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Abstract. We calculate the Krull–Gabriel dimension of the category of mod-
ules over any domestic string algebra, in particular showing that it is fi-
nite, thus confirming a conjecture of Schröer. We also compute the Cantor–
Bendixson rank of each point of its Ziegler spectrum and determine the topol-
ogy on this space.
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1. Introduction

The Gabriel dimension of a ring R is one measure of complexity of the category,
R-Mod, of R-modules. It is computed by localising so as to make the finite length
objects zero and then, successively and if necessary transfinitely, repeating the
process on the quotient categories which arise. For finite-dimensional algebras it is
too coarse, always giving the zero category at the first localisation.

A much finer dimension, the Krull–Gabriel dimension, KG(R), of a ring, was in-
troduced by Geigle in his thesis; see [7] (the terminology “Krull–Gabriel dimension”
was introduced later). This is a variant of Gabriel dimension: it is applied with
the (skeletally small) category, R-mod, of finitely presented modules in place of R;
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hence the initial category to be localised is the category (R-mod,Ab) of additive
functors from R-mod to the category Ab of abelian groups. Furthermore it is the
finitely presented finite length objects which are made zero at each stage.

This dimension also turns out [14, Lemma B.9] to be the m-dimension of the
lattice of pp formulas for R-modules, equivalently of the lattice of pointed finite-
dimensional modules. That dimension is a modification of the elementary Krull
dimension, introduced by Garavaglia [6] and developed further in [30, §8] and [15,
Ch. 10].

A result of Auslander (see [19, Prop. 7.2.8]) says that R has finite representation
type if and only if KG(R) = 0. It is also known (see a remark in [8, p. 135] or use
factorisable systems of morphisms; see [17, 0.2]) that this dimension is undefined
(or “= ∞”) for any wild algebra. But also many tame algebras have undefined
KG-dimension. For instance, see [8, Cor. 4.2] or [10, 7.5] for the case for tubular
algebras, and see [27, Prop. 2] for non-domestic string algebras.

It has been conjectured (see [15, 7.2.17]) that a finite-dimensional algebra R
has Krull–Gabriel dimension if and only if it is (tame) domestic. There is some,
admittedly rather limited, evidence to support this conjecture. A strong form of
the conjecture (see [15, 9.1.15]) proposes that if R is a finite-dimensional algebra
and if KG(R) exists, then KG(R) is finite.

Herzog [11] and Krause [13] proved that no finite-dimensional algebra has KG-
dimension 1. Geigle [7] proved that if R is tame and hereditary, then KG(R) = 2
(and he also established this value for certain other classes of algebras, [8]). A
few examples of algebras with larger Krull–Gabriel dimension were known. For
instance, Burke and Prest [2] and Schröer [27] considered series of string algebras
with KG-dimensions taking every finite value ≥ 3. In a recent paper, [22], the
third author showed that any 1-domestic (non-degenerate) string algebra has KG-
dimension 3.

We prove the following result, conjectured by Schröer (see [15, 8.1.22], [29,
p. 420]).

Theorem 1.1. If R is a domestic string algebra, then the Krull–Gabriel dimension
of R is finite. Indeed KG(R) = n + 2, where n is the maximal length of a path in
the bridge quiver of R.

The bridge quiver (see Section 3.2) is easily calculated from a presentation of R
as a string algebra.

Since every non-domestic string algebra has KG-dimension ∞, this completes
the calculation of Krull–Gabriel dimension for string algebras.

Corollary 1.2. If R is a string algebra, then the Krull–Gabriel dimension of R is
finite if and only if R is of domestic (including finite) representation type.

The Krull–Gabriel dimension of R also has a strong relationship with the trans-
finite powers of the radical of R-mod. For example, Krause proves that if an

algebra R has finite Krull–Gabriel dimension KG(R) = m, then rad
ω(m+1)
R = 0 (see

[14, 8.14]). We obtain the following corollary (confirming, for string algebras, a
general conjecture made by Schröer [29, p. 423]).

Corollary 1.3. If R is a string algebra, then KG(R) = m if and only if rad
ω(m−1)
R �=

0 and radωm
R = 0.
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We will make use of the Ziegler spectrum - a topology on the set of indecompos-
able pure-injectives - in particular, its Cantor–Bendixson analysis. Because there
are no superdecomposable pure-injectives, the Cantor–Bendixson rank of a point is
equal to its KG-dimension, and a mixture of topological and algebraic approxima-
tion arguments allows us to give a recipe which is in terms of the bridge quiver of
R, for the rank of each module. One can see from the examples we use that this is
easily applied in practice.

We first compute the ranks of string modules: neighbourhood bases of open sets
for the 1- and 2-sided points already can be extracted from [20] and [23]. Then we
extend this to find neighbourhood bases for Prüfer points. In these computations
we will use the lattice, ppR, of pp formulas, calculating the m-dimensions of certain
intervals and hence the KG-dimensions of points. Having computed the dimensions
of the Prüfer points, we will use elementary duality to obtain the ranks of the adic
modules. By that stage we have enough information to compute the ranks of the
generic points. Indeed, we give a complete description of the topology, in that we
describe a neighbourhood basis of open sets for each point. We deduce, for example,
that the Ziegler spectrum of a domestic string algebra is a T0 space: there do not
exist distinct points which are topologically indistinguishable.

This is a companion paper to [23], where the classification of indecomposable
pure-injective modules was completed. After the heavy combinatorics of [23], we
can reap the benefits of having that classification in hand, and the arguments in
this paper are more direct and guided by our intuition.

Throughout K is an algebraically closed field, and the rings R considered will be
K-algebras. We expect that none of the results depend on K being algebraically
closed. The category of left R-modules is denoted R-Mod; R-mod denotes the
category of finitely presented modules.

We will use the notation ppR for the lattice of pp formulas (in one free variable)
for R-modules, equivalently for the lattice of pointed finitely presented modules.

In this paper we have to assume a fair bit of background, referring to other
sources for many definitions, basic facts, and results. We do, however, define, or at
least describe, the main ideas using a number of illustrative examples in order to
convey the ideas. Sources on material specific to string algebras include the original
paper [3], the very readable introductory sections in [26], and introductory sections
of various papers, such as [23], of the second and third authors. For pure-injectivity,
the Ziegler spectrum, and various other concepts and techniques arising from the
model theory of modules, we use [19] as a comprehensive source, but there are many
other accounts.

Most of the finite- and infinite-dimensional modules that we are interested in
are described in terms of strings and bands. First we introduce the combinatorics
of strings and bands, as well as the bridge quiver which shows how the bands are
connected. Then we describe the associated modules and we recall the combina-
torial description of the morphisms between them. We also describe the Ziegler
spectrum, the topological space which has the indecomposable pure-injectives for
its points. In Section 7 we introduce the ranks and dimensions, the computation
of which is the main aim of this paper. That is accomplished in Section 9, and we
give a ‘recipe’ for computing, not just the global rank but also the rank of every
point of the Ziegler spectrum. It is easy to apply: first one computes the bridge
quiver, and from that it is a simple matter to read off the ranks of points.
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For each type of point, having determined how to compute the rank, we find a
neighbourhood basis. Thus we obtain a complete description of the Ziegler spec-
trum, extending the results of [2], on modules over the algebras Λn, to all domestic
string algebras.

2. The algebras

Throughout, R will be a string algebra (and usually domestic). That is, R =
KQ/I is the path algebra of a quiver with relations where:

• every vertex of Q has at most two incoming arrows and at most two outgoing
arrows,

• for every arrow α there is at most one arrow β with βα �= 0 and at most one
arrow γ with αγ �= 0, and

• I can be generated by monomials.

The Kronecker algebra ◦
α

��

β

��◦ is an example, as is the quiver below with rela-

tions γβ = 0 and δγ = 0:

Λ2
◦

α
��

β
��◦ γ ��◦

ε
��

δ
��◦

More generally Λn is obtained by linking n Kronecker quivers in a similar way.
Here is Λ3, the relations being 0 = γ1β1 = β2γ1 = γ2β2 = β3γ2:

Λ3
◦
α1

��
β1

��◦ γ1 ��◦
α2

��
β2

��◦ γ2 ��◦
α3

��
β3

��◦

The next example has the quiver shown with relations β2 = γ2 = 0 and the
longer relation βαγ = 0 (which is shown by a dotted curve):

X1 •β �� ◦α�� γ		

A string is a walk along arrows and inverse arrows in Q (avoiding zero relations
and immediate backtracks), and a band is a walk which returns to its starting
point and is primitive - not a proper power of any string - and (a technically
useful restriction) has the form αcβ−1 for some arrows α, β, and finite string c (we
allow the empty string). We will consider finite strings and also (singly and doubly)
infinite strings, describing a string of the form u1u2 . . . , where each ui is a direct or
inverse arrow and u1 . . . un is a string for every n, as a 1-sided (infinite) string,
and one of the form . . . u−1u0u1 . . . as a 2-sided string.

An example of a string, αγα−1β−1α over the algebra X1 above, is shown by the
following diagram (our convention is to draw direct arrows from the upper right to
the lower left, and inverse arrows from the upper left to the lower right):

◦γ


��
�� α

���
��
�

◦
α


��
��

◦ β
���

��
� ◦

α

��
��

◦ ◦
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Taking a result for a definition, we will say that a string algebra is domestic
if there are just finitely many bands (see [24, §11]). We say that two bands b and
b′ are cyclically equivalent if b′ is a cyclic permutation of b, and equivalent
if b′ is cyclically equivalent to either b or b−1 (note that only one of these may
occur). We will often use the term “band” for the equivalence class of a band and
refer to a particular member of that class as a representative. If n is the number
of equivalence classes of bands over R, then R is said to be n-domestic. For
instance the algebra X1 above is 1-domestic, with just the band b = αγα−1β−1 up
to equivalence, whereas Λ2 has two bands (up to equivalence), αβ−1 and εδ−1.

Let G2,3 denote the Gelfand–Ponomarev algebra whose quiver consists of one
vertex and two loops α, β, with relations αβ = βα = α2 = β3 = 0. This algebra
is not domestic - it is easy to see infinitely many primitive cyclic walks - or note
that we have different bands, αβ−1 and αβ−2, beginning with the same letter
(cf. Theorem 2.1 below).

In this paper we will deal only with domestic string algebras; equivalently for
every arrow α, there is at most one band beginning with α. This and other required
facts about the combinatorics of domestic string algebras can be found in [24, 26]
and [21]; we state the following from [24, §11] for ease of reference. Band modules
are defined in Section 4.3.

Theorem 2.1. Suppose that R is a domestic string algebra and that b, b′ are bands
(hence each begins with a direct letter and ends with an inverse letter).

(1) If b and b′ have the same first letter, then b = b′.
(2) If M is a b-band module, M ′ is a b′-band module, and they have an isomorphic

simple submodule, then b is equivalent to b′. In particular if both b and b′ contain
the string β−1α, then b′ is a cyclic permutation of b.

A socle pair of a band b = α . . . β−1 is the string β−1α or a substring of b of
the form δ−1γ. Such a pair defines, where the arrows meet, an element in the socle
of the corresponding band modules (Section 4.3) and in any string module C(w)
(Section 4.2) when w contains the pair. Dually, a substring of b of the form δγ−1 is
a top pair, since it defines a simple submodule of the corresponding band module
modulo its radical. So, by 2.1(2), over a domestic string algebra different bands
have no socle pair, nor (by a dual argument) top pair, in common.

3. Strings, bands, and bridges

3.1. String orderings and m-dimension. At each vertex s of a quiver Q we
partition the direct and inverse arrows entering s into two sets Hs,±1 such that,
when a walk arrives at s, it enters by a direct or inverse arrow from one set and
leaves via a letter in the other set. More precisely we require that each set contain
at most one direct arrow and at most one inverse arrow and that if l1, l2 ∈ Hs,i are

letters (that is, arrows or inverse arrows), then l−1
1 l2 is not a string. The strings of

length greater than one are placed into Hs,±1 according to their first letters. We
also put into Hs,i a string 1s,i of length 0 so as to be able to refer to walks which
terminate at s.

For example, with reference to the diagram below where the relations are δα =
0 = γβ, the letters pointing to s are α, β, γ−1, δ−1. If we put α into Hs,1, then it
follows that γ−1 ∈ Hs,−1; also β must be put into Hs,−1, and then it follows that
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δ−1 ∈ Hs,1. In the diagram we show Hs,1 to the right and H−1
s,−1 to the left of s:

◦
β ���

��
� ◦

α��
��

s
γ
��
�� δ

���
��

�

◦ ◦
We totally order the strings in each of these sets by setting c < d, for c, d ∈ Hs,i,

if d = cαd′ for some d′ and α or if c = dβ−1c′ for some c′ and β or if c = eγ−1c′

and d = eδd′ for some c′, d′, γ, δ. When it comes to looking at an occurrence of
a particular vertex s in the diagrammatic representation of a string, one of the
sets will be representing choices for that string “to the right”, while the other
set represents choices “to the left”. The meaning of this is purely local (to that
occurrence of that vertex) but the terminology is useful. All this extends naturally
to 1-sided infinite strings, each of these being fitted in, simply by comparing any
particular finite string to a long-enough initial segment of the given infinite string;

we use Ĥs,i for these larger totally ordered sets.

Take, for instance, the Kronecker algebra Ã1, and let s be the vertex where α
ends. Then one could take Hs,1 to consist of all strings beginning (on the left) with
α, together with 1s,1, in which case Hs,−1 consists of all strings beginning with
β and 1s,−1. Each set Hi is ordered as a chain, for example 11 < α in H1 and
βα−1 < βα−1β in H−1. In fact H1 is the following chain of type ω + ω∗, where ω∗

denotes the ordering opposite to that of ω:

11 < αβ−1 < (αβ−1)2 < · · · < (αβ−1)2α < αβ−1α < α .

To place the infinite word u = (αβ−1)∞ in relation to these, note that the strings
of the form (αβ−1)nα are greater than u and u > (αβ−1)m for each m.

The m-dimension of a modular lattice L is defined by setting it to be 0 if L has
finite length and, beyond that, by collapsing at each step of a possibly transfinite
induction intervals of finite length; the reader may wish to look now at the precise
definition in Section 8.1. For instance the m-dimension of the chain ω + ω∗ equals
1: at the first step of the m-dimension analysis we collapse together all the points
in the copy of ω and all the points in the copy of ω∗, but nothing else, obtaining a
2-element lattice, which then collapses at the second step.

For a more complicated example, consider the following 1-domestic string alge-
bra:

X3 ◦α �� β		

with relations α2 = β2 = αβ = 0. Let us include in H1 (for the unique vertex s)
all strings beginning with β or β−1 and 11, so H−1 consists of all strings that start
with α or α−1 and 1−1. Note that H1 contains the following descending chain of
type ω∗:

. . . < β(α−1β)3 < β(α−1β)2 < βα−1β < β.

Each interval in this poset is a chain of type ω + ω∗: for instance the interval
between βα−1β and β consists of an ascending chain βα−1β(αβ−1)n, n = 1, . . . ,
and, above it, a descending chain βα−1β(αβ−1)mα, m = 1, . . . . From this it is
easily checked that the m-dimension of H1 equals 2.

We define the m-dimension of a string u ∈ Ĥi as the infimum of m-dimensions

of intervals [c, d] in Hi such that c < u < d in Ĥi. For instance from the above

description it follows that the string u = (αβ−1)∞ over Ã1 has m-dimension 1.
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The consonance between this definition and that of the Krull–Gabriel dimension of
string modules is Proposition 8.2 and Theorem 8.1.

For another example, consider the 1-sided (periodic) string v = (βα−1)∞ ∈ Ĥ1

over X3. Note that v is the infimum of the descending chain of finite strings
appearing above, with consecutive intervals of this chain having m-dimension 1. It
is easily derived that the m-dimension of v is 2.

The calculation of the m-dimension of the chains Hi is straightforward (see
[28, Thm. 4.3]).

3.2. The bridge quiver. Recall that R is a domestic string algebra.
It is easy to see that a band b cannot overlap b−1 in any string and b cannot touch

a different band b′. Also two copies of b cannot overlap each other in a string, for
otherwise b would contain a substring of the form α . . . α which contradicts [21, 3.4].
Furthermore we have the following.

Lemma 3.1. Let R be a domestic string algebra, let b = α . . . β−1 be a band, and
let c = d . . . e (where d, e are direct or inverse arrows) be a cyclic permutation of
another band. Then b cannot overlap c in any string.

Proof. Looking at socles and tops we see that b cannot be a subword of c or vice
versa. Thus it suffices to consider the string

u = αxdyβ−1ze ,

where b = αxdyβ−1, c = dyβ−1ze, and x, y, z denote strings of unspecified length.
We claim that the following is a string:

v = αxdyβ−1zedyβ−1 .

Otherwise v contains a forbidden path t as a subword whose letters are either
all direct or all inverse. Note that the following underbraced and overbraced parts
of v are strings: the first equals u, and the second is an initial part of c2:

αxdyβ−1ze︸ ︷︷ ︸ dyβ
−1 and αx

︷ ︸︸ ︷
dyβ−1zedyβ−1 .

Thus t must protrude to the left and right of their common (braced twice)
substring dyβ−1ze. But then c = dyβ−1ze consists entirely of inverse letters, a
contradiction.

Thus v is a string. Because R is domestic, it follows that v = bn for some n, so c
is a substring of bn. Then b and c have a common socle or top; hence c is equivalent
to b, a contradiction. �

The bridge quiver of R shows the bands and the strings which directly connect
them. Suppose that b and b′ are different bands and u is a string such that bub′

is again a string. Following [28, p. 664] say that u is a bridge from b to b′ if u
contains no band as a substring and neither can u be written as u = u1u2 with
both u1, u2 non-empty and such that u1b

′′u2 is a string for some band b′′.
Then the bridge quiver, B = B(R), has for its vertices a chosen representative

for each cyclic equivalence class of bands and an arrow, labelled c, from b to b′ if
c is a bridge from b to b′. Since R is domestic, it is easily checked that B is finite
and has no oriented cycles (cf. [26, §4.4]).
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For instance, over X1, let us choose b = αγα−1β−1 and b−1 as the vertices of B.
Then B is the following quiver:

b

αγα−1

��

αγ−1α−1

�� b−1

the bridge b
αγα−1

−−−−→ b−1 being visible in the following string:
◦

α


��
� γ

���
��

◦γ


��
� α

���
�� ◦γ



��
� α

���
�� ◦

β

��
� ◦

α ���
��

◦
α


��
� ◦ β

���
�� ◦

α

��
� • ◦

◦ •
where the marked points show where the bands join the bridge.

For another example, if we choose b = αβ−1, b′ = εδ−1 and their inverses for the
vertices of the bridge quiver over Λ2, then the bridge quiver is the disjoint union of

b′
εγ−→ b and the inverse of this, b−1 γ−1ε−1

−−−−−→ b′−1.
To give one more example, consider the following 3-domestic string algebra:

◦
π ���
��

��
δ ��◦

θ�����
��

◦
ε�����
��

η

��

◦

◦τ

�������
u1

�����
��

◦ ◦
α
��

β

�� ◦
u2

�������
◦

γ
��

δ

��

where the relations are ηπ = 0, εθ = 0, τη = 0, u1η = 0, τu2 = 0, βu1 = 0, and
u2δ = 0. We choose as representatives of bands up to cyclic equivalence b1 = αβ−1,
b2 = πδ−1θ−1, b3 = γδ−1, and their inverses. Then the bridge quiver is the disjoint
union of the diagram below and its “inverse”:

b2
η−1u2

��	
		

		

b1

αu1τ
−1ε

�������
αu1u2

�� b3

It may be that choices of representatives for bands can affect the shape of the
bridge quiver, though we know no example, but the questions we investigate here are
not sensitive to this. From now on we will assume that we have fixed representatives
for cyclic equivalence classes of bands, hence vertices of the bridge quiver B.

If w is a string, then (by Lemma 3.1) it can be uniquely written as w = c1b
k1
1 c2,

. . . csb
ks
s cs+1, where bi ∈ B, ki ≥ 0, possibly ∞ when i = 1, s, and where each ci

is a (possibly empty) string which contains no band. Though the ci (i �= 1, s + 1)
may not be bridges, we may consider ci as a string connecting bi−1 to bi, hence the
corresponding path b1c2 . . . csbs. We say that the band-length of w is s− 1. Note
that if b′i is another representative of the cyclic class of bi, then b′i is a substring
of b2i . Therefore (by enlarging ki if necessary) we can get a string w′ containing at
least s bands from some other choice, B′, of representative bands. So, for instance,
the maximal possible band-length of a string does not depend on the choice of B.
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If b is a band, then the right indent of b is the maximal band-length of a
string starting with b, and the left indent is the maximum possible band-length
of a string starting with b−1. For instance over X1, the right indent of the band
b = αγα−1β−1 equals 1, and its left indent is 0.

4. The modules

Since we compose actions of arrows from right to left it is natural to consider
left R-modules.

4.1. Pure-injective modules and the Ziegler spectrum. Over an artin alge-
bra, R, finite-length modules are pure-injective. More generally, a module over
such a ring is pure-injective if it is a direct summand of a direct product of finite-
dimensional modules (over general rings we cannot use this as the definition). The
indecomposable pure-injective modules over domestic string algebras were classified
in [23]. We will briefly introduce these modules; more details can be found in that
paper.

Over any ring there is just a set of indecomposable pure-injectives up to isomor-
phism, and they were organised into a topological space by Ziegler. This space,
the (left) Ziegler spectrum, RZg, is (quasi)compact and has a basis of com-
pact open sets (see [19, 5.1.22]). That basis can be described in various ways;

here are two. Given any morphism A
f−→ B in R-mod we set (f) = {N ∈ RZg :

(A,N)/im(f,N) �= 0}, the set of indecomposable pure-injectives N , such that there
is a morphism from A to N which does not factor through f . Also, given any pair
ϕ > ψ of pp formulas, set (ϕ/ψ) = {N ∈ RZg : ϕ(N)/ψ(N) �= 0}, the set of points
on which the pp-pair ϕ/ψ is open (this is Ziegler’s original definition). The sets of
the form (ϕ/ψ) are exactly those of the form (f) and form a basis of open sets for
the topology on RZg.

Theorem 4.1 (See [19, 5.3.36, 5.3.37]). If R is an artin algebra, then the isolated,
that is, open, points of RZg are exactly the finite-dimensional indecomposables, and,
together, these are dense in RZg.

4.2. String modules: finite- and infinite-dimensional. To every string u,
finite or infinite, we assign a string module M(u). Roughly, this is obtained,
from the corresponding walk through the quiver, by placing a 1-dimensional vector
space at each vertex on the walk (including the starting vertex if there is one),
then taking the direct sum of these vector spaces and equipping the result with
an R-module structure, with the actions of the arrows given by u. We give an
example, and a precise definition can be found in [3], [24]. The module M(u) is
indecomposable and it is also isomorphic to M(u−1):

◦γ


��
�� α

���
��
�

◦
α


��
��

◦ β
���

��
� ◦

α

��
��

◦ ◦
This represents the string module M(u) where u = αγα−1β−1α, a basis for which is
shown by small circles, with the action of the path algebra on these basis elements
shown by the arrows (absence of an arrow acting on a basis element should be
interpreted as the zero action).
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Over a domestic string algebra ([24, §11, Prop. 1]), any infinite string w which is
not completely periodic1 is almost periodic, meaning eventually periodic in each
direction but, if 2-sided, not completely periodic. Given such a string and looking
to, say, the right, there is, by eventual periodicity in that direction, a map, the shift
endomorphism of M(w), which either moves basis elements on the right further
to the right or moves them inwards (eventually annihilating them). In the first
case we say that w is expanding to the right, otherwise contracting ([24, §3]).
Correspondingly the associated string module C(w) (see Section 4.4) will be formed
using the direct product (if expanding) or direct sum (if contracting) of the spaces
generated by the basis elements on the right. Similarly in the other direction, so a
2-sided string could be expanding in both directions, contracting in both directions,
or mixed.

For example, the string β(αβ−1)∞ over X3 is expanding, and so C(w) is the
direct product module and has its shift endomorphism annihilating the left-most
basis element and moving every other one two places to the right:

◦
α


��
�� β

��






 ◦
α

��
�� β

��








◦
β


��
��

◦ ◦ . . .

◦
For another example, the two-sided string w = ∞(βα−1)β(αβ−1)∞ over X3 is

expanding on the right and contracting on the left. Thus the corresponding mixed
module C(w) is the submodule of the direct product module which consists of all
sequences which are eventually 0 to the left:

◦
α



��
��
� β

���
��
�� ◦

α

��
��
� β

���
��
��

◦
β



��
��
� α

���
��
�� ◦

β

��
��
� α

���
��
�� ◦

β

��
��
� ◦ ◦ . . .

. . . ◦ ◦ ◦
All the finite-dimensional string modules and the modules C(w) for w an infinite

string are indecomposable pure-injectives [24].

4.3. Band modules: finite- and infinite-dimensional. To each band b we
associate a family of indecomposable modules. The procedure is similar to that in
defining string modules: take an indecomposable K[T, T−1]-module L, that is, a
vector space V with an automorphism which is the action of T , deposit the vector
space V at the first vertex and also at each vertex visited going once round the
band b, then link these by identity maps (for the actions of the arrows) until the
last step, where we link the last-deposited copy of V to the first-placed one using
the action of T . This is similar to the procedure used to define string modules, but
the vector spaces placed at vertices of a walk might have dimension > 1 and we
“join the ends of the string together with a twist”. This band module (or b-band
module if we wish to be more precise), denote it M(b, L), is indecomposable, and
if we replace the band by any cyclic permutation of it or by its inverse, then we
obtain a module which is either isomorphic to this or to the module we would get if
we started with the K[T ]-module given by V with the action of T−1 (the difference

1If b is a band, then the completely periodic string ∞b∞ is not associated to any indecomposable
pure-injective. Indeed it is the image, under a representation embedding as in the following section,
of K[T ]K[T, T−1], the pure-injective hull of which is far from indecomposable.
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being whether the arrow which carries the action of T faces in the same or opposite
direction). The indecomposable finite-dimensional K[T, T−1]-modules are factors
of the ring by powers of maximal ideals and are n-fold self-extensions of simple
modules, so the indecomposable finite-dimensional modules supported on a band
are parametrised by maxspec(K[T, T−1])× N, where N denotes the set of positive
integers.

All the indecomposable finite-dimensional modules have now been listed, and
there are no cases of isomorphism between them other than those already men-
tioned. The morphisms between these modules also have been completely described
in combinatorial terms; see Section 5.

The description that we have given of the modules associated to a band b is
essentially the description of a functor from K[T, T−1]-Mod to R-Mod. Up to
equivalence, there are two such functors, the difference between them being the
orientation of the arrow where we put the twist by T . It does not matter which we
use since they have the same image. Any such functor is a representation embedding
in the strong sense that it preserves indecomposability and reflects isomorphism
(‘strong’ because the usual definition asks this just for finite-dimensional modules)
and hence induces a homeomorphic embedding of Ziegler spectra.

Theorem 4.2 (See [19, 5.5.9]). If F : S-Mod → R-Mod is a representation em-
bedding (in the above strong sense), then F preserves pure-injectivity and induces
a homeomorphic embedding of SZg as a closed subset of RZg.

We can deduce the following description of the infinite-dimensional indecompos-
able pure-injective band modules. To each band (up to equivalence) b and simple
K[T, T−1]-module S we have its image, M(b, S), a quasisimple module. We de-
note the n-fold self-extension of this module (which is the image of the n-fold self-
extension of S) byM(b, S[n]). There is a ray of irreducible monomorphisms starting
at that module, and the direct limit along this ray is the Prüfer module Σ(b, S).
Dually, there is the inverse limit of the coray of irreducible epimorphisms ending
at that quasisimple, the adic module Π(b, S). Finally there is a unique generic
module G = Gb associated to the band b, obtained by applying the above process
to the K[T, T−1]-module K(T ). Each of these is an indecomposable pure-injective
R-module which is the image, under a representation embedding as above, of the
corresponding indecomposable pure-injective K[T, T−1]-module. See [5,18,25] and
[19, §8.1] for more on these modules.

Theorem 4.2 also applies with S being the K-path algebra of some orientation

of Ãn, where n and the orientations of the arrows of Ãn are chosen so that it is the
obvious intermediary between K[T, T−1]-Mod and the b-band modules in R-Mod.

The relation between the structure of the category K[T, T−1]-mod and the
infinite-dimensional points of K[T,T−1]Zg, as well as the description of that space, is

well-known; similarly for KÃn. We will make considerable use of this knowledge,
which can be found in, for example, [19, §8.1.2].
4.4. The list of modules. In summary, this is the complete (by [23]) list of iso-
morphism types of indecomposable pure-injective modules over a domestic string
algebra, with parametrising sets as described earlier (we follow the notation of [24]):

(1) finite-dimensional string modules;
(2) finite-dimensional band modules;
(3) infinite direct sum string modules;
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(4) infinite direct product string modules;
(5) infinite mixed string modules;
(6) Prüfer modules;
(7) adic modules;
(8) generic modules.

We will group these modules in the following way: (1) and (3)-(5) will be referred
to as string modules; (2) and (6)-(8) will be referred to as band modules.

We will fix the following notation throughout the rest of the paper:

• A(x) will be used for any indecomposable pure-injective module associated
to the string or band x;

• B(x) will be used for any indecomposable band-type module associated to
the band x;

• C(x) will denote the indecomposable pure-injective string-type module as-
sociated to the string x.

• We will use the notation M(x) only to refer to the direct sum module
associated to the string x.

5. The morphisms

5.1. Graph maps. A complete description of the maps between string and band
modules has been developed by Krause and Crawley–Boevey in a series of papers
[12], [5], and [4]. We recall this briefly. Let u be a (finite or infinite) string. Suppose
that v is a substring of u which is closed under successors in u, meaning that at
its endpoint(s) in u the next arrow(s), if there are any, point to rather than away
from the end-vertices of v; we say that v is an image substring of u. Clearly this
occurrence of v as a substring of u gives a submodule of C(u) which is the image
of an embedding C(v) → C(u). For instance, if u = αγα−1β−1 is a string over X1,
then α is an image substring of u and α−1 is not.

Dually, if v is closed under predecessors in u, meaning that at its endpoint(s) in
u the next arrow(s), if any, point away from the end-vertices of v - we say that v
is a factor substring of u - then this occurrence of v as a substring of u defines a
natural epimorphism from C(u) to a copy of C(v). For the example u just above,
α−1 is a factor substring, whereas α is not.

A graph map from the string module C(u) to the string module C(u′) is any
map which is a composition of such an epimorphism with a monomorphism of the
sort described, so it is obtained by matching a factor substring of u with an image
substring of u′. Then (see the references) any morphism between string modules is
a finite linear combination of graph maps. Here is an example over X1:

•
×�
�γ



��
α

���
��
��

◦
α



��
��
� •

×
��

β

���
�

◦ ◦

=⇒
•

α

���
��

��

•
=⇒

◦
γ



��
��
� α

���
��
��

•
α



��
��
� ◦

β

���
��
��

• ◦
Morphisms to and from band modules have a similar description. Given a band

module B = M(b, S[n]), a graph map to or from B is described combinatorially
(and algebraically) similarly to the above, where we allow the string associated to
B to be a large enough power of b (thus, a suitable-length, depending on the other
module, segment of ∞b∞). Then any morphism between B and a string module or
a module associated to a different band (including b−1) is a linear combination of
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graph maps. The maps between B and modules associated to the same band are
linear combinations of graph maps and maps which are compositions of irreducible
maps (as seen in the Auslander–Reiten quiver).

Example 5.1. Consider the Kronecker algebra ◦
α

��

β

��◦ and the band b = βα−1.

If L is an indecomposable finite-dimensional K[T, T−1]-representation, then the
corresponding band module is given by the following, where V is the underlying
vector space of L:

V
α=T ��

β=1V

�� V .

Consider the string module M(v) where v = βα−1βα−1. Fix some non-zero g ∈
HomK(K,V ), equivalently element of V , and map the left end of the string module
M(v) to this element in M(b, L). This then determines a graph map as shown
below, which will be an embedding iff the dimension of V is at least 3:

K

T 2g

��

K

α=1K ��
β=1K

����
���

Tg

��

K

Tg



K

α=1K ��
β=1K

����
���

g

��

K

g

��
V

α=T ��

β=1V

�� V

Here is an example of an endomorphism of a band module which is not the
image of a morphism under one of the standard representation embeddings from

Ãn-modules. In the following diagram of X1-modules, the first map is the obvious
epimorphism and the second is the inclusion:

•
γ

����
��
� α

���
��

��

◦
α ���
��

�� •
β=λ����
��
�

◦

=⇒
•

α

���
��

��

•
=⇒

◦
γ

����
��
� α

���
��

��

•
α ���
��

�� ◦
β=λ����
��
�

•

6. Duality

We will make use of a couple of dualities. One is the duality (−)∗ = HomK(−,K)
between categories of finite-dimensional left and right R-modules. We need the
following observations about the action of this on certain modules. Suppose that
b is a band and that M = M(b, S) is a quasisimple module. Consider the Hom-
dual M∗ of M . One can check that M∗ is the quasisimple right module over R
corresponding to the same “band” b (of course all the arrows are now reversed)
with, depending on how one chooses to parametrise these right band modules, the
same or inverse value of the parameter λ.



4826 ROSANNA LAKING, MIKE PREST, AND GENA PUNINSKI

The other duality that we will use is elementary duality D, which is essentially
the Auslander–Gruson–Jensen duality (see [19, §10.3]) between the categories of
finitely presented functors but which induces dualities on other structures. For
instance (see [19, §1.3])D provides an anti-isomorphism between the lattices of right
and left pp-formulas over R, taking a pp formula ϕ to its dualDϕ. Furthermore (see
[19, §5.4]) the map (ϕ/ψ) 	→ (Dψ/Dϕ) between basic open sets extends to open
(and closed) sets of the right and left Ziegler spectra of R and, as such, defines
an isomorphism between the lattices of open (respectively closed) subsets of these
Ziegler spectra which preserves infinite unions (resp. infinite intersections). If, for
example, KG-dimension is defined, then it is given a bijection N 	→ DN between
points of the right and left Ziegler spectra (see [19, 5.4.20]).

In the case of domestic string algebras, from the non-existence [23, 5.6] of su-
perdecomposable pure-injectives it follows [19, 5.3.24, 5.4.12, 5.4.18] that the points
of the right and left Ziegler spectra are paired up, N → DN → D2N = N , by el-
ementary duality, which is a homeomorphism between these spaces and which,
restricted to finite-dimensional indecomposables, is the usual duality HomK(−,K).
In the case of K[T ]-modules, the elementary dual of a Prüfer module is the adic
module with the same parameter, and this coincides with its dual using, say, the
duality HomZ(−,Q/Z). The latter duality applied to an adic module gives the
direct sum of the corresponding Prüfer module with many copies of Q/Z, but the
elementary dual of the adic is identifiable as the unique isolated point in the cor-
responding Ziegler-closed set (the Ziegler-closure of the adic and of the Prüfer are
homeomorphic). Essentially the same applies over tame hereditary algebras. Sim-
ply from the topological information, the generic left and right modules are dual to
each other.

General immediate consequences of there being the duality homeomorphism are
that it restricts to a homeomorphism between the Ziegler-closure of any point and
that of its dual and that a basis of open neighbourhoods of any point dualises to a
basis of open neighbourhoods of its dual.

7. Cantor–Bendixson rank

The Cantor–Bendixson analysis of any space T runs as follows. At the first
step we identify the isolated=open points of this space, give them CB rank 0,
and then remove them, leaving the first derivative, T ′, of T . In the case of the
Ziegler spectrum of an artin algebra, the isolated points are exactly the finite-
dimensional indecomposables (see [19, 5.3.33]). The input to the next step is T ′,
the points isolated in T ′ are assigned CB rank 1, and, inductively, we continue
the procedure of forming derivatives and assigning ranks to points, transfinitely,
by taking intersections at limit stages. If this process stabilises with a non-empty
subspace (which must have no isolated points), then we assign CB-rank ∞ to these
remaining points and say that the CB-rank of T is ∞ or undefined. Otherwise
there is a least ordinal λ where we reach the empty space and which is not a limit
if T is compact, in which case we set the CB-rank of T to be λ− 1. In the case of
domestic string algebras since we have the condition (IC) (see [19, §5.3.2]), all the
points of this maximal rank will be of finite length over their endomorphism rings
(see [19, 5.3.22]), hence generic in Crawley-Boevey’s terminology, provided that R
is not of finite representation type (recall that a generic module is one of finite
endolength but not of finite length).
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8. pp formulas

Some of our arguments use pp formulas and the lattice they form. Exposition
and summary of this material is easily available from various of the background
references, so we just explain some of the more technical details here.

Suppose that s is a vertex of Q and let es ∈ R be the corresponding primitive
idempotent. If d ∈ Hs,1 is a string, then the property of being divisible by d (that
is, x ∈ dM) can be expressed by a pp formula and includes the condition x = esx.
A somewhat stronger condition is defined as follows. If there is an arrow γ such
that dγ−1 is a string, then the formula (.d)(x) states that x = es x and x ∈ dγ−1(0);
otherwise (.d)(x) says just that x = esx and x ∈ dM . If c a string in Hs,−1 then
the corresponding formulas (.c) are defined similarly.

If c ∈ Hs,−1, d ∈ Hs,1, then (c−1.d) is the conjunction of (.d) and (.c). The
special case (1.d), on the left, is imposing the condition that ζx = 0 if there is a
ζ such that ζd is a string; (+1.d), on the left, is imposing the condition that x is
divisible by the arrow ζ such that ζ−1d is a string, if there is such a ζ (if there is no
such ζ we make (+1.d) the condition x = 0). See [20] or [9, Sec. 5.7], for instance,
for this notation.

If c is a non-empty string which does not begin on a peak (that is, there is a
string of the form γ−1c), then we define +c to be the result of adding a hook to the
left of c, that is, +c = c1γ

−1c, where c1 contains only direct letters and is maximal
possible such. Similarly c+ is defined by adding a hook on the right, if possible (see
[3, p. 162]).

To any non-zero element m ∈ esM of a module element one may (see [23, p. 6])
associate a (1-sided) string v = v(m) describing the divisibility of m by strings in
Hs,1. Similarly a string u = u(m) describes the divisibility of m by strings in Hs,−1,
and these are combined into a 2-sided string w(m) = u−1.v (as mentioned earlier,
informally we consider divisibility by v as divisibility to the right and divisibility
by u as divisibility to the left).

8.1. pp formulas and m-dimension. Suppose that L is a modular lattice; we
have in mind the lattice of pp formulas in one free variable. At the first stage of the
m-dimension analysis of L we factor L by the congruence relation generated by the
intervals of finite length: points a and b will be identified iff the interval [a+b, a∧b]
is of finite length (here + denotes the sup operation). The result is again a modular
lattice, and we repeat the process, transfinitely, where at limit stages we factor L
by the union of the inverse images in L of the congruence relations generated so far.
If the procedure stabilises with a non-trivial lattice (necessarily densely ordered),
then we say that the m-dimension of L is ∞ or undefined. Otherwise, provided
L has a top and a bottom, the first ordinal μ such that the μ-collapse of L is trivial
is not a limit, and then we say that the m-dimension of L is μ− 1. In particular
m-dimension 0 exactly means finite length. See [19, §7.2] for details.

Clearly there is a rough parallel with the definition of Cantor–Bendixson rank.
There is also a parallel process, which uses localisation, in the abelian category of
finitely presented functors; see Section 8.2. Under certain conditions (see Theo-
rem 8.3), including that of there being no superdecomposable pure-injectives, the
CB-analysis of the Ziegler spectrum runs parallel with the m-dimension analysis on
the lattice ppR of all pp-formulas.
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8.2. Krull–Gabriel dimension, m-dimension, and CB-rank. Krull–Gabriel
(KG-) dimension is defined, in the first instance, on finitely presented functors
from R-mod to Ab, but it can be extended to give a rank on points. In fact, the
m-dimension and KG-dimension of an indecomposable pure-injective N are equal
([1, 4.2.8]). In our case both these dimensions also coincide with CB-rank, so there
is no need to include a definition of KG-dimension here.

We recall just a little about m-dimension from [15], based on [30] (which in turn
refined Garavaglia’s elementary Krull dimension [6]). We define (see [15, p. 214])
the m-dimension of an indecomposable pure-injective N in terms of m-dimension
of intervals in the lattice of pp formulas which are open on N : mdim(N) =
min{mdim[ψ, ϕ] : ϕ(N) > ψ(N)} = min{mdim[ψ, ϕ] : N ∈ (ϕ/ψ)}. Also let p
be any non-zero pp-type realised in N and set mdim(p) = min{mdim[ψ, ϕ] : ϕ ∈
p+, ψ ∈ p−}.

Theorem 8.1 ([30, 8.7]; see [15, 10.23]). If p is the pp-type of a non-zero element
of N ∈ RZg, then mdim(p) = mdim(N).

Proposition 8.2 ([1, 4.2.8]). If N is an indecomposable pure-injective, then
KGdim(N) = mdim(N).

If the isolation condition (IC) holds (as it does for modules over domestic string
algebras since, by [23, 5.6], there is no superdecomposable pure-injective), then this
equals the CB rank of N .

Theorem 8.3 ([30, 8.6]; see [15, 10.19] (assuming IC)). For N ∈ RZg we have
mdim(N) = KGdim(N) = CB(N).

In fact, all this holds true when relativised to any closed subset X of the Ziegler
spectrum and applies to any N ∈ X, with the lattice of pp formulas being re-
placed by its quotient, which is obtained by identifying formulas which agree
on all modules in X, and with CB rank being measured in X. Then, still un-
der the assumption IC, if U is a basis of basic open neighbourhoods of N in X,
mdimX(N) = min{mdimX [ϕ, ψ] : (ϕ/ψ) ∈ U} = CBX(N), where the subscripts
indicate these relativisations ([15, p. 214, Exer. 3]).

Corollary 8.4. Let R be a domestic string algebra.
(1) Let ϕ > ψ be a pair of pp-formulas. The m-dimension of the interval [ψ;ϕ]

in the lattice of pp formulas equals the maximum of CB-ranks of points in the
corresponding open subset (ϕ/ψ) of the Ziegler spectrum RZg.

(2) Suppose that N is an indecomposable pure-injective R-module with a chosen
neighbourhood basis U of open sets. Then the CB-rank of N is the minimum of the
m-dimensions of intervals [ψ;ϕ] where the pairs of pp-formulas (ϕ/ψ) run over U .

9. Computing rank from the bridge quiver

Here we compute the Cantor–Bendixson rank of each point of RZg, R a do-
mestic string algebra, in a way that makes natural links between approximation
through the bridge quiver and topological approximation. Since approximation by
direct (and sometimes inverse) limits does imply topological approximation (see
[19, 3.4.7, p. 114]) we can see some of this algebraically as well. Because there
are no superdecomposable pure-injectives, the CB-rank of each point equals its KG
dimension, which equals its m-dimension (Corollary 8.4(2)); sometimes, for brevity,
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we will refer just to the ‘rank’ of a point. The arguments we use in this section have
parallels which refer to the lattice of pp formulas and/or to the factorisation struc-
ture of morphisms in R-mod. Indeed, any of these three approaches can be used to
establish the ‘recipes’ we give here for computing the rank of a point. The approach
using topological approximation perhaps involves less technical detail since some of
that gets hidden in the topology and the appeals to compactness.

The key to computing the rank of the module A(w) associated to w is to consider
whether the corresponding path in the bridge quiver is maximal or whether, and
how far, it could be extended in either direction. When computing ranks of band
modules we will need more detailed information, specifically whether paths in the
bridge quiver leave a band via an arrow pointing away from or into the band. Note
that it is possible (for example over X3) for a path to include both a band and its
inverse (but recall that for domestic algebras there are no cyclic paths in the bridge
quiver).

As well as computing ranks, we give a neighbourhood basis for each infinite-
dimensional point of the Ziegler spectrum of R.

9.1. Representation embeddings and topology. In computing these ranks we
make heavy use of the fact that if N is a point in a topological space and U is an
open set containing N , then the CB rank of N in the whole space is equal to the
CB rank of N computed in the relative topology on U . This allows us to ignore
some modules when computing ranks.

Recall that the finite-dimensional points of RZg are exactly those of rank 0.
We ignore these finite-dimensional points from now on and work in the (closed)
subset consisting of infinite-dimensional points. Since that set is the first Cantor–
Bendixson derivative, RZg

′, of RZg, we can compute ranks in this set and then just
add 1 to get the rank of an infinite-dimensional point in the whole space. For 1-
sided strings, the computation of rank is already in [20, §7], but we will recompute
these here on our way to the ranks of other points.

Next, for each band b choose a representation embedding from K[T, T−1]-Mod
to R-Mod as in Section 4.3; this induces a homeomorphic embedding of K[T,T−1]Zg
onto the closed subset of RZg ([16, Thm. 7]) consisting of b-band modules. Note
that the images of these embeddings for different bands are disjoint.

Recall that we can alternatively use the path algebra of a suitably oriented quiver

Ãn in place of K[T ] (restricting to the closed subset of points where the action at

each arrow of Ãn acts invertibly). There are just finitely many bands, so the union
over all bands b of the images of these induced homeomorphic embeddings is closed
and consists of all the indecomposable pure-injective band modules. Denote the
complement of this, the set of all string modules, by U1. This then is an open
subset of RZg and working in U1 will allow us to ignore all band modules when
computing ranks of string modules. It will also simplify consideration of band
modules since we can fix one band b and then work in the open set consisting of
the b-band modules and the string modules; that is, we can ignore the modules
associated to other bands.

9.2. Ranks of string modules. In the remainder of this section we will work in
U = U1 ∩ RZg

′, and “open set” will mean open subset of this set (recall that RZg
′

is the set of infinite-dimensional points of RZg).
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We show that the rank of an infinite-dimensional string module C(w) is given in
terms of the position in the bridge quiver of the infinite band(s) at the end(s) of w.

We recall the neighbourhood bases that were computed in [20] for 1-sided strings
and in [23] for 2-sided strings.

Theorem 9.1 ([23, 6.2]). Suppose that w = u−1v is a 2-sided non-periodic string
over a domestic string algebra and C(w) is the corresponding indecomposable pure-
injective module. A basis of open sets in the Ziegler topology for C(w) is given by

the pairs (c−1.d) / (e−1.d) + (c−1.f), where c ≤ u < e in Ĥ−1 and d ≤ v < f in

Ĥ1.

In the case that the infinite word w is 1-sided, say w = c−1.v where c is finite,
(see Section 8), c has a successor, c+ in H−1; we will write

+1 for the inverse of this
successor in the case that c is empty (rather, c = 1−1). The next result is stated in
[20] for general finite c in place of 1.

Theorem 9.2 ([20, 5.3]). Suppose that v is a 1-sided non-periodic string over a
domestic string algebra and C(v) is the corresponding indecomposable pure-injective
module. A basis of open sets in the Ziegler topology for C(v) is given by the pairs

(1.d) / (+1.d) + (1.f), where d ≤ v < f in Ĥ1.

Making good choices in these results, we can get nicely described neighbourhood
bases.

Corollary 9.3. Let w = ∞b0cb
∞ be a 2-sided string, denote by wn its image

substring nb0cb
n, and let Un be the set of string modules C(y) such that y contains

wn as an image substring. Then the Un form a basis of open neighbourhoods of
C(w).

Similarly if w = cb∞ with b a band and c finite, then let wn = cbn and let Un

be the set of (1-sided) string modules C(y) such that y contains wn as an initial
image substring. Then the Un form a basis of open neighbourhoods of C(w).

Proof. Split wn as unvn where un = nb0 and vn = cbn. Denote by v◦n the
word obtained from vn by removing the last (inverse) letter, and by ◦un de-
note the word obtained from un by removing the first (direct) letter. Then the
open set

(
(un.vn)/(

◦un.vn + un.v
◦
n)
)
has the form of a set as in Theorem 9.1.

This open set separates C(w) from all band modules; furthermore it consists of
the string modules M(w′) where w′ contains wn as an image subword, for, if
C(w′) ∈

(
(un.vn)/(

◦un.vn + un.v
◦
n)
)
, then there is a non-zero graph map from

M(wn) to C(w′) which does not factor through the canonical map from M(wn) to
the string module of any truncation. The first says that some factor substring of wn

occurs as an image substring of w; the second says that there is such an occurrence
where it is wn, rather than a proper image string, which occurs.

The 1-sided case is similar, the relevant open set being (1.wn/
+1.wn+1.w◦

n). �

Note that, given any 1-sided infinite string module, any of the open neighbour-
hoods in Theorem 9.2 serves to separate it from all 2-sided strings.

Now we compute the ranks of points.

Theorem 9.4. If w = cb∞ is a 1-sided right-infinite string whose terminal band
has right indent t, then the CB rank of C(w) is t+ 1.
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Proof. Consider the intersection of the open set Un from Corollary 9.3 with U ;
this consists of the modules C(x) where x is a 1-sided (infinite) string with wn

as an initial image substring. If the right indent of b is 0, then the only point in
this open set is C(w) itself, which, therefore, has CB-rank 0 in Un ∩ U , hence has
CB-rank 1 in the whole space. If the right indent of b is 1, so there are strings of
the form bnu′b∞1 �= b∞, but no strings beginning with b and giving longer paths in
the bridge quiver, then, by the case we just dealt with, each string module of the
form C(cbnu′b∞1 ) belongs to the open set U ′ and has rank 1. There are no other
points in that open set apart from C(w), which, therefore, has rank 2: it cannot
have rank 1, since then we would have a (Ziegler-basic, hence) compact open set
being a union of infinitely many isolated points, a contradiction. This argument
continues inductively on the right indent of the band b (the cases 0 and 1 having
just been treated), and so we obtain the result. �

Now we move on to the 2-sided strings.

Theorem 9.5. If w is a 2-sided infinite string whose terminal bands have indent
s and t respectively, then the CB rank of C(w) is s+ t+ 2.

Proof. Say w = ∞b0ub
∞
1 . Again take the open set Un from Corollary 9.3 and

consider its intersection with U . As before, we start with the case that the corre-
sponding path from b0 to b1 is maximal in the bridge quiver and then work inwards.

In the case that the path between b0 and b1 is maximal, the only points in Un∩U ,
apart from C(w), are the (infinitely many) 1-sided infinite string modules which
contain bn0ub

n
1 as an image substring. By Theorem 9.4, these all have rank 1, so,

arguing as in the 1-sided case, C(w) has rank 2.
We continue inductively, first working in from the right side. Suppose that w

has left indent 0 and right indent t. Then the set Un ∩ U consists of: 1-sided
string modules of the form ∞b0ub

n
1 v with v a finite string - these have rank 1 by

Theorem 9.4; 1-sided string modules of the form vbn0ub
∞
1 with v finite - these have

rank ≤ t + 1 by Theorem 9.4; and the 2-sided string modules where the string
has the form ∞b0ub

n
1 . . . and has right indent ≤ t− 1. Note that the value t− 1 is

achieved among these 2-sided string modules; moreover, by induction, these 2-sided
string modules have rank ≤ t− 1 + 2 = t+ 1, with the value t+ 1 being achieved.
Since t ≥ 1 there are infinitely many points in Un ∩ U with (maximal) rank t + 1
(because we have modules of the form ∞b0ub

k
1 . . . for all k ≥ n). Removing all

these points from U ′ leaves only C(w), which therefore has rank t+ 2.
Now we can also move in from the left side: suppose first that the left indent, s,

of w is 1 and the right indent is t. Then the 1-sided strings in Un∩U have ranks up
to and including max{s = 1, t}+ 1. The 2-sided strings have, by the above, ranks
up to and including t+ 2 - and there are infinitely many of these with rank t+ 2 -
and then there’s C(w), which, therefore, has rank 1+ t+2 = s+ t+2. Working in
from the left as we did on the right but inducting on the left indent, we see that a
2-sided string with left indent s and right indent t has rank s+ t+ 2. �
Example 9.6. For instance, let R = Λ2 and let w = (εδ−1)∞. By choosing
b1 = εδ−1 and b2 = αβ−1 we see that there is a path b1 → b2 starting with b1
in the bridge quiver and there are no others, so 1 is the maximal length of such
paths and the indent of b1 is 1. It follows that the CB-rank of the corresponding
indecomposable pure-injective, the direct product module C(w), is 1 + 1 = 2. On
the other hand, there is no bridge starting from b2; hence the direct product module



4832 ROSANNA LAKING, MIKE PREST, AND GENA PUNINSKI

corresponding to the string b∞2 has CB-rank 1. Each terminating band of the 2-
sided string u = ∞(εδ−1)εγ(αβ−1)∞ has indent 0, so the corresponding mixed
module C(u) has CB-rank 0 + 0 + 2 = 2.

9.3. Ranks of band modules.

9.3.1. Prüfer modules. Let b = α . . . β−1 be a band and let Σ(b, S) be a b-Prüfer
module, with corresponding quasisimple module M(b, S). Set Bi = M(b, S[i]).
Fix an element m ∈ βB1 ∩ αB1 in the socle of B1. Consider the sequence of
irreducible embeddings Bi → Bi+1 and choose ϕi to be any pp formula which
generates the pp-type of the image of m in Bi, so we have a descending sequence
ϕ1 > ϕ2 > . . . of pp formulas which together generate p+ where p is the pp-type of
m in Σ(b, S). Note that each interval [ϕi+1, ϕi] is simple and that any pp formula
strictly below ϕi is less than or equal to ϕi+1. To see that, let θ < ϕi. Then there is
a morphism f : Bi → N where (N,n) is a free realisation of θ. By strictness of the
inclusion, f is not a split embedding; hence it factors through the almost split map
g : Bi → Bi+1 ⊕ Bi−1 (the second term being absent if i = 1), say f = hg. Note
that the image of m in the second component Bi−1 is zero, so h takes m ∈ Bi+1 to
n and hence ϕi+1 ≥ θ, as claimed.

Let c be a cyclic permutation of b which starts with an inverse arrow and ends
with a direct arrow. Write Mj for the string module M(cj) (so the Mj are the

images of preinjective Ãn-modules under a suitable representation embedding). In
each Mj let nj be the element in αMj ∩βMj which is the image of the composition
B1 → Σ(b, S) → Mj , the maps being the natural ones. Let ψj be any pp formula
which generates the pp-type of nj in Mj . Consider the epimorphism Mj+1 → Mj

which is obtained by factoring out the rightmost copy of c and mapping nj+1 to nj ,
so we have the ascending chain ψ1 < ψ2 < . . . . Also note that ϕi > ψj for every
i, j (consider the morphism Bi → Σ(b, S) → Mj).

Example 9.7. To see all this more concretely, we can use that the direct product
module M = M(∞b∞) has, as a direct summand, every Prüfer module (it is the
dual of the image of K[T, T−1] under a suitable representation embedding); there
is a unique, up to scalar multiple, embedding of the regular module B1 into this
module (see [12], or better [9, Sec. 6.3.2]). For example, take b = αβ−1 over X3

(in fact everything is happening over the Kronecker algebra) and let m be as above
with B1 = M(αβ−1, λ). Then m maps to the indicated infinite sum of elements in
the socle of M and the pp-type of m in M is p:

◦
α
����
��
� β

  �
��

�� ◦
α����
��
� β

  �
��

�� ◦
α����
��
� β

  �
��

��

. . . •
λ−1

•
1

•
λ

•
λ2

. . .

Continuing with the notation above, any occurrence of ck as a factor substring
of ∞b∞ gives a map of M onto the string module Mk. In the example c must be
β−1α and M2 is shown below, with the (unique to scalar) image of m being the sum
of the indicated socle elements. The formula ψk is chosen to generate the pp-type
of nk in Mk.

◦

β   �
��

��
� ◦

α
����
��
�� β

  �
��

��
� ◦

α����
��
��

•
1

•
λ
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Theorem 9.8. The open sets (ϕi/ψj) defined above form a neighbourhood basis of
open sets of the Prüfer module Σ(b, S).

Proof. With notation as above, by [19, 5.1.21] a neighbourhood basis for Σ(b, S)
is given by sets of the form (ϕ/ψ) with ϕ ∈ p+ and ϕ > ψ ∈ p−. We have seen
already that we can take ϕ to be one of the ϕi, so consider some pp formula in p−

with ψ below each ϕi; we must show that ψ < ψj for some j.

◦ϕ1

◦ϕ2 ...
p ��

◦ ψ2
..
.

◦ ψ1

Since ψ is a sum of pp formulas realised in indecomposable modules, we can
assume that ψ has an indecomposable free realisation, (N,n) say. Since ψ < ϕi

there is a morphism f : (Bi,m) → (N,n). If N were a b′-band module where
b′ �= b, b−1, then, since f(m) �= 0, b′ would contain a socle pair of the form β−1α,
contradicting Theorem 2.1(2). If N were a b- or b−1-band module, then (some
component of) f would be induced by a matching between a factor substring and
image substring of ∞b∞ (and/or its inverse). But, again, since the image of m is
non-zero, that is impossible.

So N must be a string module, and then we can use the description of morphisms
from band modules to string modules (see [9, §6.3.2] for a clear description): any
morphism from Bi to a string module is a linear combination of compositions of
irreducible maps and maps which factor through Σ(b, S), hence through the product
module M(∞b∞) seen above. Any composition of graph maps which annihilates m
can be ignored, and the rest are embeddings. So any component of f is essentially
the composition of a map from some Bi+t to M followed by a graph map induced
by a factor substring u of ∞b∞. Taking a copy of ck containing u as a substring, we
see that the latter map factors through the canonical map to some Mk. Therefore,
choosing j large enough, f itself will factor through Mj and so ψj ≥ ψ, as claimed.

�

We also describe this basis as sets of points of the spectrum.

Corollary 9.9. Define Ui,j = {M(b, S[m]) | m ≥ i} ∪ {Σ(b, S)} ∪ Zj , where Zj

is the set of all string modules C(y) such that y contains as an image substring a
finite factor string of the form x′cjx′′ of ∞b∞, where the string c is as in the proof
of Theorem 9.8 (that is, all “long enough” finite factor strings of ∞b∞). Then the
Ui,i form a basis of open neighbourhoods of Σ(b, S).

Proof. It is not difficult to see that Ui,j is open (cf. the last part of the proof of
Corollary 9.15). It suffices to show that Ui,j ⊆ (ϕi/ψj−1); clearly both subsets
contain no b′-band where b′ �= b, b−1, and they do coincide on the set of b-band
modules, so it suffices to check the inclusion just of their intersections with string
modules. Let N = C(y) ∈ Ui,j be a string module. There is an obvious morphism
from Bi to N sending the socle element m to a linear combination n of at least
j different ‘adjacent’ canonical basis elements in αN ∩ βN . Then n will satisfy
ϕi, but, since clearly this map does not factor through Mj−1, n does not satisfy
ψj−1. �
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Suppose that b is a band and bc is a string; we will say that bc ascends from
b if b∞ < bc and bc descends from b if bc < b∞ (the remaining case is that bc is
a substring of b∞). For instance, the string βα−1βα over X3 will ascend from the
band b = βα−1.

Theorem 9.10. Let b be a band. Then the rank of each b-Prüfer module is s+t+1
where s is the indent of b via strings that ascend from b and t is the indent of b via
strings that ascend from b−1.

Proof. Because the intervals [ϕi+1, ϕi] are simple, by the definition of m-dimension
it suffices to prove that each interval [ψi, ψi+1] has m-dimension s + t. By Corol-
lary 8.4(1) this will be the maximum value of CB-rank of points in the corresponding
open set (ψj+1/ψj). We show that this interval contains no band modules.

Any module in (ψj+1/ψj) contains an element in the intersection im(α)∩ im(β),
so any band module would be a b- or b−1-band module. But then there would be a
map from, say, B1 to Mj+1 to a b- or b−1-band module, with the image of m ∈ B1

being non-zero. Hence there would be a factor substring of ∞b∞ which includes the
string β−1α or αβ−1 equal to an image substring of ∞b∞; this (consider the ends
of this substring) is impossible.

The string modules in (ψj+1/ψj) are obtained by taking factor substrings d of
cj+1 (which are not also factor substrings of cj , so which are obtained by factoring
out only “small” submodules at either side) and then embedding these as image
substrings of infinite strings w, which, therefore, ascend from b. By the computation
of ranks in Section 9.2, the points of maximal rank in this open set will have the form
∞b1d

′b∞2 , where b2 is the nearest band to b on a path witnessing that the maximal
indent of b via ascending paths and b1 is similarly a nearest neighbouring band on a
maximal band-length path that ascends from b−1 (and d′ contains some d as above
as an image substring). By Theorem 9.5 this module has rank (s−1)+(t−1)+2 =
s + t. In the case where there is an ascending path just to one side, say from b,
we use Theorem 9.4 to obtain the value (s− 1) + 1 = s for the m-dimension of the
interval and hence the value s for the rank of Σ(b, S). In the case that there is no
path ascending from b, the interval contains only finitely many finite-dimensional
points, so has rank 0.

Thus in each case, the maximal rank of points in (ψj+1/ψj), and hence the
m-dimension of [ψj , ψj+1] is s+ t. �

Example 9.11. Let R be the path algebra of Λ3. Let bi = βiα
−1
i (i = 1, 2, 3)

be representatives of the bands. Then the bridge quiver consists of b1
γ−1
1 α−1

2−−−−−→
b2

γ−1
2 α−1

3−−−−−→ b3 and its inverse. Because there is no ascending path from b1, the rank
of any b1-Prüfer module is 1. There is an ascending path to the left of b2 (that is,
for b−1

2 ) of length 1, so we obtain 1+0+1 = 2 for the rank of each b2-Prüfer point.
Finally there is an ascending path of length 2 to the left of b3, so the corresponding
Prüfer points have rank 2 + 0 + 1 = 3.

9.3.2. Adic modules. The ranks of adic modules could be calculated by a similar,
though dual, argument, using the coray of epimorphisms in the tube with quasisim-
ple moduleM(b, S). It is quicker to make use of elementary duality. We will use that
the adic left R-module Π(b, S) is the elementary dual of a Prüfer right R-module
attached to a certain band b∗ for right R-modules. For finite-dimensional modules
(and some others) elementary duality is simply HomK(−,K)-duality. Given a right
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R-module L, we will write L∗ = HomK(L,K) for its Hom-dual left module, and
the same for left-to-right Hom-duality.

First observe that right modules over R, which has been presented as a string
algebra by a quiver Q with relations, are representations of the quiver which is
obtained from Q by reversing all arrows and, correspondingly, all relations; that is,
they are left modules over the opposite algebra to R, and so everything that we
have proved applies in this way to right R-modules. Note also that the “opposite”
of a band b for left R-modules is a cyclic permutation of a ‘dual’ band, b∗, for right
R-modules. Furthermore, the parametrisation of quasisimple b-band modules is,
depending on our choice of b∗ and of how to parametrise b∗-band modules, either the
same as or inverse to that for b-band modules, meaning thatM(b, S)∗ = M(b∗, S) or
= M(b∗, S−1), where by S−1 we mean the image of the simple K[T, T−1]-module
where T acts as the inverse of the action on the simple module S. We will set
M(b, S)∗ = M(b∗, S∗) as a notation to cover either case. In the next result we
compute the elementary dual pairs of indecomposable pure-injective right and left
modules.

Proposition 9.12. For a domestic string algebra R, elementary duality gives a
homeomorphism between the right and left Ziegler spectra of R, with pairing be-
tween infinite-dimensional points being as follows (for finite-dimensional points,
the pairing is just HomK(−,K)-duality).

(1) The b-Prüfer modules are dual to the b∗-adic modules, and the b-adic modules
are dual to the b∗-Prüfer modules.

(2) If w is a contracting 1-sided or 2-sided string, then C(w) is dual to the
expanding string module C(w∗); and if w is an expanding 1-sided or 2-sided string,
then C(w) is dual to the contracting string module C(w∗).

(3) If w is a mixed 2-sided string, then C(w) is dual to the mixed string module
C(w∗).

(4) The b-generic module is elementary dual to the b∗-generic module.

Proof. (1) and (4) follow from the corresponding result for Ãn-modules.
(2) For 1-sided strings this follows from (1) (considering the tubes parametrised

by 0,∞). If w is a contracting 2-sided string, then the module C(w) is the direct
limit of the graph map monomorphisms between the 1-sided string modules C(wn)
where wn is any increasing sequence of image substrings of w, so is in the Ziegler-
closure of these points, indeed is easily seen to be an accumulation point of minimal
rank. Dualising, we have that the elementary dual is the accumulation point of
minimal rank in the Ziegler-closure of the C(wn)

∗ = C(w∗
n), and it is easily checked

that C(w∗) has this property and therefore is the dual of C(w).
(3) Consider a 2-sided mixed string w. The corresponding indecomposable pure-

injective module C(w) is the direct limit of the obvious system of embeddings
between 1-sided product modules C(wn) where the wn form an increasing sequence
of expanding 1-sided image substrings. Since we have already computed the ele-
mentary duals of the C(wn), we can proceed as in (2) and deduce that C(w∗

n) is
the elementary dual of C(w). �

Using this and Corollary 9.9 we obtain neighbourhood bases for adic modules.

Corollary 9.13. The adic module Π(b, S) has, for a neighbourhood basis, the open
sets Vij = {M(b, S[m]) |m ≥ i} ∪ {Π(b, S)} ∪Wj, where Wj is the set of all string
modules C(y) such that y has, as a factor substring, a finite string of the form
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x′bjx′′ of ∞b∞, which is an image substring of ∞b∞. (Of course we may limit to
j = i for aesthetic reasons.)

It remains only to observe that, because the arrows turn around in going from
left to right modules, the description of the rank of Σ(b∗, S∗) in terms of arrows
ascending from the band b∗ dualises to the same description of the rank of Π(b, S)
but in terms of arrows which descend from the band b. We therefore obtain the
following result for calculating the rank of adic modules using the above and the
fact that the CB-ranks elementary-dual pairs of modules are equal.

Theorem 9.14. Let b be a band. Then the rank of each b-adic module is s+ t+ 1
where s is the indent of b via strings that descend from b and t is the indent of b
via strings that descend from b−1.

Continuing Example 9.11, there is a path of length 2 descending from b1; there-
fore the rank of every b1-adic module is 0 + 2 + 1 = 3. Similarly the rank of each
b2-adic module is 2 and the rank of each b1-adic module is 1.

9.3.3. Generic modules. Suppose that b is a band; first we describe a neighbourhood
basis of the b-generic.

Corollary 9.15. The sets U which satisfy the following conditions form a basis of
open neighbourhoods of the b-generic Gb: U contains all the infinite-dimensional
b-band modules, all but finitely many finite-dimensional b-band modules, and no
b′-band modules for b′ �= b, b−1. Furthermore there is an n such that the string
modules in U are exactly the C(y) where y contains bn as an image subword.

Proof. Choose an open set containing Gb; by what we have already mentioned we
can reduce it to an open set U containing Gb and no b′-band module over any
other band b′. The intersection of U with the image of a representation embedding
giving the b-band modules is the homeomorphic image of an open neighbourhood
of the generic in the initial ring. It is known from [18] and [25] that any such set
must contain all the infinite-dimensional points and all but finitely many finite-
dimensional points. So, it remains to determine the intersection of U with the set
of string modules.

We claim that there is an n such that U contains every string module C(y) where
y contains bn as an image substring. Suppose, for a contradiction, that for each n
there is a string xn which contains bn as an image substring but such that C(xn)
is not in U . We must show that Gb is in the closure of the C(xn). It is easy to see
that there is some band b0 and finite string c such that, for each n, bn0 cb

n occurs
as an image substring of some xm(n). Therefore, by Corollary 9.3, the module
C(∞b0cb

∞) is in the closure of this set. First, one can check that the closure of
C(∞b0cb

∞) consists only of that module plus generic points, for we have computed
neighbourhood bases of all but the generic points and, by inspection, none of them
but Gb0 and Gb are in the closure of this point.

Choose a socle pair α−1β for b. Let ϕ be the pp formula whose solution set
is im(α) ∩ im(β). This solution set in C(∞b0cb

∞) is, note, infinite-dimensional.
Indeed, since there is a contracting or expanding endomorphism of C(∞b0cb

∞) (see
Section 4.2) acting on the b∞ part of C(∞b0cb

∞), that solution set is of infinite
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length over the endomorphism ring of C(∞b0cb
∞) and so must have an infinite (as-

cending or descending) chain of pp-definable subgroups. This implies (by compact-
ness in, say, the model-theoretic sense)2 that one of the points in the Ziegler-closure
of M0 also has non-zero solution set for ϕ. Those points all are generic, and the
only generic point which satisfies this is Gb, as required.

Thus we have shown that, for any open set U containing Gb, there is n such
that every string module containing bn as an image substring is in U . It remains
to note that the set of string modules containing bn as an image substring is open;
the proof of Corollary 9.3 applied with bn in place of wn there shows exactly this.
Therefore this set, together with the intersection of U with the b-band modules, is
an open set (being the union of an open set with an open subset of the complement
of that set) and contains Gb. Furthermore, we have just shown that every open set
containing Gb contains such a set, so this does give a basis. �

Finally we compute the CB-rank of each generic module. We will see that the
rank of a generic module is determined not just by the ranks of modules supported
on the same band, but also by the 2-sided strings which pass through b, that is,
which contain b as a substring. Consider the band b2 = β2α

−1
2 over Λ3 from

Example 9.11. The ranks of the b2-Prüfers and b2-adics are 2, but, as we will see
below, the rank of the b2-generic is 4. This is because there is a 2-sided string
passing through b2 such that the corresponding mixed module has rank 3.

Theorem 9.16. If b is a band, then the rank of the associated generic Gb is s+t+2
where s, respectively t, is the left, respectively right, indent of b.

Proof. Consider a band b0 adjacent to b on a longest path containing b in the bridge
quiver. Let w0 be a 2-sided infinite string of the form ∞b0c0b

∞. The corresponding
string module M0 = C(w0) has rank s−1+t+2 = s+t+1. We have shown already
in the proof of Corollary 9.15 that Gb is in the closure of this module, hence has
rank at least s+ t+ 2.

But now observe that every point in an open neighbourhood U , as in Corol-
lary 9.15, of Gb, apart from Gb itself, has been assigned a CB-rank by the results
already proved, and s+ t+1 is the maximal value attained. Hence the CB-rank of
Gb is exactly s+ t+ 2, as claimed. �

Example 9.17. As an example consider the following 3-domestic string algebra:

X4

◦
α1

��
β1



◦
β3


α3

��◦
γ1 !!�

��
��

�� ◦
γ2""��

��
��
�

◦
α2

��
β2

◦
with short relations γ1α1 = α2γ1 = β2γ2 = γ2β3 = 0.

2This can be said in terms of the pp-sort ϕ evaluated at M with its induced model-theoretic
structure: since it has infinite endolength there is a non-isolated point in its Ziegler-closure.
Alternatively, and more directly, one can produce an irreducible pp-type which is not realised in
M .
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Choose bi = αiβ
−1
i , i = 1, 2, 3, and their inverses as the vertices of the bridge

quiver. The bridge quiver of X4 consists of the path

b1
γ−1
1 β−1

2−−−−−→ b2
α2γ2−−−→ b3

and its inverse.
Since the left indent of b1 is 0 and the right indent is 2, the rank of Gb1 is

0 + 2 + 2 = 4. Similarly the ranks of Gb2 and Gb3 are 4.

Example 9.18. To get an example where the generics do not all have the same
rank, consider the string algebra X5:

X5

◦
α0

��
β0

◦
γ0

��◦
α1

��
β1



◦
β3


α3

��◦
γ1 !!�

��
��

�� ◦
γ2""��

��
��
�

◦
α2

��
β2

◦
with short relations as indicated.
Choose αiβ

−1
i and their inverses for i = 0, . . . , 3 as the vertices of the bridge

quiver. Then the bridge quiver is the following directed graph and its inverse:

b2
α2γ1 ��

α2γ2 ���
��

��
��

b−1
1

β1γ0 �� b−1
0

b3

From the bridge quiver we see that the rank of Gb2 is 0+2+2 = 4 and Gb0 , Gb1

also have rank 4. On the other hand Gb3 has rank 1 + 0 + 2 = 3.

In particular we have the following theorem confirming a conjecture of Schröer.

Theorem 9.19. Let R be a domestic string algebra. The Krull–Gabriel dimension
of the category of R-modules is n + 2 where n is the maximal length of a path in
the bridge quiver of R.

The following is immediate.

Corollary 9.20. If R is a domestic string algebra, then its Ziegler spectrum is a
T0 space.

Moreover, by comparing Theorem 9.19 with [28, Thm. 3], we obtain the following
as a direct corollary.

Corollary 9.21. Let R be a string algebra and let m ∈ N. Then KG(R) = m if

and only if rad
ω(m−1)
R �= 0 and radωm

R = 0.
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