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BOUNDED ORBITS OF CERTAIN DIAGONALIZABLE FLOWS

ON SLn(R)/SLn(Z)

LIFAN GUAN AND WEISHENG WU

Abstract. We prove that the set of points that have bounded orbits un-
der certain diagonalizable flows is a hyperplane absolute winning subset of
SLn(R)/SLn(Z).

1. Introduction

1.1. Statement of main results. Let G be a connected Lie group, let Γ be a
nonuniform lattice in G, and let F = {gt : t ∈ R} be a one-parameter subgroup of
G with noncompact closure. We are interested in the dynamical properties of the
action of F on the homogeneous space G/Γ by left translations. Specifically, we
will focus on the study of the set

E(F ) := {Λ ∈ G/Γ : FΛ is bounded in G/Γ}.
In certain important cases, it turns out that E(F ) has zero Haar measure (for
example, when G is semisimple without compact factors and Γ is irreducible, this
follows from Moore’s ergodicity theorem [18]). If F is Ad-unipotent, E(F ) is even
smaller. In this case, by Ratner’s Theorems [20], E(F ) is contained in a countable
union of proper submanifolds, and hence has Hausdorff dimension < dimG. When
F is Ad-semisimple, the situation is quite different. Motivated by the work of Dani
(cf. [9], [10]), Margulis proposed a conjecture in his 1990s ICM report [16], which
was settled in a subsequent work of Kleinbock and Margulis [14]. In that work, they
proved: if the flow (G/Γ, F ) has the so-called property (Q), then the set E(F ) is
thick, i.e., for any nonempty open subset V of G/Γ the set E(F )∩V is of Hausdorff
dimension equal to the dimension of the underlying space G/Γ. In particular, when
F is Ad-semisimple, the flow (G/Γ, F ) always has property (Q).

Given countably many Ad-semisimple Fn, it is natural to ask whether the set
of points Λ such that all the orbits FnΛ are bounded is still thick. This is natural
from both the dynamical point of view and its relation to number theory. This is
proved to be true for G = SL2(R) and Γ = SL2(Z) in [15], and for G = SL3(R) and
Γ = SL3(Z) in [3]. Note that this set is the intersection

⋂
n E(Fn). A powerful tool

for studying intersection properties of different sets is a type of game introduced
by Schmidt in [21], which is called Schmidt’s (α, β)-game. The game can be played
on any metric space, and it defines a class of so-called α-winning sets (0 < α <
1). When the metric space is a Riemannian manifold, α-winning sets are thick
and stable with respect to countable intersections. In this paper, we will use a
variant of Schmidt’s (α, β)-game, i.e., the hyperplane absolute game introduced in
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[7] and [15]. This game has the advantage that it can be naturally defined on a
differential manifold without picking a Riemannian metric, while the hyperplane
absolute winning (abbreviated as HAW) sets also enjoy the thickness and countable
intersection properties. See Section 2 for details. Note that, in both [15] and [3],
the authors prove their results by showing that E(F ) is HAW in the corresponding
case. In fact, the following conjecture is proposed in [3].

Conjecture 1.1 ([3, Conjecture 7.1]). Let G be a Lie group, let Γ be a lattice in
G, and let F be a one-parameter Ad-diagonalizable subgroup of G. Then the set
E(F ) is HAW on G/Γ.

In this paper, we restrict ourselves to the cases

G = SLn(R), Γ = SLn(Z).

Our main theorem is the following, verifying the above conjecture for a certain class
of F .

Theorem 1.2. Let F be a one-parameter subgroup of G satisfying the following
property:
(1.1)

it is diagonalizable and the eigenvalues of g1 (denoted by λ1, . . . , λn) satisfy

#{i : |λi| < 1} = 1 and #{i : |λi| = max
1≤j≤n

|λj |} ≥ n− 2.

Then the set E(F ) is HAW on G/Γ.

We also prove the following theorem verifying [3, Conjecture 7.2] for F satisfying
(1.1).

Theorem 1.3. Let F be a one-parameter subgroup of G satisfying (1.1), and let
F+ = {gt ∈ F : t ≥ 0}. Let H(F+) denote the expanding horospherical subgroup of
F+ which is defined as

(1.2) H(F+) =

{
h ∈ G : lim

t→+∞
g−1
t hgt = e

}
.

Then for any Λ ∈ G/Γ, the set

{h ∈ H(F+) : hΛ ∈ E(F+)}
is HAW on H(F+).

1.2. Connection to number theory. To begin, let us define a d-weight r to
be a d-tuple r = (r1, . . . , rd) ∈ Rd such that each ri is positive and their sum
equals 1. Due to work of Dani [9] and Kleinbock [13], we know that for a d-
weight r there is a close relation between the set of r-badly approximable vectors
(abbreviated as Bad(r)) and bounded orbits of certain flow corresponding to r in
SLd+1(R)/SLd+1(Z). We will not present the explicit definition of Bad(r) here, but
we remark that they are natural generalizations of the classical badly approximable
numbers. Recently, there has been rapid progress on the study of intersection
properties of the sets Bad(r) for different weight r; for example, see [1, 2, 5, 6, 12,
19]. Concerning the winning properties of such sets, Schmidt proved that Badd

(abbreviation for Bad( 1d , . . . ,
1
d )) is winning for his game for any d ∈ N. They are

also proved to be HAW in [7]. Recently, An [2] proved that Bad(r) are winning
sets for Schmidt’s game for any 2-weight r. The HAW property is also established
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for such sets by Nesharim and Simmons [19]. To this end, we want to highlight the
following theorem proved in [12], since it motivates the results of this paper.

Theorem 1.4 (cf. [12, Theorem 1.4]). Let a d-weight r = (r1, · · · , rd) satisfy

(1.3)

d∑
i=1

ri = 1 and r1 = . . . = rd−1 ≥ rd ≥ 0.

Then Bad(r) is HAW.

Remark 1.5. Whether Bad(r) is winning (α-winning or HAW) for general weight
r is a challenging open problem proposed by Kleinbock [13].

1.3. Structure of the paper. For the sake of convenience, from now on we will
assume

G = SLd+1(R),Γ = SLd+1(R).

That is, the number n in the title of the paper is replaced by d+ 1.
This paper is organized as follows. In Section 2 we recall some basics of certain

Schmidt games, namely the hyperplane absolute game and the hyperplane potential
game. In Section 3.1, we state Theorem 3.1 and then convert it to the Diophantine
setting using Lemma 3.4. Note that Theorem 3.1, whose proof forms the most
technical part of this paper, can be regarded as a special case of Theorem 1.3. In
the rest of Section 3, we turn to the study of pairs (B,P ), where B is a closed
ball in R2d−1 and P is a rational vector in Qd. We manage to attach a rational
hyperplane and a rational line in Rd to the pair (B,P ). Section 5 is the core of this
paper, in which Theorem 3.1 is proved using the information of the pairs (B,P )
and some subdivisions prepared in Sections 3 and 4. In the last section, Theorem
1.2 and Theorem 1.3 are deduced from Theorem 3.1.

2. Schmidt games

In this section, we will recall definitions of certain Schmidt games, namely, the
hyperplane absolute game and the hyperplane potential game. They are both
variants of the (α, β)-game introduced by Schmidt in [21]. Since we don’t make
direct use of the (α, β)-game in this paper, we omit its definition here and refer
the interested reader to [21, 22]. Instead, we list here some nice properties of the
α-winning sets:

(1) If the game is played on a Riemannian manifold, then any α-winning set is
thick.

(2) The intersection of countably many α-winning sets is α-winning.

2.1. Hyperplane absolute game. The hyperplane absolute game was introduced
in [7]. It is played on a Euclidean space Rd. Given a hyperplane L ⊂ Rd and a
δ > 0, we denote by L(δ) the δ-neighborhood of L, i.e.,

L(δ) := {x ∈ Rd : dist(x, L) < δ}.

For β ∈ (0, 13 ), the β-hyperplane absolute game is defined as follows. Bob starts by

choosing a closed ball B0 ⊂ Rd of radius ρ0. In the ith turn, Bob chooses a closed

ball Bi with radius ρi, and then Alice chooses a hyperplane neighborhood L
(δi)
i with
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δi ≤ βρi. Then in the (i + 1)th turn, Bob chooses a closed ball Bi+1 ⊂ Bi � L
(δi)
i

of radius ρi+1 ≥ βρi. By this process there is a nested sequence of closed balls

B0 ⊇ B1 ⊇ B2 ⊇ · · · .

We say that a subset S ⊂ Rd is β-hyperplane absolute winning (β-HAW for short)
if no matter how Bob plays, Alice can ensure that

∞⋂
i=0

Bi ∩ S �= ∅.

We say S is hyperplane absolute winning (HAW for short) if it is β-HAW for any
β ∈ (0, 1

3 ).
We have the following lemma collecting the basic properties of β-HAW subsets

and HAW subsets of Rd ([7], [15], [12]).

Lemma 2.1.

(1) A HAW subset is always 1
2 -winning.

(2) Given β, β′ ∈ (0, 13 ), if β ≥ β′, then any β′-HAW set is β-HAW.
(3) A countable intersection of HAW sets is again HAW.
(4) Let ϕ : Rd → Rd be a C1 diffeomorphism. If S is a HAW set, then so is

ϕ(S).

The notion of HAW was extended to subsets of C1 manifolds in [15]. This is
done in two steps. First, one defines the hyperplane absolute game on an open
subset W ⊂ Rd. It is defined just as the hyperplane absolute game on Rd, except
for requiring that Bob’s first move B0 be contained in W . Now, let M be a d-
dimensional C1 manifold, and let {(Uα, φα)} be a C1 atlas on M . A subset S ⊂ M
is said to be HAW on M if for each α, φα(S ∩ Uα) is HAW on φα(Uα). The
definition is independent of the choice of atlas by property (4) listed above. We
have the following lemma that collects the basic properties of HAW subsets of a C1

manifold (cf. [15]).

Lemma 2.2.

(1) HAW subsets of a C1 manifold are thick.
(2) A countable intersection of HAW subsets of a C1 manifold is again HAW.
(3) Let φ : M → N be a diffeomorphism between C1 manifolds, and let S ⊂ M

be a HAW subset of M . Then φ(S) is a HAW subset of N .
(4) Let M be a C1 manifold with an open cover {Uα}. Then, a subset S ⊂ M

is HAW on M if and only if S ∩ Uα is HAW on Uα for each α.
(5) Let M,N be C1 manifolds, and let S ⊂ M be a HAW subset of M . Then

S ×N is a HAW subset of M ×N .

2.2. Hyperplane potential game. Being introduced in [11], the hyperplane po-
tential game also defines a class of subsets of Rd called hyperplane potential winning
(HPW for short) sets. The following lemma allows one to prove the HAW property
of a set S ⊂ Rd by showing that it is winning for the hyperplane potential game.
This is exactly the game we will use in this paper.

Lemma 2.3 (cf. [11, Theorem C.8]). A subset S of Rd is HPW if and only if it is
HAW.
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The hyperplane potential game involves two parameters, β ∈ (0, 1) and γ > 0.
Bob starts the game by choosing a closed ball B0 ⊂ Rd of radius ρ0. In the ith
turn, Bob chooses a closed ball Bi of radius ρi, and then Alice chooses a countable

family of hyperplane neighborhoods {L(δi,k)
i,k : k ∈ N} such that

∞∑
k=1

δγi,k ≤ (βρi)
γ .

Then in the (i+1)th turn, Bob chooses a closed ball Bi+1 ⊂ Bi of radius ρi+1 ≥ βρi.
By this process there is a nested sequence of closed balls

B0 ⊇ B1 ⊇ B2 ⊇ · · · .

We say a subset S ⊂ Rd is (β, γ)-hyperplane potential winning ((β, γ)-HPW for
short) if no matter how Bob plays, Alice can ensure that

∞⋂
i=0

Bi ∩
(
S ∪

∞⋃
i=0

∞⋃
k=1

L
(δi,k)
i,k

)
�= ∅.

We say S is hyperplane potential winning (HPW for short) if it is (β, γ)-HPW for
any β ∈ (0, 1) and γ > 0.

3. Converting to the Diophantine setting

Fix d ≥ 2. Recall that we have assumed

G = SLd+1(R),Γ = SLd+1(R).

Let

π : G → G/Γ be the natural projection.

We will fix a d-weight r satisfying (1.3) until the last section. For simplicity, some-
times we also write λ = r1 = · · · = rd−1, μ = rd. Both Theorem 1.2 and Theorem
1.3 will be deduced from the following theorem.

Theorem 3.1. Let r be a weight satisfying (1.1). Denote

Fr := {gt = diag(er1t, er2t, · · · , erdt, e−t) : t ∈ R}, F+
r := {gt ∈ Fr : t ≥ 0},

and

(3.1) U :=
{
ux,y,z : x, z ∈ Rd−1, y ∈ R

}
, where ux,y,z :=

⎛
⎝Id z x

1 y
1

⎞
⎠ ∈ G.

Then the set U ∩ π−1(E(F+
r )) is HAW on U .

Remark 3.2. If r satisfies r1 > rd, then the expanding horospherical subgroup
H(F+

r ) defined as in (1.2) coincides with the group U given in (3.1). Thus in this
case, Theorem 3.1 can be regarded as special case of Theorem 1.3 with Λ = Id · Γ.
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3.1. Diophantine characterization. For technical reasons, we will prove Theo-
rem 3.1 by applying the diffeomorphism R2d−1 → U defined as

(x, y, z) �→ u−1
x,y,z.

Remark 3.3. In view of Lemma 2.2(3), if we can prove that the set

{(x, y, z) ∈ R2d−1 : F+
r u−1

x,y,zΓ is bounded in G/Γ}
is HAW on R2d−1, then Theorem 3.1 will follow.

A rational vector P ∈ Qd will always be written in the following reduced form:

P =
(

p
q ,

r
q

)
, with q>0 and p=(p1, . . . , pd−1) satisfying gcd(p1, . . . , pd−1, r, q) = 1.

Such a form is unique, thus we may write the denominator of P as a function q(P ).
We need the following Diophantine characterization of the boundedness

of F+
r u−1

x,y,zΓ in G/Γ. For ε > 0 and a rational vector P = (pq ,
r
q ) ∈ Qd writ-

ten in its reduced form, we denote

Δε(P ) :=

{
(x, y, z) ∈ Rd−1 × R× Rd−1 :

∣∣∣y − r

q

∣∣∣ < ε

q1+μ
,

∥∥∥∥x− p

q
−
(
y − r

q

)
z

∥∥∥∥
∞

<
ε

q1+λ

}
,

where ‖ · ‖∞ means the maximal norm on Rd−1; that is, for x = (x1, . . . , xd−1),
‖x‖∞ = max{|x1|, . . . , |xd|}. Then we set

Sε(r) := R2d−1 �
⋃

P∈Qd

Δε(P )

and
S(r) :=

⋃
ε>0

Sε(r).

The following lemma allows us to convert our problem to the Diophantine setting.
For the proof, one can refer to [13] (see also [3, Lemma 3.2]).

Lemma 3.4 (cf. [13, Theorem 2.5]). The orbit F+
r u−1

x,y,zΓ is bounded if and only
if (x, y, z) ∈ S(r); that is, there is ε = ε(x, y, z) > 0 such that

max
{
qμ|qy − r|, qλ‖qx− p− (qy − r)z‖∞

}
≥ ε ∀P =

(
p

q
,
r

q

)
∈ Qd.

3.2. Attaching hyperplanes. Let B denote the set of closed balls in R2d−1 with
radius smaller than 1/d. For any a+ : B×Qd → Zd one can define a linear function
on Rd that depends on the pair of a closed ball B ∈ B and P = (pq ,

r
q ) ∈ Qd:

(3.2) FB,P (w) = a+(B,P ) ·w − a+(B,P ) ·
(
p

q
,
r

q

)
, w ∈ Rd.

We also write for simplicity

(3.3) C(B,P ) = a+(B,P ) ·
(
p

q
,
r

q

)
.

Then we can define a hyperplane attached to the pair (B,P ) to be

HB,P := {w ∈ Rd : FB,P (w) = 0}.
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Now we introduce a particular function a+ : B × Qd → Zd which we will use
throughout the paper. We shall need the following lemma.

Lemma 3.5. Let z ∈ Rd−1. For any P = (pq ,
r
q ) ∈ Qd, there exists (a, b) ∈ Zd with

(a, b) �= (0, 0) such that a · p+ br ∈ qZ and ‖a‖∞ ≤ qλ, |b+ z · a| ≤ qμ.

Proof. By Minkowski’s linear forms theorem (cf. [8, Chapter III, Theorem III]),
there exist a ∈ Zd−1, b, c ∈ Z which are not all zero such that

|a · p+ br + cq| < 1, ‖a‖∞ ≤ qλ, |b+ z · a| ≤ qμ.

Since a · p + br + cq ∈ Z, it must be 0 by the first inequality above. Assume that
a = 0 and b = 0. Then it follows from a · p + br + cq = 0 and q �= 0 that c = 0,
which is a contradiction. Thus (a, b) �= (0, 0). The lemma follows. �

Now let us consider the following set:

AB,P :=
{
(a, b) ∈ Zd : (a, b) �= (0, 0), a · p+ br ∈ qZ,

‖a‖∞ ≤ qλ, |b+ zB · a| ≤ qμ + ρ(B)
1
2

}
,

where zB is the z-coordinate of the center of B and ρ(B) is the radius of B. It
follows from Lemma 3.5 that AB,P �= ∅. We choose and fix

a+(B,P ) =
(
a(B,P ), b(B,P )

)
∈ AB,P

such that

ξ(B,P ) := max
{
‖a(B,P )‖∞, |b(B,P ) + zB · a(B,P )|

}
= min

{
max

{
‖a‖∞, |b+ zB · a|

}
: (a, b) ∈ AB,P

}
.(3.4)

This completes the definition of the function a+. Then we define the height of P
with respect to B:

HB(P ) := q(P )ξ(B,P ).

Remark 3.6. From its definition, one can see that the height function HB(P ) is
not canonically defined, i.e., it may depend on a choice. But we have the following
lemma controlling the size of HB(P ).

Lemma 3.7. For any (B,P ) ∈ B ×Qd, we have

(3.5) q(P ) ≤ HB(P ) ≤ q(P )1+λ.

Proof. Write q(P ) simply as q; the first inequality is clear from the definition. By
Lemma 3.5, AB,P contains a vector (a0, b0) with ‖a0‖∞ ≤ qλ and |b0+zB ·a0| ≤ qμ.
Thus, it follows from (3.4) that

max
{
‖a(B,P )‖∞, |b(B,P ) + zB · a(B,P )|

}
≤ max

{
‖a0‖∞, |b0 + zB · a0|

}
≤ max{qλ, qμ} = qλ.

The second inequality follows. �

Remark 3.8. It follows from the definition of a+(B,P ) that C(B,P ) ∈ Z; thus the
coefficients of FB,P belong to Z.
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3.3. Attaching lines. We shall define another function,

v+ : B ×Qd → Qd,

in this subsection. The function v+(∗, P ) takes values in the lattice ΛP which is
defined as follows:

ΛP = Zd + Z

(
p

q
,
r

q

)
, where P =

(
p

q
,
r

q

)
.

The line attached to the pair (B,P ) is defined to be

LB,P :=

{
w ∈ Rd : w −

(
p

q
,
r

q

)
= tv+(B,P ), t ∈ R

}
.

The definition of the function v+ is given in the following lemma.

Lemma 3.9. For any (B,P ) ∈ B ×Qd, there exists a nonzero vector

v+(B,P ) = (v(B,P ), u(B,P )) ∈ ΛP

with v(B,P ) ∈ Rd−1, u(B,P ) ∈ R such that

(3.6) ‖v(B,P )− u(B,P )zB‖∞ ≤ 2dq(P )−λ, |u(B,P )| ≤ 2dξ(B,P )q(P )−λ−μ.

Proof. Write q(P ) simply as q. It is easy to check that d(ΛP ) = 1/q, where
d(ΛP ) denotes the covolume of the lattice ΛP . We will make use of the vector
a+(B,P ) constructed in the previous subsection. For simplicity, write a+(B,P ),
a(B,P ), ai(B,P ), b(B,P ), ξ(B,P ), zB as a+, a, ai, b, ξ, z, respectively.

We have the following two distinct cases:

(1) Case |ak|q−λ = max(|a1|q−λ, . . . , |ad−1|q−λ, |b + z · a|ξq−λ−μ), where 1 ≤
k ≤ d− 1. Then it is obvious that ak �= 0. Consider the convex body

Σk :=
{
w = (w1, . . . , wd) ∈ Rd : |wi − ziwd| ≤ q−λ, i �= k, d;

|wd| ≤ ξq−λ−μ; |a+ ·w| < 1
}
.

A direct computation shows that

2−dVol(Σk) = |ak|−1ξq−λ−μ
∏

i �=k,d

q−λ = |ak|−1ξq−1 ≥ q−1.

Hence there is a nonzero ΛP -lattice point w̃ = (w̃1, . . . , w̃d) in Σk. By the

definition of a+, we have a+ ·
(

p
q ,

r
q

)
= 0. Consequently, a+ · w̃ ∈ Z for all

w̃ ∈ ΛP . Hence |a+ · w̃| < 1 implies a+ · w̃ = 0, and therefore

|w̃k − zkw̃d| = |ak|−1
∣∣∣ ∑
i �=k,d

ai(w̃i − ziw̃d) + (b+ z · a)w̃d

∣∣∣
≤ |ak|−1

( ∑
i �=k,d

|ai||w̃i − ziw̃d|+ |b+ z · a||w̃d|
)

≤ |ak|−1
( ∑

i �=k,d

|ai|q−λ + |b+ z · a|ξq−λ−μ
)

≤ (d− 1)q−λ.

(2) Case |b+ z · a|ξq−λ−μ = max(|a1|q−λ, . . . , |ad−1|q−λ, |b+ z · a|ξq−λ−μ).
Then we consider the convex body

Σd :=
{
w = (w1, . . . , wd) ∈ Rd : |wi − ziwd| ≤ 2q−λ, i �= d; |a+ ·w| < 1

}
.
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Since B ∈ B, we have ρ(B) ≤ 1/d. Thus |b+ z · a| ≤ qμ + ρ(B)
1
2 < qμ + 1.

A direct computation shows that

2−dVol(Σd) = |b+ z · a|−1
∏
i �=d

2q−λ ≥ 2d−1(qμ + 1)−1qμq−1 ≥ q−1.

Thus there is a nonzero ΛP -lattice point w̃ = (w̃1, . . . , w̃d) in Σk. Similarly
we have

|w̃d| = |b+ z · a|−1
∣∣∣∑
i �=d

ai(w̃i − ziw̃d)
∣∣∣

≤ |b+ z · a|−1
(∑

i �=d

|ai||w̃i − ziw̃d|
)

≤ |b+ z · a|−1
(∑

i �=d

2|ai|q−λ
)

≤ 2(d− 1)ξq−λ−μ.

In each case above we set v+(B,P ) = w, and this completes the proof . �

Remark 3.10. Let ΠB,P denote the subset of Rd defined by the inequalities given in
(3.6). Note that the volume of ΠB,P may be smaller than 1/q, so the above lemma
does not follow directly from Minkowski’s Theorem on linear forms.

4. Some subdivisions

As previously mentioned, we will use the hyperplane potential game in estab-
lishing Theorem 3.1. This section is devoted to some preparations for playing a
hyperplane potential game on U defined in (3.1). Hence we will fix β ∈ (0, 1) and
γ > 0, and a closed ball B0 ∈ B in this section. We are going to define subfamilies
Bn (n ≥ 0) of B and decompositions of Qd with respect to given β, γ, and B0.

Firstly, denote

κ := max
(x,y,z)∈B0

max{‖x‖∞, |y|, ‖z‖∞}+ 1.

Then choose a positive number R satisfying

(4.1) R ≥ max{4β−1, 104d6κ4}, and (Rγ − 1)−1 ≤
(
β2

3

)γ

,

and set

(4.2) ε = 10−3d−6κ−3R−20d2

ρ0,

where ρ0 = ρ(B0).
Let B0 = {B0}. For n ≥ 1, let Bn be the subfamily of B defined by

Bn := {B ⊂ B0 : βR−nρ0 < ρ(B) ≤ R−nρ0}.
In view of (4.1), the families Bn are mutually disjoint.

Let n ≥ 0, and fix a closed ball B ∈ Bn in this paragraph. We define

VB :=
{
P ∈ Qd : Hn ≤ HB(P ) ≤ 2Hn+1

}
,

where

Hn = 2d2εκρ−1
0 Rn+1.
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It follows from (3.5) that if P ∈ VB, then

H
1

1+λ
n ≤ q(P ) ≤ 2Hn+1.

We shall also need the following subdivisions of VB:

VB,1 :=

{
P ∈ VB : H

1
1+λ
n ≤ q(P ) ≤ H

1
1+λ
n R10d2

}
,

VB,k :=

{
P ∈ VB : H

1
1+λ
n R10d2+(2k−4)d ≤ q(P ) ≤ H

1
1+λ
n R10d2+(2k−2)d

}
, k ≥ 2.

One can show an important inequality here: for P ∈ VB,k, k ≥ 2,

(4.3)
ξ(B,P )

q(P )λ
=

HB(P )

q(P )1+λ
≤ 2Hn+1

HnR(1+λ)(10d2+(2k−4)d)
≤ 2R−8d2−2kd+1.

Now we define a subfamily B′
n of Bn inductively as follows. Let B′

0 = {B0}. If
n ≥ 1 and B′

n−1 has been defined, we let

B′
n :=

{
B ∈ Bn : B ⊂ B′ for some B′ ∈ B′

n−1, and B ∩
⋃

P∈VB

Δε(P ) = ∅

}
.

The following lemma plays an important role in the proof of Theorem 3.1.

Lemma 4.1. Let n ≥ 0, and let B ∈ B′
n. Then for any P ∈ Qd with q(P )1+λ ≤

2Hn+1, we have Δε(P ) ∩B = ∅.

Proof. Note that 2H1 < 1, and hence we may assume that n ≥ 1. We denote
Bn = B, and let Bn ⊂ · · · ⊂ B0 be such that Bk ∈ B′

k. Assume to the contrary
that the conclusion of the lemma is not true. Then there exists P = (pq ,

r
q ) ∈ Qd

with q1+λ ≤ 2Hn+1 such that Δε(P )∩Bk �= ∅ for every 1 ≤ k ≤ n. It then follows
from the definition of B′

k that P /∈ VBk
, that is,

(4.4) HBk
(P ) /∈ [Hk, 2Hk+1] ∀1 ≤ k ≤ n.

Let 1 ≤ n0 ≤ n be such that

(4.5) 2Hn0
< q1+λ ≤ 2Hn0+1.

We claim that

(4.6) HBk
(P ) < Hk, ∀1 ≤ k ≤ n0.

We prove the above claim inductively as follows. Since HBn0
(P ) ≤ q1+λ ≤ 2Hn0+1,

it follows from (4.4) that (4.6) holds for k = n0. Suppose that 1 ≤ k ≤ n0 − 1 and
(4.6) holds if k is replaced by k + 1. We prove that

(4.7) HBk
(P ) ≤ 2HBk+1

(P ).

Denote a+(Bi, P ) = (ai, bi), zBi
= zi(i = k, k + 1). We claim that

(4.8) a+(Bk+1, P ) ∈ A (Bk, P ).

Since a+(Bk+1, P ) ∈ A (Bk+1, P ), it is clear that

(ak+1, bk+1) �= (0, 0), ak+1 · p+ bk+1r + ck+1q = 0, ‖ak+1‖∞ ≤ qλ.
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On the other hand, it follows from (4.5) and the induction hypothesis that

|bk+1 + zk · ak+1|(4.9)

≤|bk+1 + zk+1 · ak+1|+ |(zk − zk+1) · ak+1|
≤|bk+1 + zk+1 · ak+1|+ d‖ak+1‖∞ρ(Bk)

≤qμ + ρ(Bk+1)
1
2 + dq−1HBk+1

(P )ρ(Bk)

≤qμ + (βR)−
1
2 ρ(Bk)

1
2 + dH

− 1
2

n0 Hk+1ρ(Bk)

≤qμ +
1

2
ρ(Bk)

1
2 + d(2d2εκR2)

1
2 ρ(Bk)

1
2 (by (4.1) and Bk ∈ Bk)

≤qμ + ρ(Bk)
1
2 (by (4.2)).

This proves our claim (4.8). It then follows from (4.8) and (3.4) that

HBk
(P ) = qmax{‖ak‖∞, |bk + zk · ak|}

≤ qmax{‖ak+1‖∞, |bk+1 + zk · ak+1|}
≤ qmax{‖ak+1‖∞, |bk+1 + zk+1 · ak+1|+ d‖ak+1‖∞ρ(Bk)}
≤ 2qmax{‖ak+1‖∞, |bk+1 + zk+1 · ak+1|}
= 2HBk+1

(P ).

Thus (4.7) holds. It follows from (4.7) and the induction hypothesis that HBk
(P ) ≤

2Hk+1. By (4.4), we have HBk
(P ) < Hk. Thus claim (4.6) follows. This means

that HB1
(P ) < H1 < 1, a contradiction. This completes the proof. �

5. Proof of Theorem 3.1

At first, we prove the following proposition which plays a key role in the proof
of Theorem 3.1.

Proposition 5.1. Fix β ∈ (0, 1) and γ > 0, and a closed ball B0 ∈ B as in
Subsection 4. Let R be a positive number satisfying (4.1) and ε given by (4.2). For
n ≥ 0, B ∈ B′

n, and k ≥ 1, consider the set

CB,k,ε=
{
(B′, P ) ∈ B×Qd : B′ ∈ Bn+k, B

′ ⊂ B, P ∈ VB′,k, and Δε(P )∩B �=∅

}
.

Then there exists an affine hyperplane Ek(B) ⊂ R2d−1 such that for any (B′, P ) ∈
CB,k,ε, we have

Δε(P ) ∩B′ ⊂ Ek(B)(R
−(n+k)ρ0).

We shall need the following two lemmas.

Lemma 5.2. Let (B1, P1), (B2, P2) ∈ CB,k,ε, and FB2,P2
be the function defined in

(3.2). Then one has

(5.1) |FB2,P2
(P1)| ≤ 30d4κ2εq−1

1 Rek+k+2

with

ek =

{
10d2, k = 1;

2d, k > 1.
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Proof. Write Pj = (
pj

qj
,
rj
qj
) and let (xj , yj , zj) ∈ Δε(Pj) ∩B, j = 1, 2. Then∥∥∥∥xj −

pj

qj
−
(
yj −

rj
qj

)
zj

∥∥∥∥
∞

<
ε

q1+λ
j

,

∣∣∣∣yj − rj
qj

∣∣∣∣ < ε

q1+μ
j

.

The latter inequality implies that∣∣∣∣rjqj
∣∣∣∣ ≤ |yj |+

ε

q1+μ
j

≤ κ.

One has∥∥∥∥p1

q1
− p2

q2
−
(
r1
q1

− r2
q2

)
zB2

∥∥∥∥
∞

=
∥∥∥−

(
x1 −

p1

q1
−
(
y1 −

r1
q1

)
z1

)
+

(
x2 −

p2

q2
−
(
y2 −

r2
q2

)
z2

)
+ (x1 − x2)

+
r1
q1

(z1 − zB2
) +

r2
q2

(zB2
− z2) + (y1z1 − y2z2)

∥∥∥
≤

∥∥∥∥x1 −
p1

q1
−
(
y1 −

r1
q1

)
z1

∥∥∥∥
∞

+

∥∥∥∥x2 −
p2

q2
−
(
y2 −

r2
q2

)
z2

∥∥∥∥
∞

+ ‖x1 − x2‖∞ +

∥∥∥∥r1q1 (z1 − zB2
)

∥∥∥∥
∞

+

∥∥∥∥r2q2 (zB2
− z2)

∥∥∥∥
∞

+ ‖y1z1 − y2z2‖∞

≤ ε

q1+λ
1

+
ε

q1+λ
2

+ 10κρ(B)

and∣∣∣∣r1q1 − r2
q2

∣∣∣∣ =
∣∣∣∣−

(
y1 −

r1
q1

)
+

(
y2 −

r2
q2

)
+ (y1 − y2)

∣∣∣∣ ≤ ε

q1+μ
1

+
ε

q1+μ
2

+ 2ρ(B).

As FB2,P2
(P2) = 0, it follows that

|FB2,P2
(P1)|

=

∣∣∣∣a2 ·
(
p1

q1
− p2

q2

)
+ b2

(
r1
q1

− r2
q2

)∣∣∣∣
=

∣∣∣∣a2 ·
(
p1

q1
− p2

q2
−
(
r1
q1

− r2
q2

)
zB2

)
+ (b2 + zB2

· a2)
(
r1
q1

− r2
q2

)∣∣∣∣
≤ d‖a2‖∞

(
ε

q1+λ
1

+
ε

q1+λ
2

+ 10κρ(B)

)
+ |b2 + zB2

· a2|
(

ε

q1+μ
1

+
ε

q1+μ
2

+ 2ρ(B)

)

≤ dqλ2

(
ε

q1+λ
1

+
ε

q1+λ
2

)
+ 2qμ2

(
ε

q1+μ
1

+
ε

q1+μ
2

)

+ 12dκρ(B)max{‖a2‖∞, |b2 + zB2
· a2|}

≤ dεq−1
1

(
qλ2
qλ1

+
q1
q2

+ 2
qμ2
qμ1

+ 2
q1
q2

)
+ 12dκR−nρ0q

−1
2 HB2

(P2)

≤ 6dεq−1
1 Rek + 48d3εκ2q−1

2 Rk+2 (by P1 ∈ VB1,k and P2 ∈ VB2,k)

≤ 30d4κ2εq−1
1 Rek+k+2.

�

Lemma 5.3. For any (B1, P1), (B2, P2) ∈ CB,k,ε, we have FB2,P2
(P1) = 0.
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Proof. For simplicity, we write the objects a+(Bj , Pj), v
+(Bj , Pj), ξBj ,Pj

, FBj ,Pj
,

LBj ,Pj
, HBj ,Pj

(j = 1, 2) as a+j , v
+
j , ξj , Fj , Lj , Hj , respectively. There are three

cases:

(1) Case k = 1. Then by (5.1), we have

q1|F2(P1)| ≤ 30d4κ2εRek+k+2 < 1.

As q1|F2(P1)| ∈ Z, we have F2(P1) = 0.
(2) Case k ≥ 2 and L1 parallel to H2, that is,

(5.2) a+2 · v+
1 = 0.

Assume to the contrary that F2(P1) �= 0. Write v+
1 = (v1, u1) = (v1,1, . . . ,

vd−1,1, u1). We claim that

(5.3) q1
∣∣F2(P1)vi,1

∣∣, q1
∣∣F2(P1)u1

∣∣ ∈ Z for each 1 ≤ i ≤ d− 1.

Indeed, since v+
1 ∈ ΛP1

� {0}, we can write

(5.4) v+
1 = c

(
p1

q1
,
r1
q1

)
+ c,

where c ∈ Z, c ∈ Zd. Combining (5.2) and (5.4), we get

(5.5) cF2(P1) ∈ Z.

According to (5.4), q1vi,1, q1u1 ∈ cZ+q1Z. Then claim (5.3) follows directly
from (5.5).

Note that v+
1 �= 0. It follows from (5.3) that

q1

∣∣∣F2(P1)
∣∣∣( ∑

1≤i≤d−1

|vi,1|+ |u1|
)
≥ 1.

However, according to (3.6), (4.3), and (5.1), we have

q1

∣∣∣F2(P1)
∣∣∣( ∑

1≤i≤d−1

|vi,1|+ |u1|
)

≤ q1

∣∣∣F2(P1)
∣∣∣( ∑

1≤i≤d−1

|vi,1 − zB1
u1|+ (1 + (d− 1)‖zB1

‖∞)|u1|
)

≤ q1

∣∣∣F2(P1)
∣∣∣(2d(d− 1)q−λ

1 + 2d2κξ1q
−λ−μ
1

)
(by (3.6))

≤ 120d6κ3εRek+k+2ξ1q
−λ
1 (by (5.1))

≤ 240d6κ3εR2d+k+2R−8d2−2kd+1 (by (4.3))

< 1,

which leads to a contradiction.
(3) Case k ≥ 2 and L1 intersects H2.

Assume to the contrary that F2(P1) �= 0. Let

P0 =
p+
0

q0
=

(
p0

q0
,
r0
q0

)
be the intersection of L1 and H2. Write

p+
0

q0
=

p+
1

q1
+ t0v

+
1 .
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Then
(

p+
0

q0
, t0

)T

is the solution of the linear equations

(
q1Id −q1v

+T
1

a+2 0

)(
w
t

)
=

(
p+T
1

C2

)
,

where v+T
1 ,p+T

1 means the transpose of v+
1 ,p

+
1 and where C2 = C(B2, P2)

is defined in (3.3). Let M be the matrix(
q1Id −q1v

+T
1 p+T

1

a+2 0 C2

)

and let Mi (1 ≤ i ≤ d + 2) be the matrix obtained by deleting the ith
column of M . In view of the fact that v+

1 ∈ ΛP1
, a simple computation

immediately implies

(5.6) det(Mi) ∈ qd−1
1 Z (1 ≤ i ≤ d+ 2).

By Cramer’s rule,

(5.7)

(
p+
0

q0
, t0

)
=

(
det(M1)

det(Md+2)
, . . . ,

det(Md+1)

det(Md+2)

)
.

Hence

(5.8) |t0| =
∣∣∣∣det(Md+1)

det(Md+2)

∣∣∣∣ = |F2(P1)|
|a+2 · v+

1 |
.

In view of (5.6) and (5.7), we have

(5.9) q0 ≤ q−d+1
1 | det(Md+2)| = q1|a+2 · v+

1 |.

According to (3.4), (3.6) and (4.3), we have

|a+2 · v+
1 |

≤ |a2 · (v1 − u1zB1
)|+ |u1(a2 · zB2

+ b2)|+ |u1a2 · (zB1
− zB2

)|

≤
∑

1≤i≤d−1

∣∣ξ2 · 2dq−λ
1

∣∣+ ∣∣∣2dξ1q−λ−μ
1 · (qμ2 + 1)

∣∣∣
+
∣∣∣2dξ1q−λ−μ

1 · ξ2 · 2dR−nρ0

∣∣∣ (by (3.4) and (3.6))

≤ 4d(d− 1)Rek+1ξ1q
−λ
1 + 4dRekξ1q

−λ
1 + 4d2ξ1q

−λ
1 ξ2R

−n

≤ 4d2Rek+1ξ1q
−λ
1 (1 + 2q−1

2 Rk+2)

≤ 12d2Rek+1ξ1q
−λ
1 (by P1 ∈ VB1,k)(5.10)

≤ 24d2R−8d2−(2k−2)d+2 (by (4.3)).(5.11)

It follows that

q0
q1

≤ |a+2 · v+
1 |

≤ 24d2R−8d2−(2k−2)d+2

≤ 1

2
.(5.12)
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By combining the inequalities (4.3), (5.9), (5.10) and the obvious estimate
λ ≥ 1/d, we have

q1+λ
0 ≤ q1+λ

1 |a+2 · v+
1 |1+λ (by (5.9))

≤ q1+λ
1 (12d2Rek+1ξ1q

−λ
1 )1+λ (by (5.10))

≤ 144d4R6d(ξλ1 q
−λ2

1 )HB1
(P1)

≤ 288d4R6dR−8d−2k+12Rk+1Hn (by (4.3) and λ ≥ 1/d)

≤ 600d4R−2d−k+2Hn

≤ Hn.(5.13)

Note that

∥∥∥∥p1

q1
− p0

q0
−
(
r1
q1

− r0
q0

)
zB1

∥∥∥∥
∞

= |t0| ‖v1 − zB1
u1‖∞ ≤ 2d|t0|

qλ1

and

∣∣∣∣r1q1 − r0
q0

∣∣∣∣ = |t0u1| ≤
2d|t0|ξ1
qλ+μ
1

.

We claim that

(5.14) Δε(P1) ∩B ⊂ Δε(P0).

In view of Lemma 4.1 and (5.13), (5.14) will contradict the assumption that
B ∈ B′

n. It remains to prove (5.14). Indeed, for (x, y, z) ∈ Δε(P1) ∩B, by
(4.3), (5.1), (5.8), (5.9), and (5.12) we have

q1+μ
0

∣∣∣∣y − r0
q0

∣∣∣∣ ≤ q1+μ
0

∣∣∣∣y − r1
q1

∣∣∣∣+ q1+μ
0

∣∣∣∣r1q1 − r0
q0

∣∣∣∣
≤ q1+μ

0

ε

q1+μ
1

+ q1+μ
0

2d|t0|ξ1
qλ+μ
1

≤ ε

2
+ 2dq1|F2(P1)|

ξ1
qλ1

(by (5.8), (5.9), and (5.12))

≤ ε

2
+ 120d5κ2R2d+k+3−8d2−2kdε (by (4.3) and (5.1))

≤ ε
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and

q1+λ
0

∥∥∥∥x− p0

q0
−
(
y − r0

q0

)
z

∥∥∥∥
∞

≤ q1+λ
0

∥∥∥∥x− p1

q1
−
(
y − r1

q1

)
z

∥∥∥∥
∞

+ q1+λ
0

∥∥∥∥p1

q1
− p0

q0
−
(
r1
q1

− r0
q0

)
z

∥∥∥∥
∞

≤ q1+λ
0

ε

q1+λ
1

+ q1+λ
0

2d|t0|
qλ1

+ q1+λ
0

∣∣∣∣r1q1 − r0
q0

∣∣∣∣ ‖z− zB1
‖∞

≤ q1+λ
0

ε

q1+λ
1

+ 2d|q1F2(P1)| ·
qλ0
qλ1

+ 2d|q1F2(P1)| ·
qλ0
qλ1

· 2R−nρ0
q1ξ1

q1+μ
1

(by (5.8) and (5.9))

≤ ε

2
+ 2d|q1F2(P1)| ·

qλ0
qλ1

·
(
1 + 2R−nq−1

1 HB1
(P1)

)
(by (5.12))

≤ ε

2
+ 60d5κ2R2d+k+2ε · q

λ
0

qλ1
· (1 + 4q−1

1 Rk+2) (by (5.1) and P1 ∈ VB1,k)

≤ ε

2
+ 300d5κ2R2d+k+2

(
24d2R−8d2−(2k−2)d+2

) 1
d

(by (4.3) and λ > 1/d)

≤ ε

2
+ 7200d7κ2R−6d+6−kε

≤ ε.

�

Proof of Proposition 5.1. Choose (B′
0, P0) ∈ CB,k,ε such that

q0 = q(P0) = min {q(P ) : ∃ closed ball B′ with (B′, P ) ∈ CB,k,ε} .

Consider the attached hyperplane in R2d−1

HB′
0,P0

=
{
(x, y, z) ∈ R2d−1 : a0 · x+ b0y − C = 0

}
,

where a+0 = (a0, b0) and C = C(B′
0, P0) are given in Subsection 3.2. We claim that

HB′
0,P0

is the Ek(B) that we need. In other words, for any (B′, P ) ∈ CB,k,ε,

Δε(P ) ∩B′ ⊂ H(R−(n+k)ρ0)
B′

0,P0
.

Indeed, we have proved in Lemma 5.3 that P ∈ HB′
0,P0

for (B′, P ) ∈ CB,k,ε. Hence
for any (x, y, z) ∈ Δε(P ) ∩B′, we have

|a0 · x+ b0y − C| =
∣∣∣∣a0 ·

(
x− p

q

)
+ b0

(
y − r

q

)∣∣∣∣
≤ (d− 1)‖a0‖∞

∥∥∥∥x− p

q
−
(
y − r

q

)
z

∥∥∥∥
∞

+ |b0 + z · a0|
∣∣∣∣y − r

q

∣∣∣∣
≤ (d− 1)qλ0

ε

q1+λ
+ 2qμ0

ε

q1+μ

≤ (d+ 1)
ε

q0
.
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Denote the width of this thickened hyperplane as ω. Then

ω ≤ (d+ 1)ε

q0 max{‖a0‖∞, |b0|}

≤ (d+ 1)ε

(1 + (d− 1)κ)−1q0 max{‖a0‖∞, |b0 + z · a0|}

≤ (d+ 1)(1 + (d− 1)κ)ε

Hn+k

≤ R−(n+k)ρ0,

which finishes the proof. �

Proof of Theorem 3.1. In view of Remark 3.3, Lemma 2.3 and Lemma 3.4, to prove
Theorem 3.1, it suffices to show that the set S(r) is (β, γ)-HPW for any β ∈ (0, 1),
γ > 0. Fix β ∈ (0, 1) and γ > 0 from now on. Bob starts the (β, γ)-hyperplane
potential game on R2d−1 with target set S(r) by choosing a closed ball B0 ⊂ R2d−1

of radius ρ0. As discussed in [3, Remark 2.4], without loss of generality we may
assume that Bob will play so that ρ0 ≤ 1/d and ρi := ρ(Bi) → 0, where Bi is the
ball chosen by Bob at the ith turn. Now we have that β, γ > 0, and B0 satisfy the
conditions of Proposition 5.1. Let R be a positive number satisfying (4.1) and let
ε be the constant given by (4.2). Write in to be the smallest nonnegative integer
with Bin ∈ Bn. Let N denote the set of all n ∈ N with Bin ∈ B′

n.
Let Alice play according to the strategy as follows. At the ith stage, if i = in

for some n ∈ N , then Alice chooses the family of hyperplane neighborhoods

{Ek(Bin)
(3R−(n+k)ρ0) : k ∈ N}, where the hyperplane Ek(Bin) is given by Proposi-

tion 5.1. Otherwise, Alice makes an empty move. Since Bin ∈ Bn, it follows that
ρin > βR−nρ0. Hence Alice’s move is legal as we have

∞∑
k=1

(3R−(n+k)ρ0)
γ = (3R−nρ0)

γ(Rγ − 1)−1 ≤ (βρin)
γ

by (4.1). We claim that this is a winning strategy for Alice, that is, the point
x∞ =

⋂∞
i=0 Bi lies in the set

S(r) ∪
⋃
n∈N

∞⋃
k=1

Ek(Bin)
(3R−(n+k)ρ0).

There are two cases.

(1) Case N = N ∪ {0}. For any P ∈ Qd, there is n such that q1+λ ≤ 2Hn+1.
Since n ∈ N , we have Bin ∈ B′

n. Then we have Δε(P )∩Bin = ∅ by Lemma
4.1. Thus it follows from the definition of S(r) that x∞ ∈ Sε(r) ⊂ S(r).
Hence Alice wins.

(2) Case N �= N∪{0}. Let n be the smallest integer with n /∈ N . Then we have
Bin /∈ B′

n and Bin−1
∈ B′

n−1 as n− 1 ∈ N . By the definition of B′
n, there

exists P ∈ VBin ,k with 1 ≤ k ≤ n and Δε(P ) ∩ Bin �= ∅. By Proposition

5.1, we have Δε(P ) ∩Bin ⊂ Ek(Bin−k
)(R

−nρ0). In view of ρin ≤ R−nρ0, it

follows that x∞ ∈ Bin ⊂ Ek(Bin−k
)(3R

−nρ0). Hence Alice wins.

This completes the proof of Theorem 3.1. �
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6. Proof of the main theorems

In this section, we deduce Theorem 1.2 and Theorem 1.3 from Theorem 3.1.
Indeed, the argument presented here is similar to the argument presented in [3,
Section 6]. For the sake of completeness, we reproduce the proof in our setting
here.

Proof of Theorem 1.2. The proof is divided into three steps:

Step 1. We show that it suffices to prove that the set E(F+) is HAW on G/Γ.
Indeed, by applying the diffeomorphism

τ : G/Γ → G/Γ, τ (gΓ) = (gT )−1Γ

to the set E(F+), we can see that the set E(F−) is also HAW if E(F+) is, where
F− denotes the subsemigroup {e} ∪ (F � F+). Hence, in view of the intersection
stability of HAW sets, E(F ) will be HAW if E(F+) is as well.

Step 2. We show that it suffices to prove the theorem for F+ = F+
r , which was

defined in Theorem 3.1. Indeed, by the real Jordan decomposition (cf. [17, Propo-
sition 4.3.3]), for any one-parameter diagonalizable subsemigroup F+, there are

one-parameter subsemigroups F+
i = {g(i)t : t > 0} (i = 1, 2) such that F+

1 is R-

diagonalizable, F+
2 has compact closure, and gt = g

(1)
t g

(2)
t with g

(1)
t commuting

with g
(2)
t . It is obvious that E(F+) = E(F+

1 ), and as the eigenvalues of g
(2)
t are of

absolute 1, it follows that F+
1 satisfies (1.1) if F+ does. Hence we are reduced to

consider the case where F satisfies (1.1) and is R-diagonalizable, which is equivalent
to saying that there exists g′ ∈ G and r satisfying (1.3) such that F+ = g′F+

r g′−1.
Note that in this case we have E(F+) = g′E(F+

r ). Hence our statement follows
from (3) of Lemma 2.2.

Step 3. We prove the theorem for F+
r . In view of Lemma 2.2, we have to prove

that for any Λ ∈ G/Γ, there is an open neighborhood Ω of Λ in G/Γ such that
Ω ∩ E(F+

r ) is HAW on Ω. Let

P =

{
g ∈ G :

g =

(
T 0
N T ′

)
, T ∈ GLd−1(R), N ∈ M2×(d−1)(R), T

′ is lower triangular

}
.

It is not hard to check that for any g ∈ P , the set {gtgg−1
t : t > 0} is bounded in

G. Consider the Bruhat decomposition of G viewed as the R-point of an R-split
group [4, Theorem 21.15]. The set G−PU is Zariski closed1 by [4, Theorem 21.26].
Hence the set PU is nonempty and Zariski open in G. Moreover, the multiplication
map P × U → PU is a diffeomorphism since it is an algebraic isomorphism.

According to the Borel density theorem, the set π−1(Λ) is Zariski dense in G.
Hence, π−1(Λ) ∩ PU �= ∅; that is, there exists p0 ∈ P and u0 ∈ U such that
Λ = p0u0Γ.

Let ΩP and ΩU be open neighborhoods of p0 and u0 in P and U , respectively,
which are small enough such that the map φ : ΩP × ΩU → G/Γ, φ(p, u) = puΓ is a

1Here, the Zariski topology means the topology induced from the Zariski topology of SLd+1(C).
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diffeomorphism onto an open subset Ω in G/Γ. In view of Lemma 2.2(4), it suffices
to prove that the set

(6.1) φ−1(E(F+
r ) ∩ Ω) = {(p, u) ∈ ΩP × ΩU : puΓ ∈ E(F+

r )}
is HAW on ΩP × ΩU . By the definition of P , we have that puΓ ∈ E(F+

r ) if and
only if uΓ ∈ E(F+

r ). It follows that the set (6.1) is equal to

ΩP × {u ∈ ΩU : uΓ ∈ E(F+
r )}.

Then it follows from Theorem 3.1 and (5) of Lemma 2.2 that the set E(F+
r ) is

HAW. �

Proof of Theorem 1.3. We will prove the theorem only for F+ = F+
r with r satis-

fying (1.3) here, since the proof for general F+ satisfying (1.1) follows along the
same lines as Step 2 of the proof of Theorem 1.2 and will be omitted. There are
two cases:

(1) Case r1 > rd. Then it is easy to check that H(F+) is equal to U . We need
to prove that for any Λ ∈ G/Γ, the set u ∈ U such that uΛ ∈ E(F+) is
HAW on U . In view of Lemma 2.2, it suffices to prove that for any u0 ∈ U ,
there is an open neighborhood Ω of u0 in U such that the set

(6.2) {u ∈ Ω : uΛ ∈ E(F+)}
is HAW on Ω. Similar to the proof of Theorem 1.2, the Bruhat decom-
postion and the Borel density theorem imply that π−1(Λ) ∩ u−1

0 PU �= ∅.
Choose g0 ∈ π−1(Λ) ∩ u−1

0 PU . Then Λ = g0Γ and u0g0 ∈ PU . Let Ω1 be
an open neighborhood of u0 in U with Ω1g0 ⊂ PU . Then there are smooth
maps φ : Ω1 → P and ψ : Ω1 → U such that

(6.3) ug0 = φ(u)ψ(u) ∀u ∈ Ω1.

We claim that

(6.4) the tangent map (dψ)u0
is a linear isomorphism.

It follows from claim (6.4) that the set (6.2) is HAW. Indeed, assuming
(6.4), we can find a neighborhood Ω ⊂ Ω1 such that ψ is a diffeomorphism
when restricted on Ω. Note that for u ∈ Ω, the set

F+
r uΛ = F+

r ug0Γ = F+
r φ(u)ψ(u)Γ

is bounded if and only if F+
r ψ(u)Λ is bounded. Hence, in view of Theorem

3.1 and Lemma 2.2, we prove that the set (6.2) is HAW modulo claim (6.4).
Let’s turn to the proof of claim (6.4). Write p1 = φ(u), u1 = ψ(u). Then

it follows from (6.3) that

(6.5) drg0(Y ) = dru1
◦ (dφ)u0

(Y ) + dlp1
◦ (dψ)u0

(Y ) ∀Y ∈ Tu0
U,

where ru (resp., lu) denotes the map defined by multiplying u on the right
(resp., on the left) on G. If (dψ)u0

(Y ) = 0, then the left-hand side of (6.5)
belongs to Tu0g0(Uu0g0) and right-hand side belongs to Tu0g0(Pu0g0); thus
Y = 0. This proves claim (6.4).

(2) Case r1 = rd = 1
d . In this case, the expanding horospherical subgroup H

coincides with the subgroup U0 defined as

U0 := {ux : x ∈ Rd}, where ux =

(
Id x
0 1

)
∈ G.
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In view of the correspondence presented in [9, Theorem 2.20], the set
{x ∈ Rd : uxΓ ∈ E(F+)} coincides with the set of badly approximable
vectors Badd, which is proved to be HAW already in [7]. Then we omit
the remaining part of the proof here, since it is similar to the proof of the
above case r1 > rd. �
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