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MODULI SPACES OF MEROMORPHIC FUNCTIONS

AND DETERMINANT OF THE LAPLACIAN

LUC HILLAIRET, VICTOR KALVIN, AND ALEXEY KOKOTOV

Abstract. The Hurwitz space is the moduli space of pairs (X, f) where X

is a compact Riemann surface and f is a meromorphic function on X. We

study the Laplace operator Δ|df|2 of the flat singular Riemannian manifold

(X, |df |2). We define a regularized determinant for Δ|df|2 and study it as a
functional on the Hurwitz space. We prove that this functional is related to
a system of PDE which admits explicit integration. This leads to an explicit
expression for the determinant of the Laplace operator in terms of the basic
objects on the underlying Riemann surface (the prime-form, theta-functions,
the canonical meromorphic bidifferential) and the divisor of the meromorphic
differential df. The proof has several parts that can be of independent interest.
As an important intermediate result we prove a decomposition formula of the
type of Burghelea-Friedlander-Kappeler for the determinant of the Laplace
operator on flat surfaces with conical singularities and Euclidean or conical
ends. We introduce and study the S-matrix, S(λ), of a surface with conical
singularities as a function of the spectral parameter λ and relate its behavior
at λ = 0 with the Schiffer projective connection on the Riemann surface X.
We also prove variational formulas for eigenvalues of the Laplace operator of
a compact surface with conical singularities when the latter move.

1. Introduction

1.1. General part. Studying the determinants of Laplacians on Riemann surfaces
is motivated by needs of quantum field theory (in connection with various partition
functions) and geometric analysis (in particular, in connection with the Sarnak
program, [36]). The explicit expressions for the determinant of the Laplacian in
the metric of constant negative curvature ([7]) and in the Arakelov metric (obtained
in [2] in relation to so-called bosonization formulas from string theory) for compact
Riemann surfaces of genus g > 1 are among the most spectacular results of the
subject. According to the Sarnak program, these determinants (which are functions
on the moduli space of Riemann surfaces) can be used to study the geometry of
the moduli space via methods of Morse theory. In particular, their behavior at the
boundary of moduli space is of great importance and was intensively studied (see,
e.g., [42], [41]).

It seems very interesting to consider the case which is in a certain sense opposite
to the case of the metric of constant curvature: instead of distributing the curva-
ture uniformly along the Riemann surface X one can concentrate it at a finite set
{P1, . . . , PM} ⊂ X. This leads to a flat metric m on X with singularities (e.g.,
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conical) at Pk. Determinants of Laplacians for various classes of singular flat met-
rics were introduced and studied at least on the formal level (via path integrals)
by physicists ([38], [43], [20], [3]) and certain explicit expressions for them were
produced (see, e.g., [38], [43]).

One of the main challenges is to study such determinants from the spectral theory
of self-adjoint operators and perturbation theory points of view. This was done
in the mathematical literature for the determinants of the Laplacians of smooth
metrics; in particular, those two mentioned above (see, e.g., Fay’s book [9] for
complete compendium and consistent exposition). The standard definition of the
determinant uses the ζ-function of the corresponding Laplace operator

(1.1) ln detΔm = −ζ ′Δm(0) ,

(1.2) ζΔm(s) =
∑
j

1

λs
j

,

where in the latter expression the sum is extended over all non-zero eigenvalues
of Δm. This definition makes sense when the metric m has conical singularities
provided a regular self-adjoint extension is considered; for instance, the Friedrichs
one (see [15] for the definition of regular). Indeed, the Laplace operator Δm (with
natural domain consisting of smooth functions on X supported outside the conical
points Pk) is not essentially self-adjoint (cf. [19]). Comparing the determinants of
the different self-adjoint extensions of Δm leads to a nice application of Birman-
Krein theory and is done in [15] (see also the references therein). In what follows
we consider the Friedrichs extension of Δm; our results refer to this self-adjoint
extension only.

In [25] an explicit expression was found for the determinant of (the Friedrichs
extension of) the Laplace operator corresponding to a flat conical metric m with
trivial holonomy. Any metric of this type can be written |ω|2, where ω is a holo-
morphic one-form on X, zeros of ω of multiplicity � are the conical points of the
metric |ω|2 with conical angle 2π(�+1). The moduli space of pairs (X,ω), where X
is a compact Riemann surface and ω is a holomorphic one-form on X, is stratified
according to the multiplicities of ω (see [29]). In [25] it was proved that on each
stratum of the moduli space of holomorphic differentials the ratio

detΔ|ω|2

Area(X)det�B ,

where B is the matrix of b-periods of the Riemann surface X, coincides with the
modulus square of a holomorphic function τ on the stratum. This holomorphic
function τ (the so-called Bergman tau-function on the space of holomorphic differ-
entials) admits explicit expression through theta-functions, prime-forms, and the
divisor of the holomorphic one-form ω. In the case g = 1 the holomorphic one-forms
have no zeros, the metric |ω|2 is smooth, and the corresponding result coincides with
the classical Ray-Singer formula for the determinant of the Laplacian on an elliptic
curve with flat conformal metrics.

In [23] a comparison formula (an analog of the classical Polyakov formula) re-
lating determinants of the Laplacians in two conformally equivalent flat conical
metrics was found. This led to the generalization of the results of [25] to the case
of arbitrary flat conformal metrics with conical singularities.
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Together with determinant of the Laplacians in flat conical metrics given by the
modulus square of the holomorphic one-form (these metrics have finite volume and
the spectra of the corresponding self-adjoint Laplacians are discrete) in physics lit-
erature appear determinants of the Laplacians corresponding to flat metrics |ω|2,
where ω is now a meromorphic one-form on X. Depending on the order of the poles
of ω, the corresponding non-compact Riemannian manifold (X, |ω|2) of infinite vol-
ume has cylindrical, Euclidean, or conical ends. The spectrum of the corresponding
Laplace operator is continuous (with possible embedded eigenvalues, say, in case of
cylindrical ends) and the Ray-Singer regularization of the determinant ((1.1), (1.2))
is no longer applicable. The way to regularize such determinants is, in principle,
also well known (see, e.g., [32]): considering the Laplacian Δ as a perturbation

of some properly chosen “free” operator Δ̊, one introduces a relative determinant
det(Δ, Δ̊) in terms of the relative ζ-function

(1.3) ζ(s; Δ, Δ̊) =
1

Γ(s)

∫ ∞

0

Tr(e−Δt − e−Δ̊t)ts−1 dt,

where a suitable regularization of the integral is made (being understood in the
conventional sense the integral is usually divergent for any value of s).

Following this approach, in [16] we studied the regularized determinants

det(Δ, Δ̊) = e−ζ′(0;Δ,Δ̊)

of the Laplacians on the so-called Mandelstam diagrams - the flat surfaces with
cylindrical ends (more precisely, Riemann surfaces X with the metric |ω|2, where
ω is a meromorphic one-form on X having only simple poles and such that all the
periods of ω are pure imaginary and all the residues of ω at the poles are real).

In the present paper we consider determinants of the Laplacian corresponding to
flat metrics with even wilder singularities: the corresponding Riemannian manifolds
have Euclidean (i.e., isometric to a vicinity of the point at infinity of the Euclidean
plane) and/or conical ends (i.e., isometric to a vicinity of the point at infinity of a
straight cone).1

1As is well known in scattering theory, the spectral properties change drastically depending
on the structure of the ends, and, in particular, the techniques that can be employed to define a
spectral determinant and then to prove the BFK gluing formula. More precisely, for low energies,
in the cylindrical case the (absolutely) continuous spectrum of the Laplacian is of finite multiplicity
and thus everything can be understood by eventually considering a finite dimensional perturbation
(roughly speaking one only has to consider what happens on the 0− th mode for each cylindrical

end), whereas in the case of Euclidean or conical ends the continuous spectrum is of infinite
multiplicity which raises the problem to a very different level. Much more involved analysis has
to be performed first, in order to define the determinant, and then to prove the BFK formula.

Thus by using a conventional approach to the definition of a relative determinant and to the
proof of the BFK formula, one intimately deals with analysis of the essential singularity of the
resolvent at energy zero (thanks to continuous spectrum of infinite multiplicity), which seems to
be a very challenging problem. In particular, it is highlighted by the fact that due to exactly the
same difficulty the assumption kerDY = {0} in [33] is not yet removed after years of attempts.

We should also note that in [14] the authors define the determinant and prove a BFK formula for
the Laplacian with a similar spectral portrait. Unfortunately, despite their approach of avoiding
studying the resolvent essential singularity, it fails in our geometric settings.

In the present paper we use a different approach. Developing further some ideas due to Carron,
we base our analysis on the study of the Neumann jump operator instead of studying essential
singularity of the resolvent at energy zero. We then obtain all needed information on spectral
shift functions thanks to a relation between zeta-determinant of the Neumann jump operators
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These metrics are given as the modulus square of the differential of an arbitrary
meromorphic function f on a compact Riemann surface X. The moduli space of
pairs (X, f) is called the Hurwitz space H. We define and study the regularized de-
terminant of the Laplace operator corresponding to the metric |df |2 as a functional
on H. The main result of this work is an explicit formula for the determinant.

It should be mentioned that such determinants appeared for the first time in
[43], [3] (see also [20]), although no attempt was made to define them rigorously.

1.2. Results and organization of the paper. Let X be a Riemann surface and
let f be a meromorphic function f : X → P1. The metric |df |2 gives to X a
structure of a (non-compact) flat Riemannian manifold with conical singularities
and conical (or Euclidean) ends. The conical singularities are located at the critical
points P1, . . . , PM of f (or, equivalently, at the zeros of the meromorphic one-form
df), the ends of X are located at the poles of df . The moduli space of (equivalence
classes) of such pairs (X, f) is known as Hurwitz space H and the critical values
zm, zm = f(Pm), m = 1, . . . ,M , locally parametrize H.

Given such a Riemannian manifold (X, |df |2), we introduce the reference mani-

fold (X̊, m̊) as the disjoint union of the complete cones corresponding to the ends of

(X, |df |2). By Δ and Δ̊ we denote the Laplace operators on (X, |df |2) and (X̊, m̊)
correspondingly.

The first part of the paper aims at defining the relative zeta-regularized deter-
minant detζ(Δ, Δ̊) and proving a version of the Burghelea-Friedlander-Kappeler
(BFK in what follows) gluing formula (see [4]). This new BFK type formula is a
generalization of the Hassell-Zelditch formula for the determinant of the Laplacian
in exterior domains [14]; here we rely on ideas from [5, 6, 14].

In order to obtain the gluing formula, we cut X along some hypersurface Σ. This
decomposes X into a compact part X− and the union of conical/Euclidean ends

X+. The latter is isometric to the reference surface X̊ with a compact part X̊−
removed. There is some latitude in choosing the initial Σ. In order to choose Σ
we first specify some large R and then in each end of (X, |df |2) we take a circle
whose radius depends on R and on the cone angle of the end; see Definition 3. As
expected the gluing formula then involves the Neumann jump operator N on Σ and
the Dirichlet Laplacian ΔD

− on X−; see Theorem 1 below.

Theorem 1. For R large enough we have the BFK gluing formula

detζ(Δ, Δ̊) = C det∗ζ N · detζ ΔD
− ,

where N, ΔD
− depend on R. The constant C depends on R but not on the mod-

uli parameters z1, . . . , zM as long as the corresponding critical points Pm do not
approach Σ.

Note that the proof of the gluing formula also holds for a more general class of
metric (see Remark 2).

and spectral shift functions. Let us also note that in [16] we rely on the conventional approach of
studying the resolvent at zero energy.
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Let us now sketch some steps leading to this theorem. First we start from the
BFK gluing formula for detζ(Δ−λ, Δ̊−λ) obtained in [5] for negative (regular) val-

ues of the spectral parameter λ. In order to obtain a gluing formula for detζ(Δ, Δ̊),

we study the behavior of all ingredients in the gluing formula for detζ(Δ−λ, Δ̊−λ)

as λ → 0− (i.e., at the bottom of the continuous spectrum of Δ and Δ̊) and then
pass to the limit. As usual, this essentially reduces to derivation of asymptotics
as λ → 0− for the zeta-regularized determinant of the Neumann jump operator
and for the spectral shift function of the pair (Δ, Δ̊). In principle, both asymp-
totics were obtained in [6] for Schrödinger type operators on manifolds with conical
ends. Unfortunately, those asymptotics cannot be used for our purposes because
the asymptotic for the Neumann jump operator contains an unspecified constant
and the asymptotic for the spectral shift function is not sufficiently sharp. We
demonstrate that at least in our setting (no potential) the methods of [6] can be
improved to specify the constant and to obtain a sufficiently sharp asymptotic of
the spectral shift function as needed for the proof of our BFK formula. Once these
asymptotics are obtained, we follow the lines of [14] in our study of the behavior of

detζ(Δ− λ, Δ̊− λ) as λ → 0− and also in definition of detζ(Δ, Δ̊).
Using this BFK formula, we prove (as it was done in similar situations in [23],

[16]) that the variations of the determinant of the Laplacian with respect to the
moduli parameters zk remain the same if we replace the metric m = |df |2 of infinite
volume by a metric m̃ of finite volume, where m̃ coincides with m outside vicinities
of the poles of f and with some standard non-singular metric of finite volume inside
these vicinities. The aim of the second part of the paper is thus to study the zeta-
regularized determinant of this new metric m̃ and its variation with respect to
moduli parameters.

We show that these variations can be conveniently expressed using the so-called
S-matrix, so we start the second part of the paper by introducing this object and
deriving some of its properties. We think that the S-matrix is an important char-
acteristic of a compact Riemann surface X equipped with a conformal metric m̃
with conical singularities. It is introduced in analogy with scattering problems and
the general theory of boundary triples (see [13]). Basically, the S-matrix is a mero-
morphic matrix function of the spectral parameter λ. It serves as a formal analog
of the scattering matrix on complete non-compact manifolds (say, on manifolds
with cylindrical ends) in the sense that the elements of S are coefficients in asymp-
totics of certain eigenfunctions (all growing terms in the asymptotics near conical
singularities of m̃ are interpreted as incoming waves and all decaying terms — as
outgoing). Let us also note that there is no true scattering on the (incomplete)
manifold (X, m̃) (the corresponding operators have no continuous spectrum) and
that S(λ) is a non-unitary matrix with poles at the eigenvalues λ of the Friedrichs
self-adjoint Laplacian on (X, m̃) [15].

It turns out that the value, S(0), of the S-matrix can be found explicitly: it
depends only on the conical angle at the conical point, the conformal class of the
surface X, and the choice of the holomorphic local parameter near the conical
point (the so-called distinguished local parameter for the metric m̃). For instance,
when the conical angle is 4π, we express the matrix elements of S(0) through
the Bergman reproducing kernel for holomorphic differentials and a certain special
projective connection on X (the so-called Schiffer projective connection).
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In the general case we prove that a certain linear combination of the matrix
elements of S(0) (actually, the one that appears later in the variational formulas
for the determinant) can be expressed as the derivative (of the order depending on
the conical angle) of the Schiffer projective connection.

We continue by studying the moduli variations of the zeta-regularized determi-
nant of Δm̃. We use the Kato-Rellich perturbation theory to compute the variation
of individual eigenvalue branches and then a contour argument similar to the one
from [15] to get the variational formula for the determinant. This formula involves
a combination of the matrix elements of S(0) and hence the Schiffer projective
connection. Writing it into an invariant form, we obtain the following theorem.

Theorem 2. Let Pm be a zero of the meromorphic differential df of multiplicity
�m and let zm = f(Pm) be the corresponding critical value of f . Let the metric m̃
be obtained from the metric |df |2 via smoothing of the conical ends. Then

(1.4) ∂zm ln
det∗ζ(Δ

m̃)

det�B = − 1

12πi

∮
Pm

SB − Sf

df
,

where SB is the Bergman projective connection, Sf =
f ′′′f ′− 3

2 (f
′′)2

(f ′)2 is the Schwarzian

derivative, and B is the matrix of b-periods.

In this theorem we can replace det∗ζ(Δ
m̃) by det(Δ, Δ̊) since we proved before

that the moduli variations of both functions coincide.
The system of PDE for detΔm̃ that appears in Theorem 2 is the governing

system for the Bergman tau-function on the Hurwitz space (introduced and studied
in [22], [25], [27], [26]). The latter system was explicitly integrated in [24] and in
§5 we remember this result (unfortunately, technically involved). This leads to the

following explicit formula for detζ(Δ, Δ̊).

Theorem 3. Let (X, f) be an element of the Hurwitz space H(M,N) and let
τ (X, f) be given by expressions ((6.86), (6.85), (6.84)). There is the following
explicit expression for the regularized relative determinant of the Laplacian Δ on
the Riemann surface X:

(1.5) detζ(Δ, Δ̊) = C det�B |τ |2 ,
where C is a constant that depends only on the connected component of the space
H(M,N) containing the element (X, f).

We finish the paper with two illustrating examples in genus 0, deriving the
formulas for the determinant of the Laplacian on the space of polynomials of degree
N and on the space of rational functions with three simple poles.

2. The regularized determinant as a functional on the Hurwitz

space and a BFK gluing formula

To a pair (X, f), where X is a compact Riemann surface and f is a meromor-
phic function on X (i.e., to an element of the Hurwitz space), there corresponds a
Riemannian manifold (X, |df |2). Our aim is to define a regularized determinant of
the corresponding Laplacian and to prove a BFK type gluing formula. Since the
metric m = |df |2 has conical singularities and non-compact conical ends, this is not
that straightforward and requires several steps. First, we consider regular values
of the spectral parameter λ2, i.e., λ2 ∈ C \ [0,∞). In that case, the definition of
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the relative determinant and the BFK gluing formula are the same as in [5]. Then
we derive estimates for the determinant of the Dirichlet-to-Neumann operator as
λ approaches 0; our methods here are closely related to those of [6]. These esti-
mates allow us to define a zeta-regularized determinant for λ = 0 similarly to [14].
Then we prove the gluing formula for the thus defined determinant. At the end of
this section we use the gluing formula to compactify (X, |df |2) in such a way, that
locally, the moduli variations remain the same.

2.1. The flat Laplacian of an element in the Hurwitz space. We will be deal-
ing with conical singularities and conical ends. These are defined in the following
way.

Definition 1.

• For any � ∈ N the Euclidean cone of total angle 2�π is the Riemannian
manifold (C, |�y�−1dy|2).

• A point P in a Riemannian manifold will be a conical singularity of angle
2�π if there is a neighborhood of P that is isometric to the set ({|y| < ε},
|�y�−1dy|2

)
for some positive ε.

• An open set Ω ⊂ X of a Riemannian manifold (X,m) such that (Ω,m)
is isometric to

(
{|y| > R}, |�y�−1dy|2

)
for some positive R will be called a

conical end of angle 2�π (Euclidean end if � = 1).

Let (X,m) be a Riemannian manifold such that the metric is flat with a finite
number of conical singularities and conical ends. Denote by Δ the self-adjoint
Friedrichs extension of the (non-negative) symmetric Laplace operator defined on
smooth compactly supported functions that vanish near the conical singularities.

Let f be a meromorphic function on a compact Riemann surface X of genus
g ≥ 0 or, what is the same, a ramified covering of the Riemann sphere

(2.6) f : X → P
1.

Two coverings f1 : X1 → P 1 and f2 : X2 → P 1 are called equivalent if there
exists a biholomorphic map g : X1 → X2 such that f1 = f2 ◦ g.

The following constructions are standard; we recall them for the convenience of
the reader.

The critical points, Pm, m = 1, . . . ,M, of the function f (i.e., those points for
which df(Pm) = 0) are the ramification points of the covering, the points zm =
f(Pm) are called the critical values. The ramification index of the covering at the
point Pm equals �m+1, where �m is the order of the zero of the one-form df at Pm.
Denote by ∞1, . . . ,∞K the poles of f , and let k1, . . . , kK be their multiplicities.

Then the covering (2.6) has degree N = k1+. . .+kK and the following Riemann-
Hurwitz formula holds:

M∑
m=1

�m −
K∑
j=1

(kj + 1) = 2g − 2 ,

where g is the genus of X.
Pick some regular value z0 ∈ P1 and draw on P1 the segments I0 := [z0,∞], Im =

[z0, zm], m = 1, . . . ,M . It may happen that some segment is repeated several times
if different critical points take the same critical value. We may also choose z0 such

that all these segments have pairwise disjoint interiors. Denote by L :=
⋃M

m=0 Im
the union of these segments and observe that P1 \L contains only regular values of
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f . It follows that X \ f−1(L), the complement of the preimage of L by f in X has
N connected components. By construction f is a biholomorphic map from each of
these connected components onto P

1 \ L. We denote these connected components
by Cn, n = 1 . . . , N and call them the sheets of the covering. Each Cn can be seen
as a copy of the complex plane equipped with the cuts provided by L.

On each sheet, the metric |dz|2 lifted from the base P1 to the covering space
coincides with the metric |df |2. The Riemannian manifold (X, |df |2) is thus obtained
by gluing N copies of a Euclidean plane (C, |dz|2) with a system of non-intersecting
cuts, one of which extends to infinity.

For each critical point Pm of ramification index �m+1, we obtain an (�m+1)-cycle
γj obtained by looking to see in which order the sheets are following one another
when making a small loop around Pm. It follows that Pm is a conical singularity of
angle 2π(�m + 1).

For each zm, m 	= 0, we obtain a permutation in SN by composing the cycles for
each critical point in f−1(zm).We thus obtainM ′ permutations σm′ , m′ = 1 . . .M ′,
where M ′ is the number of different critical values. The critical value zm is thus
associated with one cycle in one of the permutations σm′ , m′ = 1 . . .M ′.

In the same manner we obtain a permutation σ0 by looking at the preimage
of a large loop that surrounds z0 (or, equivalently, a small loop around ∞ in the
base P1). This permutation describes the structure at infinity of the Riemannian
manifold (X, |df |2): each fixed point of σ0 corresponds to a flat Euclidean end and
a cycle of length k to a conical end of angle 2kπ. A pole in f of order k corresponds
to a conical end of angle 2kπ (and, therefore, a Euclidean end for a simple pole).

The flat structure on (X, |df |2) is completely characterized by the positions of
the critical values zm, m = 1 . . .M , and by the permutations σm′ , m′ = 0 . . .M ′.
Conversely, starting from M ′ + 1 permutations of SN , and M ′ distinct points
w1, . . . , wm′ in C, we construct the sequence z0, . . . , zM by choosing a distinct point
z0 and, for m > 0, by repeating wm′ as many times as there are disjoint cycles in
σm′ . We then glue N sheets according to the scheme prescribed by the permu-
tations and obtain a (not necessarily connected) flat surface (X,m) with conical
singularities and conical ends.

It turns out that it is always possible to find a meromorphic function f from X
to P1 such that (X,m) is isometric to (X, |df |2).

Introduce the Hurwitz space H(N,M) of equivalence classes of coverings f :
X → P 1 of degree N with M ramification points of (fixed) indices �1 + 1, . . . ,
�M +1 and K poles of (fixed) multiplicities k1, . . . , k�; k1+ . . . , kK = N . The space
H(N,M) is a complex manifold of dimension M (see [11]; we notice here that it
may have more than one connected component) and the critical values z1, . . . , zM
can be taken as local coordinates on H(N,M).

If all the critical points of the maps f are simple, then the corresponding Hurwitz
space is usually denoted by Hg,N (k1, . . . , kK) and is known to be connected (see
[34]).

Definition 2. We will refer to the coordinates z1, . . . , zM as moduli.

From the flat metric point of view, moving zm can be easily realized by cutting
a small ball around Pm; then move Pm inside this ball. Since the boundary of the
ball does not change we can glue the new ball back into the surface.
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For such a Riemannian manifold (X, |df |2) we define a reference manifold (X̊, m̊)
which is obtained in the following way. Take those N sheets with cuts that corre-
spond toX, and in the gluing scheme of X, keep σ0 and replace all the permutations
σm′ , m′ > 0 by the identity. It can be easily seen that (X̊, m̊) is the disjoint union
of cones; those cones correspond to the conical ends of X and the tip of each cone
is now located above z0.

The Laplacian Δ can be considered as a perturbation of the free Laplacian
Δ̊ := Δm̊ acting in L2(X̊). The perturbation is basically reduced to the change of

the domain of the unbounded operator: when we make slits on X̊ and glue them
according to a certain gluing scheme, it induces boundary conditions on the sides
of the cuts. The determinant of Δ will then be defined in terms of the relative
zeta-function (1.3) as a regularized relative determinant detζ(Δ, Δ̊).

The main goal of this work is to study the relative determinant detζ(Δ, Δ̊) as a
functional on the space H(N,M).

2.2. Relative determinant and BFK gluing formula for negative energies.
Let X be a compact Riemann surface and let f be a non-constant meromorphic
function onX. Introduce the flat singular metricm = |df |2 onX. As it is explained
in the previous section, the flat singular Riemannian manifold (X,m) has conical
points (at the zeros, P1, . . . , PM , of the differential df) and conical ends of angle
2πkj at the poles, ∞1, . . . ,∞K , of f , where kj is the order of the corresponding
pole. Let Δ be the (Friedrichs) Laplacian on (X,m).

Let (X̊, m̊) be the reference unperturbed manifold and let Δ̊ be the associated

Laplace operator. We recall that (X̊, m̊) =
⋃K

j=1(C, |kjy
kj−1
j dyj |2).

Since (X,m) and (X̊, m̊) are isometric outside a compact region the methods
and results of [6] apply.

For R > 0 large enough, there is a subset X+(R) ⊂ X that is isometric to

(2.7)
K⋃
j=1

{yj ∈ C : |yj | ≥ R1/kj} ⊂ X̊.

Definition 3. We denote by ΣR the boundary of the region X+(R). It is the union
of K circles {y ∈ C : |y| = R1/kj} on X.

Note that R will be chosen at the very beginning of construction and will then
be fixed. In what follows we omit the reference to R and simply write Σ, X+.

We represent X in the form

X = X− ∪Σ X+,

where X− = X \ (X+ ∪ Σ).
Following [5] we first define the external Dirichlet-to-Neumann operator. We

consider each conical end {yj ∈ Cj : |yj | ≥ R1/kj} of X+ separately and omit
the subscript j for brevity of notation. We introduce the coordinates (r, ϕ) where
r = |y|k ∈ [R,∞) and ϕ = arg y ∈ (−π, π]. We have

g = dr2 + k2r2 dϕ2, Δ = r−2
(
(r∂r)

2 + k−2∂2
ϕ

)
.

Separation of variables shows that for λ ∈ C\{0} with �λ ≥ 0 the exterior Dirichlet
problem

(2.8) (Δ− λ2)u(λ) = 0 on X+, u(λ) = f on Σ,
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has a unique solution of the form

u(r, ϕ;λ) =
∞∑

n=−∞
Cn

H
(1)
νn (λr)

H
(1)
νn (λR)

einϕ, νn =
|n|
kR

,

where f ∈ C∞(Σ), Cn = (2π)−1
∫ π

−π
f(ϕ)e−inϕ dϕ, and H

(1)
n is the Hankel function.

This solution is in L2(X+) if �λ > 0. If �λ = 0, it is the unique outgoing solution
that satisfies the Sommerfeld radiation condition

√
r
(
∂ru(λ)− iλru(λ)

)
→ 0 as r → ∞.

The external Dirichlet-to-Neumann operator on Σ acts by the formula

(2.9) N+(λ)f = −∂ru(λ) �r=R .

Thus ψn(ϕ) = (VolΣ)−1/2einϕ are eigenfunctions of N+(λ) with ‖ψn‖L2(Σ) = 1,
and

(2.10) μn(λ) = μ−n(λ) = −∂rH
(1)
νn (λr) �r=R

H
(1)
νn (λR)

are the corresponding eigenvalues (if �λ ≥ 0, λ 	= 0).

We can also consider Σ and X+ as subsets of X̊. Then in the same manner we
have X̊ = X̊− ∪Σ X̊+.

Let ΔD
± be the Friedrichs extensions of the Dirichlet Laplacians in L2(X±). We

denote by ΔD := ΔD
−⊕ΔD

+ the Friedrichs Laplace operator on L2(X) with Dirichlet

boundary condition on Σ. Similarly, we define Δ̊D
± and Δ̊D.

The spectrum spec(ΔD
−) of the positive self-adjoint operator ΔD

− is discrete. For

any λ2 ∈ C\σ(ΔD
−) and f ∈ H1(Σ) there exists a unique solution u(λ) ∈ H3/2(X−)

to the Dirichlet problem

(2.11) (Δ− λ2)u(λ) = 0 on X− \ Σ, u(λ) = f on Σ,

such that

(2.12) u(λ) = f̃ − (ΔD
− − λ2)−1(Δ− λ2)f̃ ,

where f̃ ∈ H3/2(X−) is a continuation of f and

(ΔD
− − λ2)−1 : H−1/2(X−) → H3/2(X−)

is a holomorphic function of λ2 ∈ C \ σ(ΔD
−); here

‖u;Hs(X−)‖ = ‖(ΔD
−)s/2u;L2(X−)‖.

The Dirichlet-to-Neumann operator N−(λ) on Σ acts by the formula

N−(λ)f = ∂ru(λ) �r=R,

where f is the right hand side in (2.11) and u(λ) is defined by (2.12). The function
λ2 �→ N−(λ) ∈ B(H1(Σ), L2(Σ)) is holomorphic in C \ σ(ΔD

−); here and elsewhere
B(X,Y) stands for the space of bounded operators from X to Y.

Finally, we introduce the Neumann jump operator

N(λ) = N+(λ) +N−(λ),

which is a first order elliptic classical pseudodifferential operator on Σ with the
principal symbol 2|ξ|.
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For λ2 ≤ 0 the operator N(λ) is formally self-adjoint and non-negative, it is
positive if λ2 < 0, and kerN(0) = {c ∈ C} (see, e.g., [6, Sec. 3.3] for details). (Note
that in Theorem 4 the operator N(0) is denoted by N.) Let λ2 < 0. The function
ζ(s) = TrN(λ)−s is holomorphic in {s ∈ C : �s > 1} and admits a meromorphic

continuation to C with no pole at zero; we set detζ N(λ) = e−ζ′(0).
It is known (see [5, Theorem 2.2]) that the difference

(Δ + 1)−1 − (ΔD + 1)−1

is in the trace class. By the Krein theorem, see, e.g., [40, Chapter 8.9] or [5, Theorem
3.3], there exists a spectral shift function ξ(· ; Δ, ΔD) ∈ L1(R+, (1+λ2)−2λ dλ) such
that

(2.13) Tr
(
(Δ + 1)−1 − (ΔD + 1)−1

)
= −

∫ ∞

0

ξ(λ ; Δ, ΔD)(1 + λ2)−22λ dλ.

Moreover, the following representation is valid:

(2.14) Tr
(
e−tΔ − e−tΔD)

= −t

∫ ∞

0

e−tλ2

ξ(λ ; Δ, ΔD)2λ dλ,

which implies that the left hand side in (2.14) is absolutely bounded uniformly in
t > ε > 0. The heat trace asymptotic

(2.15) Tr
(
e−tΔ − e−tΔD)

∼
∑
j≥−2

ajt
j/2, t → 0+,

can be obtained in a usual way; see, e.g., [16, Lemma 4]. Thus for λ2 < 0 the
relative zeta-function given by

ζ(s; Δ− λ2,ΔD − λ2) =
1

Γ(s)

∫ ∞

0

ts−1eλ
2t Tr(e−tΔ − e−tΔD

) dt

is defined for �s > 1 and continues meromorphically to the complex plane with no
pole at s = 0 by the usual argument. The relative determinant is defined to be

detζ(Δ− λ2,ΔD − λ2) = e−ζ′(0;Δ−λ2,ΔD−λ2).

By [5, Theorem 4.2] we have the gluing formula

(2.16) detζ(Δ− λ2,ΔD − λ2) = detζ N(λ), λ2 < 0.

(Although only smooth manifolds are considered in [5], it is fairly straightforward
to see that the argument in [5] remains valid for (2.16) as far as we consider only
Friedrichs extensions and there are no conical points on Σ.)

All the constructions above can also be done for (X̊, m̊). Thus similarly to (2.16)
we have

(2.17) detζ(Δ̊− λ2, Δ̊D − λ2) = det N̊ζ(λ), λ2 < 0.

Observe that since all operators can be seen as acting on L2(X̊) we have

e−tΔ − e−tΔ̊ =
(
e−tΔ − e−tΔD

)
−

(
e−tΔ̊ − e−tΔ̊D

)
+

(
e−tΔD − e−tΔ̊D

)
=

(
e−tΔ − e−tΔD

)
−

(
e−tΔ̊ − e−tΔ̊D

)
+

(
e−tΔD

− − e−tΔ̊D
−
)
,

where for the last line we have used that ΔD = ΔD
− ⊕ΔD

+ , Δ̊D = Δ̊D
− ⊕ΔD

+ since

X+ and X̊+ are isometric.
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It follows that we can take the trace of both sides and thus define the following
relative zeta-function for �s > 1:

ζ(s; Δ− λ2, Δ̊− λ2) =
1

Γ(s)

∫ ∞

0

ts−1eλ
2t Tr(e−tΔ − e−tΔ̊) dt, λ2 < 0.

Moreover, we obtain the relation

ζ(s; Δ− λ2, Δ̊− λ2) = ζ(s; Δ− λ2,ΔD − λ2) − ζ(s; Δ̊− λ2, Δ̊D − λ2)

+ ζ(s,ΔD
− − λ2) − ζ(s, Δ̊D

− − λ2).

All the functions continue meromorphically to the complex plane with no pole at
0. Passing to the determinant, we obtain

detζ(Δ− λ2,ΔD − λ2)

detζ(Δ̊− λ2, Δ̊D − λ2)
=

detζ(Δ− λ2, Δ̊− λ2) detζ(Δ̊
D
− − λ2)

detζ(ΔD
− − λ2)

.

Thus dividing (2.16) by (2.17) we obtain

(2.18)
detζ(Δ− λ2, Δ̊− λ2) detζ(Δ̊

D
− − λ2)

detζ(ΔD
− − λ2)

=
detζ N(λ)

detζ N̊(λ)
, λ2 < 0,

where N̊(λ) and Δ̊D
− are moduli independent.

In order to take the limit λ2 → 0− in (2.18), we will need the asymptotic behavior
of all the ingredients in the latter equation. We start with detζ N(λ).

2.3. Asymptotic of detζ N(λ) as |λ| → 0+, �λ ≥ 0. In this section we follow [6],
where a similar problem is studied. Our purpose here is to refine the asymptotic of
detζ N(λ) from [6] as needed for the proof of our gluing formula.

First we need to understand the behavior of the internal and external Dirichlet-
to-Neumann operators. Since the internal Dirichlet Laplacian ΔD

− is positive, there
is no problem in letting λ go to 0 in the definition of N−(λ).

Concerning the external Dirichlet-to-Neumann operator, by separation of vari-
ables in each conical end, we see that in the case λ = 0 the exterior Dirichlet
problem (2.8) has a unique solution of the form

(2.19) u(r, ϕ; 0) =

∞∑
n=−∞

Cn

(R
r

)νn

einϕ,

where f =
∑

Cne
inϕ. We recall that νn = |n|

kR and ψn(φ) = (2π)−
1
2 einφ. The

external Dirichlet-to-Neumann N+(0) is obtained by applying −∂r to this solution.
Clearly, {|n|/(kR2), ψn}∞n=−∞ is a complete set of the eigenvalues and orthonormal
eigenfunctions of the operator N+(0).

Remark 1. Note that thanks to the special choice of the lower bound on y in (2.7)
the eigenvalue μ0(λ) of N+(λ) corresponding to the constant eigenfunction ψ0 does
not depend on k. This will be important in our proof of the BFK gluing formula
in the case K ≥ 1 if kj 	= ki for some i, j = 1, . . . ,K.

It is convenient to present the argument in the case where K = 1 so that X
has only one conical end. We will explain afterwards how the proof is modified for
K > 1.
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2.3.1. The case K = 1. In the series (2.19) only the terms with νn > 1 are in
L2(X+). As a result, in a neighborhood of zero, properties of λ �→ N+(λ) on
the eigenspaces of N+(0) corresponding to the eigenvalues |n|/(kR2) > 1/R and
|n|/(kR2) ≤ 1/R are essentially different. Consider the spectral projector P =∑

0≤n≤kR Pn of N+(0) on the interval [0, 1/R]; here

P0 = (·, ψ0)L2(Σ); Pn = (·, ψn)L2(Σ)ψn + (·, ψ−n)L2(Σ)ψ−n.

Lemma 1 (See [6, Prop 4.5]). We have

N+(λ)
(
Id−P

)
= Ψ(λ2) + L(λ2),

where Ψ(z) is an elliptic pseudodifferential operator of order 1 which is a holomor-
phic function of z in a neighborhood of zero and L(z) is an operator with a smooth
integral kernel which is a C1 function of z in a neighborhood of zero with �z ≥ 0.

Recall that the eigenfunctions ψn of N+(λ) do not depend on λ and we have

N+(λ)Pf =
∑

0≤n≤kR

μn(λ)Pn,

where the μn have been defined in (2.10).
The eigenvalues of N+(0) on [0, 1/R] are the limits of μn(λ). As |λ| → 0+,

�λ ≥ 0, the formula (2.10) and properties of the Hankel functions (see [1]) imply
that

(2.20) μ0(λ) = − 1

R lnλ

(
1−

(
ln

R

2
+

πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
,

where γ is the Euler’s constant, and

(2.21) μn(λ) = |n|/(kR2) +O(λε), 0 < |n| < kR,

with some ε > 0.
We show the following proposition.

Proposition 1. Assume (X, |df |2) has only one conical end; then, for any R large
enough we have, as |λ| → 0+, �λ ≥ 0,

detζ N(λ) = − 1

R lnλ
det∗ζ N(0)

(
1−

(
ln

R

2
+

πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
,

where detζ N(λ) is the zeta-regularized determinant of N(λ), and det∗ζ N(0) is the
zeta-regularized determinant of N(0) with zero eigenvalue excluded.

Proof. Due to the representation L2(Σ) = kerP0 ⊕ ker(P − P0) ⊕ ker(Id−P) we
have

(2.22) N(λ) =

⎛
⎝ N0,0(λ) N0,1(λ) N0,2(λ)

N1,0(λ) N1,1(λ) N1,2(λ)
N2,0(λ) N2,1(λ) N2,2(λ)

⎞
⎠ ,

where Ni,j(λ) = PiN(λ)Pj with P0 = P0, P1 = P− P0, and P2 = Id−P.
The operator N2,2(0) is invertible and, therefore, detζ N2,2(0) 	= 0.
Note that N2,2(λ) = P2N−(λ)P2+P2N+(λ)P2, where N+(λ)P2 = N+(λ)(Id−P)

is the same as in Lemma 1 and N−(λ) is a holomorphic function of λ2 in a small
neighborhood of zero. This implies that

(2.23) detζ N2,2(λ)− detζ N2,2(0) = o(1), |λ| → 0+,�λ ≥ 0.
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Thanks to Lemma 1 we also have

(2.24)
‖N2,2(λ)−N2,2(0);B(H1(Σ), L2(Σ))‖ = O(λ2),

‖∂λN2,2(λ)− ∂λN2,2(0);B(H1(Σ), L2(Σ))‖ = O(λ).

In order to refine (2.23), we estimate the absolute value of ∂λ ln detζ N2,2(λ).

Since ∂λN2,2(λ) and N−1
2,2(λ) are pseudodifferential operators of order −1, the op-

erator

N−1
2,2(λ)∂λN2,2(λ)

is in the trace class, and hence

(2.25) ∂λ ln detζ N2,2(λ) = Tr
{
N−1

2,2(λ)∂λN2,2(λ)
}
;

see [4, 10]. The first estimate in (2.24) and the Neumann series for N−1
2,2(λ) give

(2.26)
N−1

2,2(λ) =
(
Id+L(λ)

)
N−1

2,2(0), ‖L(λ);B(H1(Σ))‖ = O(λ2);

N−1
2,2(λ) = N−1

2,2(0)
(
Id+R(λ)

)
, ‖R(λ);B(L2(Σ))‖ = O(λ2).

As a consequence of (2.25), (2.26), and (2.24) we get

|∂λ ln detζ N2,2(λ)| = |Tr
{
N−1

2,2(λ)∂λN2,2(λ)
}
|

≤ ‖N2,2(λ)(Id+L(λ))N−2
2,2(0)(Id+R(λ))∂λN2,2(λ)‖1

≤ ‖N2,2(λ);B(H1(Σ), L2(Σ))‖‖ Id+L(λ);B(H1(Σ))‖‖N−2
2,2(0)‖1

× ‖ Id−R(λ);B(L2(Σ))‖‖∂λN2,2(λ);B(H1(Σ), L2(Σ))‖ = O(1),

where ‖ · ‖1 is the trace norm. This together with (2.23) implies |∂λ detζ N2,2(λ)| =
O(1). Now, as a refinement of (2.23), we obtain

detζ N2,2(λ)− detζ N2,2(0) = O(λ).

This together with (2.22) implies
(2.27)

detζN(λ) = detFr

⎛
⎝

N0,0(λ) N0,1(λ) N0,2(λ)N2,2(λ)−1

N1,0(λ) N1,1(λ) N1,2(λ)N2,2(λ)−1

N2,0(λ) N2,1(λ) Id

⎞
⎠ detζ

⎛
⎝

Id 0 0
0 Id 0
0 0 N2,2(λ)

⎞
⎠

= detFr

⎛
⎝

N0,0(λ) N0,1(λ) N0,2(λ)N2,2(λ)−1

N1,0(λ) N1,1(λ) N1,2(λ)N2,2(λ)−1

N2,0(λ) N2,1(λ) Id

⎞
⎠(

detζ N2,2(0)
)(
1 + O(λ)

)
;

see [28] for the first equality. On the next step we rely on the estimate

(2.28) | detFr(Id+A)− detFr(Id+B)| ≤ ‖A−B‖1e‖A‖1+‖B‖1+1,

see [37, f-la (3.7), and the references therein], for

Id+A =

⎛
⎝ N0,0(λ) 0 0

0 N1,1(0) N1,2(0)N
−1
2,2(0)

0 N2,1(0) Id

⎞
⎠ ,

Id+B =

⎛
⎝ N0,0(λ) N0,1(λ) N0,2(λ)N2,2(λ)

−1

N1,0(λ) N1,1(λ) N1,2(λ)N2,2(λ)
−1

N2,0(λ) N2,1(λ) Id

⎞
⎠ .

Since N−(0) is a self-adjoint operator in L2(Σ) and kerN−(0) = {c ∈ C}, we have
N−(0)P0 = P0N−(0) = 0. Then thanks to

Pi

(
N(λ)−N(0)

)
Pj = δij

(
μj(λ)− μj(0)

)
+ Pi

(
N−(λ)−N−(0)

)
Pj , i, j ∈ [0, 1/R],
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where δij is the Kronecker delta function, and

Pj

(
N(λ)−N(0)

)
(Id−P) = Pj

(
N−(λ)−N−(0)

)
(Id−P), j ∈ [0, 1/R],

together with (2.21) and (2.26), we obtain ‖A − B‖1 = O(λε) with some ε > 0.
From (2.27) and (2.28) we get
(2.29)

detζ N(λ)=detFr

⎛
⎝ N0,0(λ) 0 0

0 N1,1(0) N1,2(0)N2,2(0)
−1

0 N2,1(0) Id

⎞
⎠ detζ N2,2(0)(1+O(λε)).

It remains to note that

N0,0(λ) = (μ0(λ) + P0(N−(λ)−N−(0))P0 = (μ0(λ) +O(λ2))P0,

det∗ζ N(0) = detFr

(
N1,1(0) N1,2(0)N2,2(0)

−1

N2,1(0) Id

)
detζ N2,2(0).

This together with (2.29) and (2.20) completes the proof. �
Corollary 1. The spectral shift function ξ in (2.14) satisfies

(2.30) ξ(λ ; Δ,ΔD) = (lnλ2)−1 +O
(
(lnλ)−2

)
, λ → 0 + .

Proof. By [5, Theorem 3.5] we have ξ(λ) = π−1 Arg detN(
√
λ2 + i0) as λ2 → 0+,

where Arg z ∈ (−π, π], and ξ(λ) = 0 if λ2 < 0. Calculation of the argument in the
asymptotic obtained in Propositon 1 gives (2.30). �
2.3.2. The case K > 1. Let us outline the changes in Proposition 1 and Corollary 1

needed in the case K > 1. Now we have N+(λ) =
⊕K

j=1 N
(j)
+ (λ), where each N

(j)
+ (λ)

is defined on the circle {y ∈ Cj : |y| = R1/kj} as in (2.9). The first eigenvalue of

N
(j)
+ (λ) is μ0(λ) and the corresponding eigenspace consists of constant functions on

the circle. As a consequence, in the estimate (2.29) the eigenvectors in N+ with
eigenvalue μ0(λ) contribute at the order O( 1

ln λ ) instead of O(λε) and this is not
good enough for our purpose.

We thus introduce P0 the orthogonal projection onto the eigenspace of N+(λ)
corresponding to μ0(λ) (note that P0 does not depend on λ, and that rankP0 =
K). Observe that we have kerN(0) ⊂ ker(Id−P0). We repeat the argument of
Proposition 1, where P0 is now the orthogonal projection onto kerN(0) = {c ∈
C}, P1 = (Id−P0)P where P is the spectral projection of N+(0) on the interval
[0, 1/R], and P2 = (Id−P). Clearly, N+(λ)P0 = μ0(λ)P0 and N+(λ)(Id−P0) =
(Id−P0)N+(λ).

The same argument as in the case K = 1 leads to

detζ N(λ) = − 1

R lnλ
detFr

(
N1,1(0) + μ0(λ)P0(Id−P0) N1,2(0)N2,2(0)

−1

N2,1(0) Id

)

× detζ N2,2(0)
(
1−

(
ln

R

2
+

πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
.

(Note that in the case K = 1 we have P0 = P0 and the term μ0(λ)P0(Id−P0)
does not appear.) This together with (2.20) and (2.28) gives

detζ N(λ) = − 1

R lnλ
detFr

(
N1,1(0)− 1

R lnλP0(Id−P0) N1,2(0)N2,2(0)
−1

N2,1(0) Id

)

× detζ N2,2(0)
(
1−

(
ln

R

2
+

πγ

2
− i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))
.
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Here the Fredholm determinant is a holomorphic function of the parameter τ :=
1

R lnλ . We have

(2.31) detζ N(λ) = − 1

R lnλ
det∗ζ N(0)

(
1−

(
C+ln

R

2
+
πγ

2
−i

π

2

) 1

lnλ
+O

( 1

(lnλ)2

))

with some constant C = C(R).
We observe that C must be real since detζ N(λ) is positive for λ ∈ C, Argλ = π/2

(as N(λ) is a positive self-adjoint operator for those values of λ). Thus C does
not influence the calculation of the argument in the asymptotic of detζ N(λ) and
Corollary 1 remains valid for K > 1. We will use Corollary 1 to define a relative
determinant of (Δ, Δ̊) at λ = 0.

2.4. The relative determinant and the gluing formula at λ = 0. In this
section we prove the following theorem.

Theorem 4. The gluing formula

detζ(Δ, Δ̊) = C det∗ζ N · detζ ΔD
−

is valid, where N, ΔD
− depend on R. The constant C depends on R but not on the

moduli parameters z1, . . . zM .

Observe that this theorem first requires a definition for the left-hand side of the
equality. Once this is done, we will let λ go to zero in (2.18) and study the limit of
both sides.

As before the case K = 1 is simpler than the general one. We will present
the proof for this case first. The case K > 1 is more technically involved but the
arguments we need can be adapted from [14].

2.4.1. The case K = 1. In this case, the definition of detζ(Δ, Δ̊) is rather straight-
forward, since, for K = 1, a conventional regularization (see, e.g., [16] and the
references therein) for the relative zeta-function makes sense. Indeed, the first
integral in the representation

(2.32) ζ(s; Δ, Δ̊) =

(∫ 1

0

+

∫ ∞

1

)
ts−1

Γ(s)
Tr

(
e−tΔ − e−tΔ̊

)
dt

defines an analytic function in �s > 1 that has a meromorphic continuation to
C with no pole at zero by the usual argument based on short time heat trace
asymptotic

(2.33) Tr
(
e−tΔ − e−tΔ̊

)
∼

∑
j≥−2

ajt
j/2, t → 0 + .

For the second integral we need the long time heat trace behavior given by the
following lemma.

Lemma 2. Assume that K = 1. Then

Tr
(
e−tΔ − e−tΔ̊

)
= O

(
(ln t)−2

)
as t → +∞.
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Proof. Since ΔD
+ ≡ Δ̊D

+ and the operators ΔD
− , Δ̊D

− are Dirichlet Laplacians on
compact manifolds, we have

Tr
(
e−tΔ − e−tΔ̊

)
= Tr

(
e−tΔ − e−tΔD

−⊕ΔD
+
)
− Tr

(
e−tΔ̊ − e−tΔ̊D

−⊕Δ̊D
+
)
+Tr e−tΔD

− − Tr e−tΔ̊D
−

= −t

∫ ∞

0

e−tλ2

(ξ(λ ; Δ,ΔD)− ξ(λ ; Δ̊, Δ̊D))2λ dλ+O(e−tδ), t → +∞,

(2.34)

where δ > 0 is the smallest eigenvalue in the spectra of ΔD
− and Δ̊D

− . (In (2.34) we

also used (2.14) for Δ and Δ̊.) As a consequence of Corollary 1 (which is also valid

for ξ̊ in the case K = 1) we have

ξ(λ ; Δ,ΔD)− ξ(λ, Δ̊, Δ̊D) = O
(
(lnλ)−2

)
, λ → 0 + .

This together with (2.34) implies the assertion; see, e.g., [17, Theorem 1.7] for
details. �

As a consequence, the second integral in (2.32) defines a holomorphic function

in �s < 0 that has a continuous in �s ≤ 0 derivative. Thus ζ(s; Δ, Δ̊) is a mero-

morphic function in �s < 0 and ζ ′(s; Δ, Δ̊) tends to a certain limit ζ ′(0;Δ, Δ̊) as
s → 0−. The relative zeta-regularized determinant is defined to be

(2.35) detζ(Δ, Δ̊) = e−ζ′(0;Δ,Δ̊).

We now prove the gluing formula in the case K = 1. First observe that by

Proposition 1 (applied also to N̊(λ)) we have

(2.36)
detζ N(λ)

detζ N̊(λ)
→

det∗ζ N(0)

det∗ζ N̊(0)
as λ2 → 0−, K = 1.

The limit λ → 0 is then addressed by the

Proposition 2. In the case K = 1 we have

detζ(Δ− λ2, Δ̊− λ2) → detζ(Δ, Δ̊) as λ2 → 0−,

where the determinant detζ(Δ, Δ̊) has been defined in (2.35).

Proof. Let us write the relative zeta-function in the form

ζ(s; Δ− λ2, Δ̊− λ2) =

(∫ 1

0

+

∫ ∞

1

)
ts−1etλ

2

Γ(s)
Tr

(
e−tΔ − e−tΔ̊

)
dt.

Thanks to (2.15) the first integral converges for �s > 1 uniformly in λ ≤ 0 and
has a meromorphic continuation to C with no pole at zero (by the usual argument
based on the short time heat trace asymptotic (2.33)). Due to Lemma 2 the second
integral defines a holomorphic in �s < 0 and continuous in λ2 ≤ 0 and �s ≤ 0
function. Moreover, as 1/Γ(s) has a first order zero at s = 0, Lemma 2 also implies
that the first derivative with respect to s of the second integral is also continuous
in λ2 ≤ 0 and �s ≤ 0. Thus we obtain

ζ ′(0;Δ− λ2, Δ̊− λ2) → ζ ′(0;Δ, Δ̊), λ2 → 0−,

where ζ ′(0;Δ, Δ̊) is defined using (2.32). �
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Proof of Theorem 4 in the case K = 1. We pass to the limit as λ2 → 0− in (2.18).
Since ΔD

− is positive, we have detζ(Δ
D
− −λ2) → detζ Δ

D
− as λ2 → 0−, and the same

is true for Δ̊D
− . Thanks to (2.36) and Proposition 2 we obtain

detζ(Δ, Δ̊) detζ Δ̊
D
−

detζ ΔD
−

=
det∗ζ N(0)

det∗ζ N̊(0)
,

which proves Theorem 4, where N(0) is denoted by N and the constant

C =
(
detζ Δ̊

D
− det∗ζ N̊(0)

)−1

is moduli independent. �

2.4.2. The case K > 1. In the case K > 1 we have N̊(λ) =
⊕K

j=1 N̊
(j)(λ), where

N̊(j)(λ) is the Neumann jump operator on the circle {y ∈ Cj : |y| = R1/kj} located
on the infinite cone (Cj , |dykj |2). We have

detζ N̊(λ) =

K∏
j=1

detζ N̊
(j)(λ), det∗ζ N̊(0) =

K∏
j=1

det∗ζ N̊
(j)(0).

We apply Proposition 1 to each detζ N̊
(j)(λ), j = 1, . . . ,K and get

(2.37)

detζ N̊(λ) = (−R lnλ)−K det∗ζ N(0)
(
1−

(
ln

R

2
+

πγ

2
− i

π

2

) K

lnλ
+ O

( 1

(lnλ)2

))
,

as |λ| → 0+, �λ ≥ 0.

Thanks to the relation ξ(λ ; Δ̊, Δ̊D) = π−1 Arg det N̊(
√
λ2 + i0) as λ2 → 0+,

calculation of the argument in (2.37) leads to

ξ(λ ; Δ̊, Δ̊D) = K(lnλ2)−1 +O((lnλ)−2), λ → 0+,

where ξ(· ; Δ̊, Δ̊D) ∈ L1(R+, (1+λ2)−2 dλ2) is the spectral shift function satisfying

Tr
(
(Δ̊ + 1)−1 − (Δ̊D + 1)−1

)
= −

∫ ∞

0

ξ(λ ; Δ̊, Δ̊D)(1 + λ2)−2 dλ2;

cf. Corollary 1. This together with Corollary 1 gives

(2.38) ξ(λ,Δ,ΔD)− ξ(λ, Δ̊, Δ̊D) = −(K − 1)(lnλ2)−1 +O((lnλ)−2), λ → 0+ .

Besides, Proposition 1 together with (2.37) implies that

(2.39)

(
ln

i

λ

)1−K
detζ N(λ)

detζ N̊(λ)
→ RK−1

det∗ζ N(0)

det∗ζ N̊(0)
as λ2 → 0−, K ≥ 1.

Recall that for λ2 < 0 the relative zeta-function is defined as the meromorphic
continuation of

(2.40) ζ(s; Δ− λ2, Δ̊− λ2) =

∫ ∞

0

ts−1etλ
2

Γ(s)
Tr

(
e−tΔ − e−tΔ̊

)
dt

from �s > 1.
We have

Tr
(
e−tΔ − e−tΔ̊

)
= Tr

(
e−tΔ − e−tΔD

−⊕ΔD
+
)
− Tr

(
e−tΔ̊ − e−tΔ̊D

−⊕Δ̊D
+
)
+Tr e−tΔD

− − Tr e−tΔ̊D
− .
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(Now the short time asymptotic (2.33) is a consequence of (2.15) and similar short

time asymptotics for Tr
(
e−tΔ̊ − e−tΔ̊D)

, Tr e−tΔD
− , and Tr e−tΔ̊D

− .) Let

N(λ) =
∑

j:λ2
j≤λ2

dim ker(ΔD
− − λ2

j),

where λ2
j are the eigenvalues of ΔD

− , be the counting function of ΔD
− . Similarly, let

N̊(λ) be the counting function of Δ̊D
− . Then

Tr(e−tΔD
− − e−tΔ̊D

− ) = t

∫ ∞

0

e−tλ2
(
N(λ)− N̊(λ)

)
2λ dλ

and

ξ(λ; Δ ; Δ̊) = ξ(λ ; Δ,ΔD)− ξ(λ ; Δ̊, Δ̊D)−N(λ) + N̊(λ)

is the spectral shift function for the pair (Δ, Δ̊) such that

Tr
(
e−tΔ − e−tΔ̊

)
= −t

∫ ∞

0

e−tλ2

ξ(λ; Δ, Δ̊)2λ dλ.

Since the operators ΔD
− and Δ̊D

− are positive, from (2.38) it follows the asymptotic

(2.41) ξ(λ; Δ, Δ̊) = −(K − 1)(lnλ2)−1 +O((lnλ)−2), λ → 0 + .

Introduce a cut-off function χ ∈ C∞(R) such that χ(μ) = 1 for μ < 1/2 and
χ(μ) = 0 for μ > 3/4. Following the scheme in [14] we write

Tr
(
e−tΔ − e−tΔ̊

)
= e1(t) + e2(t),

where

e1(t) = −t

∫ ∞

0

e−tμ2

χ(μ)ξ(μ; Δ, Δ̊)2μ dμ,

e2(t) = −t

∫ ∞

0

e−tμ2

(1− χ(μ))ξ(μ; Δ, Δ̊)2μ dμ;

cf. (2.14). Note that e2 is exponentially decreasing as t → +∞. Thanks to the
short time asymptotic (2.33) and smoothness of e1 at t = 0, we see that e2(t) has
a short time asymptotic of the same form. Therefore, for λ2 ≤ 0 the holomorphic
in �s > 1 zeta-function

ζ2(s;λ
2) =

∫ ∞

0

ts−1etλ
2

Γ(s)
e2(t) dt

continues as a meromorphic function to C with no pole at zero and ζ ′2(0, λ
2) →

ζ ′2(0, 0) as λ
2 → 0− by the usual argument.

We are now in position to define the regularized determinant detζ(Δ, Δ̊). We

start from ζ(s; Δ, Δ̊) = ζ1(s; 0) + ζ2(s; 0), where ζ1(s; 0) is defined by

(2.42) ζ1(s; 0) =

∫ ∞

0

ts−1

Γ(s)
e1(t) dt = s

∫ ∞

0

(−μ2)−s−1χ(μ)ξ(λ; Δ, Δ̊)2μ dμ.

From this expression and (2.38) one can easily see that ζ1(s; 0) is a holomorphic
function in �s < 0, and we already know that ζ2(s; 0)is a meromorphic function of
s ∈ C with no pole at zero.

The asymptotic behavior of ζ(s; 0) near s = 0 is given by the following proposi-
tion.
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Proposition 3. Set

Z ′
0 :=ζ ′2(0; 0) + (K − 1) lim

δ→0+

(∫ ∞

δ

χ(μ)dμ

μ lnμ
+ ln ln

1

δ

)

− 2

∫ ∞

0

μ−1χ(μ)
(
ξ(μ; Δ, Δ̊)− (K − 1)(lnμ2)−1

)
dμ+ (K − 1)(γ + ln 2).

When s → 0− we have

ζ(s; Δ, Δ̊) = ζ2(0; 0) + s(K − 1) ln(−s) + sZ ′
0 + o(s).

This proposition gives way to the following definition of the regularized relative
determinant of Δ in case K > 1.

Definition 4.
detζ(Δ, Δ̊) := e−Z′

0 .

Proof. Since ζ2(s; 0) is a meromorphic function of s with no pole at zero, as s → 0−
we have

ζ(s; Δ, Δ̊) = ζ1(s; 0) + ζ2(0; 0) + sζ ′2(0; 0) +O(s2).

It remains to study the behavior of

ζ1(s; 0) = s

∫ ∞

0

(−μ2)−s−1χ(μ)ξ(μ; Δ, Δ̊)2μ dμ

as s → 0−. We represent the last integral as a sum of two integrals. Due to (2.41)
the first integral

s

∫ ∞

0

(−μ2)−s−1χ(μ)
(
ξ(μ; Δ, Δ̊) + (K − 1)(lnμ2)−1

)
2μ dμ

converges uniformly in s ≤ 0 and thus gives the contribution

−s

∫ ∞

0

2μ−1χ(μ)
(
ξ(μ; Δ, Δ̊) + (K − 1)(lnμ2)−1

)
dμ

into the expansion of ζ(s; Δ, Δ̊). For the second integral we have

s(1−K)

∫ ∞

0

(−μ2)−s−1χ(μ)(lnμ2)−12μ dμ

= s(1−K)

(
− ln(−s) + γ + ln 2− lim

δ→0+

(∫ ∞

δ

χ(μ)dμ

μ lnμ
+ ln ln

1

δ

)
+ o(1)

)
;

see [14, p. 987]. �
The proof of the gluing formula will also require that we understand the limit

when λ goes to 0. At this stage we have

ζ(s; Δ− λ2, Δ̊− λ2) = ζ1(s;λ
2) + ζ2(s;λ

2),

where only properties of the zeta-function

(2.43) ζ1(s;λ
2) =

∫ ∞

0

ts−1etλ
2

Γ(s)
e1(t) dt = s

∫ ∞

0

(λ2−μ2)−s−1χ(μ)ξ(λ; Δ, Δ̊)2μ dμ

remain unknown. Notice that the last integrand is compactly supported and, there-
fore, the integral converges uniformly near s = 0 for fixed λ2 < 0 due to (2.41). We
get

(2.44) ζ ′1(0;λ
2) =

∫ ∞

0

(λ2 − μ2)−1χ(μ)ξ(μ; Δ, Δ̊)2μ dμ.



MODULI SPACES AND detΔ 4579

Proposition 4. As λ2 → 0− we have

ζ ′(0;Δ− λ2, Δ̊− λ2) = ln

(
ln

i

λ

)1−K

+ (K − 1) lim
δ→0+

(∫ ∞

δ

χ(μ) dμ

μ lnμ
+ ln ln

1

δ

)

−2

∫ ∞

0

μ−1χ(μ)
(
ξ(μ; Δ, Δ̊) + (K − 1)(lnμ2)−1

)
dμ+ ζ ′2(0; 0) + o(1).

Proof. We only need to study the behavior of ζ ′(0;λ2) in (2.44) as λ2 → 0−.
Thanks to (2.41) the integral∫ ∞

0

(λ2 − μ2)−1χ(μ)
(
ξ(μ; Δ, Δ̊) + (K − 1)(lnμ2)−1

)
2μ dμ

converges uniformly in λ2 ≤ 0 and thus tends to

−
∫ ∞

0

2μ−1χ(μ)
(
ξ(μ; Δ, Δ̊) + (K − 1)(lnμ2)−1

)
dμ

as λ2 → 0−. It remains to note that∫ ∞

0

(λ2−μ2)−1χ(μ)(lnμ2)−12μ dμ = ln ln
i

λ
− lim

δ→0+

(∫ ∞

δ

χ(μ) dμ

μ lnμ
+ ln ln

1

δ

)
+o(1);

as λ2 → 0−; see [14, p. 12 and appendix]. �

Note that by definition of detζ(Δ, Δ̊) = e−Z′
0 we have

ζ ′(0;Δ−λ2, Δ̊−λ2) = ln

(
ln

i

λ

)1−K

−
(
−Z ′

0−(K−1)(γ+ln 2)
)
+o(1), λ2 → 0−;

see Proposition 4.

Proof of Theorem 4 in the general case. From Propositions 4 and 3 we immedi-
ately get

(2.45)

(
ln

i

λ

)1−K

detζ(Δ−λ2; Δ̊−λ2) → e(1−K)(γ+ln 2) det∗ζ(Δ, Δ̊), λ2 → 0− .

We pass in (2.18) to the limit as λ2 → 0−. Taking into account (2.39) and (2.45)
we obtain

detζ(Δ, Δ̊) detζ Δ̊
D
−

detζ ΔD
−

=
(
Reγ+ln 2

)K−1 det
∗
ζ N(0)

det∗ζ N̊(0)
.

This proves Theorem 4, where N ≡ N(0) and the constant

C =
(
Reγ+ln 2

)K−1
/
(
detζ Δ̊

D
− det∗ζ N̊(0)

)
is moduli independent. �

Remark 2. The proof of the gluing formula holds verbatim for a more general class
of metrics under the following two assumptions. First, the structure at infinity
should be given by a finite union of conical/Euclidean ends. Second, we have to
assume that nothing bad happens with the Laplace operator ΔD

− of the compact
part. In particular, it should have a well-defined zeta-function that extends to the
complex plane with no pole at zero. This works for instance if the metric is smooth
in the compact part or, if it is flat with conical singularities and the Friedrichs
extension is chosen.
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2.5. Closing the Euclidean (conical) ends with the help of gluing formu-
las. Let R be a sufficiently large positive number such that all the critical values
of the meromorphic function f lie in the ball {|z| < R}.

In the holomorphic local parameter ηj = y−1/kj in a vicinity Uj (|yj | > R) of the
j-th conical end of the angle 2πkj (kj ≥ 1) of the Riemannian manifold (X, |df |2)
(i.e., a pole of f of order kj) the metric m = |df |2 takes the form

m = k2j
|dηj |2

|ηj |2kj+2
.

Let χj be a smooth function on C such that χj(η) = χj(|η|), |χj(η)| ≤ 1, χj(η) = 0

if |η| > (R + 1)−1/kj , χj(η) = 1 if |η| < (R + 2)−1/kj . Introduce the metric m̃ on
X such that

m̃ =

{
m for |z| < R,

[1 + (|ηj |2kj+2 − 1)χj(ηj)]m in Uj .

Since the (Friedrichs extension of) the Laplace operator Δm̃ has discrete spec-
trum and the corresponding operator ζ-function is regular at s = 0 (see, e.g., [21]
and the references therein), one can define the determinant det∗Δm̃ via usual Ray-
Singer zeta-regularization. Moreover, for this determinant the usual BFK gluing
formula ([4], Theorem B∗) holds (under the condition that the contour cutting
the surface X does not pass through the conical singularities of the metric m̃).
Applying this standard BFK gluing formula, we get

(2.46) ln det∗ζΔ
m̃ = lnC0 + ln detζΔ

D
− + ln det∗ζN+ ln detΔm̃

ext ,

where Δm̃
ext is the operator of the Dirichlet problem for Δm̃ in the union ∪jUj .

Using conformal invariance we see that N is the same as in Theorem 1 and C0 is a

moduli independent constant (C0 = Area(X,m̃)
length(Σ) ).

Now equation (2.46) and Theorem 1 imply the following proposition.

Proposition 5. The relative zeta-regularized determinant detζ(Δ, Δ̊) and the zeta-
regularized determinant det∗ζΔ

m̃ have the same variations with respect to moduli,
i.e., one has

(2.47) ∂zk ln detζ(Δ, Δ̊) = ∂zk ln det
∗
ζΔ

m̃

for k = 1, . . . ,M .

Thus, the relative determinant of the Laplacian on a non-compact surface (X,m)
with conical points and conical/Euclidean ends can be studied via consideration of
the zeta-regularized determinant of Laplacian on a compact surface (X, m̃) with
conical points. The latter surface is flat everywhere except the conical singularities
(whose positions vary when one changes the moduli z1, . . . , zM ) and smooth ends
of non-zero curvature which remain unchanged.

In the next two sections we study some spectral properties of compact sur-
faces with conical points. The final goal is to derive the variational formulas for
ln det∗ζΔ

m̃.

3. S-matrix

In this section we introduce the so-called S-matrix and relate its behavior at
λ = 0 with the Schiffer projective connection. The definition of the S-matrix
originates in the general theory of boundary triplets (see [13], sect. 13) and, more
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specifically, the general theory of self-adjoint extensions of elliptic operators in
singular settings (see [35]). Here we will closely follow [15]. However, we should
point out that some normalization constants in the latter reference are erroneous
and that the normalization we use here is slightly different.

It is convenient to introduce the S-matrix in the following general setting.

3.1. General setting and normalizations. Let (X, m̃) be a compact singular
2d Riemannian manifold (possibly with boundary). Let P be an interior point of
X such that in a neighborhood V of it X is isometric to a neighborhood of the tip
of the Euclidean cone of angle 2�π.

We set X0 := X\{P} and Xε := X\B(p, ε). We also denote by γr the circle of
radius r centered at P .

We will occasionally use several different ways of parametrizing V.

• Polar coordinates (r, θ) ∈ (0, rmax)× R/2�πZ,
• Local complex coordinate z. The one-form dz is well defined on V \{P}
and extends to V as a holomorphic one-form α with a zero of order � − 1
at P . Note that it may not have a global holomorphic extension to X.

• Distinguished complex parameter y such that α = �y�−1dy near P .

We now want to consider the Laplace operator that is associated with m̃. We
assume that the set of singularities of m̃ consists of a finite number of conical
points (in particular, it may consist of a single point P ). Let Δ be the Friedrichs
extension of the Laplace operator on X with domain consisting of smooth functions
that vanish near the singularities.

Remark 3. Actually the choice of extension (that is, the prescription of a certain
asymptotic at singular points to functions from the domain of the self-adjoint ex-
tension) should be made at each singularity (see [15]). Here we really care only
about the choice of extension at P , where we are choosing the Friedrichs extension
(all the functions from the domain of this extension are bounded near P ). At other
singularities one can choose any other extension, not necessarily the Friedrichs one.

By definition we set H2(X) to be the domain of Δ and by H1(X) to be its
form domain. We denote by Δ0 the restriction of Δ to functions in H2(X) that
vanish near p and by Δ∗

0 its formal adjoint. By choice, the self-adjoint extension Δ
corresponds to the Friedrichs extension of Δ0. We will also denote by H2

0 (X) :=
domΔ0. Near P , we have

Δ∗
0 = −4∂z∂z = −4

(
�2|y|2(�−1)

)−1

∂y∂y.

Introduce a cut-off function ρ such that ρ has support in r ≤ rmax and equals 1
near r = 0. Define the functions F 0, F a

ν , and Fh
ν via

F 0(z) = c0 ln(zz)ρ(z) = c0 ln(r
2)ρ(z),

F a
ν (z) = cνz

−νρ(z), ν =
k

�
, 0 < k < �,

Fh
ν (z) = cνz

−νρ(z), ν =
k

�
, 0 < k < � ,

where

(3.48) c0 =
1

2
√
�π

, cν =
1

2
√
ν�π

.
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Remark 4. The indices a and h correspond to “antiholomorphic” and “holomor-
phic” behavior of the corresponding functions F at 0. In all the formulas below the
index ν runs through the set {k/�}k=1,...,�−1, where 2π� is the conical angle at P .

Separating variables near P , it can be shown that any function in dom(Δ∗
0)

admits the following expression (cf. [21], [31]):

u = c0Λ
0(u) + c0Λ

0,−(u)F 0(z)

+
∑
ν

cνΛ
h,−
ν (u)z−ν + cνΛ

a,−
ν (u)z−ν

+
∑
ν

cνΛ
h
ν (u)z

ν + cνΛ
a
ν(u)z

−ν + u0,

(3.49)

where the Λ are linear functionals on dom(Δ∗
0) that vanish on H2

0 and u0 is in H2
0 .

Moreover, one has

Λa
ν(u) = Λh

ν (u).

For u, v ∈ dom(Δ∗) we define

G(u, v) := 〈Δ∗u, v〉 − 〈u,Δ∗v〉.
The Green formula implies

(3.50) G(u, v) = lim
ε→0

2

i

∫
γε

∂zuv dz + u∂zv dz,

where the circle γε is positively oriented. Since c0 and cν satisfy
2c20
i

∫
γε

dz
z = 1 and

2νc2ν
i

∫
γε

dz
z = 1, the asymptotics (3.49) and (3.1) imply that

G(u, v) = Λ0,−(u)Λ0(v)− Λ0(u)Λ0,−(v)

+
∑
ν

Λh,−
ν (u)Λa

ν(v)− Λa
ν(u)Λ

h,−
ν (v)

+
∑
ν

Λh
ν (u)Λ

a,−
ν (v)− Λa,−

ν (u)Λh
ν(v).

The domain of the Friedrichs extension of Δ is characterized by requiring that
all the coefficients with the superscript “−” vanish; it follows from (3.1) that the
linear functionals Λa,h,0

ν are continuous over H2(X) and supported at P . It can be
proved that any linear functional Λ that is continuous on H2(X) and supported at
P can be written as a linear combination of the linear functionals Λ0, Λ

a
ν , and Λh

ν .
Finally, we notice that one has the following representation for the space H2

0 (X):

H2
0 (X) = {u ∈ H2(X) : Λ�

ν(u) = 0 ∀ν, � = a, h ; Λ0(u) = 0} .

3.2. Definition of the S-matrix. We follow [15], paying special attention to
conjugations and normalizing constants.

In the following the symbols � and � are to be substituted by 0, h, or a. When
the superscript is 0 the subscript ν is 0, when it is a or h, ν = j

� where j ranges
from 1 to �− 1.

We define

f �
ν(·; λ) = (Δ∗

0 − λ)F �
ν , g�ν(·; λ) = − (Δ− λ)−1 f �

ν(·; λ),

G�
ν(·; λ) = F �

ν + g�ν(·;λ), S��
μν = Λ�

μ

(
g�ν(·; λ)

)
.

(3.51)



MODULI SPACES AND detΔ 4583

Observe that by definition the g-functions belong to H2, which makes the latter
definition consistent when seeing Λ�

μ as a linear functional over H2. Since Λ�
μ also

makes sense as a linear functional over ker(Δ∗ − λ), we may also write

S��
μν = Λ�

μ

(
G�

ν(·; λ)
)
.

Remark 5. The functions F, f, g depend on the initial choice of ρ but the linear
functionals Λ and the functions G are cut-off independent.

The S-matrix is defined by blocks :

(3.52) S :=

⎛
⎜⎝

S00 S0h
0ν S0a

0ν

Sh0
μ0 Shh

μν Sha
μν

Sa0
μ0 Sah

μν Saa
μν

⎞
⎟⎠ .

Remark 6. If there are several conical points on the surface, then there are several
ways to define the S-matrix depending on how many points we want to take into
account. The S-matrix defined in [15] takes into account all the conical points
whereas the one defined here deals only with the conical point P (even if there are
other conical points on the surface). Thus the S-matrix that is constructed here is
only a part of the one from [15].

Applying Green’s formula, we get

Λ�
ν(u) = G(u, F �) =

∫
(Δ− λ)u · F �

ν − u · f �
ν(·;λ)dS

=

∫
(Δ− λ)u · F �

ν + u · (Δ− λ)g�ν(·;λ)dS =

∫
(Δ− λ)u ·G�

ν dS

(3.53)

for any test function u ∈ H2(X) (here dS is the area element on X). We have used

here that F 0,a,h = F 0,h,a ∈ dom(Δ∗
0), u and g are in H2(X), and that Δ is real

(i.e., commutes with complex conjugation) and self-adjoint.
Applying (3.53) to the g-functions gives the following alternative expressions for

the S-matrix entries (we omit the dependence on λ):

(3.54) S��
μν =

∫
G�

μ (Δ− λ) g�ν dS = −
∫

G�
μf

�
ν dS.

Remark 7. The S-matrix allows the description of the elements of ker(Δ∗
0 − λ) in

the following way. For any element u ∈ dom(Δ∗
0), denote by L± the column of its

coefficients Λ�,±
ν that describe the singular behavior of u near P . We have

(Δ∗
0 − λ)u = 0 ⇔ L+ = S(λ)L−.

This gives a (pure) formal analogy with a typical scattering situation. In our setting,
any solution to the equation (Δ∗

0 − λ)u = 0 plays the role of scattered field, L± is
the “incoming” and “outgoing” parts, and the S-matrix is the “scattering” matrix.

4. Basic properties of the S-matrix

4.0.1. Analyticity and complex conjugation. From the analyticity of the resolvent
we see that the S-matrix depends analytically on λ. Besides, the expression

S��
μν(λ) = −

∫
G�

μ(·;λ)f �
ν(·;λ) dS
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and the fact that

fa,h
ν (·, λ) = fh,a

ν (·;λ), Ga,h(·;λ) = Gh,a
ν (·;λ),

lead to the following identities:

(4.55) Shh(λ) = Saa(λ), Sah(λ) = Sha(λ).

4.0.2. Behavior for λ going to −∞. For r > 0 consider the equation

−u′′(r)− 1

r
u′(r) +

ν2

r2
u(r) = λu(r).

Since ν 	= 0, any solution to this equation has the following asymptotic behavior
near zero:

u(r) = a−r
−ν + a+r

ν + o(rν)

and the vector space of solutions that belongs to L2(rdr) is one-dimensional. We
set kν(r;λ) to be the unique solution to this equation which is in L2(rdr) and that
is normalized in such a way that

Fh
ν (r, θ)− kν(r;λ) exp(−iνθ) = O(rν),

F a
ν (r, θ)− kν(r;λ) exp(iνθ) = O(rν),

(i.e., we adjust the coefficient of r−ν in k�ν so that it coincides with the coefficient
of F �

ν). By inserting a cut-off ρ, we define

Kh
ν (r, θ;λ) := kν(r;λ) exp(−iνθ)ρ(r),

Ka
ν (r, θ;λ) := kν(r;λ) exp(iνθ)ρ(r),

as functions on X. We compute R�
ν( · ;λ) = (Δ∗

0 − λ)K�
ν , where � = a, h.

Lemma 3. For � = a, h we have

G�
ν( · ;λ) = K�

ν − [Δ− λ]
−1

R�
ν .

Proof. By construction it is straightforward that both sides of the equation are in
ker(Δ∗

0−λ) and by choice of normalization, both share the same singular behavior.
�

We denote by κν(λ) the coefficient of rν in the asymptotic expansion of kν( · ;λ).

Corollary 2. As �λ goes to −∞ we have

Shh(λ) = O(|λ|−∞), Saa(λ) = O(|λ|−∞),

Sah(λ) = diag(κν(λ)) + O(|λ|−∞),

Sha(λ) = diag(κν(λ)) + O(|λ|−∞).

Proof. The asymptotic expansion of Bessel functions implies that

‖R�
ν‖L2 = O(|λ|−∞).

Therefore Λ�
ν

(
[Δ− λ]−1 R�

ν

)
= O(|λ|−∞). Thus all entries of the S-matrix are

given by Λ�
μ(K

�
ν) up to O(|λ|−∞). The first term is seen to be 0 except for the

diagonal terms in Sah or Sha for which it is κν(λ). �

Remark 8. A different proof is given in [15] using the heat kernel.
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4.0.3. Differentiation with respect to λ. We denote by a dot the differentiation with
respect to λ. Differentiating the defining equation (3.4) for g�ν , we find that

ġ�ν = (Δ− λ)−1 G�
ν .

Thus, we get

(4.56) Ṡ��
μν = Λ�

μ

(
ġ�ν

)
=

∫
G�

μG
�
ν dS.

From this relation we deduce the following proposition.

Proposition 6. For any λ, Saa(λ) and Shh(λ) are symmetric matrices and

(4.57) tSah(λ) = Sha(λ).

Proof. The expression for Ṡ��
μν yields that Ṡaa and Ṡhh are symmetric matrices.

Since both tend to symmetric matrices (actually 0) as λ goes to −∞, the first part
of the claim follows. In the same way we obtain

Ṡah
μν − Ṡha

νμ = 0.

Since Sah and tSha tend to the same diagonal matrix as λ goes to −∞, the second
part of the claim also follows. �

Combining the identities (4.55) and (4.57) we conclude that Sah is hermitian
for λ real; actually it is an analytic family of hermitian matrices, meaning that

Sah(λ) =
(
Sah(λ)

)∗
.

4.0.4. Behavior for λ going to 0. The matrix S(λ) is well defined a priori only for
λ in the resolvent set of Δ. However, it is always possible to define the function
f �
ν( · ; λ = 0). Whenever � 	= 0 the latter function is in the range of Δ. We can thus
find solutions g�ν(·; 0) to the equation

Δg∗ν = −f∗
ν (·, 0).

The latter solutions are defined only up to the addition of a constant. It follows that
the definition of S��

μν(0) makes sense for � 	= 0, � 	= 0 and the following proposition
holds.

Proposition 7. For � 	= 0 and � 	= 0 the matrix-valued function λ �→ S��(λ)
extends holomorphically to a neighborhood of 0. Moreover, S��(0) depends only on
the conformal class of m̃.

Proof. For λ close to 0 we have

g�ν =
1

λ

∫
X

fν(· , λ) dS + g�,⊥ν (· , λ),

where
∫
X
g�,⊥ν = 0. Since λ �→

∫
X
f �
ν(λ; 0) = 0 is holomorphic and vanish at 0,

we obtain that λ �→ G∗
ν can be holomorphically continued to a neighborhood of 0.

The first statement follows. The second statement follows by remarking that G�
ν

is a function in dom(Δ∗
0) such that Δ∗

0G
�
ν = 0 and the singular behavior near P

is prescribed. Both conditions are conformally invariant so that if we change the
metric in its conformal class, we may only change G by adding a constant. This
will not affect the coefficients in the S-matrix we are considering here. �
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4.1. S(0) and the Schiffer projective connection. Choose a marking for the
Riemann surfaceX, i.e., a symplectic set of generators a1, b1, . . . , ag, bg ofH1(X,Z).
Let {v1, . . . , vg} be the basis of holomorphic differentials on X normalized via∫

ai

vj = δij .

Then the matrix of b-periods of the marked Riemann surface X is defined via

B = ||
∫
bi

vj || .

Let W ( · , · ) be the canonical meromorphic bidifferential on X×X, with properties
W (P,Q) = W (Q,P ), ∫

ai

W ( · , P ) = 0,

and ∫
bj

W ( · , P ) = 2πivj(P ).

The bidifferential W has only a double pole along the diagonal P = Q. In any
holomorphic local parameter x(P ) one has the asymptotics

(4.58) W (x(P ), x(Q)) =

(
1

(x(P )− x(Q))2
+H(x(P ), x(Q))

)
dx(P )dx(Q),

H(x(P ), x(Q)) =
1

6
SB(x(P )) +O(x(P )− x(Q)),

as Q → P , where SB(·) is the Bergman projective connection.
Consider the Schiffer bidifferential

S(P,Q) = W (P,Q)− π
∑
i,j

(�B)−1
ij vi(P )vj(Q).

The Schiffer projective connection, SSch, is defined via the asymptotic expansion

S(x(P ), x(Q))

=

(
1

(x(P )− x(Q))2
+

1

6
SSch(x(P )) +O(x(P )− x(Q))

)
dx(P )dx(Q).

One has the equality

(4.59) SSch(x) = SB(x)− 6π
∑
i,j

(�B)−1
ij vi(x)vj(x) .

In contrast to the canonical meromorphic differential and the Bergman projective
connection, the Schiffer bidifferential and the Schiffer projective connection are
independent of the marking of the Riemann surface X.

Introduce also the so-called Bergman kernel (which is in fact the Bergman re-
producing kernel for holomorphic differentials on X) as

B(x, x̄) =
∑
ij

(�B)−1
ij vi(x)vj(x) .
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Proposition 8. Let X be a Riemann surface and let m̃ be a conformal metric on
X. Suppose that m̃ has a conical singularity of angle 2�π at p. Let also x be the
distinguished local parameter for m̃ near p. Then there is the following relation
between the entries of the holomorphic-holomorphic part, Shh(0), of the S-matrix:

(4.60)

�−1∑
k=1

√
k(�− k)

�
Shh

k
�

�−k
�

(0) = − 1

6�(�− 2)!

(
d

dx

)�−2

SSch(x)
∣∣∣
x=0

.

Remark 9. The same would hold true for a conical singularity of angle β with
2π(�− 1) < β ≤ 2π�.

Remark 10. Observe that using the indices μ, ν = k
� the left hand side of (4.60)

can be written as ∑
μ+ν=1

√
μ
√
νShh

μν (0).

Proof. Introduce the following one-forms Ωk and Σk on X:

Ωk = − 1

(k − 1)!

(
d

dx

)k−1
W ( · , x)

dx

∣∣∣
x=0

+
2πi

(k − 1)!

∑
α,β

(�B)−1
αβ

{
�v(k−1)

β (0)
}
vα(·),

Σk = −i
1

(k − 1)!

(
d

dx

)k−1
W ( · , x)

dx

∣∣∣
x=0

+
2πi

(k − 1)!

∑
α,β

(�B)
−1
αβ

{
�v(k−1)

β (0)
}
vα(·) ,

where

v
(k−1)
β (0) :=

(
d

dx

)k−1
vβ(x)

dx

∣∣∣
x=0

.

All the periods of the differentials Ωk and Σk are pure imaginary, therefore, one
can correctly define the function fk on X via

fk(Q) = �
{∫ Q

P0

Ωk

}
− i�

{∫ Q

P0

Σk

}
,

where P0 is an arbitrary base point not coinciding with P . Clearly, fk is harmonic
in X \ {P} and

(4.61) fk(x) =
1

xk
+ const +

∞∑
j=1

(cjx
j + dj x̄

j)

in a vicinity of P . One gets

cl = − 1

l!(k − 1)!
∂l−1
x ∂k−1

y H(x, y)
∣∣∣
x=y=0

+
π

l!(k − 1)!

∑
α,β

(�B)−1
αβ v

(k−1)
β (0)v(l−1)

α (0)

and

Shh
k
�

�−k
�

(0) =

√
�

k
c�.

This implies that

�−1∑
k=1

√
k(�− k)

�
Shh

k
�

�−k
�

(0) = −1

�

�−2∑
k=0

1

k!(�− 2− k)!
∂�−2−k
x ∂k

yH(x, y)
∣∣∣
x=y=0

+
π

�(�− 2)!

(
d

dx

)�−2 ∑
α,β

(�B)
−1
αβ

vα(x)vβ(x)

(dx)2

∣∣∣
x=0

.
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Since
1

6
SB(x) = H(x, x) =

∞∑
n=0

1

n!
(∂x + ∂y)

nH(x, y)
∣∣∣
x=y

xn,

we have
1

6
S
(n)
B (0) =

n∑
p=0

n!

p!(n− p)!
∂p
x∂

n−p
y H(0, 0),

which implies the proposition. �

Remark 11. From (4.61) with k = 1 it follows that for conical angles 2π < β ≤ 4π
we have (

Shh(0) Sha(0)
Sah(0) Saa(0)

)
=

(
− 1

6SSch(0) − πB(0, 0)

−πB(0, 0) − 1
6SSch(0)

)
,

where the Schiffer projective connection and the Bergman kernel are calculated in
the distinguished local parameter at P .

5. Variational formulas with respect to moduli

In this section we derive the variational formulas for ln detΔm̃. This derivation
goes as follows. First, using Kato-Rellich theory (see [18]), we prove variational
formulas for the individual eigenvalues of the operator Δm̃. Using these formulas
and the contour integral representation of the zeta-function of Δm̃, we express
the variations of the value ζ ′Δm̃(0) with respect to the critical value zk through a
combination of the matrix elements of the S-matrix at the conical point Pk (the
zero of the meromorphic differential df) of the metric m̃. The latter combination
is the one appearing in Proposition 8 and can be expressed through the Schiffer
projective connection.

5.1. Variational formula for eigenvalues of Δm̃.

Remark 12. In this section we will use w for the moduli parameter and on the
surface we will use the complex parameter z and (x, y) for the associated local
cartesian coordinates (so that z = x+ iy). We warn the reader that in the rest of
this paper we use zi as the moduli parameters and x as a local complex parameter
on X.

5.1.1. Moving conical points. Let m̃ be a metric as constructed in §2.5. Let P be
one of its conical points. We wish to define a metric m̃w corresponding to the shift
of P by w ∈ C. The following makes this construction precise.

Define X̃w to be the �-fold covering of C with one ramification point at w so that
X̃w can be identified with the Euclidean cone of total angle 2�π.

Fix a cut-off function ρ (ρ ∈ C∞
0 (R); ρ = 1 near 0) and define a map φw from C

to itself by
φw(z) = z + ρ(|z|)w.

For w small enough, this defines a family of smooth self-diffeomorphisms of C. The
cone X̃0 can be obtained by gluing together � copies of the plane after cutting
along a fixed half-line d that emanates from the origin. The cone X̃w can then be
obtained by gluing � copies of C after cutting it along φw(d).

The function φw thus defines a family of smooth diffeomorphisms from X̃0

onto X̃w. Let the metric gw on X̃0 be the pull-back of the Euclidean metric on X̃w

by φw.
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We write w = a+ ib and use the local cartesian coordinates x+ iy = z near P .
For the metric gw = A(x, y;w)dx2 +2B(x, y;w)dxdy+C(x, y;w)dy2 we obtain the
following expressions:

(5.62)

(
A B
B C

)
= tDφwDφw, Dφw =

(
1 + ax

r ρ′1(r)
ay
r ρ′1(r)

bx
r ρ′1(r) 1 + by

r ρ
′
1(r)

)
.

It follows by direct verification that the coefficients of gw are polynomials in a, b.
Observe that gw coincides with g0 outside a ball centered at P so that gw can be
smoothly extended by any Riemannian metric that coincides with the Euclidean
one in an annulus centered at P . This allows us to define a metric m̃w on our
given setting X ≡ X̃0 that corresponds to some X̃w that is obtained by fixing the
exterior of a small ball centered at P ∈ X and, in an even smaller ball, by shifting
the conical point by w.

We denote by Jw the jacobian determinant of the metric m̃w on X, by qw the
Dirichlet energy quadratic form associated with m̃w, and by nw the Riemannian
L2(X) scalar product on (X, m̃w); i.e., we set (for a real u that is supported near
P )

qw(u) =

∫
X̃0

[
C(∂xu)

2 − 2B∂xu∂yu+A(∂yu)
2
]
J
− 1

2
w dxdy,

nw(u) =

∫
u2J

1
2
wdxdy.

(5.63)

Observe that qw(u) and nw(u) do not depend on w for u supported away from P .
In order to apply spectral perturbation theory, we will need the first order vari-

ations of qw(u) and nw(u). We prove the relevant lemma below.

Lemma 4. For any λ ∈ C and any u ∈ H1(X) we have

[−∂wq + λ∂wn]w=0 (u) = 2

∫
X0

(∂zu)
2 zρ′(r)

r
dxdy +

λ

2

∫
X0

u2 zρ′(r)

r
dxdy,

[−∂wq + λ∂wn]w=0 (u) = 2

∫
X0

(∂zu)
2 zρ′(r)

r
dxdy +

λ

2

∫
X0

u2 zρ′(r)

r
dxdy.

(5.64)

Proof. Denote by

Gw :=

(
C −B
−B A

)
so that we have

qw(u) :=

∫
X0

t∇uG∇u · J− 1
2

w dxdy.

Differentiating at w = 0, we obtain

∂wqw(u) =

∫
X0

t∇u ·
(
∂wG− 1

2
∂wJI

)
· ∇udS.

A straightforward computation yields

∂aG− 1

2
∂aJI =

(
−xρ′

r −yρ′

r

−yρ′

r
xρ′

r

)
,

∂bG− 1

2
∂bJI =

(
yρ′

r −xρ′

r

−xρ′

r −yρ′

r

)
.
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From this we find

t∇u ·
(
∂wG− 1

2
∂wJI

)
· ∇u = t∇u ·

(
− zρ′

2r
izρ′

2r
izρ′

2r
zρ′

2r

)
· ∇u

= −zρ′

2r

(
(∂xu)

2 − (∂yu)
2 − 2i∂xu∂yu

)
= −2zρ′

r
(∂zu)

2.

The other terms proceed in the same way. �

5.1.2. Variational formulas for eigenvalues of m̃. In this section, we compute vari-
ational formulas for the eigenvalues of m̃w. In order to do so we use the Kato-Rellich
analytic perturbation theory [18]. It should be noticed that the family of metrics gw
is smooth in w but not analytic; see (5.62). We thus fix w and introduce qt = qtw
and nt = ntw, which are analytic in t. Because of this we may only consider
directional derivatives.

The eigenvalue equation that gives the spectrum of qt relatively to nt is

(5.65) qt(ut, v) = λtnt(ut, v).

This problem is analytic in t so that the eigenvalues are organized into real-analytic
branches; see [18, Chapter VII.6.5] for details.

The first order variation for the eigenbranch (λt, ut) is given by the following
Feynman-Hellmann formula:

(5.66)
dλ

dt
=

dq

dt
(u)− λ

dn

dt
(u)

which is obtained by differentiating equation (5.65) with v fixed and then evaluating
at v = ut.

Proposition 9. Let r be small enough; then for λ ∈ spec(Δm̃) we have

∂wλ =
2

i

∫
γr

(∂zu)
2dz − λ

4
u2dz,

∂wλ = −2

i

∫
γr

(∂zu)
2dz − λ

4
u2dz.

(5.67)

Let (λt, ut) be an eigenbranch of qt relatively to nt; then λ′ = d
dt |t=0

λ is given by

λ′ = w∂wλ+ w∂wλ,

where in the expression of ∂wλ and ∂wλ, u = u0 is the eigenvector of the eigenbranch
(λt, ut) at t = 0 .

Remark 13. We remind the reader of one subtlety of perturbation theory (see
[18], [30]). In case of a multiple eigenvalue λ0, for any family qt there are several
eigenbranches emanating from λ0, and the corresponding initial eigenvectors may
actually depend on the chosen family. In particular the expressions ∂wλ and ∂wλ
also depend on the initial w that defines qt := qtw. In other terms, for any direction
w it is possible to organize the spectrum into eigenvalue branches but it may not be
possible to organize the eigenvalues as functions that are differentiable with respect
to w varying in the ball.
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Proof. We start with the one-form

ωu = ρ(z) ·
(
(∂zu)

2dz − λ

4
u2dz

)
.

Since (λ, u) is an eigenpair of the Laplace operator we compute

dωu = −
[
zρ′

2r
(∂zu)

2 +
λ

4
· zρ

′

2r
u2

]
dz ∧ dz.

We now use the Stokes formula to obtain∫
γr

ωu = −
∫
X

dωu

=

∫
X

[
zρ′

2r
(∂zu)

2 +
λ

4
· zρ

′

2r
u2

]
dz ∧ dz

=
1

2

∫
X

[
zρ′

r
(∂zu)

2 +
λ

4
· zρ

′

r
u2

]
(−2idxdy).

On the other hand, in (5.66) we use the formulas provided by Lemma 4 to obtain :

∂wλ = − 2

∫
X0

(∂zu)
2 zρ′(r)

r
dxdy − λ

2

∫
X0

u2 zρ′(r)

r
dxdy.(5.68)

Comparing the two yields the first formula in (5.67). The second one follows either
from the same computation or by complex conjugation. �

Since ωu is closed in B(p, r0) \ {p} we may tend to let r to 0 in the preceding
formulas. We thus obtained a formula for ∂wλ that is expressed only through the
asymptotic expansion of u near p.

Recall that by definition of the linear functionals Λ�
ν , we have in the local coor-

dinate z the following expansion near p:

u(z) := c0Λ
0(u) +

∑
ν

cνΛ
h
ν (u)z

ν + cνΛ
a(u)zν + u0

with u0 ∈ H2
0 . By letting r go to zero we obtain the following lemma.

Lemma 5. Let A = [aμν ] be the matrix defined by{
aμν = 4πμcμ · νcν if μ+ ν = 1,
aμν = 0 otherwise.

We have the alternative expressions

(5.69) ∂wλ =
∑

μ+ν=1

Λh
ν (u)aμνΛ

h
μ(u), ∂wλ =

∑
μ+ν=1

Λa
ν(u)aμνΛ

a
μ(u).

Proof. We prove the formula for ∂wλ; the proof is the same for ∂wλ. First observe
that since u is bounded we have

lim
r→0

∫
γr

u2dz = 0.

Now, if u0 is smooth and compactly supported away from p, using the Stokes
formula, we have that for any v ∈ H2,∫

γr

∂zv∂zu0dz =
1

4

∫
Br

Δv∂zu0 + ∂zvΔu0 dz ∧ dz.
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By continuity, this equality persists for u0 ∈ H2
0 . It follows that for any u ∈ H2

and any u0 ∈ H2
0 we have

lim
r→0

∫
γr

∂zu∂zu0dz = 0.

It follows that

∂wλ = lim
r→0

∫
γr

(∂z(u− u0))
2 dz.

By definition we have

u− u0 = c0Λ
0(u) +

∑
ν

cνΛ
h
ν (u)z

ν + cνΛ
a(u)zν ,

so that the claim follows by a direct computation. �

Using the definition of Λh
ν and the fact that u is an eigenfunction, we obtain

Corollary 3. For any λ ∈ C \ [0,∞) the series
∑

λn∈spec(Δm̃) ∂wλn(λn − λ)−2 is

absolutely convergent and∑
λn∈spec(Δm̃)

∂wλn

(λn − λ)2
= Tr

(
A
∂Shh

∂λ
(λ)

)
.

Proof. To prove the absolute convergence it suffices to show that for any ν we have

∑
λn∈spec(Δm̃)

∣∣∣∣Λh
ν (un)

λn − λ

∣∣∣∣
2

< ∞.

Since

Λh
ν (un) =

∫
(Δ− λ)unG

h
ν = (λn − λ)〈Gh

ν , u〉,

the claim follows by remarking that the eigenfunctions un form an orthonormal
basis. By the Plancherel formula we then obtain∑

λn∈spec(Δm̃)

∂wλn

(λn − λ)2
=

∑
μ,ν

aμν

∫
X

Gh
μ(x ; λ)G

h
ν(x ; λ) dS.

We now remark that using (4.56)∫
X

Gh
μ(x ; λ)G

h
ν(x ; λ) dS =

∂λS
hh
μν

∂λ
,

and A is a symmetric matrix. �

Remark 14. For
∑

λn∈spec(Δm̃) ∂w̄λn(λn − λ)−2 we also have a similar formula in-

volving Saa.

5.2. Variational formula for ζ ′(0 ; Δm̃). We prove the following proposition.

Proposition 10. Let m̃w be the family of metrics defined above, let Shh be the
holomorphic-holomorphic part of the corresponding S-matrix, and let A be the ma-
trix defined in Lemma 5. We have

(5.70) ∂wζ
′(0 ; Δm̃) = Tr

(
AShh(0)

)
=

∑
μ+ν=1

√
μ
√
νShh

μν (0).
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Proof. We start from the following integral representation of the zeta-function of
the operator Δm̃ − λ through the trace of the second power of the resolvent:

(5.71) sζ(s+ 1;Δm̃ − λ) =
1

2πi

∫
Γλ

(z − λ)−sTr
(
(Δm̃ − z)−2

)
dz,

where Γλ is a contour connecting −∞ + iε with −∞ − iε and following the cut
(−∞, λ) at the (sufficiently small) distance ε > 0. Using Corollary 3, differentiation
under the integral sign is legitimate and we obtain

(5.72) s∂wζ(s+ 1,Δm̃ − λ) =
1

2πi

∫
Γλ

(z − λ)−s
∑

λn∈spec(Δm̃)

−2∂wλn

(λn − z)3
dz.

Using again Corollary 3, it is legitimate to integrate by parts to get

(5.73) s∂wζ(s+ 1,Δm̃ − λ) =
−s

2πi

∫
Γλ

(z − λ)−s−1
∑

λn∈spec(Δm̃

∂wλn

(λn − z)2
dz.

We can now divide by s, use Corollary 3 once again, and replace s + 1 by s to
finally obtain

(5.74) ∂wζ(s,Δ
m̃ − λ) =

−1

2πi

∫
Γλ

(z − λ)−s Tr
(
A∂zS

hh(z)
)
dz.

Using the behavior of Shh at infinity we can make an integration by parts again
and obtain

(5.75) ∂wζ(s,Δ
m̃ − λ) =

−s

2πi

∫
Γλ

(z − λ)−s−1Tr
(
AShh(z)

)
dz.

Differentiating with respect to s and setting s = 0 gives

∂wζ
′(0,Δm̃ − λ) =

−1

2πi

∫
Γλ

(z − λ)−1 Tr
(
AShh(z)

)
dz.

The claim follows by applying Cauchy’s theorem. �

Now, using Proposition 5, the preceding proposition and Proposition 8 we arrive
at the following corollary.

Corollary 4. Let Pm be a zero of the meromorphic differential df of multiplicity
�m and let zm = f(Pm) be the corresponding critical value of f . Let also xm =

(z − zm)
1

�m+1 be the distinguished local parameter in a vicinity of Pm. Then

(5.76) ∂zm ln detζ(Δ, Δ̊) =
1

6(�m + 1)(�m − 1)!

(
d

dxm

)�m−1

SSch(xm)
∣∣∣
xm=0

.

6. Integration of the equations for ln det and explicit expressions

for the τ -function

Let, as before, B be the matrix of b-periods of the Torelli marked Riemann surface
X and let {vα}α=1,...,g be the basis of the normalized holomorphic differentials on
X. Using the Rauch formulas (see, e.g., [24], [25], [22]),

∂zmBαβ =

∮
Pm

vαvβ
df

,
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one immediately gets the relation

(6.77) ∂zm ln det�B =
1

2i
Tr

[
(∂zmB)(�B)−1

]
=

1

2i

∮
Pm

∑
αβ �B

−1
αβvαvβ

df
,

where the contour integrals are taken over a small contour on X encircling the point
Pm (in the positive direction).

Now, using the relation (4.59), the equations (6.77) and (5.76) together with
elementary properties of the Schwarzian derivative (see, e.g., [39]), we arrive at the
following version of Corollary 4 rewritten in the invariant form.

Theorem 5. Let Pm be a zero of the meromorphic differential df of multiplicity
�m and let zm = f(Pm) be the corresponding critical value of f . Let also xm =

(z − zm)
1

�m+1 be the distinguished local parameter in a vicinity of Pm. Then

(6.78) ∂zm ln
detζ(Δ, Δ̊)

det�B = − 1

12πi

∮
Pm

SB − Sf

df
,

where SB is the Bergman projective connection and Sf =
f ′′′f ′− 3

2 (f
′′)2

(f ′)2 is the

Schwarzian derivative.

Remark 15. Notice that the difference SB − Sf is a quadratic differential and,
therefore, the integrand in (6.78) is a meromorphic one-form.

Equation (6.78) implies the relation

(6.79) detζ(Δ, Δ̊) = C det�B |τ |2 ,

where τ is a holomorphic function of moduli z1, . . . , zM (actually, τ is a holomorphic
section of some holomorphic line bundle over the Hurwitz space, see [27] for further
information; here we restrict ourselves to local considerations: the reader may
assume for simplicity that everything happens in a small vicinity of the covering
f : X → CP 1 in the Hurwitz space H(M,N)) subject to the system of PDE

(6.80) ∂zm ln τ = − 1

12πi

∮
Pm

SB − Sf

df

and C is a moduli independent constant.
The system of PDE (6.80) first appeared in the context of the theory of isomon-

odromic deformations and Frobenius manifolds in [22] and [24], where, in particular,
it was explicitly integrated. We recall these results in the next subsection.

6.1. Explicit expressions for τ . In this section we recall explicit formulas for
the holomorphic solution, τ , of the system (6.80) derived in [24], [22] (see also [26]
and [25] for alternative and more straightforward proofs). The result should be
formulated separately for low genera g = 0, 1 and for higher genus g > 1. We start
with the higher genus situation.

Let g > 1. Take a non-singular odd theta characteristic δ and consider the
corresponding theta-function θ[δ](t;B), where t = (t1, . . . , tg) ∈ C

g. Put

ωδ =

g∑
i=1

∂θ[δ]

∂ti
(0;B) ωi .
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All zeros of the holomorphic 1-differential ωδ have even multiplicities, and
√
ωδ is a

well-defined holomorphic spinor on X. Following Fay [9], consider the prime form

(6.81) E(x, y) =
θ[δ]

(∫ y

x
v1, . . . ,

∫ y

x
vg;B

)
√
ωδ(x)

√
ωδ(y)

.

To make the integrals uniquely defined, we fix 2g simple closed loops in the ho-
mology classes ai, bi that cut X into a connected domain, and pick the integration
paths that do not intersect the cuts. The sign of the square root is chosen so that

E(x, y) =
ζ(y)− ζ(x)√
dζ(x)

√
dζ(y)

(1 +O((ζ(y)− ζ(x))2))

as y → x, where ζ is a local parameter such that dζ = ωδ.
We introduce local coordinates on X that we call distinguished with respect to f .

Consider the divisor (df) =
∑

k dk pk, pk ∈ X, dk ∈ Z, dk 	= 0, of the meromorphic
differential df . We take z = f(x) as a local coordinate on X −

⋃
k pk and

(6.82) xk =

{
(f(x)− f(pk))

1
dk+1 if dk > 0,

f(x)
1

dk+1 if dk < 0,

near pk ∈ X. In terms of these coordinates we have E(x, y) = E(z(x),z(y))√
dz(x)

√
dz(y)

, and we

define

E(z, pk) = lim
y→pk

E(z(x), z(y))

√
dzk
dz

(y),

E(pk, pl) = lim
x→pk
y→pl

E(z(x), z(y))

√
dxk

dζ
(x)

√
dxl

dζ
(y) .

Let Ax be the Abel map with the basepoint x, and let Kx = (Kx
1 , . . . ,K

x
g ) be the

vector of Riemann constants

(6.83) Kx
i =

1

2
+

1

2
Bii −

∑
j =i

∫
ai

(
vi(y)

∫ y

x

vj

)
dy

(as above, we assume that the integration paths do not intersect the cuts on X).
Then we have Ax((df)) + 2Kx = ΩZ + Z ′ for some Z,Z ′ ∈ Zg . One has the
following expression for the holomorphic solution to (6.80)(see [24], here we follow
the presentation of this result in [27]):

(6.84) τ (X, f) =

((∑g
i=1 vi(ζ)

∂
∂ti

)g

θ(t;B)
∣∣∣
t=Kζ

)2/3

e6−1π
√
−1〈BZ+4Kζ ,Z〉 W (ζ)2/3

∏
k<l E(pk, pl)

6−1dkdl∏
k E(ζ, pk)3

−1(g−1)dk
.

Here θ(t;B) = θ[0](t;B) is the Riemann theta-function, t = (t1, . . . , tg) ∈ Cg, and
W is the Wronskian of the normalized holomorphic differentials v1, . . . , vg on X;
the expression in (6.84) is independent of ζ ∈ X.

Let g = 1. Then the function τ (X, f) is given (see [22]) by the equation

(6.85) τ (X, f) = [θ1
′(0 |B)]2/3

∏K
k=1 h

(kj+1)/12
j∏M

m=1 f
�m/12
m

,

where v(P ) is the normalized Abelian differential on the elliptic Torelli marked curve
X; v(P ) = fm(xm)dxm near Pm, where xm = (z− zm)1/(�m+1) is the distinguished
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local parameter near the zero, Pm of the differential df ; fm ≡ fm(0); v(P ) =
hj(ζj)dζj as P → ∞j , ζj = z−1/kj , where kj is the multiplicity of the pole ∞j of
f , hk ≡ hk(0); θ1 is the jacobi theta-function.

Let g = 0 and let U : X → P1 be a biholomorphic map such that U(∞1) = ∞
and U(P ) = (f(P ))1/k1 + o(1) as P → ∞1. Then (see [26])

(6.86) τ (X, f) =

∏K
j=2(

dU
dζj

∣∣
ζj=0

)(kj+1)/12∏M
m=1(

dU
dxm

∣∣
xm=0

)lm/12
.

Summarizing (6.79) and (6.86), (6.85) (6.84), we get the main result of the
present paper.

Theorem 6. Let (X, f) be an element of the Hurwitz space H(M,N) and let
τ (X, f) be given by expressions (6.86), (6.85), (6.84). There is the following ex-
plicit expression for the regularized relative determinant of the Laplacian Δ on the
Riemann surface X:

(6.87) detζ(Δ, Δ̊) = C det�B |τ |2 ,
where C is a constant dependent only on the connected component of the space
H(M,N) containing the element (X, f).

6.2. Examples in genus 0. We finish the paper with two simple and especially
instructive examples of the calculation of the determinant of the Laplacian Δ in
genus 0.

Example 1. Let p be a polynomial with N −1 simple critical points w1, . . . , wN−1

and let the corresponding critical values be z1, . . . , zN−1 (or, what is the same,
a ramified covering with N − 1 simple branch points and one branch point of
multiplicity N over the point at infinity of the base. In other words p is an element
of the Hurwitz space H0,N ([1]N ) of meromorphic functions of degree N on the
Riemann sphere P1 with a single pole of multiplicity N .

Let also w be the holomorphic coordinate on the cover P1 (more precisely, on
P
1 \{∞}) and let z be the holomorphic coordinate on the base P1. One can assume

that the leading coefficient of the polynomial p(w) is equal to one.
Introduce the distinguished local parameter xk =

√
z − zk at Pk. Then for

xk 	= 0 one has
dw

dxk
=

1

z′(w)
2xk =

w − wk

p′(w)− p′(wk)

2xk

w − wk
.

Passing to the limit xk → 0, one gets

2

[
w′(xk)

∣∣∣
xk=0

]2
=

1

p′′(wk)
.

Thus,

(6.88) τ =

N−1∏
k=1

[
w′(xk)

∣∣∣
xk=0

]− 1
12

=

{
N−1∏
k=1

p′′(wk)

} 1
24

= R (p′, p′′)
1
24 ,

where R (f, g) is the resultant of polynomials f and g (since the τ -function is defined
up to multiplicative constant, the power of 2 is omitted) and

detζ(Δ
|dp|2 , Δ̊) = C|R (p′, p′′)| 1

12 .
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Example 2. Let r is a rational function with three simple poles (which can be
assumed to coincide with ∞, 0, 1),

r(w) = aw − b

w
− c

w − 1
+ d;

i.e., r is an element of the Hurwitz space H0,3(1, 1, 1) of meromorphic functions on
P 1 of degree three with three simple poles.

Introducing the local parameter ζ = 1
z in vicinities of the poles w = 0 and w = 1

of the cover, one gets for ζ 	= 0

w′(ζ) = − 1

r′(w)
r2(w)

and, say, for w = 1

w′(0) = − lim
w→1

1

r′(w)
r2(w) = −c .

Analogously, w′(0) = −b at the pole w = 0. For the local parameter w̃ = w/a (for
which w̃(P ) = z(P ) + o(1) as P tends to the pole w = ∞ of the cover) one has
w̃′(0) = −b/a at the pole w = 0 and w̃′(0) = −c/a at the pole w = 1. On the other

hand, writing r′(w) = f
g , where f and g are two polynomials and introducing the

local parameter xk =
√
z − zk near the critical point wk of r (k = 1, 2, 3, 4), one

gets similarly to (6.88)

w̃′(xk) = a−1w′(xk),

C

4∏
k=1

[w′(xk)|xk=0]
2 =

4∏
k=1

1

r′′(wk)
=

R(f, g)

R(f, f ′)
.

Calculating the resultants, one gets

τ24 = a3b3c3M(a, b, c),

where

M(a, b, c) = a3 + b3 + c3 + 3a2b+ 3a2c+ 3b2a+ 3b2c+ 3c2a+ 3c2b− 21abc

and

detζ(Δ
|dr|2 , Δ̊) = C|abc|1/4|M(a, b, c)|1/12 .
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