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THE DISTRIBUTION OF CLASS NUMBERS

IN A SPECIAL FAMILY OF REAL QUADRATIC FIELDS

ALEXANDER DAHL AND YOUNESS LAMZOURI

Abstract. We investigate the distribution of class numbers in the family of

real quadratic fields Q(
√
d) corresponding to fundamental discriminants of the

form d = 4m2 + 1, which we refer to as Chowla’s family. Our results show
a strong similarity between the distribution of class numbers in this family
and that of class numbers of imaginary quadratic fields. As an application of
our results, we prove that the average order of the number of quadratic fields
in Chowla’s family with class number h is (log h)/2G, where G is Catalan’s
constant. With minor modifications, one can obtain similar results for Yokoi’s

family of real quadratic fields Q(
√
d), which correspond to fundamental dis-

criminants of the form d = m2 + 4.

1. Introduction

A fundamental problem in number theory is to understand the size of the class
group of an algebraic number field K. This quantity, called the class number of
K, is a measure of how badly factorization in the ring of integers of K fails to be
unique. The case of quadratic fields has received great attention, and its rich history
stretches back to the work of Gauss. Let d be a fundamental discriminant and let
h(d) be the class number of the quadratic field Q(

√
d). Gauss conjectured that

h(d) → ∞ as d → −∞ and asked for the determination of all imaginary quadratic
fields with a given class number h, a question that became known as the Gauss
class number problem. The former conjecture of Gauss was proved by Heilbronn,
and his class number problem for h = 1 was solved by Heegner, Baker, and Stark.
We now have a complete list of all imaginary quadratic fields with class number h
for all h ≤ 100 thanks to the work of Watkins [20].

Unlike imaginary quadratic fields, very little is known about real quadratic fields.
In this case, Gauss conjectured that there are infinitely many real quadratic fields
with class number 1, a problem that is still open. The main difference with imagi-
nary quadratic fields is the existence of non-trivial units in Q(

√
d) if d > 0, which

heavily affects the size of the class number h(d) in this case. Indeed, Dirichlet’s
class number formula states that for d > 0 we have

(1.1) h(d) =

√
d

log εd
L(1, χd),

where χd =
(
d
·
)
is the Kronecker symbol and εd is the fundamental unit of the

quadratic field Q(
√
d), defined as εd = (a+ b

√
d)/2, where a and b are the smallest

positive integer solutions to the Pell equations a2 − b2d = ±4.
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Although it is a difficult problem to estimate the fundamental unit εd in general,
there exist several families of real quadratic fields for which εd is small in terms of
d, and hence for which h(d) is large. One important example is the family of real

quadratic fields Q(
√
d) corresponding to fundamental discriminants d of the form

4m2+1, where m is a positive integer. This family was first studied by Chowla, who
conjectured that for any positive integer m > 13 such that 4m2 + 1 is squarefree,
we have h(4m2 + 1) > 1 (see [3]). Another example is the family of fields Q(

√
d)

corresponding to fundamental discriminants d of the formm2+4, which was studied
by Yokoi in [21]. In particular, he conjectured that h(m2 + 4) > 1 for all m > 17.
Both Chowla’s and Yokoi’s conjectures were settled by Biró in [1] and [2]. There
are further generalizations of Chowla’s and Yokoi’s families, commonly known as
real quadratic fields of Richaud-Degert type. The class number problem for these
fields was studied by several authors, notably by Mollin and Williams [14], [15].

Here and throughout we denote by Dch Chowla’s family of fundamental discrim-
inants, defined by

Dch := {d : d squarefree of the form d = 4m2 + 1 for m ≥ 1}.
We also let Dch(x) = {d ≤ x : d ∈ Dch}. Then it follows from Lemma 1 of [16] that

(1.2) |Dch(x)| =
√
x

2

∏
p>2

(
1− c(p)

p2

)
+O
(
x1/3 log x

)
,

where c(p) := 1 +
(

−1
p

)
. If d ∈ Dch, then the class number formula (1.1) becomes

(1.3) h(d) =

√
d

log(
√
d− 1 +

√
d)

L(1, χd),

since the fundamental unit is εd = 2m+
√
d if d = 4m2+1 is squarefree. Therefore,

assuming the generalized Riemann hypothesis GRH, we have

(1.4)
(
e−γζ(2) + o(1)

) √
d

log d log log d
≤ h(d) ≤ (4eγ + o(1))

√
d

log d
log log d,

for any d ∈ Dch, where γ is the Euler-Mascheroni constant. These bounds follow
from the corresponding bounds for L(1, χd) obtained by Littlewood [13] under GRH.
Note that the upper bound in (1.4) holds for all real quadratic fields, since εd ≥√
d/2 for all positive fundamental discriminants.
Chowla’s family Dch was used by Montgomery and Weinberger [16] to produce

real quadratic fields with extremely large class numbers. More precisely, they proved
that there are at least x3/8 discriminants d ∈ Dch(x) such that

h(d) �
√
d

log d
log log d.

This result was recently refined by Lamzouri [11], who showed that there are at
least x1/2−1/ log log x discriminants d ∈ Dch(x) such that

(1.5) h(d) ≥ (2eγ + o(1))

√
d

log d
log log d.

The lower bound (1.5) is believed to be best possible over all positive fundamental
discriminants d in view of the widely believed conjecture that L(1, χd) ≤ (eγ +
o(1)) log log |d| for all fundamental discriminants d. Note that the true lower bound
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for L(1, χd) is believed to be
(
e−γζ(2)+o(1)

)
/ log log |d|, which would imply a lower

bound for h(d) over d ∈ Dch that is twice as large as the GRH lower bound in (1.4).
One can refer to [6] for a discussion and results related to these conjectures.

In this paper, we shall investigate the distribution of h(d) over fundamental dis-
criminants d in Chowla’s family. With minor modifications, one can obtain similar
results for Yokoi’s family of real quadratic fields. Here and throughout we let logj
be the j-fold iterated logarithm; that is, log2 = log log, log3 = log log log, and so on.
Our main result shows that the tail of the distribution of large (and small) values
of h(d) over d ∈ Dch is double exponentially decreasing. In particular, it implies
(1.5).

Theorem 1.1. Let x be large, and let 1 ≤ τ ≤ log2 x − 3 log3 x. The number of
discriminants d ∈ Dch(x) such that

h(d) ≥ 2eγ
√
d

log d
· τ

equals

(1.6) |Dch(x)| · exp
(
−eτ−C0

τ

(
1 +O

(
1

τ

)))
,

where

(1.7) C0 :=

∫ 1

0

tanh(t)

t
dt+

∫ ∞

1

tanh(t)− 1

t
dt = 0.8187 · · · .

Moreover, the same estimate holds for the number of discriminants d ∈ Dch(x) such
that

h(d) ≤ 2e−γζ(2)

√
d

log d
· 1
τ
,

in the same range of τ .

In view of the class number formula (1.3), the distribution of h(d) is com-
pletely determined by that of L(1, χd) over d ∈ Dch. Our strategy is to com-
pare the distribution of L(1, χd) over d ∈ Dch to that of a random Euler product

L(1,X) =
∏

p (1− X(p)/p)
−1

, where the X(p)’s are independent random variables
taking the values 0,±1 with suitable probabilities that are described below. One
can think of the random variable X(p) as a model for the value of χd(p) as d varies
in Dch.

One should compare our results with those of Granville and Soundararajan [6]
concerning the distribution of values of L(1, χd) over all fundamental discriminants
d such that |d| ≤ x (their results also hold if one restricts attention to either pos-
itive or negative discriminants). Although the probabilistic random model for this
family is different from that of Chowla’s family (for arithmetic reasons that are
explained below), the tail of the distribution of these values satisfies a similar esti-
mate to (1.6). In particular, one can deduce from their results that the proportion

of imaginary quadratic fields Q(
√
−d) with d ≤ x such that h(−d) ≥

√
d

π eγτ (or

h(−d) ≤ ζ(2)
√
d

π (eγτ )−1) equals exp
(
− eτ−C0

τ

(
1 +O

(
1
τ

)))
in asymptotically the

same range for τ . This shows a strong similarity between the distribution of class
numbers in Chowla’s family and that of class numbers of imaginary quadratic fields.
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Let {X(p)}p be a sequence of independent random variables taking the value
1 with probability αp, −1 with probability βp, and 0 with probability γp, where
α2 = β2 = 1/2, γ2 = 0, and for odd p we have

(1.8) αp =
1

2

(
1− c(p) + 1

p

)(
1− c(p)

p2

)−1

,

(1.9) βp =
1

2

(
1− c(p)− 1

p

)(
1− c(p)

p2

)−1

,

and

γp =
pc(p)− c(p)

p2 − c(p)
= 1−

(
1− c(p)

p

)(
1− c(p)

p2

)−1

.

The argument for choosing these probabilities is as follows: Let p be an odd prime.
If d = 4m2 + 1 is squarefree, then d lies in one of p2 − c(p) residue classes modulo
p2, since p2 � 4m2 + 1. Among these, χd(p) = 0 for exactly pc(p) − c(p) of them,
which justifies the choice of γp. Furthermore, since d belongs to one of p2 − c(p)
residue classes modulo p2, then we must have
(1.10)

αp − βp = E(X(p)) =

(
p2 − c(p)

p2

)−1
(
1

p

p−1∑
m=0

(
4m2 + 1

p

))
= −1

p

(
1− c(p)

p2

)−1

,

which follows from the Jacobsthal sum identity
∑p−1

m=0

(
4m2+1

p

)
= −1 (see for

example [18]). Combining (1.10) with the fact that αp + βp = 1 − γp yields (1.8)
and (1.9).

For the prime 2, note that 4m2+1 lies in one of the residue classes 1, 5 (mod 8),
and the values ±1 occur equally often.

We extend the X(p)’s multiplicatively to all positive integers by setting X(1) = 1
and X(n) := X(p1)

a1 · · ·X(pk)ak if n = pa1
1 · · · pak

k . We now define

L(1,X) :=

∞∑
n=1

X(n)

n
=
∏
p

(
1− X(p)

p

)−1

,

where both the series and the product are almost surely convergent by Lemma 2.2
below together with Kolmogorov’s three-series theorem. For τ > 0, define

ΦX(τ ) := P
(
L(1,X) > eγτ

)
and ΨX(τ ) := P

(
L(1,X) <

ζ(2)

eγτ

)
.

We prove that the distribution of L(1, χd) over d ∈ Dch is very well approximated
by that of L(1,X) uniformly in almost all of the viable range.

Theorem 1.2. Let x be large. Uniformly in the range 1 ≤ τ ≤ log2 x− 2 log3 x −
log4 x, we have

1

|Dch(x)|
∣∣{d ∈ Dch(x) : L(1, χd) > eγτ}

∣∣ = ΦX(τ )

(
1 +O

(
eτ (log2 x)

2 log3 x

log x

))
and

1

|Dch(x)|

∣∣∣∣{d ∈ Dch(x) : L(1, χd) <
ζ(2)

eγτ

}∣∣∣∣ = ΨX(τ )

(
1 +O

(
eτ (log2 x)

2 log3 x

log x

))
.
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In order to deduce Theorem 1.1, we need to study the asymptotic behaviour
of the distribution functions ΦX(τ ) and ΨX(τ ) in terms of τ when τ is large. We
accomplish this by a careful saddle point analysis.

Theorem 1.3. For large τ we have

(1.11) ΦX(τ ) = exp

(
−eτ−C0

τ

(
1 +O

(
1

τ

)))
,

where C0 is defined in (1.7). The same estimate also holds for ΨX(τ ). Moreover, if
0 ≤ λ ≤ e−τ , then we have

(1.12) ΦX

(
e−λτ

)
= ΦX(τ )

(
1+O (λeτ )

)
and ΨX

(
e−λτ

)
= ΨX(τ )

(
1+O (λeτ )

)
.

Our proof of Theorem 1.2 relies on computing complex moments of L(1, χd) over
d ∈ Dch. To this end, we show that the average of L(1, χd)

z over Chowla’s family
is asymptotically equal to the corresponding moments of the probabilistic random
model L(1,X) uniformly in a wide range of the complex variable z.

Theorem 1.4. Let x be large. There exists a positive constant B such that uni-
formly for all complex numbers z with |z| ≤ B log x/(log2 x log3 x) we have

1

|Dch(x)|
∑�

d∈Dch(x)

L(1, χd)
z = E (L(1,X)z) +O

(
exp

(
− log x

20 log2 x

))
,

where
∑�

indicates that the sum is over non-exceptional discriminants d.

Remark 1.5. The precise definition of an exceptional discriminant d is stated in
(3.2). Note that if d is exceptional, we could have L(1, χd) as small as d−ε, so that
when |z| is large and z < 0, the z-th moment of L(1, χd) would be heavily affected
by the contribution of this particular discriminant. This justifies the assumption
that d is non-exceptional in Theorem 1.4. Furthermore, note that if Re(z) < 0 but
|Re(z)| is bounded, we no longer need the condition that d is non-exceptional in
Theorem 1.4, thanks to Siegel’s bound L(1, χd) �ε d

−ε.

As an application of our results, we investigate the number of discriminants in
the family Dch with class number h, which we denote by Fch(h). The number of
imaginary quadratic fields with class number h was studied by Soundararajan in
[17]. In particular, he developed an asymptotic formula for its average value, a
result whose error term was improved upon in [12]. A variant of Soundararajan’s
asymptotic formula (over odd h) was recently used by Holmin, Jones, Kurlberg,
McLeman, and Petersen [8] to investigate statistics of class numbers of imaginary
quadratic fields.

By the class number formula (1.3), one expects that the main contribution to the
average of Fch(h) over h ≤ H comes from discriminants d of size 	 H2(logH)2,
since L(1, χd) is constant on average (by Theorem 1.4). Since there are 
 H logH
such discriminants in Dch, this heuristic argument suggests that the average size of
Fch(h) should be around log h. We prove that this is indeed the case.

Theorem 1.6. As H → ∞, we have∑
h≤H

Fch(h) =
1

2G
H logH +O

(
H(log2 H)2 log3 H

)
,
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where

G = L(2, χ−4) = 1− 1

32
+

1

52
− 1

72
+

1

92
+ · · · = 0.916...

is Catalan’s constant and χ−4 is the non-principal character modulo 4.

This paper is organized as follows: In Section 2 we establish an asymptotic for-
mula for the average value of χd(m) over d in Dch(x). In particular, we show that
in a certain range of m in terms of x, the average order of χd(m) equals E(X(m)).
This is used to compute complex moments of L(1, χd) over d ∈ Dch(x) and prove
Theorem 1.4 in Section 3. In Section 4 we use the saddle-point method to study the
distribution of the random Euler product L(1,X) and prove Theorem 1.3. These
results are then used to prove Theorems 1.1 and 1.2 in Section 5. Finally, we apply
our results to study Fch(h) and prove Theorem 1.6 in Section 6.

2. An asymptotic formula for the character sum

∑
d∈Dch(x)

χd(m)

In order to prove that the moments of L(1, χd) over d ∈ Dch(x) are nearly equal
to the corresponding moments of L(1,X), we first need to show that the average
order of χd(m) equals E(X(m)) when m is small compared to x.

Proposition 2.1. Let m be a positive integer. Then we have

1

|Dch(x)|
∑

d∈Dch(x)

χd(m) = E(X(m)) +O
(
m2/3x−1/6 log x

)
.

To prove this result, we first need the following lemmas. Here and throughout
we let ω(n) be the number of distinct prime factors of n.

Lemma 2.2. Let m = 2	pa1
1 · · · pak

k be the prime factorization of m, and let m0 be
the squarefree part of pa1

1 · · · pak

k . Then we have

E(X(m)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

m0
(−1)ω(m0)

∏
1≤j≤k
2|aj

(
1− c(pj)

pj

) k∏
j=1

(
1− c(pj)

p2j

)−1

if � is even,

0 if � is odd.

Proof. Using the independence of the X(p)’s we obtain

(2.1) E(X(m)) = E
(
X(2)	

) k∏
j=1

E (X(pj)
aj ) .

First, if aj is even, then

E (X(pj)
aj ) = αpj

+ βpj
= 1− γpj

=

(
1− c(pj)

pj

)(
1− c(pj)

p2j

)−1

.

On the other hand, if aj is odd, then

E (X(pj)
aj ) = αpj

− βpj
= − 1

pj

(
1− c(pj)

p2j

)−1

.

Finally, note that E
(
X(2)	

)
equals 1 if � is even, and 0 otherwise. Inserting these

estimates in (2.1) completes the proof. �
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Lemma 2.3. Let m = 2	pa1
1 · · · pak

k be the prime factorization of m, and let m0 be
the squarefree part of pa1

1 · · · pak

k . Then we have

1

m

m∑
n=1

(
4n2 + 1

m

)
=

⎧⎪⎪⎨⎪⎪⎩
1

m0
(−1)ω(m0)

∏
1≤j≤k
2|aj

(
1− c(pj)

pj

)
if � is even,

0 if � is odd.

Proof. Let g(n) = 4n2 + 1. Observe that the sum
∑m

n=1 (g(n)/m) is a complete
character sum, and hence by multiplicativity and the Chinese remainder theorem,
we have

m∑
n=1

(
g(n)

m

)
=

2�∑
n0=1

(
g(n0)

2

)	 k∏
j=1

⎛⎜⎝ p
aj
j∑

nj=1

(
g(nj)

pj

)aj

⎞⎟⎠ .

If aj is even, then

p
aj
j∑

nj=1

(
g(nj)

pj

)aj

= p
aj−1
j (pj − c(pj)) = paj

(
1− c(pj)

pj

)
,

since there are exactly c(pj)p
aj−1
j integers nj such that 1 ≤ nj ≤ p

aj

j and g(nj) ≡ 0

(mod pj). On the other hand, if aj = 2bj + 1 is odd, then

p
aj
j∑

nj=1

(
g(nj)

pj

)aj

=

p
aj−1

j∑
nj=1

pj∑
c=1

(
g(njpj + c)

pj

)2bj+1

= p
aj−1
j

pj∑
c=1

(
g(c)

pj

)
= −p

aj−1
j ,

since
∑p−1

m=0

(
4m2+1

p

)
= −1.

Finally, note that
(

g(b0)
2

)
=
(

4b20+1
2

)
equals 1 if b0 is even, and −1 otherwise.

Hence, it follows that

2�∑
b0=1

(
g(b0)

2

)	

=

{
2	, � even,

0, � odd.

Combining the above estimates completes the proof. �
Proof of Proposition 2.1. To simplify notation, we define S(x) =

∑
d∈Dch(x)

χd(m),

and put y =
√
x− 1/2. Then, using that μ2(n) =

∑
r2|n μ(r) we obtain

S(x) =
∑
n≤y

(
4n2 + 1

m

)
μ2(4n2 + 1) =

∑
n≤y

(
4n2 + 1

m

) ∑
r2|4n2+1

μ(r)

=
∑
r≤√

x
(r,2m)=1

μ(r)
∑
n≤y

r2|4n2+1

(
4n2 + 1

m

)
.

Let 2 ≤ T ≤ y be a real parameter to be chosen later. We split the above sum over
r into two parts r ≤ T and T < r ≤

√
x. Writing 4n2 + 1 = r2s, it follows that the

contribution of the second part is

	
∑

T<r≤
√
x

∑
n≤y

r2|4n2+1

1 	
∑

s≤x/T 2

∑
n,r

(2n)2−sr2=−1

1.
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From the theory of Pell’s equation, the number of pairs (u, v) for which 1 ≤ u ≤ U
and u2−sv2 = −1 is	 logU uniformly in s. Hence, we deduce that the contribution
of the terms T ≤ r ≤

√
x to S(x) is 	 x(log x)/T 2. Thus,

(2.2) S(x) =
∑
r≤T

(r,2m)=1

μ(r)
∑
n≤y

r2|4n2+1

(
4n2 + 1

m

)
+O

(
x log x

T 2

)
.

Let r ≤ T be such that (r, 2m) = 1, and consider the equation 4n2 + 1 ≡ 0
(mod r2). This congruence has c(r2) = c(r) solutions modulo r2 where c(r) =∏

p|r c(p). Denote these solutions by {a1, ..., ac(r)}. Then, for any integer k we have

∑
kr2m<n≤(k+1)r2m

r2|4n2+1

(
4n2 + 1

m

)
=

c(r)∑
i=1

∑
kr2m<n≤(k+1)r2m

n≡ai mod r2

(
4n2 + 1

m

)

=

c(r)∑
i=1

m∑
u=1

(
4u2 + 1

m

) ∑
kr2m<n≤(k+1)r2m

n≡ai mod r2

n≡u mod m

1

= c(r)

m∑
u=1

(
4u2 + 1

m

)
,

by the Chinese remainder theorem, since (r,m) = 1. Therefore, we deduce that

∑
n≤y

r2|4n2+1

(
4n2 + 1

m

)
= y

c(r)

r2
1

m

m∑
u=1

(
4u2 + 1

m

)
+O
(
c(r)m

)

= y
c(r)

r2
E(X(m))

∏
p|m
p>2

(
1− c(p)

p2

)
+O
(
c(r)m

)

by Lemmas 2.2 and 2.3. Inserting this estimate into (2.2) we get

S(x) = y · E(X(m))
∏
p|m
p>2

(
1− c(p)

p2

) ∑
r≤T

(r,2m)=1

μ(r)
c(r)

r2
+O

⎛⎝m∑
r≤T

c(r) +
x log x

T 2

⎞⎠ .

Since c(r) ≤ 2ω(r) ≤ d(r) (where d(r) is the divisor function), we get
∑

r≤T c(r) 	
T log T and

∑
r>T

(r,2m)=1

μ(r)

r2
c(r) 	

∑
r>T

d(r)

r2
	 log T

T
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by using that
∑

r≤t d(r) ∼ t log t, together with partial summation. Thus, we deduce
that

S(x) = y · E(X(m))
∏
p|m
p>2

(
1− c(p)

p2

) ∑
r≥1

(r,2m)=1

μ(r)
c(r)

r2

+O

(
mT log T +

√
x log T

T
+

x log x

T 2

)
= y · E(X(m))

∏
p>2

(
1− c(p)

p2

)
+O

(
mT log T +

√
x log T

T
+

x log x

T 2

)
.

Choosing T =
(
x/m
)1/3

and using (1.2) complete the proof. �

3. Complex moments of L(1, χd) over d ∈ Dch(x):
Proof of Theorem 1.4

For any z ∈ C, we have

L(1,X)z =

∞∑
n=1

dz(n)

n
X(n)

almost surely, where dz(n) is the z-th divisor function. Recall that dz(n) is the
multiplicative function defined on prime powers by dz(p

a) = Γ(z+a)/(Γ(z)a!), and
for Re(s) > 1 we have

∞∑
n=1

dz(n)

ns
= ζ(s)z.

We observe that |dz(n)| ≤ d|z|(n) ≤ dk(n) for any integer k ≥ |z|, and dk(mn) ≤
dk(m)dk(n) for any positive integers k,m, n. Furthermore for k ∈ N and y > 3, we
have that

dk(n)e
−n/y ≤ ek/y

∑
a1...ak=n

e−(a1+...+ak)/y,

and so

(3.1)

∞∑
n=1

dk(n)

n
e−n/y ≤

(
e1/y

∞∑
a=1

e−a/y

a

)k

≤ (log 3y)k.

In order to prove Theorem 1.4, we first need some preliminary results. We define
a discriminant d to be exceptional if there exists a complex number s such that
L(s, χd) = 0 and

(3.2) Re(s) ≥ 1− c

log(|d|(Im(s) + 2))

for some sufficiently small constant c > 0. One expects that there are no such
discriminants, but what is known unconditionally is that these discriminants, if
they exist, must be very rare. Indeed, it is shown in Chapter 14 of [4] that between
any two powers of 2 there is at most one exceptional discriminant d. In particular,
it follows that there are at most O(log x) such discriminants up to x.

If χ is a non-principal and non-exceptional Dirichlet character modulo q, then
we have the following standard bound for logL(1 + it, χ) (see for example Lemma
2.2 of [9]):

(3.3) logL(1 + it, χ) 	 log2
(
q(|t|+ 2)

)
.
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We can obtain a much better bound for logL(s, χ), with s close to 1, if L(s, χ) has
no zeros in a certain rectangle containing s.

Lemma 3.1. Let q be large and put η = 1/ log2 q. Let 0 < ε < 1/2 be fixed. Assume
that L(z, χ) has no zeros in the rectangle {z : 1 − ε ≤ Re(z) ≤ 1 and |Im(z)| ≤
2(log q)2/ε}. Then for any s = σ + it with 1− η ≤ σ ≤ 1 and |t| ≤ log4 q we have

| logL(s, χ)| ≤ log3 q +Oε(1).

To prove this result we need the following lemma from [5].

Lemma 3.2 (Lemma 8.2 of [5]). Let s = σ + it with σ > 1/2 and |t| ≤ 2q.
Let y ≥ 2 be a real number, and let 1/2 ≤ σ0 < σ. Suppose that the rectangle
{z : σ0 < Re(z) ≤ 1, |Im(z) − t| ≤ y + 3} contains no zeros of L(z, χ). Put σ1 =
min(σ+σ0

2 , σ0 +
1

log y ). Then

logL(s, χ) =

y∑
n=2

Λ(n)χ(n)

ns log n
+O

(
log q

(σ1 − σ0)2
yσ1−σ

)
.

Proof of Lemma 3.1. We use Lemma 3.2 with 1 − η ≤ σ ≤ 1, σ0 = 1 − ε, and
y = (log q)2/ε. Therefore, if L(z, χ) has no zeros in the rectangle {z : 1 − ε ≤
Re(z) ≤ 1 and |Im(z)| ≤ 2(log q)2/ε}, we get

| logL(s, χ)| =

∣∣∣∣∣∣
∑

p≤(log q)2/ε

χ(p)

ps

∣∣∣∣∣∣+O(1) ≤
∑

p≤(log q)2/ε

1 +O(η log p)

p
+O(1)

≤ log3 q +Oε(1). �

Using Lemma 3.1 we obtain the following approximation to L(1, χ)z if L(z, χ)
has no zeros in a small region to the left of the line Re(s) = 1.

Proposition 3.3. Let q be large and let 0 < ε < 1/2 be fixed. Let y be a real
number such that log q/ log2 q ≤ log y ≤ log q. Furthermore, assume that L(s, χ)
has no zeros inside the rectangle {s : 1− ε < Re(s) ≤ 1 and |Im(s)| ≤ 2(log q)2/ε}.
Then for any complex number z such that |z| ≤ log y/(4 log2 q log3 q) we have

L(1, χ)z =

∞∑
n=1

dz(n)χ(n)

n
e−n/y +Oε

(
exp

(
− log y

2 log2 q

))
.

Proof. Since 1
2πi

∫ 2+i∞
2−i∞ ysΓ(s)ds = e−1/y then

1

2πi

∫ 2+i∞

2−i∞
L(1 + s, χ)zΓ(s)ysds =

∞∑
n=1

dz(n)χ(n)

n
e−n/y.

We shift the contour to C, where C is the path which joins

−i∞,−i(log q)4,−η − i(log q)4,−η + i(log q)4,−i(log q)4,+i∞,

where η = 1/ log2 q. We encounter a simple pole at s = 0 which leaves the residue
L(1, χ)z. Using the bound (3.3) together with Stirling’s formula we obtain

1

2πi

(∫ −i(log q)4

−i∞
+

∫ +i∞

i(log q)4

)
L(1 + s, χ)zΓ(s)ysds 	

∫ ∞

(log q)4
eO(|z| log2 qt)e−

π
3 tdt

	 1

q
.
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Finally, using that Γ(s) has a simple pole at s = 0 together with Lemma 3.1 and
Stirling’s formula, we deduce that

1

2πi

(∫ −η−i(log q)4

−i(log q)4
+

∫ −η+i(log q)4

−η−i(log q)4
+

∫ i(log q)4

−η+i(log q)4

)
L(1 + s, χ)zΓ(s)ysds

	 exp
(
−π

3
(log q)4 +O(|z| log3 q)

)
+

y−η

η
exp
(
|z| log3 q +Oε(|z|)

)
(log q)4

	ε exp

(
− log y

2 log2 q

)
.

�

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let D̃ch(x) be the set of fundamental discriminants d ∈
Dch(x) such that d >

√
x and L(s, χd) has no zeros in the rectangle {s : 9/10 <

Re(s) ≤ 1 and |Im(s)| ≤ 2(log x)20}. To bound |Dch(x) \ D̃ch(x)| we use the follow-
ing zero-density result of Heath-Brown [7], which states that for 1/2 < σ < 1 and
any ε > 0 we have∑

|d|≤x

N(σ, T, χd) 	 (xT )εx3(1−σ)/(2−σ)T (3−2σ)/(2−σ),

where N(σ, T, χd) is the number of zeros ρ of L(s, χd) with Re(ρ) ≥ σ and |Im(ρ)| ≤
T , and

∑
indicates that the sum is over fundamental discriminants. Then, it

follows from this bound that

|Dch(x)| − |D̃ch(x)| 	 x1/3.

Using this estimate together with the bound (3.3) we obtain

(3.4)
∑�

d∈Dch(x)

L(1, χd)
z −

∑
d∈ ˜Dch(x)

L(1, χd)
z 	 x1/3 exp

(
O(|z| log2 x)

)
	 x3/8.

Let y = x1/6, and put k = |z|�. Then, it follows from Proposition 3.3 that

(3.5)

∑
d∈ ˜Dch(x)

L(1, χd)
z =

∑
d∈ ˜Dch(x)

∞∑
m=1

dz(m)χd(m)e−m/y

m

+O

(
|Dch(x)| exp

(
− log x

20 log log x

))
.

We now extend the main term of the last estimate so as to include all fundamental
discriminants d ∈ Dch(x). Using (3.1), we deduce that

∑
d∈Dch(x)\ ˜Dch(x)

∞∑
m=1

dz(m)χd(m)e−m/y

m
	 (|Dch(x)| − |D̃ch(x)|)

∞∑
m=1

dk(m)

m
e−m/y

	 x3/8.
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Combining this estimate with (3.4) and (3.5) gives∑�

d∈Dch(x)

L(1, χd)
z =

∞∑
m=1

dz(m)

m
e−m/y

∑
d∈Dch(x)

χd(m)

+O

(
x1/2 exp

(
− log x

20 log log x

))
.

Now, it follows from Proposition 2.1 that

(3.6)
1

|Dch(x)|

∞∑
m=1

dz(m)

m
e−m/y

∑
d∈Dch(x)

χd(m) =

∞∑
m=1

dz(m)E(X(m))

m
e−m/y

+O

(
x−1/6 log x

∞∑
m=1

dk(m)

m1/3
e−m/y

)
.

To bound the error term in the last estimate, we split the sum into two parts:
m ≤ y log2 y and m > y log2 y. The contribution of the first part is

≤
∑

m≤y log2 y

(
y log2 y

m

)2/3
dk(m)

m1/3
e−m/y ≤ (y log2 y)2/3

∞∑
m=1

dk(m)

m
e−m/y

	 y2/3(log 3y)k+4/3,

by (3.1). The remaining terms contribute

≤ exp

(
− (log y)2

2

) ∞∑
m=1

dk(m)

m1/3
e−m/(2y) ≤ exp

(
− (log y)2

2

)(
e1/(2y)

∞∑
a=1

e−a/(2y)

a1/3

)k

	 exp

(
− (log y)2

2

)
yk	exp

(
− (log y)2

4

)
,

using an argument similar to (3.1). Therefore, we deduce that the error term in
(3.6) is 	 x−1/6y2/3(log x)k+2 	 x−1/20.

We now wish to remove the e−n/y factor from the main term of (3.6), and in so
doing we introduce an error of

(3.7)

∞∑
m=1

dz(m)E(X(m))(1− e−m/y)

m
.

We shall use the bound 1 − e−t 	 tα, which is valid for all t > 0 and 0 < α ≤ 1.
Also, by Lemma 2.2 we have |E(X(m))| 	 m−1

0 , where m0 is the squarefree part
of m. Choosing α = 1/ log2 x and writing m = m0m

2
1 we deduce that this sum is

	 y−α
∞∑

m=1

dk(m)

m0m1−α
≤ y−α

∞∑
m0=1

dk(m0)

m2−α
0

∞∑
m1=1

d2k(m1)

m2−2α
1

= y−αζ(2− α)k
∞∑

n=1

d2k(n)

n2−2α
.

Finally, we use the following bound, which follows from Lemma 3.3 of [9]:

∞∑
n=1

d2k(n)

n2−2α
≤ exp ((2 + o(1))k log2 k) .

This shows that the sum in (3.7) is 	 exp (− log x/(20 log2 x)) , which completes
the proof. �
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4. The distribution of the random model L(1,X)

4.1. Main results and proof of Theorem 1.3. Throughout this section, we
shall focus only on proving the desired results for ΦX(τ ), since the proofs for ΨX(τ )
require only some minor adjustments. Since the X(p) are independent, then for any
z ∈ C we have

E (L(1,X)z) =
∏
p

Ep(z),

where

(4.1) Ep(z) := E

((
1− X(p)

p

)−z
)

= αp

(
1− 1

p

)−z

+ βp

(
1 +

1

p

)−z

+ γp.

For z ∈ C we define

L(z) := logE (L(1,X)z) =
∑
p

logEp(z).

Let τ be a large real number and consider the equation

(4.2)
(
E (L(1,X)r) (eγτ )−r

)′
= 0 ⇐⇒ L′(r) = log τ + γ,

where the derivative is taken with respect to the real variable r. Then it follows
from Proposition 4.2 below that limr→∞ L′(r) = ∞. Moreover, a simple calculation
shows that E′′

p (r)Ep(r) > (E′
p(r))

2 for all primes p, and hence that L′′(r) > 0. Thus,
we deduce that equation (4.2) has a unique solution κ = κ(τ ). Using a careful saddle
point analysis we obtain an asymptotic formula for ΦX(τ ) in terms of the moment
E (L(1,X)r) evaluated at the saddle point κ.

Theorem 4.1. Let τ be large and let κ denote the unique solution to (4.2). Then,
we have

(4.3) ΦX(τ ) =
E (L(1,X)κ) (eγτ )−κ

κ
√
2πL′′(κ)

(
1 +O

(√
log κ

κ

))
.

Moreover, for any 0 ≤ λ ≤ 1/κ we have

(4.4) ΦX

(
e−λτ

)
= ΦX(τ )

(
1 +O(λκ)

)
.

In order to deduce Theorem 1.3 from this result, we need to estimate L(r) and
its first few derivatives when r is large. We prove

Proposition 4.2. For any real number r ≥ 4 we have

(4.5) L(r) = r

(
log log r + γ +

C0 − 1

log r
+O

(
1

(log r)2

))
and

(4.6) L′(r) = log log r + γ +
C0

log r
+O

(
1

(log r)2

)
.

Moreover, for all real numbers y, t such that |y| ≥ 3 and |t| ≤ |y| we have

(4.7) L′′(y) 
 1

|y| log |y| and L′′′(y + it) 	 1

|y|2 log |y| .

Theorem 1.3 now follows upon combining Theorem 4.1 and Proposition 4.2.



6344 ALEXANDER DAHL AND YOUNESS LAMZOURI

Proof of Theorem 1.3. By Theorem 4.1 and equation (4.7), we have

ΦX(τ ) =
E (L(1,X)κ) (eγτ )−κ

κ
√
2πL′′(κ)

(
1 +O

(√
log κ

κ

))
= exp

(
L(κ)− κ(log τ + γ) +O(log κ)

)
,

where κ is the unique solution to L′(κ) = log τ + γ. Furthermore, by (4.6) we have

(4.8) log τ = log log κ+
C0

log κ
+O

(
1

(log κ)2

)
,

and hence we deduce from (4.5) that

ΦX(τ ) = exp

(
− κ

log κ
+O

(
κ

(log κ)2

))
.

The estimate (1.11) follows upon noting that log κ = τ − C0 + O(1/τ ) by (4.8).
Finally, using this fact together with (4.4) implies (1.12). �

The remainder of this section will be devoted to the proofs of Theorem 4.1 and
Proposition 4.2. We begin by proving the latter.

4.2. Proof of Proposition 4.2. We first need some preliminary lemmas.

Lemma 4.3. Let r ≥ 4 be a real number. Then we have

(4.9) logEp(r) =

{
−r log(1− 1/p) +O(1) if p ≤ r2/3,

log cosh
(

r
p

)
+O
(

r
p2

)
if p > r2/3

and

(4.10)
E′

p(r)

Ep(r)
=

⎧⎨⎩− log(1− 1/p)
(
1 +O

(
e−r1/3

))
if p ≤ r2/3,

1
p tanh

(
r
p

)
+O
(

1
p2 + r

p3

)
if p > r2/3.

Proof. We start by proving (4.9). First, if p < r2/3, then

(4.11) Ep(r) = αp

(
1− 1

p

)−r (
1 +O

(
exp(−r1/3)

))
,

from which the desired estimate follows in this case.
Now if p > r2/3, we use that αp − βp 	 1/p and γp 	 1/p, together with the

bounds cosh(t)−1 	 t cosh(t) and sinh(t) 	 t cosh(t), which are valid for all t ≥ 0.
Thus we derive

(4.12)

Ep(r) =
(
αpe

r/p + βpe
−r/p
)(

1 +O

(
r

p2

))
+ γp

= (αp + βp) cosh

(
r

p

)(
1 +O

(
r

p2

))
+ γp

= cosh

(
r

p

)(
1 +O

(
r

p2

))
,

which completes the proof of (4.9).
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Next, by (4.1) we have

E′
p(r) = −αp

(
1− 1

p

)−r

log

(
1− 1

p

)
− βp

(
1 +

1

p

)−r

log

(
1 +

1

p

)
.

For p < r2/3 the desired estimate for E′
p(r)/Ep(r) follows from (4.11). On the other

hand, if p > r2/3, then

E′
p(r) =

(
αp

p
er/p − βp

p
e−r/p

)(
1 +O

(
1

p
+

r

p2

))
=

1

p
sinh

(
r

p

)(
1 + O

(
1

p
+

r

p2

))
+O

(
1

p2
cosh

(
r

p

))
,

since both αp and βp equal 1/2 + O(1/p). Combining this estimate with (4.12)
completes the proof. �

Define

f(t) :=

{
log cosh(t) if 0 ≤ t < 1,

log cosh(t)− t if t ≥ 1.

Then we have the following standard estimates for f and f ′.

Lemma 4.4 (Lemma 4.5 of [10]). f is bounded on [0,∞) and f(t) = t2/2 +O(t4)
if 0 ≤ t < 1. Moreover we have

f ′(t) =

{
t+O(t2) if 0 < t < 1,

O(e−2t) if t > 1.

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. We only prove (4.5) and (4.6) since (4.7) follows along
the same lines. First, by Lemmas 4.3 and 4.4 we have

(4.13)

L(r) = −r
∑

p≤r2/3

log

(
1− 1

p

)
+
∑

p>r2/3

log cosh

(
r

p

)
+O
(
r2/3
)

= −r
∑
p≤r

log

(
1− 1

p

)
+

∑
r2/3<p<r4/3

f

(
r

p

)
+ O
(
r2/3
)
.

Now, using the prime number theorem in the form π(t)−Li(t) 	 t/(log t)3, together
with partial summation and Lemma 4.4, we obtain

(4.14)

∑
r2/3<p<r4/3

f

(
r

p

)
=

∫ r4/3

r2/3
f
(r
t

) dt

log t
+O

(
r

(log r)2

)

=
r

log r

∫ r1/3

r−1/3

f(u)

u2
du+O

(
r

(log r)2

)
,

since
∫∞
0

(f(u)(logu)/u2)du < ∞. Extending the integral in the right hand side of
this estimate gives

(4.15)

∫ r1/3

r−1/3

f(u)

u2
du =

∫ ∞

0

f(u)

u2
du+O

(
r−1/3

)
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by Lemma 4.4. Finally, by an easy integration by parts along with Lemma 4.4 we
have∫ ∞

0

f(u)

u2
du =

∫ ∞

0

f ′(u)

u
du−

(
lim

x→1−

f(x)

x
− lim

x→0+

f(x)

x
+ lim

x→∞

f(x)

x
− lim

x→1+

f(x)

x

)
=

∫ ∞

0

f ′(u)

u
du− 1.

Collecting the above estimates yields (4.5).
Next, we prove (4.6). First, similarly to (4.13), we derive from equation (4.10)

and Lemma 4.4 that

L′(r) = −
∑

p≤r2/3

log

(
1− 1

p

)
+
∑

r2/3<p

1

p
tanh

(
r

p

)
+O
(
r−1/3

)
= −

∑
p≤r

log

(
1− 1

p

)
+

∑
r2/3<p<r4/3

1

p
f ′
(
r

p

)
+O
(
r−1/3

)
.

Finally, using the prime number theorem and partial summation as in (4.14) and
(4.15), one can see that

∑
r2/3<p<r4/3

1

p
f ′
(
r

p

)
=

1

log r

∫ ∞

0

f ′(u)

u
du+O

(
1

(log r)2

)
,

from which the estimate (4.6) follows. �

4.3. Proof of Theorem 4.1. One of the key ingredients in the proof of Theorem
4.1 is to show that E

(
L(1,X)r+it

)
/E (L(1,X)r) is rapidly decreasing in t in the

range |t| ≥
√
r log r. To this end, we establish the following lemma, which is the

analogue of Lemma 3.2 of [6].

Lemma 4.5. Let r be large. If p > r/4, then for some positive constant b1 we have

|Ep(r + it)|
Ep(r)

≤ exp

(
−b1

(
1− cos

(
t log

(
p+ 1

p− 1

))))
.

Proof. Let x1, x2, x3 be positive real number numbers, and let θ2, θ3 be real num-
bers. We shall use the following inequality, which is established in the proof of
Lemma 3.2 of [6]:

∣∣x1 + x2e
iθ2 + x3e

iθ3
∣∣ ≤ (x1 + x2 + x3) exp

(
−x1x3(1− cos θ3)

(x1 + x2 + x3)2

)
.

Indeed, applying this inequality with x1 = αp(1 − 1/p)−r, x2 = γp, x3 =

βp(1 + 1/p)−r, and θ2 = t log(1 − 1/p) and θ3 = t log
(

p−1
p+1

)
yields the desired

bound, since p > r/4. �
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Using this lemma, we deduce the following result.

Lemma 4.6. Let r be large. Then, there exists a constant b2 > 0 such that∣∣E (L(1,X)r+it
)∣∣

E (L(1,X)r)
	

⎧⎨⎩exp
(
−b2

t2

r log r

)
if |t| ≤ r/4,

exp
(
−b2

|t|
log |t|

)
if |t| > r/4.

Proof. Let z = r + it. Since |Ep(z)| ≤ Ep(r) we obtain that for any real numbers
2 ≤ y1 < y2,

(4.16)
|E (L(1,X)z)|
E (L(1,X)r)

≤
∏

y1≤p≤y2

|Ep(z)|
Ep(r)

.

Moreover, note that |t| log
(

p+1
p−1

)
∼ 2|t|/p, whence for |t| ≤ p/4 we have

1− cos

(
t log

(
p+ 1

p− 1

))
� |t|2

p2
.

If |t| ≤ r/4 we choose y1 = r and y2 = 2r. Then, appealing to Lemma 4.5 gives the
desired bound in this case. Finally, in the case |t| > r/4, we use the same argument
with y1 = 4|t| and y2 = 8|t|. �

Let ϕ(y) = 1 if y > 1 and equal 0 otherwise. To relate the distribution function
of L(1,X) (or that of L(1, χd) over d ∈ Dch(x)) to its complex moments, we use the
following smooth analogue of Perron’s formula.

Lemma 4.7. Let λ > 0 be a real number and let N be a positive integer. For any
c > 0 we have for y > 0,
(4.17)

0 ≤ 1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)N
ds

s
−ϕ(y) ≤ 1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)N
1− e−λNs

s
ds,

and

(4.18) 0 ≤ ϕ(eλy)− ϕ(y) ≤ 1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)
eλs − e−λs

s
ds.

Proof. For any y > 0 we have

1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)N
ds

s

=
1

λN

∫ λ

0

· · ·
∫ λ

0

1

2πi

∫ c+i∞

c−i∞

(
yet1+···+tN

)s ds

s
dt1 · · · dtN ,

so that by Perron’s formula we obtain

(4.19)
1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)N
ds

s
=

⎧⎪⎨⎪⎩
= 1 if y ≥ 1,

∈ [0, 1] if e−λN ≤ y < 1,

= 0 if 0 < y < e−λN .



6348 ALEXANDER DAHL AND YOUNESS LAMZOURI

Therefore we deduce that

1

2πi

∫ c+i∞

c−i∞
yse−λNs

(
eλs − 1

λs

)N
ds

s
≤ ϕ(y) ≤ 1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)N
ds

s
,

which implies (4.17). Using these bounds for ϕ(y) and ϕ(eλy) with N = 1 gives
(4.18). �

Proof of Theorem 4.1. We start by proving (4.3). Let 0 < λ < 1/(2κ) be a real
number to be chosen later. Using (4.17) with N = 1 we obtain

(4.20)

0 ≤ 1

2πi

∫ κ+i∞

κ−i∞
E (L(1,X)s) (eγτ )−s e

λs − 1

λs

ds

s
− ΦX(τ )

≤ 1

2πi

∫ κ+i∞

κ−i∞
E (L(1,X)s) (eγτ )−s

(
eλs − 1

)
λs

(
1− e−λs

)
s

ds.

Since λκ < 1/2 we have |eλs − 1| ≤ 3 and |e−λs − 1| ≤ 2. Hence, using Lemma
4.6 together with the fact that |E (L(1,X)s) | ≤ E (L(1,X)κ), we obtain for some
constant b3 > 0,
(4.21)∫ κ−iκ3/5

κ−i∞
+

∫ κ+i∞

κ+iκ3/5

E (L(1,X)s)(eγτ )−s e
λs − 1

λs

ds

s
	 e−b3κ

1/6

λκ3/5
E (L(1,X)κ)(eγτ )−κ,

and similarly

(4.22)

∫ κ−iκ3/5

κ−i∞
+

∫ κ+i∞

κ+iκ3/5

E (L(1,X)s) (eγτ )−s

(
eλs − 1

)
λs

(
1− e−λs

)
s

ds

	 e−b3κ
1/6

λκ3/5
E (L(1,X)κ) (eγτ )−κ.

Let s = κ+ it. If |t| ≤ κ3/5, then
∣∣(1− e−λs)(eλs − 1)

∣∣	 λ2|s|2, and hence we get∫ κ+iκ3/5

κ−iκ3/5

E (L(1,X)s)(eγτ )−s

(
eλs − 1

)
λs

(
1− e−λs

)
s

ds 	 λκ3/5 ·E (L(1,X)κ)(eγτ )−κ.

Therefore, combining this estimate with equations (4.20), (4.21), and (4.22) we
deduce that

(4.23)

ΦX(τ )−
1

2πi

∫ κ+iκ3/5

κ−iκ3/5

E (L(1,X)s) (eγτ )−s e
λs − 1

λs2
ds

	
(
λκ3/5 +

e−b3κ
1/6

λκ3/5

)
E (L(1,X)κ) (eγτ )−κ.

On the other hand, it follows from equation (4.7) that for |t| ≤ κ3/5 we have

L(κ+ it) = L(κ) + itL′(κ)− t2

2
L′′(κ) +O

(
|t|3

κ2 log κ

)
.

Also, note that

eλs − 1

λs2
=

1

s

(
1 +O(λκ)

)
=

1

κ

(
1− i

t

κ
+O

(
λκ+

t2

κ2

))
.
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Hence, using that E (L(1,X)s) = exp(L(s)) and L′(κ) = log τ + γ we obtain

E (L(1,X)s) (eγτ )−s e
λs − 1

λs2

=
1

κ
E (L(1,X)κ) (eγτ )−κ exp

(
− t2

2
L′′(κ)

)(
1− i

t

κ
+O

(
λκ+

t2

κ2
+

|t|3
κ2 log κ

))
.

Thus, we get
(4.24)

1

2πi

∫ κ+iκ3/5

κ−iκ3/5

E (L(1,X)s) (eγτ )−s e
λs − 1

λs2
ds

=
1

κ
E (L(1,X)κ)(eγτ )−κ 1

2π

∫ κ3/5

−κ3/5

exp

(
− t2

2
L′′(κ)

)(
1+O

(
λκ+

t2

κ2
+

|t|3
κ2 log κ

))
dt

since the integral involving it/κ vanishes. Further, since L′′(κ) 
 1/(κ log κ) by
(4.7), we have for some constant b4 > 0,

1

2π

∫ κ3/5

−κ3/5

exp

(
− t2

2
L′′(κ)

)
dt =

1√
2πL′′(κ)

(
1 +O

(
e−b4κ

1/6
))

and ∫ κ3/5

−κ3/5

|t|n exp
(
− t2

2
L′′(κ)

)
dt ≤

∫ ∞

−∞
|t|n exp

(
− t2

2
L′′(κ)

)
dt

	 1

L′′(κ)(n+1)/2
	 (κ log κ)n/2√

L′′(κ)
.

Inserting these estimates into (4.24) we deduce that

(4.25)

1

2πi

∫ κ+iκ3/5

κ−iκ3/5

E (L(1,X)s) (eγτ )−s e
λs − 1

λs2
ds

=
E (L(1,X)κ) (eγτ )−κ

κ
√
2πL′′(κ)

(
1 +O

(
λκ+

√
log κ

κ

))
.

Finally, combining the estimates (4.23) and (4.25) and choosing λ = κ−2 complete
the proof of (4.3).

We now prove (4.4). Let 0 ≤ λ ≤ 1/κ be a real number. Then, by (4.18) we have

ΦX(e
−λτ )− ΦX(τ ) ≤

1

2πi

∫ κ+i∞

κ−i∞
E (L(1,X)s) (eγτ )−s

(
eλs − 1

)
λs

(
eλs − e−λs

)
s

ds.

We write s = κ+ it and split the above integral into two parts: |t| ≤
√
κ log κ and

|t| >
√
κ log κ.

Note that both |(eλs−1)/λs| and |(eλs−e−λs)/λs| are always less than 4, which
is easily seen by looking at the cases |λs| ≤ 1 and |λs| > 1 separately. Therefore, it
follows that the contribution of the first part is 	 λ

√
κ log κ ·E (L(1,X)κ) (eγτ )−κ.
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Furthermore, by Lemma 4.6 we obtain that the contribution of the second part is

	 λE (L(1,X)κ)(eγτ )−κ

(∫
√
κ log κ<|t|≤κ/4

e−b2t
2/(κ log κ)dt+

∫
|t|≥κ/4

e−b2|t|/ log |t|dt

)
	 λ
√
κ log κ · E (L(1,X)κ) (eγτ )−κ.

The desired bound follows from (4.3) and (4.7), which show that

(4.26) ΦX(τ ) 

E (L(1,X)κ) (eγτ )−κ

κ
√
L′′(κ)



√

log κ

κ
· E (L(1,X)κ) (eγτ )−κ.

�

5. The distribution of values of L(1, χd) over d ∈ Dch(x):
Proof of Theorems 1.1 and 1.2

We shall first prove Theorem 1.2 and then deduce Theorem 1.1. To shorten our
notation we let

Px(L(1, χd) ∈ S) :=
1

|Dch(x)|
∣∣{d ∈ Dch(x) : L(1, χd) ∈ S}

∣∣
and

Mx(z) :=
1

|Dch(x)|
∑�

d∈Dch(x)

L(1, χd)
z,

where as before
∑�

indicates that the sum is over non-exceptional discriminants

d.

Proof of Theorem 1.2. As in Section 4, let κ be the unique solution to L′(r) =
log τ + γ. Let N be a positive integer and let 0 < λ < min{1/(2κ), 1/N} be a real
number to be chosen later.

Let Y = b log x/(log2 x log3 x), for some suitably small constant b > 0. If x is
large enough, then equation (4.8) insures that κ ≤ Y in our range of τ . Also, note
that Theorem 1.4 holds for all complex numbers s = κ+it with |t| ≤ Y . We consider
the integrals

J(τ ) =
1

2πi

∫ κ+i∞

κ−i∞
E (L(1,X)s) (eγτ )−s

(
eλs − 1

λs

)N
ds

s

and

Jx(τ ) =
1

2πi

∫ κ+i∞

κ−i∞
Mx(s)(e

γτ )−s

(
eλs − 1

λs

)N
ds

s
.

Then, it follows from Lemma 4.7 that

(5.1) ΦX(τ ) ≤ J(τ ) ≤ ΦX(e
−λNτ )

and
(5.2)

Px

(
L(1, χd) > eγτ

)
+O

(
log x√

x

)
≤ Jx(τ ) ≤ Px

(
L(1, χd) > eγ−λNτ

)
+O

(
log x√

x

)
,
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since there are at most O(log x) exceptional discriminants d ≤ x. Now, using that
|eλs − 1| ≤ 3 we get∫ κ−iY

κ−i∞
+

∫ κ+i∞

κ+iY

E (L(1,X)s) (eγτ )−s

(
eλs − 1

λs

)N
ds

s

	 1

N

(
3

λY

)N

E (L(1,X)κ) (eγτ )−κ.

A similar argument together with Theorem 1.4 shows that∫ κ−iY

κ−i∞
+

∫ κ+i∞

κ+iY

Mx(s)(e
γτ )−s

(
eλs − 1

λs

)N
ds

s
	 1

N

(
3

λY

)N

Mx(κ)(e
γτ )−κ

	 1

N

(
3

λY

)N

E (L(1,X)κ)(eγτ )−κ.

Combining these bounds with Theorem 1.4 and using that |(eλs − 1)/λs| ≤ 4 we
derive
(5.3)

Jx(τ )−J(τ ) 	 1

N

(
3

λY

)N

E (L(1,X)κ) (eγτ )−κ+
Y

κ
4N (eγτ )−κ exp

(
− log x

20 log2 x

)
.

Thus, choosing N = [log log x] and λ = e10/Y we deduce from (4.26) that

(5.4) Jx(τ )− J(τ ) 	 1

(log x)3
ΦX(τ ).

On the other hand, it follows from Theorem 1.3 that

ΦX(e
±λNτ ) = ΦX(τ )

(
1 +O

(
eτ (log2 x)

2 log3 x

log x

))
.

Combining this last estimate with (5.1), (5.2), and (5.4) we obtain

Px(L(1, χd) > eγτ ) ≤ Jx(τ ) +O

(
log x√

x

)
≤ J(τ ) +O

(
ΦX(τ )

(log x)5
+

log x√
x

)
≤ ΦX(τ )

(
1 +O

(
eτ (log2 x)

2 log3 x

log x

))
+O

(
log x√

x

)
and

Px(L(1, χd) > eγτ ) ≥ Jx(e
λNτ ) +O

(
log x√

x

)
≥ J(eλNτ ) +O

(
ΦX(τ )

(log x)5
+

log x√
x

)
≥ ΦX(τ )

(
1 +O

(
eτ (log2 x)

2 log3 x

log x

))
+O

(
log x√

x

)
.

The result follows from these estimates together with the fact that ΦX(τ ) � x−1/4

in our range of τ by Theorem 1.3. �
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We now deduce Theorem 1.1.

Proof of Theorem 1.1. By the class number formula (1.3), we have h(d) ≥ 2eγ
√
d

log d ·
τ if and only if

L(1, χd) ≥ eγτ

⎛⎝1 + 2
log
(
1 +
√
1− 1/d

)
log d

⎞⎠ .

The desired estimate follows from Theorems 1.2 and 1.3, which show that the
number of d ∈ Dch(x) such that d ≥ √

x and L(1, χd) ≥ eγτ (1 +O(1/ log d)) is

|Dch(x)| · ΦX

(
τ
(
1 +O(1/ log x)

))(
1 +O

(
eτ (log2 x)

2 log3 x

log x

))
=|Dch(x)| · exp

(
−eτ−C0

τ

(
1 +O

(
1

τ

)))
.

The analogous estimate for the number of discriminants d ∈ Dch(x) such that

h(d) ≤ 2e−γζ(2)
√
d

log d · 1
τ follows along the same lines. �

6. The number of quadratic fields with a given class number:

Proof of Theorem 1.6

Recall that Fch(h) is the number of discriminants in the family Dch with class
number h. In order to obtain an asymptotic formula for

∑
h≤H Fch(h), we first

show that we can restrict our attention to discriminants d ∈ Dch such that d ≤
X := H2(logH)8. To this end we use Tatuzawa’s refinement of Siegel’s Theorem
[19], which states that for large d, we have L(1, χd) ≥ 1/(log d)2 with at most one

exception. This implies that h(d) ≥
√
d · (log d)−3 with at most one exception, by

the class number formula (1.3). Thus, if h(d) ≤ H, then we must have d ≤ X, with
at most one exception. This yields

(6.1)
∑
h≤H

Fch(h) =
∑

d∈Dch(X)
h(d)≤H

1 +O(1).

Proof of Theorem 1.6. We estimate the main term in (6.1) by using the smoothing
function

Ic,λ,N (y) :=
1

2πi

∫ c+i∞

c−i∞
ys
(
eλs − 1

λs

)N
ds

s
,

where c = 1/ logH, N is a positive integer, and 0 < λ ≤ 1 is a real number to be
chosen later. Using (6.1) together with (4.19), we obtain
(6.2)∑
h≤H

Fch(h) ≤
1

2πi

∫ c+i∞

c−i∞

∑
d∈Dch(X)

Hs

h(d)s

(
eλs − 1

λs

)N
ds

s
+O (1) ≤

∑
h≤eλNH

Fch(h).

By (1.2), Theorem 1.4, and Remark 1.5, there exists a constant B > 0 such that

for all x ≥
√
X and any complex number z with Re(z) > −1/2 and |z| ≤ T :=

B logX/(log2 X log3 X), we have

(6.3)
∑

d∈Dch(x)

L(1, χd)
z = C1x

1/2E(L(1,X)z) +O

(
x1/2 exp

(
− log x

20 log log x

))
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where

C1 =
1

2

∏
p>2

(
1− c(p)

p2

)
.

For brevity, we define

�(x) :=

√
x

log(
√
x− 1 +

√
x)

.

Then we have h(d) = �(d)L(1, χd) by the class number formula (1.3). Hence, using
integration by parts, we deduce from (6.3) that

(6.4)
∑

d∈Dch(X)

h(d)−s =
C1

2
E(L(1,X)−s)

(∫ X

1

x−1/2�(x)−sdx

)

+O

(
X1/2 exp

(
− logX

50 log logX

))
for |s| ≤ T and Re(s) = c.

Since h(d) ≥ 1 and |eλs−1| ≤ 3 for large enough H, we see that the contribution
of the region |s| > T to the integral in (6.2) is

	 X1/2

(
3

λ

)N ∫
|s|>T

Re(s)=c

|ds|
|s|N+1

	 X1/2

N

(
3

λT

)N

.

We also have |(eλs−1)/λs| ≤ 4 for large enough H. Therefore, it follows from (6.4)
that the integral in (6.2) equals

(6.5)
1

2πi

∫
|s|≤T

Re(s)=c

C1

2
E(L(1,X)−s)

(∫ X

1

x−1/2�(x)−sdx

)
Hs

(
eλs − 1

λs

)N
ds

s
+E ,

where

E 	 X1/2

N

(
3

λT

)N

+
4NT

c
X1/2 exp

(
− logX

50 log logX

)
.

Choosing λ = e10/T and N = [A log logH] for a constant A > 1 gives

E 	A
H

(logH)A
.

Extending the main term of (6.5) to the entire line Re(s) = c, we see that it equals

(6.6)
1

2πi

∫ c+i∞

c−i∞

C1

2
E(L(1,X)−s)

(∫ X

1

x−1/2�(x)−sdx

)
Hs

(
eλs − 1

λs

)N
ds

s

+O

(
E
(
L(1,X)−c

)X1/2

N

(
3

λT

)N
)

=
C1

2
E

(∫ X

1

Ic,λ,N

(
H

�(x)L(1,X)

)
x−1/2dx

)
+OA

(
H

(logH)A

)
.
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To shorten our notation we define Y = HL(1,X)−1. Then it follows from (4.19)
that for 1 < x ≤ X we have

Ic,λ,N

(
H

�(x)L(1,X)

)
=

⎧⎪⎨⎪⎩
1 if �(x) ≤ Y,

∈ [0, 1] if Y < �(x) ≤ eλNY,

0 if �(x) > eλNY.

Furthermore, note that �(x) = (2
√
x)/(log x + ψ(x)) for some ψ(x) that satisfies

0 ≤ ψ(x) ≤ 2. Thus, if for a constant c we define

�c(x) =
2
√
x

log x+ c
,

then we have �2(x) ≤ �(x) ≤ �0(x), and therefore

Ic,λ,N

(
H

�(x)L(1,X)

)
=

⎧⎪⎨⎪⎩
1 if �0(x) ≤ Y,

0 if �2(x) > eλNY,

∈ [0, 1] otherwise.

For any c > 0 the function �c(x) is strictly increasing on (e2,∞) and hence is
invertible on this domain. Let gc be its inverse function. Then we obtain

(6.7)

∫ X

1

Ic,λ,N

(
H

�(x)L(1,X)

)
x−1/2dx = 2min

(
g0(Y )1/2, X1/2

)
+O
(
g2(e

λNY )1/2 − g0(Y )1/2 + 1
)
.

Note that for any c > 0 we have gc(x) = x2
(
log x+Oc(log log x)

)2
for x ≥ e2. More-

over, if g0(Y ) > X, then Y > �0(X) and hence L(1,X) 	 1/(logH)3. Therefore, it
follows from Theorem 1.3 that

E
(
min
(
g0(Y )1/2, X1/2

))
= E
(
g0(Y )1/2

)
+O
(
X1/2 exp

(
− log2 H

) )
= E
(
L(1,X)−1

)
H logH +O(H log2 H).

Furthermore, a similar argument shows that

E
(
g2(e

λNY )1/2 − g0(Y )1/2
)
=
(
eλN − 1

)
E
(
L(1,X)−1

)
H logH +O(H log2 H)

	 H(log2 H)2 log3 H.

Combining these estimates with equations (6.2), (6.5), (6.6), and (6.7) we deduce
that∑
h≤H

Fch(h) ≤ C1E
(
L(1,X)−1

)
H logH +O

(
H(log2 H)2 log3 H

)
≤
∑

h≤eλNH

Fch(h).

Replacing eλNH by H in the right hand side inequality yields∑
h≤H

Fch(h) = C1E
(
L(1,X)−1

)
H logH +O

(
H(log2 H)2 log3 H

)
.
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Finally, by (4.1) and the independence of the X(p)’s, we find that C1E(L(1,X)
−1)

equals

1

2

∏
p>2

(
1− c(p)

p2

)(
αp

(
1− 1

p

)
+ βp

(
1 +

1

p

)
+ γp

)

=
1

2

∏
p>2

(
1

2

(
1− c(p) + 1

p

)(
1− 1

p

)
+

1

2

(
1− c(p)− 1

p

)(
1 +

1

p

)
+ c(p)

(
1

p
− 1

p2

))

=
1

2

∏
p>2

(
1− c(p)− 1

p2

)
,

which completes the proof. �

References
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