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CONTINUED FRACTIONS WITH SL(2, Z)-BRANCHES:

COMBINATORICS AND ENTROPY

CARLO CARMINATI, STEFANO ISOLA, AND GIULIO TIOZZO

Abstract. We study the dynamics of a family Kα of discontinuous interval
maps whose (infinitely many) branches are Möbius transformations in SL(2,Z)
and which arise as the critical-line case of the family of (a, b)-continued frac-
tions.

We provide an explicit construction of the bifurcation locus EKU for this
family, showing it is parametrized by Farey words and it has Hausdorff di-
mension zero. As a consequence, we prove that the metric entropy of Kα is

analytic outside the bifurcation set but not differentiable at points of EKU and
that the entropy is monotone as a function of the parameter.

Finally, we prove that the bifurcation set is combinatorially isomorphic to
the main cardioid in the Mandelbrot set, providing one more entry to the
dictionary developed by the authors between continued fractions and complex
dynamics.

1. Introduction

It is well-known that the usual continued fraction algorithm is encoded by the
dynamics of the Gauss map G(x) := 1

x − � 1
x�; moreover, the Gauss map is known

to be related, via a Poincaré section, to the geodesic flow on the modular surface
H2/SL(2,Z). In greater generality, the modular group SL(2,Z) is generated by
the transformations Sx := −1/x and Tx := x + 1, and several different continued
fraction algorithms have been constructed by applying the generators according
to different rules (see e.g. [22]). As in the Gauss case, to any such algorithm is
associated an interval map whose branches are Möbius transformations.

Examples of such algorithms are the continued fraction to the nearest integer
going back to Hurwitz [21], as well as the backward continued fraction, which is
related to the reduction theory of quadratic forms [23, 38].

It turns out that the maps generating these algorithms can be seen as members
of a continuous, one-parameter family of interval maps Kα. In this paper we shall
be interested in describing this family Kα from a dynamical point of view: in
particular, we shall identify explicitly the set of bifurcation parameters in terms of
the usual continued fraction expansion and study the metric entropy as a function
of the parameter.
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For each α ∈ [0, 1], the map Kα is defined by fixing a “fundamental interval”
[α−1, α) and at each step applying the inversion S followed by as many translations
T as are needed to come back to the fundamental domain. In particular, K1/2

generates the nearest-integer continued fraction, while K1 generates the backward
continued fraction.

In symbols, for each α ∈ [0, 1], the map Kα : [α− 1, α] → [α− 1, α] is defined by
Kα(0) = 0 and

Kα(x) = − 1

x
− cα(x),

where cα(x) ∈ Z is chosen so that the result lies in [α− 1, α). For each x, the orbit
of x under Kα generates a continued fraction expansion of type

x = − 1

c1 − 1
c2− 1

c3−...

with coefficients cn := cα(K
n−1
α (x)). In recent years, S. Katok and I. Ugarcovici,

following a suggestion of D. Zagier, defined the two-dimensional family fa,b of (a, b)-
continued fraction transformations and studied their dynamics and natural exten-
sions [24, 25]. The maps Kα are the first return maps of fα−1,α on the interval
[α − 1, α) and, as will be explained, they capture all the essential dynamical fea-
tures. Similarly to the Gauss map, each Kα has infinitely many expanding branches
and a unique absolutely continuous invariant measure μα.

The definition of Kα is very similar to the definition of the α-continued fraction
transformations Tα introduced by Nakada [34] and subsequently studied by sev-
eral authors [1, 6, 10, 12, 27, 28, 31, 35], the main difference being that all branches
of Kα are orientation-preserving, while this is not true for Tα. In this paper we
shall use techniques similar to the ones in [10] to study the Kα: as we shall see
in greater detail, this will also highlight the substantial differences in the combina-
torial structures of the respective bifurcation sets. In particular, we shall see that
the bifurcation set of the Kα is canonically isomorphic to the set of external rays
landing on the main cardioid of the Mandelbrot set (while the bifurcation set for
the α-continued fractions Tα was shown to be isomorphic to the real slice of the
Mandelbrot set [6]).

From a dynamical systems perspective, we shall be interested in studying the
variation of the dynamics of Kα as a function of the parameter. As we shall see,
there exist infinitely many islands of “stability”, and each of them corresponds to
a Farey word (see section 2). Namely, to each Farey word w we shall associate an
open interval Jw ⊆ [0, 1] called quadratic maximal interval, or quamterval for short
(see section 4.1); the bifurcation set EKU is defined as the complement of all such
intervals:

EKU := [0, 1] \
⋃

w∈FW

Jw.

The set EKU is a Cantor set of Hausdorff dimension zero (Proposition 4.4). We
shall prove (Theorem 5.1) that on each Jw we have the following matching between
the orbits of α and α − 1: namely, there exist integers m0 and m1 (which depend
only on Jw) such that

(1) Km0+1
α (α− 1) = Km1+1

α (α)

for all α ∈ Jw.
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One way to study the bifurcations of the family Kα is by considering its entropy,
in the spirit of [31]. Indeed, let us define h(α) to be the metric entropy of the map
Kα with respect to the measure μα (see Figure 1).

Figure 1. The entropy of Kα as a function of α, and a sequence
of zooms around a parameter in the bifurcation set EKU . Note
that the slope is increasing in each zoom, due to the fact that the
entropy is not locally Lipschitz at points of EKU (Theorem 1.1).

However, the entropy is globally monotone on [0, 3−
√
5

2 ], as stated
in Theorem 1.2.

We shall prove that the set EKU is precisely the set of parameters for which the
entropy function is not smooth.

Theorem 1.1. The entropy function α �→ h(α)

(1) is analytic on [0, 1] \ EKU ;
(2) is not differentiable (and not locally Lipschitz ) at any α ∈ EKU .

Thus, as the parameter α varies, the dynamics of Kα goes through infinitely
many stable regimes, one for each connected component of the complement of EKU .
We shall prove, however, that the entropy function is globally monotone across the
(Cantor set of) bifurcations. In order to state the theorem, let us note that the graph
of the entropy function is symmetric with respect to the transformation α �→ 1−α,
because Kα and K1−α are measurably conjugate (see equation (28)). Moreover,
it is not hard to see by an explicit computation that the entropy is constant (and

equal to π2

6 log(1+g) ) on the interval [g2, g], where g :=
√
5−1
2 is the golden mean (so

g2 = 1− g = 3−
√
5

2 ).
The main theorem is the following monotonicity result for the entropy h.

Theorem 1.2. The function α �→ h(α) is strictly monotone increasing on [0, g2],
constant on [g2, g], and strictly monotone decreasing on [g, 1].

Note that Theorem 1.2 highlights a major difference with the α-continued frac-
tion case, where the entropy is not monotone [35] in any neighbourhood of α = 0,
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and actually the set of parameters where the entropy is locally non-monotone has
Hausdorff dimension 1 [12]. For the Kα, the study of the metric entropy was in-
troduced by Katok and Ugarcovici in [24], [25], who gave an algorithm to produce
the natural extension for any given element in the complement of EKU ; as a con-
sequence, they computed the entropy in some particular cases. The present work
gives a global approach which makes it possible to study the entropy as a function
of the parameter. The condition in equation (1) was introduced in [24], where it
is called the cycle property, and it is also completely analogous to the matching
condition used by Nakada and Natsui [35] to study the family (Tα).

Finally, we shall prove (Proposition 7.3) that the entropy tends to 0 as α → 0+,
and there its modulus of continuity is of order 1

| logα| (which is the same behaviour

as in the case of α-continued fractions).

1.1. Connection with the main cardioid in the Mandelbrot set. The fact
that each connected component of the complement of EKU is naturally labelled by
a Farey word can be used to draw an unexpected connection between the combi-
natorial structure of EKU and the Mandelbrot set.

Recall that the main cardioid of the Mandelbrot set is the set of parameters
c ∈ C for which the map fc(z) := z2 + c has an attractive or indifferent fixed point.
The exterior of the Mandelbrot set admits a canonical uniformization map, and
to each angle θ ∈ R/Z there corresponds an associated external ray R(θ). Let us
denote Ω to be the set of angles θ for which the ray R(θ) lands on the main cardioid.

Recall that Minkowski’s question mark function Q : [0, 1] → [0, 1] is a homeomor-
phism of the interval which is defined by converting the continued fraction expansion
of a number into a binary expansion. More precisely, if x = [0; a1, a2, a3, . . . ] is the
usual continued fraction expansion of x, then we define

(2) Q(x) := 0. 0 . . . 0︸ ︷︷ ︸
a1−1

1 . . . 1︸ ︷︷ ︸
a2

0 . . . 0︸ ︷︷ ︸
a3

. . . .

We shall prove that Minkowski’s function induces the following correspondence.

Theorem 1.3. Minkowski’s question mark function Q(x) maps homeomorphically
the bifurcation set EKU onto the set Ω of external angles of rays landing on the
main cardioid of the Mandelbrot set. In formulas, we have

Q(EKU ) = Ω.

The connection may seem incidental, but it is an instance of a more general
correspondence discovered by the authors in recent years. Indeed, the Minkowski
map provides an explicit dictionary between sets of numbers defined using continued
fractions and sets of external angles for certain fractals arising in complex dynamics.
More precisely, the question mark function:

(1) maps homeomorphically the bifurcation set for α-continued fractions onto
the set of external rays landing on the real slice of the boundary of the
Mandelbrot set (see [6] and [37], Theorem 1.1);

(2) maps the sets of numbers of generalized bounded type defined in [11] to the
sets of external rays landing on the real slice of the boundary of Julia sets
for real quadratic polynomials ([37], Theorem 1.4);

(3) conjugates the tuning operators defined by Douady and Hubbard for the
real quadratic family to tuning operators corresponding to renormalization
schemes for the α-continued fractions [12].
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For an introduction and more details about such correspondence we refer to one
of the authors’ thesis [37]. The dictionary proves to be especially useful to derive
results about families of continued fractions using the large body of information
known about the combinatorics of the quadratic family; moreover, it can also be
used to obtain new results about the quadratic family and the Mandelbrot set from
the combinatorics of continued fractions (e.g. [37], Theorem 1.6).

Being intimately connected to the structure of Q, Farey words play a distin-
guished role in several other dynamical, combinatorial, or algebraic problems. To
list just a few, we mention: kneading sequences for Lorentz maps [20,29], the coding
of cutting sequences on the flat torus [18] as well as on the hyperbolic one-punctured
torus ([26], pp. 726-727); the Markov spectrum (in particular the Cohn tree, see
[5], p. 201); primitive elements in rank two free groups [16]; the Burrows-Wheeler
transform [32]; digital convexity [7]. For more information we also refer to the
survey [2] or the books [15] and [3].

1.2. Behaviour of (a, b)-continued fractions on the critical line. We conclude
the introduction by explaining in more detail the results of [24, 25] and how they
relate to the present paper. For further details, see also section 7.

In [24], Katok and Ugarcovici consider the two-parameter family of continued
fraction algorithms induced by the maps

(3) fa,b(x) :=

⎧⎨⎩
x+ 1 if x < a,
−1/x if a ≤ x < b,
x− 1 if b ≤ x,

where the parameters (a, b) range in a closed subset P of the plane. The segment

C := {(a, b) : b− a = 1, b ∈ [0, 1]}
is a piece of the boundary of P, and the first return map of fb−1,b on the interval
[b − 1, b) coincides with the map Kb we are going to study (these maps are also

mentioned in [24] under the name “Gauss-like maps” and denoted f̂b−1,b).
Katok and Ugarcovici also consider a closely related family (Fa,b)(a,b)∈P of maps

of the plane: each Fa,b has an attractor Da,b ⊂ R2 such that Fa,b restricted to Da,b

is invertible and it is a geometric realization of the natural extension of fa,b. They
also show that for most parameters in P the attractor Da,b has finite rectangular
structure, meaning that it is a finite union of rectangles. Moreover, all exceptions

to this property belong to a Cantor set Ẽ which is contained in the critical line C
and whose 1-dimensional Lebesgue measure is zero.

It turns out that the set EKU we are considering is just the projection of the set

Ẽ onto the second coordinate, up to a countable set. Making explicit the structure
of EKU allows us to prove that it is not just a zero measure set, but it also has zero
Hausdorff dimension.

Structure of the paper. In section 2 we provide background material on Farey
words in order to establish the properties which are needed to describe the combi-
natorial dynamics of the (a, b)-continued fractions. Then in section 3 we recall basic
facts about continued fractions and define the runlength map RL which passes from
binary expansions to continued fraction expansions. In section 4 we define quamter-
vals and the bifurcation set EKU . Then, we apply all these properties to the case of
(a, b)-continued fractions; in section 5 we determine the combinatorial dynamics of
the orbits of α and α− 1, thus proving that the matching condition holds on each
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quamterval. In section 6 we draw consequences for the entropy function, proving
Theorem 1.2: indeed, we prove that the Cantor set EKU has Hausdorff dimension
zero (Proposition 4.4) and h is Hölder continuous, so it can be extended to a mono-
tone function across the Cantor set. Then, in section 7 we combine the previous
properties with the construction of the attractors given in [24] to prove Theorem
1.1. Finally, in section 8 we establish the connection between the bifurcation set
and the main cardioid in the Mandelbrot set, proving Theorem 1.3. For the sake of
readability, the proofs of some technical lemmas will be postponed to the appendix.

2. Farey words and dynamics

We shall start by constructing the set of Farey words and establishing the prop-
erties which are needed in the rest of the paper. Many of these results appear in
various sources, for instance in the books [2, 3, 15, 30]. For the convenience of the
reader and in order to set up the notation for the rest of the paper, we shall give a
fairly self-contained treatment.

2.1. Alphabets and orderings. An alphabet A will be a finite set of symbols,
which we shall call digits. Given an alphabet A, we shall denote by An the set of
words of length n, by AN the set of infinite words, and by A� :=

⋃
n≥0 An the set

of finite words of arbitrary length. If w is a finite word, then the symbol w will
denote the infinite word given by infinite repetition of the word w.

If w = (ε1, . . . , ε�) ∈ A∗, we shall denote as |w| the length of the word w, i.e.,
the number of digits. Moreover, if we fix a digit a ∈ A, the symbol |w|a will denote
the number of digits in the word which are equal to a. Moreover, given a word
w = (ε1, . . . , ε�) ∈ A∗, we define its transpose to be the word tw with

tw := (ε�, . . . , ε1);

a word which is equal to its transpose is called a palindrome. Moreover, we define
the cyclic permutation operator τ to act on the word w = (ε1, . . . , ε�) as

τw := (ε2, . . . , ε�, ε1).

A total order < on the alphabet A induces, for each n, a total order on the set
An of words of length n by using the lexicographic order, and similarly it induces a
total order on the set AN of infinite words. We shall extend this order to a (partial)
order on the set A∗ of finite words by defining that

u < v if uv < vu.

Note that it is not difficult to check that if u, v ∈ A∗, then the inequality u < v is
equivalent to ū < v̄ (this fact also proves that < is an order relation).

Finally, we shall also define the stronger partial order relation 
 on the set A∗

of finite strings by saying that

u 
 v

if there exist a prefix u1 of u and a prefix v1 of v with |u1| = |v1| and such that
u1 < v1. Note that u 
 v implies u < v, and moreover that any infinite word
beginning with u is smaller than any infinite word beginning with v.

In the following we will mainly be interested in the binary alphabet A := {0, 1},
with the natural order 0 < 1. For ε ∈ {0, 1}, we also define the negation operator
ε̌ := 1− ε, which can be extended digit-wise to binary words: if w = (ε1, . . . , ε�) ∈
{0, 1}∗, we define w̌ := (ε̌1, . . . , ε̌�).
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Every infinite word w = (ε1, ε2, . . . ) ∈ {0, 1}N also corresponds to the unique
real value in [0, 1] which has w as its binary expansion, which will be denoted
by .w :=

∑∞
k=1 εk2

−k; the same is true for finite binary words in {0, 1}∗, which
correspond to dyadic rationals.

2.2. Farey words. We are now ready to define one of the main ingredients of the
paper, namely the set of Farey words. As we shall see, several equivalent definitions
can be given; we shall start with a recursive definition.

For each integer n ≥ 0, we shall construct a list Fn of finite words in the al-
phabet {0, 1}, called a Farey list of level n. Let us start with F0 := (0, 1), the list
consisting of the two one-digit words. For each n, the next list Fn+1 is obtained by
inserting between two consecutive words v, w in the list Fn the concatenation vw.
In formulas, if Fn = (w1, . . . , wk) with each wi a finite word, then the next list is
Fn+1 = (v1, . . . , v2k−1) with

v2i−1 := wi for 1 ≤ i ≤ k,
v2i := wiwi+1 for 1 ≤ i ≤ k − 1.

Definition 2.1. The set of Farey words FW is the union of all Farey lists:

FW :=
⋃
n≥0

Fn.

As an example, the first few Farey lists1 are

F0 = (0, 1),
F1 = (0, 01, 1),
F2 = (0, 001, 01, 011, 1),
F3 = (0, 0001, 001, 00101, 01, 01011, 011, 0111, 1),

and all their elements are Farey words. Note that each Fn contains 2n + 1 ele-
ments, and its elements are in a strictly increasing order. A Farey word will be
called non-degenerate if it has more than one digit: we shall denote the set of non-
degenerate Farey words as FW � = FW \ {0, 1}. These words are also sometimes
called Christoffel words, as in the book [3], or standard words as in [32].

Note moreover that each Farey word is naturally equipped with a standard fac-
torization; indeed, if w is a Farey word, let n be the smallest integer for which w
belongs to Fn; by definition, the word w is generated in the iterative construction
as a concatenation w = w1w2, where w1 and w2 belong to the level Fn−1. Thus,
the decomposition w = w1w2 will be called the standard factorization of w. One
has the following characterization ([3], section 3.1):

Proposition 2.2. Given w ∈ FW , let us consider a decomposition w = w′w′′

where w′, w′′ are non-empty words. Then the following conditions are equivalent:

(1) w′ and w′′ are Farey words;
(2) w = w′w′′ is the standard factorization of w.

We shall now construct a natural correspondence between the set of Farey words
and the set of rational numbers between 0 and 1. Given a word w ∈ {0, 1}∗, let us

1Let us remark that, despite its similarity in name, the Farey lists we defined are different
from the also classical Farey sequences, which are defined as the set of rational numbers with a
bound on the denominator. In fact, if one converts a Farey list to a set of rationals using the map
of Proposition 2.3, the resulting set of rationals is in general not a Farey sequence.



4934 CARLO CARMINATI, STEFANO ISOLA, AND GIULIO TIOZZO

define the rational number ρ(w) to be the ratio between the number of occurrences
of the digit 1 and the total length of the word:

ρ(w) :=
|w|1
|w| .

Clearly, 0 ≤ ρ(w) ≤ 1. Moreover, we have the following correspondence.

Proposition 2.3. The map ρ : FW → Q ∩ [0, 1] is a bijection between the set of
Farey words and the set of rational numbers between 0 and 1.

In the rest of this section we shall prove Proposition 2.3 and meanwhile establish
more properties of Farey words. In particular, we shall see how to construct an
inverse of ρ, i.e., to produce a Farey word given a rational number.

Let r := p
q ∈ [0, 1] be a rational number, with (p, q) = 1, and consider the 1-

dimensional torus R/Z, with the marked point x0 = 0. Let Cq := {x ∈ R/Z :
qx ≡ 0 mod 1}. For each x ∈ Cq, we shall define the binary word Φr(x) ∈ {0, 1}q
using the dynamics of the circle rotation

Rr(x) := x+ r mod 1.

The word Φr(x) will be constructed as follows: starting at x, we successively
apply the rotation R = Rr and each time we write down 1 if we cross the x0 mark,
and 0 otherwise. More precisely, we define Φr(x) := (ε1, . . . , εq), where, for each k
between 1 and q, the kth digit εk is given by

εk :=

{
0 if x0 /∈ (Rk−1(x), Rk(x)],
1 if x0 ∈ (Rk−1(x), Rk(x)].

It is immediate to check that one can also write the formula

(4) εk = �x+ kr� − �x+ (k − 1)r� for 1 ≤ k ≤ q.

An equivalent way to describe Farey words is as cutting sequences of straight lines
with respect to a square grid: see Figure 2 and section 2.3.

Note that the map Φr intertwines the rotation with the cyclic permutation τ ,
i.e.,

Φr ◦Rr = τ ◦ Φr.

The map Φr(x) is (weakly) increasing for 0 ≤ x ≤ 1 and is constant on connected
components of Cq; we will be particularly interested in the word Wr defined as

Wr := Φr(0
+) = lim

x→0+
Φr(x).

Lemma 2.4. The map W : Q ∩ [0, 1] → {0, 1}� is a right inverse of ρ; that is, for
each r ∈ Q ∩ [0, 1] we have

ρ(Wr) = r.

Proof. Since all digits of Wr are either 0 or 1, the number of 1 digits of Wr is just
the sum of the digits, so by using equation (4) we get the telescoping sum:

|Wr|1 = ε1 + · · ·+ εq =

q∑
k=1

(�kr� − �(k − 1)r�) = �qr� = p,

so ρ(Wr) = |Wr|1/|Wr| = p/q = r. �
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Figure 2. The word Φr(x) can also be interpreted as the period of
the cutting sequence determined by a straight line of slope r passing
through (0, x), where the digit 1 corresponds to the case when this
line cuts some horizontal boundary of the unitary tiling, while the
digit 0 corresponds to the case when the line cuts the vertical sides
of a square tile (see right figure for a legend). Thus, Wr is the
cutting sequence of a line of slope r which crosses the y-axis just
above 0. The same can also be considered for a straight line with
irrational slope: in this case the cutting sequence generated is not
periodic but has low complexity and is called a Sturmian sequence
(see section 2.3).

A pair (r, r′) of rational numbers r := p
q and r′ := p′

q′ with gcd(p, q)=gcd(p′, q′)=

1 and pq′ − p′q = 1 is called a Farey pair; the Farey sum of a Farey pair is defined
as

r ⊕ r′ :=
p+ p′

q + q′
.

It is easy to check that r ⊕ r′ lies in between r and r′; that is, if r < r′ we have

(5) r < r ⊕ r′ < r′.

Moreover, if we let r, r′ be a Farey pair with r < r′, then we have the identity

(6) Wr⊕r′ = WrWr′ ,

where on the right-hand side we mean the concatenation of Wr and Wr′ . In fact,
the map ρ is a bijection between the tree of Farey words and the tree of Farey
fractions (see Figure 3).

Proof of Proposition 2.3. By Lemma 2.4, the function ρ is surjective, and moreover
its restriction to the set

Im W := {Wr : r ∈ Q ∩ [0, 1]}
is a bijection between Im W and Q ∩ [0, 1]. Therefore, we just need to show that
the set Im W coincides with the set FW of all Farey words. Now, since W0 = 0
and W1 = 1, the elements of the Farey list F0 = (0, 1) belong to Im W , and note
that (0, 1) is a Farey pair. Thus, by induction using identity (6), for each n the
elements of the list Fn belong to Im W , so all Farey words belong to Im W . Since
it is well-known that every rational number can be obtained from 0 and 1 by taking
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Figure 3. The tree structure of Farey words and its corresponding
tree of rational numbers, which is known as the Farey tree.

successive Farey sums of Farey pairs, then Wr is a Farey word for any rational
numbers r ∈ [0, 1], and the claim is proven. �

For w = (ε1, . . . , ε�) ∈ {0, 1}∗ we set
∨w := (ε̌1, ε2, . . . , ε�), w∨ := (ε1, . . . , ε�−1, ε̌�).

We shall now see Farey words have many symmetries, arising from the symmetries
of the dynamical system Rr.

Proposition 2.5. If w = Wr is a Farey word, then:

(a) the word tw̌ is still a Farey word: in particular,

W1−r = tw̌;

(b) moreover, we have the identity

Φ1−r(0
−) = w̌

(c) and
Φr(0

−) = ∨w∨ = tw;

(d) both ∨w and w∨ are palindromes;
(e) finally, we have

tw < ∨w.

As an example, let us pick w = W2/5 = 00101. One can check that ∨w = 10101
and w∨ = 00100 are both palindromes, and ∨w∨ = 10100 equals the transpose of
w. Finally, the word tw̌ = 01011 is also a Farey word (= W3/5).

Proof. (a) Let us note that considering the rotation R1−r instead of Rr is equivalent
to inverting the direction (clockwise or counterclockwise) of the rotation. Thus, for
each x ∈ Cq, the first q+1 elements of the orbit of x under Rr are the same as the
first q + 1 elements of the orbit of x under R1−r, but the order of visit is reversed

(in symbols, Rk
r (x) ≡ Rq−k

1−r (x) mod 1 for 0 ≤ k ≤ q), which proves the claim.
(b) This identity relies on the fact that the circle is symmetric under reflection

σ(x) := −x mod 1; indeed, for each x the orbit of x under Rr is the reflection of
the orbit of 1−x under R1−r (in symbols, Rk

r (x) ≡ −Rk
1−r(−x) mod 1), while the

marked point x0 = 0 is fixed by σ.
(c) The first equality follows by noting that the iterates Rk

r (0) encounter a dis-
continuity of the function �·� if and only if k ≡ 0 mod q; thus, changing the starting
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point x from 0+ to 0− only affects the first and last digits of Φr(x). For the second
equality, denote v := Φ1−r(0

+) = tw̌; we have by (b) and then (a)

Φr(0
−) = v̌ = tw.

(d) follows immediately from (c): indeed we have

t(∨w) = (tw)∨ = (∨w∨)∨ = ∨w,

where the first and third equalities are elementary, and the second one uses (c); a
completely analogous proof works for w∨.

(e) Applying (c) and using the fact that the last digit of each (non-zero) Farey
word is 1, we get

tw = ∨w∨ < ∨w.

�

It will be crucial in the following to study the ordering of the set of cyclic
permutations of a given Farey word. The essential properties are contained in
the following lemma.

Lemma 2.6. Let w = Wr be a Farey word, and consider the set

Σ(w) := {τkw : k ∈ N}
of its cyclic permutations. Moreover, let w = w1w2 be the standard factorization of
w, and let q1 := |w1|, q2 := |w2|. Then the following are true:

(1) the smallest cyclic permutation of w is w itself (i.e., minΣ(w) = w);
(2) the second smallest cyclic permutation of w is

τ q1w = w2w1;

(3) the largest cyclic permutation of w is

τ q2w = tw.

Proof. Let us start by noting that if w = Φr(x), then the set of cyclic permutations
of w is given by

{τkw : 0 ≤ k < q} = {Φr(R
k
r (x)) : 0 ≤ k < q};

moreover, since the map Φr is increasing, the order in the above set is the same as
the order in the set

Sr(x) := {{x+ kr} : 0 ≤ k < q}.
Thus, the smallest cyclic permutation of w = Wr corresponds to the smallest
possible value of {kr}, which is attained for k = 0, hence by w = Φr(0

+) itself,
proving (1).

Moreover, let w = w1w2 be the standard factorization of w. Then by definition
we have w = Wr, while w1 = Wr1 and w2 = Wr2 , in such a way that (r1, r2) is a
Farey pair, with r1 < r2 and r := r1 ⊕ r2. Note now that, writing r1 = p1

q1
and

r2 = p2

q2
, we have p2q1−p1q2 = 1 by the definition of Farey pair; hence we can write

(7) q1(p1 + p2) ≡ 1 mod (q1 + q2).

Thus, the second smallest element of Sr(0) is attained for k = q1; hence the second
smallest element of Σ(w) is τ q1w = w2w1, proving (2).



4938 CARLO CARMINATI, STEFANO ISOLA, AND GIULIO TIOZZO

Finally, the largest element of the set Σ(w) is τkw, where k is such that {kr} =
1 − 1

q ; thus, the corresponding word is Φr(0
−), which equals tw by Proposition

2.5(c). Moreover, from equation (7) one also gets

q2(p1 + p2) ≡ −1 mod (q1 + q2);

hence {q2r} = 1− 1
q , so the largest element of the set Σ(w) is τ q2w. �

Let us now state one more consequence of the previous lemma, in terms of
ordering of subsets of the circle. Recall the doubling map D : R/Z → R/Z is
defined as D(x) := 2x mod 1. We say that a finite set X ⊆ S1 has rotation number
r = p

q ∈ Q if it is invariant for the doubling map, and the restriction of D to X is

conjugate to the circle rotation Rr via an orientation-preserving homeomorphism
of S1. More concretely, this means that if we write the elements of X in cyclic
order as X = (θ0, θ1, . . . , θq−1) with 0 ≤ θ0 < θ1 < · · · < θq−1 < 1, then we have
for each index i,

D(θi) = θi+p,

where the index i + p is taken modulo q. The proof of the previous lemma also
yields the following (uniqueness follows from [17], Corollary 8):

Lemma 2.7. Let w = Wr be a Farey word. Then the set

C(w) = {0.τkw : 0 ≤ k ≤ q − 1} ⊆ S1

is the unique subset of S1 which has rotation number r for the doubling map.

For an example, if w = 00101, then C(w) = ( 5
31 ,

9
31 ,

10
31 ,

18
31 ,

20
31 ) (see also Figure 10).

Recall that a word w ∈ {0, 1}∗ which is minimal (with respect to lexicographic
order) among all its cyclic permutations is also called a Lyndon word ; hence prop-
erty (1) of Lemma 2.6 can be paraphrased as saying that every Farey word is a
Lyndon word (but not vice versa: e.g. 0011 is a Lyndon word but not a Farey
word). Let us recall that all Lyndon words of length greater than 1 begin with the
digit 0 and end with the digit 1; moreover one has the following (see [30]):

Proposition 2.8. If w = ps is a Lyndon word (in particular, if w is a Farey
word), then w 
 s.

2.3. Infinite cutting sequences and Sturmian sequences. Let us now extend
the construction of Wr to irrational values of r. Given a number r ∈ (0, 1), which
we interpret as the slope of a straight line (see Figure 2), we define its upper cutting
sequence as the infinite binary sequence

W+
r := lim

s∈Q,s→r+
Ws.

It turns out that W+
r can also be obtained by the formula

W+
r = (�(n+ 1)r� − �nr�)n≥0.

Note that the above definition also makes sense for r ∈ Q, and in that case it
produces the infinite repetition of the finite word Wr, i.e., W

+
r = Wr. Moreover,

we define the lower cutting sequence of slope r as the infinite word

W−
r := lim

s∈Q,s→r−
Ws.

The two maps W+,W− : (0, 1) → {0, 1}N are both strictly increasing and con-
tinuous on the irrationals; moreover, W−

r < W+
r if r ∈ Q, while W−

r = W+
r if



CONTINUED FRACTIONS WITH SL(2, Z)-BRANCHES 4939

r /∈ Q. Note moreover that if r is rational, then by Proposition 2.5(c) one has

W−
r = ∨(tWr), where

∨w denotes the operation of switching the first digit of the
word w. As an example, if r = 2

5 , then W+
r = 00101, while W−

r = 001001.
We will be especially interested in the set

C := W+((0, 1)),

i.e., the closure of the image of W+, which we call the set of cutting sequences. By
the above properties one gets the decomposition

(8) C = S0 \
⋃

r∈Q∩(0,1)

Ar,

where S0 is the set of infinite binary sequences beginning with 0, while Ar := {σ ∈
S0 : W−

r < σ < W+
r } and the union is disjoint.

The set C is closely connected to the set of Sturmian sequences widely studied
in the literature (see e.g. [30], Chapter 2). In fact, the set Cirr := W+((0, 1) \ Q)
of cutting sequences of irrational slopes is characterized by the property

Cirr = {0S : S is a characteristic Sturmian sequence}.

2.4. Substitutions. Another way to generate Farey words is by substitutions.

Given a pair of words U =

[
u0

u1

]
∈ {0, 1}∗ × {0, 1}∗ we can define the substi-

tution operator associated to U to be the operator acting on {0, 1}∗ (or on {0, 1}N)
as

w = (ε1, ε2, . . . ) �→ (uε1 , uε2 , . . . );

the action of U on w will be denoted by w�U . Let us note that if u0 < u1, then the
operator is order-preserving, while if u0 > u1 it is order-reversing. Moreover, the

negation operator can be obtained as the substitution associated to V :=

[
(1)
(0)

]
.

We can also extend the substitution operator to pairs of words: if U =

[
u0

u1

]
and

W =

[
w0

w1

]
let us define U � W :=

[
u0 � W
u1 � W

]
; in this way we get the following

associativity property, that for each word w we have

(9) (w � U) � W = w � (U �W ).

Finally, the substitution and transposition operators are compatible, in the sense
that

(10) t(w � U) = tw � tU where tU :=

[
tu0
tu1

]
.

It turns out that one can produce all (non-degenerate) Farey words by successive
iteration of two substitution operators, starting with the word w0 = (01). Namely,
let us define the two substitution operators

U0 :

{
0 �→ 0
1 �→ 01,

U1 :

{
0 �→ 01
1 �→ 1.

It is not difficult to realize that the action of U0 and U1 preserves the set of Farey
words. More precisely, let us set F ∗

n := Fn \ {(0), (1)},
FW0 := {w ∈ FW ∗ : |w|0 > |w|1}, FW1 := {w ∈ FW ∗ : |w|0 < |w|1},
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and F ε
n := Fn ∩ FWε (note that, by Proposition 2.3, for each n ≥ 2 one has

F �
n = F 0

n ∪ {(01)} ∪ F 1
n). The following properties easily follow by induction.

Proposition 2.9. For each ε = 0, 1, the operator Uε : F ∗
n → F ε

n+1 is a bijection.
Moreover, for all n ≥ 1, the following characterization holds:

F ∗
n = {(01) � Uε1 � · · · � Uε� : εk ∈ {0, 1}, 0 ≤ 	 < n} .

3. Regular continued fraction expansions

Let us first fix some notation regarding the classical continued fractions expan-
sions. Any irrational number admits a unique infinite continued fraction expansion,
which will be denoted as

x = a0 +
1

a1 +
1

a2 + · · ·

= [a0; a1, a2, . . . ]

with ak ∈ Z ∀k and ak ≥ 1 ∀k ≥ 1. Moreover, any rational value r admits exactly
two finite expansions; indeed, we can write

r = [a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1]

with an ≥ 2. Any non-empty string of positive integers S = (a1, . . . , an) defines
a rational value r = [0; a1, . . . , an] ∈ (0, 1], which we will sometimes denote as
r = [0;S].

We then define the right conjugate of S to be the only string S′ which defines
the same rational value as S, i.e., such that [0;S′] = [0;S]. For instance (3, 1, 3)′ =
(3, 1, 2, 1) and vice versa (conjugation is involutive and affects only the last one or
two digits). We also define the left conjugate ′S of a (finite or infinite) string S in a
similar way, just acting on the leftmost digits: that is, if S = (a1, a2, . . . ) we define

′S :=

{
(1, a1 − 1, a2, . . . ) if a1 ≥ 2,
(1 + a2, a3, . . . ) if a1 = 1.

Thus, the left conjugate of (3, 1, 3) will be ′(3, 1, 3) = (1, 2, 1, 3). It is not difficult
to check that this manipulation on strings translates into the map σ : [0, 1] → [0, 1]
defined as σ(x) := 1 − x on the side of continued fraction expansions; namely, for
any string of positive integers we have

(11) σ([0;S]) = [0; ′S].

Another operation on strings we shall often use in the following is the operator ∂
defined on (finite or infinite) strings as

∂(a1, a2, . . . ) :=

{
(a1 − 1, a2, . . . ) if a1 > 1,
(a2, . . . ) if a1 = 1.

We shall sometimes also use the transposition: the transpose string of S =
(a1, . . . , a�) is the string tS = (a�, . . . , a1). Finally, if S is a finite string of positive
integers we will denote by q(S) the denominator of the rational number whose c.f.

expansion is S, i.e., such that p(S)
q(S) = [0;S] with (p(S), q(S)) = 1, q(S) > 0.

Let us also recall the well-known estimate

(12) q(S)q(T ) ≤ q(ST ) ≤ 2q(S)q(T ).
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Moreover, we define the map fS : x �→ S · x, which corresponds to appending
the string S at the beginning of the continued fraction expansion of x. That is, if
S = (a1, . . . , an) we can write, by identifying matrices with Möbius transformations,

(13) S · x :=

(
0 1
1 a1

)(
0 1
1 a2

)
. . .

(
0 1
1 an

)
· x.

It is easy to realize that concatenation of strings corresponds to composition, namely
(ST ) · x = S · (T · x). Moreover, the map fS is increasing if |S| is even, decreasing
if |S| is odd. The image of fS is a cylinder set

I(S) := {x = S · y, y ∈ [0, 1]},
which is a closed interval with endpoints [0; a1, . . . , an] and [0; a1, . . . , an + 1]. The
map fS is a contraction of the unit interval, and it is easy to see that

(14)
1

4q(S)2
≤ |f ′

S(x)| ≤
1

q(S)2
∀x ∈ [0, 1]

and that the length of I(S) is bounded by

(15)
1

2q(S)2
≤ |I(S)| ≤ 1

q(S)2
.

Given two strings of positive integers S = (a1, . . . , an) and T = (b1, . . . , bn) of
equal length, let us define the alternate lexicographic order as

S < T if ∃k ≤ n s.t. ai = bi ∀1 ≤ i ≤ k − 1 and

{
an < bn if n even,
an > bn if n odd.

The importance of such order lies in the fact that given two strings of equal length
S < T iff [0;S] < [0;T ]. In order to compare quadratic irrationals with periodic
expansion, the following string lemma ([10], Lemma 2.12) is useful: for any pair of
strings S, T of positive integers, we have the equivalence

(16) ST < TS ⇔ [0;S] < [0;T ].

The order < is a total order on the strings of positive integers of fixed length; to
be able to compare strings of different lengths we define the partial order

S 
 T if ∃i ≤ min{|S|, |T |} s.t. Si
1 < T i

1,

where Si
1 = (a1, . . . , ai) denotes the truncation of S to the first i characters. Let us

note the following basic properties:

(1) if |S| = |T |, then S < T iff S 
 T ;
(2) if S, T, U are any strings, S 
 T ⇒ SU 
 T, S 
 TU ;
(3) if S 
 T , then S · z < T · w for any z, w ∈ (0, 1).

3.1. Farey legacy. We shall now see how to construct, using continued fractions,
an irrational number given a binary word; this way, starting from the set of Farey
words we shall define the fractal subset EKU of the interval and establish its prop-
erties from the properties of Farey words we obtained in the previous sections.

Indeed, let us define the runlength map RL to be the map which associates to
a (finite or infinite) binary word w the string of positive integers which records the
size of blocks of consecutive equal digits: namely, if

w = 0 . . . 0︸ ︷︷ ︸
a1

1 . . . 1︸ ︷︷ ︸
a2

. . .
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we set
RL(w) := (a1, a2, . . . ).

For instance, RL(0001001001) = RL(1110110110) = (3, 1, 2, 1, 2, 1). Note that RL
is a two-to-one map (RL(w) = RL(w̌)), but it is strictly increasing when restricted
to words beginning with the digit 0. If S = RL(w) for some |w| > 1, then

(17) RL(∨w) = ′S, RL(w∨) = S′.

Note also that if w = w0w1 and the last digit of w0 is different from the first of w1,
then one has

RL(w) = RL(w0)RL(w1)

(note this is always the case when wi are non-degenerate Farey words). For the
runlength string of Farey words some more nice properties hold.

Lemma 3.1. Let w ∈ FW ∗ be a Farey word and let S := RL(w). Then the length
|S| is even and

(i) there exists an integer a ≥ 1 and a Farey word f = (ε1, . . . , εn) such that
one can write

S = Bε1 . . . Bεn

with
B0 = (a+ 1, 1), B1 = (a, 1) if w ∈ FW0

or
B0 = (1, a), B1 = (1, a+ 1) if w ∈ FW1.

The Farey word f is unique as long as w = (01); since it plays a central role
in the following, it will be referred to as the Farey structure of the string
S.

(ii) The runlength of the Farey word tw̌ is

RL(tw̌) = ′S′ = tS;

(iii) if S = (a1, . . . , a�) and 1 ≤ k < 	/2, we set Pk := (a1, . . . , a2k), Sk :=
(a2k+1, . . . , a�) (so that S = PkSk), then

(18) S 
 Sk;

(iv) using the same notation as above, if w ∈ FW0, then

(19) SkPk 
 ∂S.

Proof. (i) Recall that FW ∗ = FW0 ∪ (01) ∪ FW1. Clearly, for w = (01) we have
S = RL(w) = (1, 1), so a = 1, and we can choose f = (0) or f = (1). Let us now
assume w ∈ FW0. Then by Proposition 2.9 we can write

(20) w = f � U1 � U
a
0

for some f = (ε1, . . . , ε�) ∈ FW and a ≥ 1. On the other hand U1 � Ua
0 =[

(0a+11)
(0a1)

]
and RL(0a1) = (a, 1), so, calling B0 := (a + 1, 1) and B1 := (a, 1)

we get that S is the concatenation Bε1 . . . Bε� . Note that since the image of U0

is contained in FW0 and the image of U1 is contained in FW1 (Proposition 2.9),
the factorization of equation (20) is unique; hence also the Farey structure of S is
unique. The case w ∈ FW1 is analogous.

(ii) The second claim is an immediate consequence of equation (17) and the fact
that ∨w∨ = tw, together with the fact that RL(w̌) = RL(w).
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(iii) It follows from Proposition 2.8 and the fact that the runlength map preserves
the strong order 
 when restricted to words which begin with 0.

(iv) By unwinding the definitions it is not hard to see that if w ∈ FW0, we can
write the identities

S = RL(f � U1 � U
a
0 ),

∂S = RL((∨f) � U1 � U
a
0 ),

SkPk = RL((τkf) � U1 � U
a
0 ).

Moreover, by Proposition 2.5(e) and Lemma 2.6(3) we have

∨f � tf ≥ τkf ∀k;
hence the claim follows from the fact that both the substitution operator f �→
f �U1 �U

a
0 and the runlength map (when restricted to words beginning with 0) are

order-preserving. �

For x ∈ [0, 1/2] we shall consider the map φ : [0, 1/2] → [0, 1] induced by
runlength as follows: if x =

∑
j≥1 εj2

−j is the binary expansion of x, with εj ∈
{0, 1}, then we define φ(x) to be the number with continued fraction

φ(x) := [0;RL(ε)],

where RL(ε) is the runlength of the sequence (εj)j≥1. This map is certainly well-
defined for those values of x which admit a unique (and infinite) binary expansion;
in fact, it also extends continuously to dyadic rationals, since the two binary ex-
pansions of a dyadic rational are mapped onto two continued fraction expansions
of the same rational. For instance, if x = 3

8 = 0.011, then φ(x) = [0; 1, 2] = 2
3 ; on

the other hand, we can write 3
8 = 0.0101, which maps to [0; 1, 1, 1,∞] = 2

3 . It is
not difficult to check that this map is a homeomorphism between [0, 1/2] and [0, 1].
The inverse of φ is essentially Minkowski’s question mark function Q defined in (2)
in the introduction. In fact, one has for each x ∈ [0, 1/2],

(21) Q(φ(x)) = 2x.

4. The bifurcation set EKU

4.1. Quamtervals. We now associate to any Farey word w an interval Jw by
choosing as its endpoints the points whose coding is the upper and lower cutting
sequence. As the endpoints are quadratic irrationals, such an interval will be called
a quadratic maximal interval, or quamterval.

Definition 4.1. Let w = Wr be a Farey word, with r ∈ (0, 1). We define the
quamterval of label w to be the interval Jw with endpoints

(22) Jw = (α−, α+) with
α+ := φ(.W+

r ),
α− := φ(.W−

r ).

In terms of regular continued fractions, by unraveling the definition and using
equation (17) and Lemma 3.1, we get that if S = RL(w), then

α+ = [0;S],

α− = [0;S′tS].

As an example, the Farey word w = 001 yields S = (2, 1); hence α+ = [0; 2, 1] =√
3−1
2 and α− = [0; 3, 1, 2] = 2−

√
3. The rational value s := [0;S] is the (unique!)

rational value in Jw with least denominator and will be called the pseudocenter of
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Figure 4. The quadratic intervals J̃s. Each interval is represented
by a half-circle with the same endpoints. The intervals which are
maximal with respect to inclusion are precisely the connected com-
ponents of the complement of the bifurcation set EKU .

Jw (see [10] for more general properties of the pseudocenter of an interval). Note
that by using equation (11) and Lemma 3.1(ii), the left endpoint α− can also be
described by the property

(23) 1− α− = [0; tS].

We now define the bifurcation set EKU as the complement of the quamtervals:

(24) EKU := [0, 1] \
⋃

w∈FW∗

Jw.

By comparing with equation (8), one gets that EKU is the set of points whose
continued fraction expansion equals the runlength of a cutting sequence.

Lemma 4.2. The set EKU has measure zero (hence, it has empty interior).

Proof. Let σ ∈ C be a cutting sequence. Then σ is either periodic or Sturmian:
in either case, the maximum length of a block of consecutive equal digits in σ is
bounded. By definition of runlength, this implies that every element of EKU has
bounded continued fraction coefficients. The claim follows by recalling that the set
of numbers with bounded continued fraction expansion has measure 0. �

4.2. Thickening Q. We shall now perform an alternative construction of EKU

which is not essential for the main results of this paper, but it is useful for a
comparison with the results in [10]. Given any rational value s ∈ (0, 1), let us
consider its continued fraction expansion of even length s = [0;S]; then set β(s) :=
[0;S] and

J̃s := (σβ(σs), β(s)).

Since β(s) > s and σ is order-reversing, we can easily see that the J̃s is an open

interval containing s, and in fact s is the pseudocenter of J̃s. For all w ∈ FW ∗ we

have that Jw = J̃s for s = φ(.w). Indeed quamtervals have the following maximality
property (which will be proven in the appendix).

Proposition 4.3. For any s′ ∈ Q ∩ (0, 1) there is a Farey word w ∈ FW ∗ such

that J̃s′ ⊂ Jw.

As a consequence of the above proposition one gets the identity

(25) EKU = [0, 1] \
⋃

s∈Q∩(0,1)

J̃s.

Let us now compute the dimension of EKU .
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Proposition 4.4. The Hausdorff dimension of EKU is zero:

H.dim EKU = 0.

Proof. We shall actually prove the stronger statement that for each N ≥ 2 the set
EKU ∩ [ 1

N+1 ,
1
N ] has zero box-counting dimension. The claim then follows since

the box-counting dimension is an upper bound for the Hausdorff dimension. Fix
N ≥ 2, set

CN :=

{
w ∈ FW0 : Jw ∩

[
1

N + 1
,
1

N

]
= ∅

}
,

and consider the geometric ζ-function defined by

ζN (t) :=
∑

w∈CN

|Jw|t.

Since the abscissa of convergence of the series ζN coincides with the upper box
dimension of EKU ∩ [ 1

N+1 ,
1
N ] (see [14], p. 54), it is enough to prove that the above

series converges for any t > 0. Now, it is not hard to prove that, for all N ≥ 2, one
has

(26) |Jw| < 2 b|w| ∀w ∈ CN , where b := N− 2
N+1 .

Indeed, it is easy to check that

|s− β(s)| = |S · 0− S · β(s)| ≤ sup |f ′
S |β(s) ≤

1

q(S)2
,

where the last inequality is a consequence of equation (14). Since an analogous
estimate holds for the distance between s and the left endpoint, one gets

(27) |Jw| <
2

q(S)2
.

On the other hand, if w ∈ CN , then S = RL(w) is a concatenation of n blocks of
the type B0 := (N, 1) or B1 := (N − 1, 1), where n(N +1) < |w|. Thus we get that

q(S) = q(Bε1 · · ·Bεn) ≥ q(Bn
1 ) ≥ q(B1)

n,

and since q(B1) ≥ N we get q(S) ≥ N
|w|
N+1 . Thus (26) follows from this last estimate

and equation (27). Since #{w ∈ FW : |w| = k} ≤ k, the estimate (26) implies
that ζN is dominated by the sum 2t

∑∞
1 kbtk; therefore it converges for all t > 0,

proving the claim. �
Finally, the following lemma will be needed in section 7.2.

Lemma 4.5. Let w∞ be a Sturmian sequence which begins with 00. Then

lim inf
w∈FW∗,w→w∞

(|w|0 − |w|1) = +∞.

If x ∈ EKU ∩ [0, 1− g), then the following limit is infinite:

lim
δ→0

inf{|w|0 − |w|1 : Jw ⊂ [x− δ, x+ δ]} = +∞.

Proof. Indeed, note that setting ρ := ρ(w) we can rewrite |w|0−|w|1 = |w|(1−2ρ).
Thus, if wn is a sequence of Farey words such that wn → w∞, then ρ(wn) tends
to a finite number which is < 1

2 if w starts with the digits 00, while |w| tends to
infinity. Hence the liminf of the product is infinite.

For the second statement it is enough to recall that EKU is the set of points
whose continued fraction expansion equals the runlength of a Sturmian sequence.
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So if x ∈ [0, 1− g) ∩ EKU , then x corresponds to a Sturmian sequence w∞ starting
with 00, and the claim easily follows from the previous point. �

5. Matching intervals for continued fractions

with SL(2,Z)-branches

Let us return to the maps Kα : [α − 1, α] → [α − 1, α] which are defined by
Kα(0) = 0 and

Kα(x) = − 1

x
− cα(x), cα(x) :=

⌊
− 1

x
+ 1− α

⌋
∈ Z.

The goal of this section is to prove that a matching condition between the orbits
of the endpoints α and α− 1 is achieved for any parameter which belongs to some
quamterval (Theorem 5.1 and Corollary 5.2). In order to formulate the result
precisely, we need some notation.

Recall that the group PSL(2,Z) acts on the real projective line by Möbius

transformations. Indeed, if A =

(
a b
c d

)
and x ∈ R ∪ {∞}, then we shall write

Ax := ax+b
cx+d . The group PSL(2,Z) is generated by the two elements S and T,

which are represented by the matrices

S :=

(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
and act respectively as the inversion Sx := −1/x and the translation Tx := x+ 1.
For any fixed α ∈ (0, 1), the map Kα is just given by the inversion followed by
an integer power of the translation which brings the point back to the interval
[α− 1, α]. Thus, each branch of Kα(x) is represented by the map x �→ T−cα(x)Sx.
Now, in order to keep track of the inverse branches of the powers of Kα, we shall
now use the notation cj,α(x) := cα(K

j−1
α (x)) for each positive integer j and define

the matrices

Mα,x,� :=

(
0 −1
1 c1,α(x)

)
· · ·

(
0 −1
1 c�,α(x)

)
.

Note that these matrices represent the inverses of Kα, in the sense that

Mα,x,�(K
�
α(x)) = x

for each α ∈ [0, 1], x ∈ [α − 1, α], 	 ∈ N. Finally, note that the family Kα possesses
the following fundamental symmetry: the maps Kα and K1−α are measurably
conjugate; namely, one has

(28) Kα(x) = −K1−α(−x)

for all x ∈ [α − 1, α] \
⋃

k∈Z
1

k−α (the countable set of exceptions is due to the

convention about the floor function). As a consequence, it is sufficient to study the
dynamics for α ∈ [0, 1/2].

We are now ready to formulate the main result of this section.

Theorem 5.1. Let w ∈ FW ∗ be a Farey word, let m0 := |w|0,m1 := |w|1, and let
Jw be the corresponding quamterval. Moreover let S := RL(w) denote the runlength
of S and let s := [0;S] be the pseudocenter of Jw. Then there exist two elements
M,M′ ∈ PSL(2,Z) such that, for all α ∈ Jw, we have the equalities

(29)
Mα,α−1,m0

= M,
Mα,α,m1

= M′.
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Moreover, the following matching condition holds:

(30) TM = M′ST
−1

S.

The matching condition (30) implies the following identification between the
orbits of the two endpoints α and α− 1.

Corollary 5.2. For each parameter α ∈ Jw we have the identity

(31) Km0+1
α (α− 1) = Km1+1

α (α).

Note that (29) implies that the first m0 steps of the (symbolic) itinerary of α−1
is constant for all α in the same quamterval, and the same is true for the first m1

steps of the orbit of α. A condition of this kind is called a strong cycle condition
in [24]; see section 7 for a more detailed comparison.

As an illustration of Theorem 5.1, let us consider the case α ∈ Jw with w = 01.
It turns out that for every α ∈ J01 = (g2, g) the following identity holds:

(32) K2
α(α) = K2

α(α− 1) ∀α ∈ (g2, g).

Indeed, this is due to the fact that the analytic expression of Kα at the endpoints
does not change as α ∈ J01. In this simple case in fact we can work out the explicit
form of Kα, and we get

Kα(α) = T2Sα =
2α− 1

α
, Kα(α− 1) = T−2S(α− 1) =

2α− 1

1− α
,

whence we have M = ST2 and M′ = ST−2, and we can check that

TM =

(
1 1
1 2

)
= M′ST−1S,

which is an instance of equation (30). Note that the essential point is that the
matrices M and M′ do not depend on the particular α as long as α belongs to
Jw; thus, the matching condition is just an identity between elements of the group
PSL(2,Z). However, to different matching intervals Jw there correspond different
identities in the group.

The proof of Theorem 5.1 follows from an explicit description of the symbolic
orbits of α and α − 1 in terms of the regular continued fraction expansion of the
pseudocenter of Jw, as stated in the following proposition.

Proposition 5.3. Let w ∈ FW0 (hence Jw ⊂ (0, 1/2)), denote m := |w|0 and
n := |w|1, and let RL(w) = (a1, 1, . . . , an, 1) be the associated string of positive
integers. Then for each α ∈ Jw we have the identities

(33)
Mα,α−1,m = M,
Mα,α,n = M′,

where the above matrices are constructed as

(34)
M := (ST2)a1T(ST2)a2T · · · (ST2)an−1T(ST2)an ,
M′ := ST−a1−1ST−a2−2 · · ·T−an−1−2ST−an−2.

Let us point out that in the special case n = 1 we have RL(w) = (N, 1) for some
N ≥ 1, and the above equations must be interpreted as yielding M = (ST2)N ,

M′ = ST−N−1. Moreover, as a consequence of the proposition, the matrices deter-
mining matching conditions behave well under concatenation. Indeed, if the Farey
word w is the concatenation of two Farey words w′ and w′′, then the left-hand side
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of the matching condition on Jw is the concatenation of the left-hand sides of the
matching conditions of Jw′ and Jw′′ .

Before delving into the core of the proofs of Proposition 5.3 and Theorem 5.1 let
us make some elementary observations and define some more notation. The action
of both S and T can be easily expressed in terms of regular continued fraction
expansion; thus the action of Kα on the regular continued fraction expansion of x
follows some simple rules. Namely, if x = [−1; a1, a2, a3, . . . ] ∈ [α − 1, 0), then one
gets the formulas

(35) Kα(x) =

{
T−2Sx = [−1; a1 − 1, a2, a3, a4 . . . ] a1 > 1,

T−(a2+1−ε)Sx = [ε; a3, a4, . . . ] a1 = 1,
ε ∈ {−1, 0},

where to decide whether ε is −1 or 0 one has to check which of these choices returns
an element in [α− 1, α]. On the other hand, if x = [0; a1, a2, a3, . . . ] ∈ (0, α], then

(36) Kα(x) = Ta1+1+εSx =

{
[ε; 1, a2 − 1, a3, . . . ] a2 > 1,
[ε; 1 + a3, a4, . . . ] a2 = 1,

ε ∈ {−1, 0}.

Again, the choice between ε = −1 and ε = 0 is forced by the condition that the
range of Kα must be [α − 1, α]. To write some of the above branches of Kα in
compact form we shall also use the following fractional transformations:

∂− := ST−1S, ∂ := STS.

Note that if 0 < x < 1, one has ∂−x < x; in fact in terms of regular continued
fractions we get ∂−([0; a1, a2, a3, . . . ]) = [0; 1+a1, a2, a3, . . . ], while ∂ is the inverse
of ∂− (and is consistent with the previous definition in section 3). Finally, if S =
(a1, . . . , an) and x ∈ [0, 1], we shall use the string action notation S · x to denote
the number whose continued fraction expansion is obtained by appending S at the
beginning of the continued fraction expansion of x; in terms of S and T, this can
be defined as

(37) S · x := ST−a1STa2 · · ·ST−a2n−1STa2nx.

Proof of Proposition 5.3. Let w ∈ FW0, and let α ∈ Jw. Let us denote S := RL(w)
as the runlength of S and s := [0;S] as the pseudocenter of Jw. Now, by Lemma
3.1 we have that S is of the form

S = (a1, 1, a2, 1, . . . , am, 1)

with aj ∈ {a, a + 1}, m0 =
∑m

j=1 aj , and m1 = m. Moreover, for 1 ≤ k ≤ m we
define the even prefixes and suffixes of S as

Pk := (a1, 1, a2, 1, . . . , ak, 1), Sk := (ak+1, 1, ak+2, 1, . . . , am, 1).

Recall also that by definition the endpoints of Jw = (α−, α+) are

α− = [0;S′tS], α+ = [0;S].

Case A. Let us first take into account the case α ∈ [r, α+). Then we can write
α := S ·y for some y ∈ [0, α+). In this case we claim that the orbits of the endpoints
α and α− 1 under Kα eventually match, and before getting to the matching point
the orbits (and symbolic orbits, on the right column) of α − 1 and α are given by
Table 1.

One can go from one line to the following just using the rules (35) (for the upper
part) or (36) (for the lower part). So we only have to check that at each stage we
actually get a value which lies in the interval [α− 1, α].
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Table 1. Orbits of α and α− 1, for α ∈ [r, α+).

α− 1 = −1 + S · y
Kα(α− 1) = −1 + ∂S · y c1,α = 2
K2

α(α− 1) = −1 + ∂2S · y c2,α = 2
. . . . . .

Ka1−1
α (α− 1) = −1 + ∂a1−1S · y ca1−1,α = 2

� Ka1
α (α− 1) = −1 + S1 · y ca1,α = 3

Ka1+1
α (α− 1) = −1 + ∂S1 · y ca1+1,α = 2

. . . . . .
� Ka1+a2

α (α− 1) = −1 + S2 · y ca1+a2,α = 3
. . . . . .
. . . . . .

� K
a1+···+am−1
α (α− 1) = −1 + Sm−1 · y ca1+···+am−1,α = 3

. . . . . .
Ka1+···+am−1

α (α− 1) = −1 + ∂am−1Sm−1 · y ca1+···+am−1,α = 2
� Ka1+···+am

α (α− 1) = y ca1+···+am,α = 2
α = S · y

Kα(α) = ∂−S1 · y c1,α = −a1 − 1
K2

α(α) = ∂−S2 · y c2,α = −a2 − 2
. . . . . .

Km−1
α (α) = ∂−Sm−1 · y cm−1,α = −am−1 − 2
Km

α (α) = ∂−y = y
y+1 cm,α = −am − 2

As far as the orbit of α− 1 is concerned, all items in the list except for the last
one are negative, so we just have to check that we never drop below α − 1. Since
the operator ∂ increases the value of its argument (i.e., ∂x ≥ x), it is sufficient to
check the iterates of Kα of order a1+ · · ·+ak (with k ∈ {1, · · · }): the corresponding
lines are marked by the symbol �. That is, we need to check the following:

(1) −1 + Sk · y ≥ α− 1 for all k ∈ {1, . . . ,m− 1},
(2) y ≤ α.

(1) is true by Lemma 3.1(iii); indeed, we have the inequality Sk � S, from which
it follows that

−1 + Sk · y ≥ −1 + S · y = −1 + α

as needed. Now, since by construction S · y = α < α+ and the map x �→ S · x is
increasing with a fixed point at α+, we have that y ≤ S · y = α, which proves (2).

Checking that the values in the lower part of Table 1 are actually in [α − 1, α]
is slightly more tricky. We need to prove that ∂−Sk · y ≤ S · y = α for k ∈
{1, . . . ,m− 1}; as a matter of fact by Lemma 3.1(iv) one has

SkPk 
 ∂S,

which implies, since Pk is a prefix of the continued fraction expansion of α+, that

Sk · α+ ≤ ∂S · y.

Since the map x �→ Sk · x is increasing we then get Sk · y ≤ Sk · α+ < ∂S · y, which
implies, by applying ∂− to both sides of the equation, ∂−Sk · y < S · y = α. Since
0 < ∂−y < y < S · y = α, we get the last step for free.
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Table 2. Orbits of α and α− 1, for α ∈ (α−, r].

α− 1 = −1 + S′ · y
Kα(α− 1) = −1 + ∂S′ · y c1,α = 2
K2

α(α− 1) = −1 + ∂2S′ · y c2,α = 2
. . . . . .

Ka1−1
α (α− 1) = −1 + ∂a1−1S′ · y ca1−1,α = 2

� Ka1
α (α− 1) = −1 + S′

1 · y ca1,α = 3
Ka1+1

α (α− 1) = −1 + ∂S′
1 · y ca1+1,α = 2

. . . . . .
� Ka1+a2

α (α− 1) = −1 + S′
2 · y ca1+···+a2,α = 3

. . . . . .

. . . . . .

� K
a1+···+am−1
α (α− 1) = −1 + S′

m−1 · y ca1+···+am−1,α = 3
. . . . . .

Ka1+···+am−1
α (α− 1) = −1 + ∂am−1S′

m−1 · y ca1+···+am−1,α = 2
� Ka1+···+am

α (α− 1) = −y/(y + 1) ca1+···+am,α = 2
α = S′ · y

Kα(α) = ∂−S′
1 · y c1,α = −a1 − 1

K2
α(α) = ∂−S′

2 · y c2,α = −a2 − 2
. . . . . .

Km−1
α (α) = ∂−S′

m−1 · y cm−1,α = −am−1 − 2
Km

α (α) = −y cm,α = −am − 2

Case B. We must now settle the case α ∈ (α−, r]. Let us recall that ′S′ = tS, so

that we must have α = S′ · y for 0 ≤ y ≤ [0; tS] or, which is equivalent, σα = tS · y,
0 ≤ y ≤ [0; tS]. In this case we claim that the orbits of the endpoints, before
reaching the matching point, are given by Table 2.

Again, one can go from one line to the following just using the rules (35) for the
upper list or (36) for the lower; we just have to check that at each stage we actually
get values inside the interval [α− 1, α].

As far as the orbit of α−1 is concerned, all items of the list are negative, and we
just have to check that we never drop below α− 1. Therefore the only steps which
need some comment are those corresponding to iterates of Kα of order a1+ · · ·+ak
(marked by � in the table). Let us observe that by Lemma 3.1(iii) we have Sk � S.
Then we have two cases: either S′

k � S′ and we are done, or we can write S′ = S′
kZ,

with Z a suffix of S′ (hence also a suffix of ′S′ = tS), and the length of Z is even.
In the latter case, by applying Lemma 3.1 to tS, one gets Z � tS; hence since
y ≤ [0; tS] ≤ [0;Z] and the length of S′

k is odd, we have

y ≤ Z · y ⇒ S′
k · y ≥ S′

kZ · y ⇒ −1 + S′
k · y ≥ S′ · y,

proving the required inequality. The last step is immediate, since −y/(y + 1) >
−1/2 > α− 1 (note that α < 1/2 since w ∈ FW0).

To check that the values in the lower part of the list of Table 2 are actually in
[α − 1, α] we need to prove that ∂−S′

k · y < S′ · y for k ∈ {1, . . . ,m − 1}. Indeed,
since σ is order-reversing and ′S′ = tS, we get

∂−S′
k · y < S′ · y ⇐⇒ σ(∂−S′

k · y) > σ(S′ · y) ⇐⇒ ′(∂−S′
k) · y = (tS)k · y > tS · y,
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and the last inequality holds because we can apply Lemma 3.1(iii) to tS, yielding
(tS)k � tS.

Finally, to check that Km(α) = −y we have to show that −y > α − 1: indeed,

since y < [0; tS] we get tS · y > y and 1− α = ′S′ · y = tS · y > y.

If we now keep track of the symbolic orbit of α − 1 and α as we described (see
the right column of the Tables 1, 2), we realize that the values of the coefficients
cj,α(α) and cj,α(α− 1) are

(cj,α(α− 1))1≤j≤m0
= (2, . . . , 2︸ ︷︷ ︸

a1−1

, 3, 2, . . . , 2︸ ︷︷ ︸
a2−1

, 3, . . . , 2, . . . , 2︸ ︷︷ ︸
am−1−1

, 3, 2, . . . , 2︸ ︷︷ ︸
am

),

(cj,α(α))1≤j≤m1
= (−a1 − 1,−a2 − 2, . . . ,−am − 2).

Thus we can compute the matrices Mα,α−1,m0
and Mα,α,m1

, recovering formula
(34). �

Proof of Theorem 5.1. By symmetry (28), we need only to check what happens for
α ≤ 1

2 . Now, the previous proposition gives us formulas for M and M′, so we
just need to check that equation (30) holds given these formulas; this is a simple
algebraic manipulation as follows. Let us first prove the case n = 1, for which
equation (30) becomes

(38) T(ST2)N = ST−N−1ST−1S

(with N = a1). It is well-known and easy to check that (ST)3 is the identity, from
which it follows that

TST = ST−1S.

Thus, by writing TST = T(ST2)T−1 and raising both sides to the N th power, we
have

T(ST2)NT−1 = ST−NS,

from which T(ST2)N = ST−NST = ST−N−1TST = ST−N−1ST−1S, proving
(38). Thus, in general for each 1 ≤ k ≤ n we have the identity T(ST2)ak =
ST−ak−1ST−1S, and concatenating all pieces we get precisely equation (30). �

Proof of Corollary 5.2. By taking the inverses of both sides of equation (30) and
acting on α we get the equality

Mα,α−1,m0
T−1α = STSM−1

α,α,m1
(α).

Hence using that Km1
α (α) = M−1

α,α,m0
(α) and Km0

α (x) = M−1
α,α−1,m0

(α− 1) we get
that

− 1

Km1
α (α)

+ 1 = − 1

Km0
α (α− 1)

.

Hence for any k ∈ Z we have that

− 1

Km1
α (α)

− k ∈ [α− 1, α] ⇔ − 1

Km0
α (α− 1)

− (k + 1) ∈ [α− 1, α].

Thus cm0+1,α(α− 1) = cm1,α(α) + 1, and the claim follows. �

Let us conclude this section by studying the ordering between the iterates of
Kα, which will be needed in the last section. As we shall see, this also follows from
the combinatorics of the underlying Farey words: in particular, the ordering is the
same as the ordering between the cyclic permutations of their Farey structure.
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Lemma 5.4. Let w ∈ FW0. Then for any α ∈ Jw the ordering of the set

{Kj
α(α− 1) : 0 ≤ j ≤ m0}

of the first m0 + 1 iterates of α − 1 under Kα is independent of α. Similarly, the
ordering of the set of the first m1 + 1 iterates of α is also independent of α.

Proof. The first part of the claim can be rephrased as saying that for each j, j′ ∈
{0, . . . ,m0} and for each α, α′ ∈ Jw,

Ki
α(α− 1) < Kj

α(α− 1) if and only if Ki
α(α− 1) < Kj

α(α− 1).

Now let 0 ≤ j < j′ ≤ m0 be fixed. To check that Kj
α(α − 1) and Kj′

α (α − 1)
are ordered in the same way for all α ∈ Jw it is enough to prove that they are
always different, and to prove this latter statement it is enough to prove that
Kj

α(α − 1) < Km0
α (α − 1) for all α ∈ Jw and all j ∈ {0, . . . ,m0 − 1}. This follows

from the explicit description of the orbits given in the proof of Proposition 5.3, of
which we will keep the notation (see Tables 1 and 2). Indeed, in Case A the claim
holds because of the inequality

Kj
α(α− 1) < 0 ≤ y = Km0

α (α− 1).

In Case B we have

Km0
α (α− 1) =

−y

y + 1
= −1 +

1

1 + y
= [−1; 1, a, . . . ] for some a > 1,

while the largest of the previous iterates has a continued fraction expansion begin-
ning with [−1; 1, 1, . . . ].

The corresponding claim about iterates of α is proven in the same way. Indeed,
it is enough to check that if j < m1, then Km1

α (α) < Kj
α(α); this is obvious in Case

B, while in Case A we just have to check that ∂−y < ∂−Sj · y. Now, since y < S · y
(see also proof of Proposition 5.3, Case A) and S 
 Sj (Lemma 3.1(iii)), one gets
∂−y < ∂−S · y ≤ ∂−Sj · y as claimed. �

Proposition 5.5. Let w ∈ FW0 be a Farey word, and let w = w′w′′ be its standard
factorization, and denote j0 := |w′|0 and j1 = |w′′|1. Then for each α ∈ Jw the
following hold:

Kj0
α (α− 1) = min{Kj

α(α− 1) : 1 ≤ j ≤ m0},
Kj1

α (α) = max{Kj
α(α) : 1 ≤ j ≤ m1}.

Proof. By Lemma 5.4 and since all the maps α → Kj
α(α − 1) for 0 ≤ j ≤ m0 are

continuous on the closure of Jw (they are given by equation (34)), it is sufficient
to verify the statement for α = α+, the right endpoint of Jw. In this case, by
Proposition 5.3, the first iterates of α− 1 are given by

Ka1+···+ak+h
α (α− 1) = −1 + ∂hSk · α+

with 0 ≤ h ≤ ak+1− 1, 0 ≤ k ≤ m− 1. Note that the homeomorphism φ defined in
section 4.1 semiconjugates the shift in the binary expansion with the map ∂; hence
for each prefix v of w we have

(39) φ(0.τ lw) = Kl0
α (α− 1) + 1,

where l := |v| and l0 := |v|0. Now, in order to find the smallest non-trivial iterate,
recall that by Lemma 2.6, the smallest cyclic permutation of w is w itself, while



CONTINUED FRACTIONS WITH SL(2, Z)-BRANCHES 4953

the second smallest is τ |w
′|w, i.e.,

w < τ |w
′|w ≤ τkw for all 1 ≤ k ≤ m0 +m1.

Thus, since the homeomorphism φ is increasing on the interval [0, 1/2], we get by
equation (39) that for each j ∈ {1, . . . ,m0},

Kj0
α (α− 1) ≤ Kj

α(α− 1),

where j0 = |w′|0 as claimed. Similarly, for the orbit of α, we know by Proposition
5.3 that the iterates in case α = α+ are given by

Kj
α(α) = ∂−Sj · α+, 1 ≤ j ≤ m1.

Once again from Lemma 2.6, the largest cyclic permutation of w is τ lw with l =
|w′′|. Hence the largest value of Sj · α+ is attained for j = |w′′|1 = j1, and the
claim follows. �

6. Entropy

We shall now use the combinatorial description of the orbits of Kα we have
obtained in the previous section to derive consequences about the entropy of the
maps, proving Theorem 1.2.

For any fixed α ∈ (0, 1), the map Kα is a uniformly expanding map of the inter-
val, and many general facts about its measurable dynamics are known (see [25]).
Indeed, each Kα has a unique absolutely continuous invariant probability measure
(a.c.i.p. for short), which we will denote dμα = ρα(x)dx, and the dynamical sys-
tem (Kα, μα) is ergodic. In fact, it is even exact and isomorphic to a Bernoulli
shift; moreover, its ergodic properties can also be derived from the properties of
the geodesic flow on the modular surface.

Let h(α) be the metric entropy of Kα with respect to the measure μα: we shall
be interested in studying the properties of the function α �→ h(α). Recall that for
an expanding map of the interval the entropy can also be given by Rohlin’s formula

h(α) =

∫ α

α−1

log |K ′
α| dμα.

Moreover, for maps generating continued fraction algorithms such as Kα, the en-
tropy is also related to the growth rate of denominators of convergents to a “typi-
cal” point. More precisely, we can define the α-convergents to x to be the sequence
(pn,α(x)/qn,α(x))n∈N where(

pn,α(x)
qn,α(x)

)
:= Mα,x,n ·

(
0
1

)
.

For each x, the sequence pn,α(x)/qn,α(x) tends to x. Then, for μα-almost every
x ∈ [α− 1, α] we have

h(α) = 2 lim
x→+∞

1

n
log |qn,α(x)|.

As far as the global regularity of the entropy function is concerned, one can easily
adapt the strategy of [36] to prove that h(α) is Hölder continuous in α.

Theorem 6.1. For any a ∈ (0, 1/2] and any η ∈ (0, 1/2], the function α �→ h(α)
is Hölder continuous of exponent η on [a, 1− a].



4954 CARLO CARMINATI, STEFANO ISOLA, AND GIULIO TIOZZO

On the complement of EKU we can exploit the rigidity due to the matching to
gain much more regularity. The key tool will be the following proposition.

Proposition 6.2. Let α, α′ ∈ Jw be nearby points which both lie on the same side
with respect to the pseudocenter, with α′ < α. Then the following formulas hold:

h(α) = [1 + (|w|0 − |w|1)μα([α
′, α])]h(α′),(40)

h(α′) = [1− (|w|0 − |w|1)μα′([α′ − 1, α− 1])]h(α).(41)

The proof of this proposition follows very closely the proof of the corresponding
statement for α-continued fractions in ([35], Theorem 2); a sketch of the argument
is included in the appendix. As a first straightforward consequence of Proposition
6.2 we get the local monotonicity of h on the complement of EKU .

Corollary 6.3. The entropy is locally monotone on [0, 1] \ EKU . More precisely:

(1) the entropy is strictly increasing on Jw if w ∈ FW0;
(2) the entropy is constant on Jw if w = (01);
(3) the entropy is strictly decreasing on Jw if w ∈ FW1.

Let us point out that Corollary 6.3 alone is still not enough to deduce the mono-
tonicity on [0, g2] stated in Theorem 1.2. Indeed, h is strictly increasing on each
open interval Jw for all w ∈ FW0, and the union of all such opens is dense in
[0, g2], but to conclude that h is monotone on [0, g2] we must exclude that h dis-
plays pathological behaviour like the “devil’s staircase” function. We shall take
care of this issue proving that h is absolutely continuous.

Let us consider the decomposition h(t) = hr(t) + hs(t) where

(42) hr(t) :=
∑

w∈FW

Var
Jw∩[0,t]

h, hs(t) := h(t)− hr(t).

Recall that the notation VarI f means the total variation of the function f on
the interval I. Intuitively, hr is the “regular part” which takes into account the
behaviour of h on the (open and dense) union of the Jw, while hs is the remaining
“singular part”, which we will actually prove to be zero.

Lemma 6.4. The function hs is locally constant on [0, g2] \ EKU .

Proof. If w ∈ FW0 and t1, t2 ∈ Jw, t1 < t2, then the monotonicity of h|Jw
implies

that

h(t2)− h(t1) = Var
Jw∩[t1,t2]

h = hr(t2)− hr(t1),

which implies that hs(t2)− hs(t1) = 0, whence the claim. �

We shall now need the following lemma in fractal geometry, whose proof we
postpone to the appendix.

Lemma 6.5. Let I1, I2, . . . be a countable family of disjoint subintervals of some
close interval I ⊆ R and denote

G := I \
∞⋃
i=1

Ii.

Let the upper box-dimension of G be δ0. Given any η and δ with η > δ > δ0,
there exists a constant C such that for any choice of a subsequence J1, J2, . . . of the
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family {Ii}, one gets the following inequality:

∞∑
i=1

|Ji|η ≤ C

( ∞∑
i=1

|Ji|
)η−δ

.

Lemma 6.6. For every a and η in (0, 1/2) both functions hs and hr are Hölder
continuous of exponent η on the interval [a, 1/2].

Proof. By Theorem 6.1 there is C = C(a, η) such that

(43) |h(t)− h(t′)| ≤ C|t− t′|η ∀t, t′ ∈ [a, 1/2].

Note that in order to prove Hölder continuity of hr on the whole interval [a, 1/2]
it is sufficient to show that hr is Hölder continuous on [a, 1/2] ∩ EKU . If β, β′ ∈
EKU ∩ [a, 1/2], β < β′, then

hr(β
′)− hr(β) =

∑
Jw⊂[β,β′]

Var
Jw

h.

By equation (43), for each Jw we have that VarJw
h ≤ C|Jw|η; then we get

|hr(β
′)− hr(β)| =∑

Jw⊂[β,β′] VarJw h≤C
∑

Jw⊂[β,β′] |Jw|η

≤ CC ′
(

∑
Jw⊂[β,β′] |Jw |

)η−δ

=CC′|β′−β|η−δ

for any δ ∈ (0, η). The last line is a direct consequence of Lemma 6.5 and the
fact that the box-dimension of EKU is 0 (Proposition 4.4). Finally hs is Hölder
continuous since it is a difference of two Hölder continuous functions (note the
domain has unit length). �
Lemma 6.7. Let f : I → I be a map of a closed real interval which is Hölder
continuous of exponent η > 0. Suppose E ⊆ I is a closed, measurable subset of
Hausdorff dimension less than η and that f is locally constant on the complement
on E. Then f is constant on all I.

Proof. If f is Hölder continuous of exponent η, it is easy to check using the definition
of Hausdorff dimension that for any measurable subset E of the interval one has
the estimate

(44) H.dim f(E) ≤ 1

η
H.dim E.

Now, if f is locally constant on I \E, then the image of any connected component
of the complement of E is a point; hence we have

H.dim f(I) = H.dim f(E).

Now, if f is not constant, then by continuity the image f(I) is a non-degenerate
interval; hence it has dimension 1. Thus one has by using equation (44)

H.dim E ≥ η H.dim f(I) = η,

which is a contradiction. �
Proof of Theorem 1.2. The second statement follows from Corollary 6.3(2). More-
over, by virtue of the symmetry of h, the third statement is a consequence of the
first one, so we just need to prove that the function h is strictly increasing on [0, g2].

Since the function h is strictly increasing on each Jw which intersects [0, g2]
(Corollary 6.3(1)) and the union of the Jw is dense, then the function hr is strictly
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Figure 5. The parameter space of (a, b)-continued fractions. We
only consider the critical line case b− a = 1.

increasing on [0, g2]. The claim then follows if we prove that the function hs is
identically zero, so h = hr. Now, by Lemma 6.4 hs is locally constant on the
complement of EKU and it is η-Hölder continuous for any positive η < 1/2 by
Lemma 6.6, so since H.dim EKU = 0 < η the function hs is globally constant by
Lemma 6.7. �

7. Natural extension and regularity properties of the entropy

Finally, in this section we shall analyze the regularity properties of the entropy
function h(α), proving Theorem 1.1. In order to do so, we need some results from
the theory of (a, b)-continued fractions due to Katok and Ugarcovici. Therefore
we will outline here some of the results contained in [24, 25]; meanwhile, we shall
also explain to the reader how our constructions relate to the work of Katok and
Ugarcovici and translate between the different notations.

The starting point comprises the “slow” maps fa,b : R∪{∞} → R∪{∞} defined
as

(45) fa,b(y) :=

⎧⎨⎩
Ty if y < a,
Sy if a ≤ y < b,
T−1y if b ≤ y,

where the parameters (a, b) range in the closed region

(46) P := {(a, b) ∈ R2 : a ≤ 0 ≤ b, b− a ≥ 1, −ab ≤ 1},
which is plotted in Figure 5.

An essential role in the theory is played by a condition called cycle property,
which we recall briefly. If f is a real map and x is a point, we call the upper orbit
(resp. lower orbit) of x the countable set of elements fk

+(x) := limt→x+ fk(t) (resp.

fk
−(x) := limt→x− fk(t)), with k ∈ N. We say that the map fa,b satisfies the cycle
property at the discontinuity points a, b if the upper and lower orbits of a eventually
collide, and the same is true for b. As a matter of fact for most parameters the cycle
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property is strong, meaning that it is the consequence of an identity in SL(2,Z),
which is stable on an open set.

To build a geometrical realization of the natural extension one defines the family
of maps of the plane

(47) Fa,b(x, y) :=

⎧⎨⎩
(Tx,Ty) if y < a,
(Sx,Sy) if a ≤ y < b,
(T−1x,T−1y) if b ≤ y.

Katok and Ugarcovici prove that each Fa,b has an attractor Da,b ⊂ R2 such that
Fa,b restricted to Da,b is invertible and it is a geometric realization of the natural
extension of fa,b. In fact, for most values of (a, b) the attractor Da,b has a simple
structure:

Theorem 7.1 ([24]). There exists an uncountable set Ẽ of 1-dimensional Lebesgue
measure zero that lies on the diagonal boundary b− a = 1 of P such that:

(1) for all (a, b) ∈ P \ Ẽ the map Fa,b has an attractor Da,b (which is disjoint
from the diagonal x = y) on which Fa,b is essentially bijective;

(2) the set Da,b consists of two (or one, in the “degenerate” case ab = 0)
connected components each having finite rectangular structure, i.e., bounded
by non-decreasing step functions with a finite number of steps;

(3) almost every point (x, y) off the diagonal x = y is mapped to Da,b after
finitely many iterations of Fa,b.

The above result shows that exceptions to the finiteness condition dwell on the
critical line b − a = 1. For this reason, we only consider these cases. With a
slight abuse of notation we shall always write fα, Fα, Dα rather than fα−1,α, Fα−1,α,
Dα−1,α. Note that if b − a = 1, the map Kb is precisely the first return map of
fb−1,b on the interval [b− 1, b).

Note also that in the symmetric case a + b = 0 (with b ∈ [1/2, 1]) the system
determined by the first return on [−b, b] is equivalent to a twofold cover of the
α-continued fraction transformation Tb.

Let us note that along the critical line b−a = 1 the cycle property is a bit easier
to state. Indeed, in this case the upper orbit of a coincides with the orbit of a,
while the lower orbit of a coincides with the orbit of b; on the other hand the upper
orbit of b coincides with the orbit of a, while the lower orbit of b is just the orbit
of b. Thus, in this case the cycle property for fb−1,b is essentially equivalent to the
condition (1) for the fast map Kb. Indeed, the set EKU that we explicitly described
coincides, up to a countable set of points,2 with the projection on the x-axis of the

set Ẽ mentioned in Theorem 7.1.
Now, for α ∈ Jw the map Kα satisfies the algebraic matching condition (30);

hence fα satisfies the strong cycle property (see [24]), and by Theorem 7.1 the
extension Fα has an attractor Dα with finite rectangular structure; see Figure 6.
We may also consider the “first return map” F̂α : R × [α − 1, α) → R × [α − 1, α)
defined as

F̂α(x, y) := (T−cα(y)Sx,T−cα(y)Sy).

2Precisely, the projection of Ẽ equals EKU \
⋃

w∈FW∗ ∂Jw.
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Figure 6. The attractor Dα, its intersection with the horizon-
tal strip T−1 × [α − 1, α], and the compact set Δα, which is the
attractor for Φα.

Note that the map Kα is a factor of F̂α. Obviously the set Dα ∩ R × [α − 1, α] is

an attractor for F̂α. In order to compactify the attractor it is convenient to make
the change of coordinates ξ = Sx; then, the natural extension map becomes

Φα(ξ, y) := (ST−cα(y)ξ,T−cα(y)Sy),

which is just the map F̂α in the new coordinates: F̂α ◦ (S × id) = (S × id) ◦ Φα.
The map Φα will have the attractor Δα := (S× id)(Dα ∩ R× [α− 1, α]), which is
bounded and has finite rectangular structure.

7.1. Structure of the attractor Δα and entropy formula. In ([24], section 5)
the authors prove that the attractor Dα has finite rectangular structure providing
an explicit recipe to build it; one can easily translate this recipe in order to obtain
the following analogue description for Δα for α ∈ Jw.

Let us fix w ∈ FW a Farey word, with mi := |w|i, and pick α ∈ Jw. Then
the attractor Δα is the union of finitely many rectangles with sides parallel to the
coordinate axes, and the sides of these rectangles are determined by the dynamics
of Kα prior to the matching, as we now describe. See also Figure 7.

The horizontal segments which delimit Δα are of precisely two types, corre-
sponding to the orbits of α and α − 1, respectively. In particular, the set of levels
(ordinates) of the horizontal segments on the “lower-right” part of Δα is precisely
the set

{α− 1,Kα(α− 1), . . . ,Km0
α (α− 1)}

of iterates of α − 1 up to the matching, while the set of levels of the horizontal
segments on the “upper-right” side is the set

{α,Kα(α), . . . ,K
m1
α (α)}.
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Figure 7. The attractor Δα for α = 4/15: the numbers and
arrows indicate the dynamics of the horizontal boundary segments.
Note that the vertical ordering of the horizontal segments follows
the ordering of the cyclic translates of the corresponding Farey
word (in this case, w = 00101).

The coordinates of the vertical sides of the boundary of Δα (hence the abscissae of
its corners) can instead be found in a slightly indirect way, also described in [24]:
in order to explain it, let (x, α) and (y, α− 1) denote, respectively, the upper-right
and lower-left corners of the attractor Δα.

(1) The highest horizontal segment which delimits Δα has endpoints ( y
y−1 , α)

and (x, α), while the lowest one is the segment of endpoints (y, α− 1) and
( x
x+1 , α− 1).

(2) The horizontal segments which form the upper boundary of Δα are images
under Φα of the segment of endpoints ( y

y−1 , α) and (x, α), and similarly the

horizontal segments which bound Δα from below are images under Φα of
the segment of endpoints (y, α− 1) and ( x

x+1 , α− 1).

(3) The values of x and y are determined by asking that the projection of
the horizontal segments bounding Δα from above (resp. below) project to
adjacent segments. It turns out that it is enough to check this condition
on a couple of adjacent levels on the top and on the bottom, and this boils
down to an algebraic relation which only depends on the symbolic orbit of
α and α − 1. In particular, it is enough to ask that the right endpoint of
the lowest level matches the left endpoint of the level immediately above
it. Similarly, one needs to ask that the left endpoint of the highest level
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matches the right endpoint of the level immediately below it. That is, if we
let π1 be the projection on the x-coordinate and let j0, j1 be chosen such
that

Kj1
α (α) = max{Kj

α(α) : 1 ≤ j ≤ m1}, Kj0
α (α−1) = min{Kj

α(α−1) : 1 ≤ j ≤ m0},
then, as a consequence of this discussion, the values x, y are determined by the
following system:

(48)

{
STSy = π1(Φ

j1
α (x, α)),

ST−1Sx = π1(Φ
j0
α (y, α− 1)).

Once x and y are known, the other vertical levels are obtained by iterating Φα on x
and y. Note that, as a consequence, the abscissae of the vertical segments depend
only on the quamterval Jw and do not depend on the particular α inside Jw.

We shall now combine this recipe with the results of section 5 and find the
following explicit formulas for x and y.

Proposition 7.2. Let Jw⊂ [0, 1/2] be a quamterval and let RL(w)=(a1,1,. . . ,an,1).
Then x = [0; 1, an, . . . , 1, a1] and −y = [0; a1, 1, . . . , an, 1].

Proof. In general if (a1, 1, . . . , a�, 1) and (a�+1, 1, . . . , an, 1) constitute the splitting
of (a1, 1, . . . , an, 1) which corresponds to the standard factorization of w, then by

Proposition 5.5 j0 =
∑�

i=1 ai, j1 = n− 	, and (48) becomes

(49)

{
STSy = STan−�+2 · · · STa2+2 STa1+1 x,
ST−1Sx = ST−3 (ST−2)a�−1 · · · ST−3 (ST−2)a1−1 y.

Let us point out that, by Lemma 3.1(ii), (a1−1, a2, . . . , an) is a palindrome, thus
(an−�, an−�−1, . . . , a2, a1− 1) = (a�+1, . . . , an). On the other hand, since (a�+1, . . . ,
an) has Farey structure as well, Lemma 3.1 implies that

(an−�, an−�−1, . . . , a2, a1 − 1) = (a�+1, . . . , an) = (an + 1, an−1, . . . , a�+2, a�+1 − 1);

therefore the first equation of (49) can be written as

(50) STSy = STan+3STan−1+2 · · · STa�+2+2 STa�+1+1x.

Note that by applying the equality TST = ST−1S one gets for each k,

Tk+1ST = TkTST = TkST−1S;

hence by applying this identity to each block on the right-hand side of (50) we get

(51) y = STan+1ST−1STan−1ST−1 · · ·ST−1STa�+1x.

Similarly, in order to modify the second equation of (49), we note that by leveraging
the elementary identity T−1ST−1 = STS we get for each k the equality

T−1(ST−2)k = (T−1ST−1)kT−1 = (STS)kT−1 = STkST−1.

Now, if we apply it to each block on the right-hand side of the second line of (49),
we get the equation

(52) x = ST−1STa�ST−1 · · ·ST−1STa1−1y.

We will just prove the claim for y, the other case following in the same way. By
putting together (51) and (52), one finds that y satisfies the fixed point equation
y = Gy with

G = STan+1ST−1STan−1ST−1 · · ·STa2ST−1STa1−1ST−1.
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Again, since (a1, . . . , an) has Farey structure, we can use Lemma 3.1(iii) to infer
that (an + 1, an−1, . . . , a2, a1 − 1) = (a1, . . . , an); hence G can be expressed as

G = STa1 ST−1 STa2 ST−1 · · · STan−1 ST−1 STan ST−1.

Recalling properties (37) we can check that setting

Ǧ := ST−a1 ST ST−a2 ST · · · ST−an−1 ST ST−an ST

one gets that −y = Ǧ(−y). On the other hand it is immediate to check that Ǧ
coincides with the string action induced by Z = (a1, 1, . . . , an, 1), and since −y > 0
we get −y = [0; a1, 1, . . . , an, 1]. �

For instance, in the case α = 1
N+1 we get j0 = N, j1 = 1, so (48) reads

STSy = STN+1x, ST−1Sx = (ST−2)Ny,

and a simple computation yields x = [0; 1, N ], −y = [0;N, 1].
The map Φα admits the invariant density (1+xy)−2dxdy, and it is then easy to

check that the a.c.i.p. for Kα is dμα = ρα(t)dt with invariant density

(53) ρα(t) :=

(∫
Δα∩{y=t}

(1 + xy)−2dx

)
/

(∫
Δα

(1 + xy)−2dx dy

)
.

Moreover, for each α the following formula holds (see [25]):

(54) h(α)

∫
Δα

dx dy

(1 + xy)2
=

π2

3
.

7.2. Consequences. Formula (54) says that instead of studying the behaviour of
the entropy, we may just study the function

α �→ Aα :=

∫
Δα

dx dy

(1 + xy)2
,

and the explicit description of Δα provides us with an effective tool to do it.

Proof of Theorem 1.1. The function α �→ Aα is smooth on Jw, since the levels of
the vertical segments which bound Δα are the same for all α ∈ Jw, while the levels
of the horizontal segments vary analytically with α. Thus, by equation (54) the
function α �→ h(α) is smooth as well on each quamterval.

In order to prove the second claim, let us prove that the invariant densities ρα are
locally bounded from below. In order to do so, let α /∈ EKU , and let Jw = (α−, α+)
be the quamterval to which α belongs. Now, by formula (23) and Proposition 7.2
we have that

1− α− = [0; tS] = [0; 1, an, . . . , 1, a1] = x.

On the other hand, recall that by the discussion in section 7.1 the right endpoint
of the lowest horizontal boundary in Δα has abscissa

x0 =
x

x+ 1
=

1− α−

2− α− ≥ 1

3

since α− ≤ α ∈ [0, 1/2]; therefore the following inclusion holds:

(55) Δα ⊃ [0, 1/3]× [α− 1, α].
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As a consequence, we can bound the invariant density ρα by writing for each t ∈
[α− 1, α], ∫

Δα∩{y=t}
(1 + xy)−2dx ≥

∫ 1/3

0

(1 + xt)−2dx ≥ 1

3
· 2−2,

from which, using (53) and (54), it immediately follows that ρα(t) ≥ 1
12Aα

= h(α)
4π2 .

Now, by Proposition 6.2 the difference quotient of the entropy function h(α) on
quamtervals is given in terms of ρα and the difference |w|0 − |w|1:

h(α)− h(α′)

α− α′ = (|w|0 − |w|1)h(α′)
1

α− α′

∫ α

α′
ρα.

Thus, by combining it with the previous lower bound we get for each α ∈ Jw,

(56) |h′(α)| ≥ Cα||w|0 − |w|1|,
where Cα is bounded away from zero as long as α is bounded away from 0 or 1.
Now, let us pick α ∈ EKU , α = 0, 1: for any α′ sufficiently close to α we have

|h(α′)− h(α)| =
∑

Jw⊆[α,α′]

Var
Jw

h ≥
∑

Jw⊆[α,α′]

C||w|0 − |w|1||Jw|;

hence, since EKU has measure zero,

|h(α′)− h(α)| ≥ C inf
Jw⊆[α,α′]

||w|0 − |w|1||α− α′|.

Let us first assume α = g, g2. Then by Lemma 4.5 the difference ||w|0−|w|1| tends
to ∞ as soon as α′ tends to some α ∈ EKU ; thus h is not differentiable (and not
even Lipschitz continuous) at α.

Suppose instead that α = g2 (the other case is analogous by symmetry). Then
we know h is constant to the right of α. On the other hand, by equation (56) and
the fact that ||w|0 − |w|1| ≥ 1 to the left of α, we get by the same reasoning as
before that

lim inf
α′→α−

h(α)− h(α′)

α− α′ ≥ C > 0;

hence the function h is not differentiable at α. Finally, since g2 is an accumulation
point of parameters in EKU for which the derivative is unbounded, h is also not
locally Lipschitz at α = g2. �

In the same way, one can also use formula (54) to prove the following asymptotic
estimate, which is analogous to the result obtained in [35] for the family of Nakada’s
α-continued fractions.

Proposition 7.3. The asymptotic behaviour of h at 0 is

(57) h(t) ∼ π2

3 log(1/t)
as t → 0+;

hence limt→0+ h(t) = 0, and h is not locally Hölder continuous at 0.

Proof. We shall use formula (54) and prove the asymptotic estimate (57) simply
checking that

(58) Aα = log(1/α) +O(1) as α → 0+.

By Theorem 1.2 we know that α �→ Aα is decreasing on [0, g2]; therefore it is enough
to prove (58) for α = 1

N+1 with N a positive, even integer.
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Figure 8. The attractor Δα for α = 1/5: the inner and outer
rectangles give the lower and upper bounds for the entropy as in
the proof of Propositon 7.3.

Following the recipe of [24] described earlier in this section we see that, for
α = 1

N+1 , the attractor Δα has a very simple structure, which can be completely
described. In particular, it is not difficult to check that the left endpoint of the
lowest horizontal boundary of Δα has coordinates ([0; 2, N, 1],− N

N+1 ); the other
lower boundaries are obtained from the lowest applying the function Φα, so that
the lower-right corners of the attractor are the points (xk, yk) := Φk

α(x0, y0) with

xk = [0; 1, k, 1, N ],
yk = − N−k

N−k+1 ,

for 1 < k < N . Now, if we pick an even value N = 2h, we get that −yh < xh; hence
the attractor contains the square of coordinates [0,−yh] × [yh, 0] (see Figure 8).
Integrating the invariant density (1 + xy)−2dxdy on this square we get the lower
bound for the measure of the attractor

A1/(N+1) ≥ log(N)− log(4).

On the other hand, for the upper bound we note that, using the notation of section
7.1, we have for each α /∈ EKU the inclusion Δα ⊆ [y, x]× [α−1, α]. Then by taking
α = 1/N and using Proposition 7.2 one gets that the attractor Δ1/N is contained
in the rectangle [−1/(N − 1), 1− 1/(N + 2)] × [1/N − 1, 1/N ], which leads to the
upper bound A1/N ≤ log(N)+O(1) as N → +∞. This, together with the previous
inequality, proves (58). �

7.3. Comparison with Nakada’s α-continued fractions and open ques-
tions. Let us remark that the study of the entropy hN in the case of the family
(Tα) of α-continued fractions of Nakada is indeed much more complicated than the
case examined in this paper (see Figure 9). Actually many statements that we
proved before should hold also for the family (Tα), but proofs are missing.
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Figure 9. The graph of the entropy hN of Nakada’s α-continued
fractions (in blue), versus the entropy h of continued fractions with
SL(2,Z) branches (in red).

The structure of the matching set for α-continued fractions is quite well un-
derstood ([10], [6]), but in this case matching intervals with different monotonic
behaviours are mixed up in a complicated way ([12]), so even the fact that the
entropy hN attains its maximum value at 1/2 is still conjectural.

Another feature which is still unproved is the smoothness of entropy on matching
intervals. This is due to the fact that the natural extension has no finite rectangular
structure when α ranges in a matching interval (see [28]). We conjecture that,
as in the case we examined in this paper, on a matching interval densities are
piecewise continuous, with discontinuity points located on the forward images of
the endpoints (before matching occurs), while the branches of these densities are
fractional transformations which move smoothly with the parameter (see also [9],
Conjecture 5.3).

8. Farey words, kneading theory, and external angles

In the last section we will establish the connection between the bifurcation set
EKU and the Mandelbrot set, thus proving Theorem 1.3 in the introduction.

8.1. A Cantor set defined by Farey words. Denote as [a, b] the closed inter-
val of the circle from a to b, with positive orientation. Let us define the binary
bifurcation set EB as

EB := {x ∈ [0, 1/2] : Dk(x) ∈ [x, x+ 1/2] ∀k ∈ N}.

The set EB is a closed subset of the interval [0, 1/2], and it has no interior as we will
see. Let us point out that the only dyadic rationals which belong to EB are 0 and
1/2. Moreover, we shall see that the connected components of the complement of
EB are canonically labelled by Farey words. Indeed, if w ∈ {0, 1}∗ is a Farey word
we set Iw := (a−, a+) with

a+ := 0.w,

a− := 0.tw − 1/2.
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For instance, if w = 00101, then a+ = 0.00101 = 5
31 and a− = 9

62 . We have the
following properties (for proofs, see [8]).

Proposition 8.1. With the notation above we have:

(1) a± ∈ EB;
(2) if x ∈ Iw, then x /∈ EB;
(3) for each Farey word w, the length of Iw is

|Iw| =
1

2(2n − 1)

with n = |w|;
(4) each Iw is a connected component of [0, 1/2] \ EB; moreover, we have

[0, 1/2] \ EB =
⋃

w∈FW

Iw;

(5) the Hausdorff dimension of EB is zero.

Let us remark that x = .w ∈ EB if and only if w ∈ C. The set EB also appears in
the kneading theory for Lorentz maps: indeed, it is the one-dimensional projection
of the two-dimensional set of all kneading invariants for Lorentz maps (see [20,29]).

8.2. Connection to the main cardioid in the Mandelbrot set. Let us now
highlight a connection between the combinatorics of Farey words and the symbolic
coding of rays landing on the main cardioid of the Mandelbrot set. We shall start
by recalling a few standard facts in complex dynamics; for an account, we refer to
[33] and references therein.

Let us consider the family of quadratic polynomials fc(z) := z2 + c with c ∈ C.
Recall that the filled Julia set K(f) of a polynomial f(z) is the set of points with
bounded orbits:

K(f) := {z ∈ C : sup
n

|fn(z)| < ∞}.

If K(f) is connected, then its complement in the Riemann sphere is conformally

isomorphic to a disk; hence it can be uniformized by a unique map Φ : Ĉ \ D →
Ĉ\K(f) such that limz→∞ |Φ(z)| = ∞ and limz→∞ Φ(z)/z = 1. For each θ ∈ R/Z,
the external ray at angle θ is the set

R(θ) := {Φ(ρe2πiθ) | ρ > 1}.

The ray R(θ) is said to land if limρ→1+ Φ(ρe2πiθ) exists (and then it is a point on
the boundary of K(f)). The Julia set J(f) is the topological boundary of K(f).
By Carathéodory’s theorem, if the Julia set is locally connected, then all rays land.
The map fc has two fixed points (which coalesce if c = 1

4 ); we shall call the β-fixed
point the fixed point where the external ray of angle θ = 0 lands, and the α-fixed
point the other fixed point. A fixed point z0 is called indifferent when the derivative
f ′
c(z0) has modulus 1 (the derivative f ′

c(z0) is usually called the multiplier of the
fixed point).

In parameter space, let us recall that the Mandelbrot set M is the set of param-
eters c for which the orbit under fc of the critical point z = 0 is bounded:

M := {c ∈ C : sup
n

|fn
c (0)| < ∞}.
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The set M also equals the set of parameters c ∈ C for which the Julia set of fc is
connected. Just as the Julia sets, the Mandelbrot set admits a unique uniformizing

map ΦM : Ĉ\D → Ĉ\M such that limz→∞ |ΦM (z)| = ∞ and limz→∞ ΦM (z)/z = 1.
Let us define the main cardioid � of the Mandelbrot set as

� := {c ∈ C : fc(z) has an indifferent fixed point}.
A simple computation shows that � can be parametrized as c = 1

2e
2πiθ − 1

4e
4πiθ

where θ ∈ [0, 1]; in this parametrization, for each c ∈� the map fc has multiplier
e2πiθ at the α-fixed point. Let Ω denote the set of angles of external rays landing
on the main cardioid of the Mandelbrot set:

Ω := {θ ∈ R/Z : RM (θ) lands on �}.
The following proposition makes precise the connection between Farey words and
the set of rays landing on the cardioid (see Figure 10).

Proposition 8.2. Let r = p
q ∈ Q ∩ (0, 1), and let w = Wr be the corresponding

Farey word. Let us now define the pair of angles (θ−, θ+) as

θ− = 0.τ (tw),
θ+ = 0.τw,

and let c ∈ � denote the parameter on the main cardioid for which the α-fixed point
of fc has multiplier e2πir. Then we have the following properties:

(1) in the Julia set of fc, the set of external rays landing at the α-fixed point is
the set

C(w) = {0.τkw : 0 ≤ k ≤ q − 1}
whose binary expansions are all cyclic permutations of w;

(2) in parameter space, the pair of angles of external rays (θ−, θ+) lands on the
main cardioid at the parameter c;

(3) we have the identity
Ω = 2EB.

As an example, if r = 2
5 , then w = 00101 and θ− = 0.01001 = 9

31 , while

θ+ = 0.01010 = 10
31 . In the dynamical plane, the set of rays landing at the α-fixed

point is C(w) = ( 5
31 ,

9
31 ,

10
31 ,

18
31 ,

20
31 ).

Proof. (1) Let c ∈� be the parameter for which the map fc has an indifferent fixed
point of multiplier e2πir. It is known that its Julia set J(fc) is locally connected.
Hence all external rays land in the dynamical plane of fc, and the landing map L(θ) :
R/Z → J(fc) defined as L(θ) := limρ→1+ Φ(ρe2πiθ) is a continuous semiconjugacy
between the doubling map and fc; that is, we have the commutative diagram (see
also [33])

R/Z

D

��
L �� J(fc)

fc

��

Let S := L−1(α) be the set of angles of external rays landing at the α-fixed point.
The map fc permutes the rays landing at α and preserves their cyclic orientation in
the plane. Moreover, since the multiplier of fc at α is e2πir, the set S has rotation
number r under the doubling map. Hence by Lemma 2.7 the set S equals C(w).

To pass to the statement in parameter space, note that it is known that the pair
of rays landing on c in parameter space corresponds to the elements of S which
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Figure 10. Left: the set Ω of external rays landing on the main
cardioid of the Mandelbrot set. Right: the set C(w) of external
rays landing on the α-fixed point of a Julia set for the center of
a hyperbolic component tangent to the main cardioid (here, the
rotation number is r = 2/5 and the corresponding Farey word is
w = 00101).

delimit a sector which (in the dynamical plane) contains the critical value. Now,
the set S1\S is the union of q (connected) arcs, and the doubling map permutes their
endpoints. Hence, D maps each arc of length smaller than 1/2 homeomorphically
to its image, and there is a unique arc 	0 of length at least 1/2. Since the map fc is a
local homeomorphism away from its critical point, the component in the dynamical
plane corresponding to 	0 must contain the critical point. Now note that by Lemma
2.6(1) and (3), the arc 	 = (0.tw, 0.w) is a connected component of S1 \ S, and by
Proposition 8.1 and the definition of EB, the length of 	 is more than 1/2, so it
must be 	 = 	0, the one which contains the critical point. As a consequence, the
arc which contains the critical value is delimited by taking the forward image of
the endpoints of 	0; thus, it is the arc 	1 = (0.τ (tw), 0.τw) = (θ−, θ+), and claim
(2) is proven.

As for the last statement, the previous construction implies the correspondence
Ω∩Q = 2(EB ∩Q). Claim (3) follows by taking closures, as it is known that the set
of angles of rays landing on the main cardioid is the closure of the set of rational
angles of rays landing on the main cardioid (see [19], Corollary 4.4). �

We now have the tools to prove Theorem 1.3 in the introduction.

Proof of Theorem 1.3. By comparing the definitions of EKU and EB one has EKU =
φ(EB); then by using equation (21) and Proposition 8.2(3) we get

Q(EKU ) = Q(φ(EB)) = 2EB = Ω.

�

8.3. The magic formula. Let us conclude this section by comparing the bifur-
cation set EKU with the bifurcation set (or exceptional set) EN for Nakada’s α-
continued fraction transformations (see [10]). By comparing equation (25) with the



4968 CARLO CARMINATI, STEFANO ISOLA, AND GIULIO TIOZZO

definition3 of EN from [10], one can easily check the inclusion

(59) EKU ∩ [0, 1/2] ⊂ EN .

Note that the inclusion is strict (and actually, the Hausdorff dimension of EN is 1,
while the dimension of EKU is 0).

Since both sets in (59) are related to sets of rays landing in the Mandelbrot
set, it is interesting to see what our dictionary tells us when we transport the
previous inclusion to the world of complex dynamics. First, using Theorem 1.3, the
Minkowski question mark Q maps EKU homeomorphically to the set Ω of external
angles of rays landing on the main cardioid. Meanwhile, by the main theorem of [6],
the set EN is related to the set of rays landing on the real slice of the Mandelbrot
set. Indeed, if we let R be the set of external angles of rays whose impression
intersects the real slice of the Mandelbrot set, then we have the homeomorphism
([6], Theorem 1.1)

ψ(EN ) = R∩ [1/2, 1),

where ψ(x) := 1
2 + Q(x)

4 . Thus we have the following commutative diagram, where
i is the inclusion map:

EKU ∩ [0, 1/2]

Q

��

i �� EN
ψ

��
Ω ∩ [0, 1/2]

T �� R
As a consequence, the map T (θ) := ψ(Q−1(θ)), which can be expressed as just

T (θ) =
1

2
+

θ

4
,

maps the set of rays landing on the upper half of the main cardioid into the set of
real rays, i.e.,

T (θ) ⊆ R
for each θ ∈ Ω ∩ [0, 1/2]. This fact is known in the folklore as “Douady’s magic
formula” (see [4], Theorem 1.1).

Appendix

We shall now give the proofs of a few technical lemmas we postponed in the
main body of the article.

Proof of Lemma 6.2. Since the proof follows closely the same strategy as in [35] we
give here just a sketch of the main steps. The idea is based on comparing the return
times of Kα on the intervals [α′−1, α−1] and [α′, α]: by the ergodic theorem, these
give information on how the invariant measure changes.

Let Jw be the quamterval labelled by the Farey word w and let α, α′ ∈ Jw be
such that either

s ≤ α′ ≤ α < α+, S · α′ > α

or

α− < α′ < α < s, tS′ · σ(α) < α′.

3In [10], the bifurcation set is simply denoted by E, and its complement is denoted by M. See
also [12, section 3].
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Then, for every x ∈ [α′, α] there exist two increasing sequences (visiting times)
(n0(k))k∈N, (n1(k))k∈N such that

(1) n0(k) and n1(k) are kth-return times on (α′ − 1, α− 1) and (α′, α), respec-
tively:

(60)
Kn

α′(x− 1) ∈ (α′ − 1, α− 1) ⇐⇒ n = n0(k) for some k ∈ N,
Kn

α(x) ∈ (α′, α) ⇐⇒ n = n1(k) for some k ∈ N;

(2) although the return times may depend on x, their difference just depends
on w: n0(k)− n1(k) = k(|w|0 − |w|1);

(3) the matching property induces a synchronization of kth-returns:

(61)
K

n0(k)
α′ (x− 1) = K

n1(k)
α (x)− 1,

TMα′,x−1,n0(k) = Mα,x,n1(k)T;

(4) just before the kth return the two orbits are together:

K
n0(k)−1
α′ (x− 1) = Kn1(k)−1

α (x)− 1,TMα′,x−1,n0(k)−1 = Mα,x,n1(k)−1.

It is now possible to choose x ∈ (α′, α) such that both of the following conditions
hold:

(a) x is a typical point for Kα, namely,

lim
x→+∞

1
n#{i < n : Ki

α(x) ∈ (α′, α)} = μα([α
′, α]),

2 lim
x→+∞

1
n log qn,α(x) = h(α).

(b) x− 1 is typical for Kα′ , that is:

lim
x→+∞

1
n#{j < n : Kj

α′(x− 1) ∈ (α′ − 1, α− 1)} = μα′([α′ − 1, α− 1]),

2 lim
x→+∞

1
n log qn,α′(x− 1) = h(α′).

Therefore, on one hand we have

lim
k→+∞

k

n0(k)
= μα′([α′ − 1, α− 1]), lim

k→+∞

k

n1(k)
= μα([α

′, α]),

which implies by taking the quotient and using (2) that

lim
k→+∞

n0(k)

n1(k)
= lim

k→+∞
1 +

k

n1(k)
(|w|0 − |w|1) = 1 + (|w|0 − |w|1)μα([α

′, α]).

Then, putting everything together we get

h(α) = lim
k→+∞

2
n1(k)−1 log qn1(k)−1,α(x)

= lim
k→+∞

n0(k)−1
n1(k)−1

2
n0(k)−1 log qn0(k)−1,α′(x− 1)

= (1 + (|w|0 − |w|1)μα([α
′, α]))h(α′),

which proves the claim. �

Proof of Lemma 6.5. We may assume, without loss of generality, that I = [0, 1] and
that the intervals are indexed in decreasing size: |I1| ≥ |I2| ≥ . . . . By definition
the upper box-dimension of G is given by

(62) B.dim G := lim sup
ε→0

logN(ε)

log(1/ε)
,
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where N(ε) is the minimum cardinality of a cover of G with intervals of diameter
less than or equal to ε. Let us now define

M(ε) := sup{i : |Ii| ≥ ε}.

Notice now that any cover of [0, 1] \
⋃M(ε)

i=1 Ii with intervals of diameter less than
ε necessarily must have cardinality at least M(ε) + 1, because any such interval
intersects at most one connected component. Hence

M(ε) ≤ N(ε).

If we now fix δ ∈ (δ0, η), by (62) there is some C > 0 such that

M(ε) ≤ N(ε) ≤ Cε−δ ∀ε ≤ 1.

Now
M(ε/2k+1)∑
M(ε/2k)+1

|Ii|η ≤
( ε

2k

)η

M(ε/2k+1) ≤ C2δεη−δ2k(δ−η);

hence summing over k ≥ 0 we get

∞∑
M(ε)+1

|Ii|η ≤ εη−δ C2δ

1− 2δ−η
.

Now, given any subsequence J1, J2, . . . , if we set ε :=
∑∞

i=1 |Ji|, then all elements
in the subsequence have length smaller than ε, hence

∞∑
i=1

|Ji|η ≤
∞∑

M(ε)+1

|Ii|η ≤
( ∞∑

i=1

|Ji|
)η−δ

C2δ

1− 2δ−η
.

�

Proof of Proposition 4.3. Let us pick s′ ∈ (0, 1) ∩Q, since Q ∩ EKU = {0, 1}; then
s′ /∈ EKU . Therefore there is w ∈ FW ∗ such that s′ ∈ Jw, and Proposition 4.3 will
be proved once we prove that

(63) s′ ∈ Jw ⇒ J̃s′ ⊂ Jw.

Now, let S := RL(w) and let s := [0;S] be the pseudocenter of Jw (so that, by

virtue of equation (22), J̃s = Jw). Let us first assume that s′ > s: this means that
s′ = [0;ST ] with |T | even. Since S′ 
 S, it is clear that the left endpoint σβ(σs′)

of J̃s′ belongs to J̃s. To prove that the right endpoint β(s′) satisfies β(s′) ≤ β(s),
let us set m := max{j : |S|j < |T |}. Then, either (a) T 
 Sm+1 or (b) T = SmP
with S = PZ (i.e., T is a prefix of Sm+1). We claim that in both cases β(s′) =
[0;ST ] ≤ [0;S] = β(s). In case (a) this claim is trivial, and the same is true in case
(b) if P = S. On the other hand, in the case when P is a proper prefix of S, by
virtue of Lemma 3.1(iii) one gets that PZ < ZP so that using the lemma of (16)
we get

PPZ < PZP ⇐⇒ Sm+1PS < SSm+1P ⇐⇒ [0;ST ] = [0;Sm+1P ] < [0;S],

completing the proof of the inclusion J̃s′ ⊂ J̃s = Jw.



CONTINUED FRACTIONS WITH SL(2, Z)-BRANCHES 4971

On the other hand, if s′ < s, then σ(s′) > σ(s) and σ(s′) ∈ J̃σs = Jtw̌, so the
previous case implies that

J̃s′ = σ(J̃σs′) ⊂ σ(J̃σs) = J̃s,

and (63) is thus proven. �
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Scuola di Scienze e Tecnologie, Università di Camerino, via Madonna delle Carceri,

62032 Camerino, Italy

Email address: stefano.isola@unicam.it

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto,

Ontario M5S 2E4, Canada

Email address: tiozzo@math.utoronto.ca


	1. Introduction
	1.1. Connection with the main cardioid in the Mandelbrot set
	1.2. Behaviour of (𝑎,𝑏)-continued fractions on the critical line.
	Structure of the paper

	2. Farey words and dynamics
	2.1. Alphabets and orderings
	2.2. Farey words
	2.3. Infinite cutting sequences and Sturmian sequences
	2.4. Substitutions

	3. Regular continued fraction expansions
	3.1. Farey legacy

	4. The bifurcation set \EKU
	4.1. Quamtervals
	4.2. Thickening ℚ

	5. Matching intervals for continued fractions with 𝑆𝐿(2,\ZZ)-branches
	6. Entropy
	7. Natural extension and regularity properties of the entropy
	7.1. Structure of the attractor Δ_{𝛼} and entropy formula.
	7.2. Consequences
	7.3. Comparison with Nakada’s 𝛼-continued fractions and open questions.

	8. Farey words, kneading theory, and external angles
	8.1. A Cantor set defined by Farey words
	8.2. Connection to the main cardioid in the Mandelbrot set
	8.3. The magic formula

	Appendix
	Acknowledgments
	References

