special form (4.1), (4.2). Then the quasicrystal Λ(Γ, I) has density D(Λ) = |I|, and

p1(Γ
∗) = Zα+ Z

d.

Hence, Theorem 1.2 follows immediately from Theorems 5.1 and 5.3. It remains to
prove Theorem 5.1.

7.1. Avdonin’s theorem. We will prove Theorem 5.1 by invoking the duality in
Corollary 3.2. Namely, in order to prove that E(Λ(Γ, I)) is a Riesz basis in L2(S),
it is sufficient to show that E(Λ∗(Γ, S)) is a Riesz basis in L2(I). For the latter we
will use the following result due to Avdonin, which gives a sufficient condition on
a system of exponential functions to be a Riesz basis in L2(I).

Theorem 7.1 (Avdonin [1]). Let I ⊂ R be an interval, and let {λj , j ∈ Z} be a
sequence in R satisfying the following three conditions:

(a) {λj} is a separated sequence, that is, infj 
=k |λj − λk| > 0;
(b) supj |δj | < ∞, where δj := λj − j/|I|;
(c) there is a constant c and a positive integer N such that

(7.1) sup
k∈Z

∣∣∣ 1
N

k+N∑
j=k+1

δj − c
∣∣∣ < 1

4|I| .

Then the system {e2πiλj} is a Riesz basis in L2(I).

This is a generalization of Kadec’s 1/4 theorem, which corresponds to the case
N = 1. In fact, the theorem above is a special case of the result given in [1].

7.2. Proof of Theorem 5.1. Let Λ(Γ, I) be the simple quasicrystal (1.1) with Γ
of special form (4.1), and let S be a Riemann measurable bounded remainder set
with mesS = |I|. We want to show that E(Λ(Γ, I)) is a Riesz basis in L2(S). By
Theorem 6.2 there exists a Riemann integrable function g satisfying the cohomolog-
ical equation (6.9). Moreover, by translation of S we may assume that conditions
(6.2) and (6.10) are satisfied. Such a translation will not affect the Riesz basis
property for S.

By Corollary 3.2 with U = S and V = I, it will be sufficient to show that the
dual system E(Λ∗(Γ, S)) is a Riesz basis in L2(I). As condition (6.2) is satisfied,
we can invoke Lemma 6.1 to obtain an enumeration of Λ∗(Γ, S) for which condition
(b) in Theorem 7.1 holds. Moreover, since (6.10) is satisfied, Lemma 6.3 guarantees
that also condition (c) holds for this enumeration. Finally, condition (a) is satisfied
as well since Λ∗(Γ, S) is a uniformly discrete set. Thus, E(Λ∗(Γ, S)) is a Riesz basis
in L2(I) by Theorem 7.1, and this completes the proof of Theorem 5.1.
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7.3. Proof of Proposition 1.3. We now show that if |I| ∈ p2(Γ), then the simple
quasicrystal Λ(Γ, I) provides a Riesz basis E(Λ(Γ, I)) in L2(S) for a large collection
of sets S in the following sense: Given any compact set K and open set U , where
K ⊂ U and mesK < D(Λ) < mesU , one can find a Riemann measurable set S
satisfying the conditions in Theorem 1.2 such that K ⊂ S ⊂ U .

Indeed we have already seen that Proposition 1.3 is true when Γ, Γ∗ are lattices
of the special form (4.1), (4.2); this follows from Theorems 5.3 and 5.6. By Lemma
4.6, the proposition is true also in the general case.

7.4. Examples. Finally, let us see how Examples 1.4 and 1.5 can be deduced from
Theorem 5.1. These examples are special cases of the following more general result.

Theorem 7.2. Let α and β be column vectors in R
d satisfying conditions (i) and

(ii) in Definition 4.1, and define a sequence Λ = {λ(m)} by

(7.2) λ(m) = m+ {α	m}β, m ∈ Z
d

(where {x} denotes the fractional part of a real number x). Then the system E(Λ)
is a Riesz basis in L2(S) for every Riemann measurable set S which is equidecom-
posable to the unit cube Q = [0, 1)d using translations by vectors in Zα+ Z

d.

Proof. Let I be the interval (−1, 0], and let Γ and Γ∗ be lattices of the special
form (4.1), (4.2). Then the simple quasicrystal Λ = Λ(Γ, I) is the set (7.2). By
Theorem 5.1, E(Λ) is a Riesz basis in L2(S) for every Riemann measurable bounded
remainder set S with mesS = 1. Hence by Theorem 5.3, E(Λ) is a Riesz basis in
L2(S) for every Riemann measurable set S which is equidecomposable to the unit
cube using translations by vectors in Zα+ Z

d. �

Examples 1.4 and 1.5 follow directly from Theorem 7.2. In the one-dimensional
case, if we take α ∈ R irrational and β = 1, then we obtain Example 1.4. In two
dimensions, Example 1.5 follows by choosing α = β = (

√
2,
√
3).

8. Model sets which do not give Riesz bases

In this section we prove Theorem 1.1. That is, we show that if the simple
quasicrystal Λ(Γ, I) does not satisfy the arithmetical condition |I| ∈ p2(Γ), then
there is no Riemann measurable set S ⊂ R

d such that E(Λ(Γ, I)) is a Riesz basis
in L2(S).

8.1. Bounded mean oscillation. Let us recall the definition of functions and
sequences with bounded mean oscillation. Let f(x) be a locally integrable function
on R, and denote by fJ the average of f over a bounded interval J ⊂ R, that is,
fJ = |J |−1

∫
J
f(x) dx. The mean oscillation of f over J is defined as

1

|J |

∫
J

|f(x)− fJ | dx.

If the mean oscillation of f is bounded uniformly over all intervals J , then we say
that f has bounded mean oscillation, and we write f ∈ BMO(R). Clearly any
bounded function belongs to BMO(R), but it is well-known that BMO(R) contains
also unbounded functions, such as the function f(x) = log |x|.
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Similarly, one can define the space BMO(Z) of sequences with bounded mean
oscillation. We say that a sequence of complex numbers {cn}n∈Z has bounded mean
oscillation, and we write {cn} ∈ BMO(Z), if

sup
n<m

(
1

m− n

m∑
k=n+1

∣∣∣∣ck − cn+1 + · · ·+ cm
m− n

∣∣∣∣
)

is finite.

8.2. Discrepancy function. For a discrete set Λ ⊂ R, denote by nΛ(x) the count-
ing function for Λ satisfying

nΛ(y)− nΛ(x) = # (Λ ∩ [x, y)) , x < y.

This condition defines nΛ(x) uniquely up to an additive constant.
If the set Λ has uniform density D(Λ), then we define the discrepancy function

of Λ to be the difference

(8.1) d(Λ, x) = nΛ(x)− D(Λ)x, x ∈ R.

This piecewise linear function with slope −D(Λ) and positive unit jumps at every
x ∈ Λ gives a quantitative measure of the uniform distribution of Λ. From the
definition of D(Λ) it is clear that d(Λ, x) = o(x) as x → ±∞.

Now let Λ = Λ∗(Γ, S) as given in (6.1), and consider the associated discrepancy
function d(Λ, x). There is a close connection between d(Λ, x) and the sequence
{Dn(S)}n∈Z defined as

(8.2) Dn(S) =

⎧⎪⎨⎪⎩
∑n−1

k=0 χS(kα)− nmesS, n > 0,

0, n = 0,

−
∑−1

k=n χS(kα)− nmesS, n < 0.

In Lemma 6.1 we looked at the case when this sequence is bounded, and showed
that Λ is then at bounded distance from an arithmetical progression. One can check
that in this case, the corresponding discrepancy d(Λ, x) is a bounded function.

We now consider the case when d(Λ, x) belongs to BMO(R).

Lemma 8.1. Let Λ = Λ∗(Γ, S) be given in (6.1), and suppose that d(Λ, x) ∈
BMO(R). Then {Dn(S)} in (8.2) belongs to BMO(Z).

Proof. We introduce a new function ñΛ(x), defined by ñΛ(0) = 0 and the condition

(8.3) ñΛ(y)− ñΛ(x) =
∑

k∈[x,y)∩Z

#Λk, x < y,

where Λk is a block in the partition of Λ given in (6.4). We may think of ñΛ(x)
as the counting function for a multi-set with multiplicity #Λk at the point x = k.
Recall that Λk ⊂ [k−R, k+R] for some R = R(S,Γ) and that the block sizes #Λk

are uniformly bounded. It follows that nΛ(x)− ñΛ(x) is a bounded function. Thus,
if we define f(x) as

f(x) = ñΛ(x)− xmesS,

then from D(Λ) = mesS it follows that the difference d(Λ, x) − f(x) is also a
bounded function. Since d(Λ, x) belongs to BMO(R), so does f(x).

The function f(x) is piecewise linear, with slope −mesS and bounded integer
jumps at integer values of x. We can therefore write f as the sum of two functions,
f = g + h, where g(x) is piecewise constant and equal to f(n) on (n − 1, n], and
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h(x) is 1-periodic and linear with slope −mesS on each such interval. The mean
oscillation of the function g over the interval [n,m) is given by

(8.4)
1

m− n

m∑
k=n+1

∣∣∣∣f(k)− f(n+ 1) + · · ·+ f(m)

m− n

∣∣∣∣ .
Since g differs from f by a bounded function, we have g ∈ BMO(R), so (8.4)
is bounded uniformly with respect to n and m. In other words, the sequence
{f(n)}n∈Z belongs to BMO(Z). Finally we have that f(n) = Dn(S), and hence
{Dn(S)} ∈ BMO(Z). �

8.3. Pavlov’s theorem. To prove Theorem 1.1, we use the duality in Theorem 3.1
to transfer our problem from L2(S) to L2(I). We will show that for E(Λ∗(Γ, S)) to
be a Riesz basis in L2(I), it is necessary that |I| ∈ p2(Γ), and by Corollary 3.1 this
will imply Theorem 1.1. As what we need is a necessary, and not a sufficient, condi-
tion for E(Λ∗(Γ, S)) to be a Riesz basis in L2(I), we cannot use Avdonin’s theorem.
Instead we will use the following consequence of Pavlov’s complete characterization
of the exponential Riesz bases in L2(I) [37].

Theorem 8.2 (See [10, Theorem 8, p. 240]). Let Λ ⊂ R be a discrete set. Then for
the exponential system E(Λ) to be a Riesz basis in L2(0, a), a > 0, it is necessary
that the function f(x) = nΛ(x)− ax belong to BMO(R).

8.4. Proof of Theorem 1.1. By Lemma 4.4, it will be enough to consider the
case when Γ, Γ∗ are lattices of the special form (4.1), (4.2). Since the boundary of
the set S has measure zero, there exists a translate of S whose boundary does not
intersect the countable set p1(Γ

∗). Translating S does not affect the Riesz basis
property for the set, so we may assume below that ∂S ∩ p1(Γ

∗) = ∅.
Suppose that E(Λ(Γ, I)) is a Riesz basis in L2(S). By applying Corollary 3.2

with the lattice

Γ′ := {(p2(γ∗), p1(γ
∗)) : γ∗ ∈ Γ∗} ⊂ R× R

d

and with U = I and V = S, it follows that E(Λ∗(Γ, S)) is a Riesz basis in L2(I),
with Λ∗(Γ, S) given by (6.1).

Denote by d(Λ∗, x) the discrepancy function for Λ∗ = Λ∗(Γ, S). Since E(Λ∗) is
a Riesz basis in L2(I), it follows from Landau’s necessary density conditions that
D(Λ∗) = mesS = |I|. Thus, by Theorem 8.2 we have d(Λ∗, x) ∈ BMO(R), and
from Lemma 8.1 it follows that the sequence {Dn(S)} in (8.2) belongs to BMO(Z).
We now need the following result to complete the proof.

Theorem 8.3 ([14]). Let α ∈ R
d be an irrational vector, and let S ⊂ R

d be a
Riemann measurable set. If the sequence {Dn(S)}n∈Z in (8.2) belongs to BMO(Z),
then the measure of S is of the form

(8.5) n0 + n1α1 + · · ·+ ndαd,

where n0, n1, . . . , nd are integers.

This result was proved in [14, Section 4] in the one-dimensional case. The proof
in higher dimensions is along the same lines. Indeed, consider the function

f(x) = χS(x)−mesS,
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which is a Riemann integrable function on T
d. By assumption, the ergodic sums

Sn(x) :=

n−1∑
k=0

f(x+ kα)

satisfy the condition {Sn(0)} ∈ BMO. Hence, as in the proof of [14, Theorem
4.3], it follows that there is a real-valued function g ∈ L2(Td) such that f(x) =
g(x+α)−g(x) almost everywhere. In turn, the proof of [7, Proposition 2.4] implies
that mesS is of the form (8.5) (notice that in the latter proof the function g was
bounded, but this fact was not used in the proof – only the measurability of g is
important).

Finally, we observe that when Γ is given by (4.1), p2(Γ) is precisely the collection
of real numbers of the form (8.5). As |I| = mesS, we thus get |I| ∈ p2(Γ), and this
completes the proof of Theorem 1.1.

9. The periodic setting

9.1. There is also a version of the problem in the periodic setting, where S is a
Riemann measurable subset of Td and the simple quasicrystal is a subset of Zd.

Let α ∈ R
d be a vector such that the numbers 1, α1, α2, . . . , αd are linearly

independent over the rationals, and let I be a semi-closed interval on the circle
T = R/Z. Then the set

(9.1) Λ(α, I) := {n ∈ Z
d : 〈n, α〉 ∈ I}

is called a simple quasicrystal in Z
d.

One can check that Λ(α, I) has uniform density D(Λ(α, I)) = |I|.
The result analogous to Theorem M in this setting is the following [25]:

Let Λ be a simple quasicrystal defined by (9.1). Then:

(i) E(Λ) is a frame in L2(S) for any compact set S ⊂ T
d with mesS < |I|;

(ii) E(Λ) is a Riesz sequence in L2(S) for any open set S ⊂ T
d with mesS >

|I|.

9.2. For Riesz bases we have the following versions of Theorems 1.1 and 1.2.

Theorem 9.1. Let Λ be a simple quasicrystal defined by (9.1), and suppose that
|I| is not of the form

n0 + n1α1 + · · ·+ ndαd,

where n0, . . . , nd are integers. Then there is no Riemann measurable set S ⊂ T
d

such that E(Λ) is a Riesz basis in L2(S).

Theorem 9.2. Let Λ be a simple quasicrystal defined by (9.1), and suppose that

|I| = n0 + n1α1 + · · ·+ ndαd

for certain integers n0, . . . , nd. Then E(Λ) is a Riesz basis in L2(S) for every
Riemann measurable bounded remainder set S ⊂ T

d with mesS = |I|.

As before, when we say that S is a bounded remainder set, we mean with respect
to the vector α.
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9.3. As in the non-periodic case, there is a duality connecting the frame and Riesz
sequence properties of E(Λ(α, I)) to those of the “dual” quasicrystal in Z defined
by

(9.2) Λ∗(α, S) := {m ∈ Z : −mα ∈ S}.
This duality can be stated in a form similar to Theorem 3.1. By combining its two
parts we obtain the following analog of Corollary 3.2.

Lemma 9.3.

(i) If the exponential system E(Λ∗(α, S)) is a Riesz basis in L2(I), then
E(Λ(α, I)) is a Riesz basis in L2(S).

(ii) Suppose that the boundary of S does not intersect the set Zα. If E(Λ(α, I))
is a Riesz basis in L2(S), then E(Λ∗(α, S)) is a Riesz basis in L2(I).

This result allows us to reduce the problem on exponential Riesz bases in L2(S)
to a similar problem in L2(I) for the interval I ⊂ T, and again we can apply the
results of Avdonin [1] and Pavlov [37] to verify Theorems 9.1 and 9.2. We will not
present this in detail. A full proof in the one-dimensional periodic case is given in
[14].

10. Remarks and open problems

Finally we mention some problems which are left open.

10.1. Suppose that the simple quasicrystal Λ(Γ, I) satisfies the arithmetical condi-
tion |I| ∈ p2(Γ). Which sets S will then admit E(Λ(Γ, I)) as a Riesz basis? It is
enough to restrict our attention to lattices Γ of special form (4.1). We have then
seen in Theorem 5.1 that a sufficient condition is that S is a Riemann measurable
bounded remainder set with mesS = |I|. Is this condition also necessary?

This question is related to a problem in discrepancy theory. In the proof of
Theorem 1.1 we saw that a necessary condition for E(Λ(Γ, I)) to be a Riesz basis
in L2(S) is that the sequence of discrepancies

(10.1)

{
n−1∑
k=0

χS(kα)− nmesS : n = 1, 2, 3 . . .

}
is in BMO. It is an open question whether there exists a set S for which the
sequence (10.1) is unbounded, but is in BMO. In the simplest case when S is a
single interval in dimension one, the answer to this question is negative [14]. If the
answer is negative also in the general case, then the bounded remainder property
not only suffices, but in fact characterizes the Riemann measurable sets S for which
E(Λ(Γ, I)) is a Riesz basis in L2(S).

10.2. In this paper we have studied the Riesz basis property for E(Λ) when Λ =
Λ(Γ, I) is a simple quasicrystal. The duality in Theorem 3.1 allows us to reduce
the problem to that of determining when the quasicrystal Λ∗ = Λ∗(Γ, S) provides
a Riesz basis of exponentials in L2(I), where I is an interval. This is a problem
which is far better understood, and where powerful tools from the theory of entire
functions apply.

Recall that the duality in Theorem 3.1 is in fact twofold; it says that E(Λ) is
a frame in L2(S) if E(Λ∗) is a Riesz sequence in L2(I), and that E(Λ) is a Riesz
sequence in L2(S) if E(Λ∗) is a frame in L2(I). Rather than using both statements
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simultaneously to determine when E(Λ) is a Riesz basis in L2(S) (as we do in
Theorems 1.1 and 1.2), one may apply parts (i) and (ii) of Theorem 3.1 separately.
Seip and Ortega-Cerdà have given a complete characterization of the exponential
systems which constitute a frame, respectively a Riesz sequence, in L2(I) (see [34]
and [38, Theorem 10]). Combining Theorem 3.1 with these characterizations, one
may attempt to determine when E(Λ) is just a frame, or just a Riesz sequence, in
L2(S) when mesS = |I|.

10.3. Several other problems are mentioned in [29]. In particular, do the results
admit a version for Lp norms, with p 
= 2? And what can be said on the exponential
system E(Λ) when Λ is a non-simple model set?
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