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THE KK-THEORY OF FUNDAMENTAL C*-ALGEBRAS

PIERRE FIMA AND EMMANUEL GERMAIN

Abstract. Given a graph of C*-algebras as defined in [Adv. Math. 260 (2014),
233–280], we prove a long exact sequence in KK-theory similar to the one ob-
tained by Pimsner in [Invent. Math. 86 (1986), 603–634] for both the maximal
and the vertex-reduced fundamental C*-algebras of the graph in the presence
of possibly non-GNS-faithful conditional expectations. We deduce from it
the KK-equivalence between the full fundamental C*-algebra and the vertex-
reduced fundamental C*-algebra even for non-GNS-faithful conditional expec-
tations. Our results unify, simplify, and generalize all the previous results
obtained by Cuntz, Pimsner, Germain, and Thomsen. They also generalize
the previous results of the authors on amalgamated free products.

1. Introduction

In 1986 the description of the KK-theory for some groups of C*-algebras culmi-
nated in the computation by M. Pimsner of full and reduced crossed products by
groups acting on trees [Pi86] (or by the fundamental group of a graph of groups in
Serre’s terminology). To go over the group situation has been difficult and it relied
heavily on various generalizations of the Voiculescu absorption theorem (see [Th03]
for the most general results in that direction). Note also that G. Kasparov and
G. Skandalis had another proof of Pimsner’s long exact sequence when studying
KK-theory for buildings [KS91].

However the results we obtain here are based on a completely different point
of view. Introduced in [FF13], the full or reduced fundamental C*-algebras of
a graph of C*-algebras allow us to treat on an equal footing amalgamated free
products and HNN extensions (and in particular cross-product by the integers).
Let’s describe its context. A graph of C*-algebras is a finite oriented graph with
unital C*-algebras attached to its edges (Be) and vertices (Av) such that for any
edge e there are embeddings re and se of Be in Ar(e) and As(e) with r(e) the range
of e and s(e) its source. As for groups, the full fundamental C*-algebra of the graph
is a quotient of the universal C*-algebra generated by the Av and unitaries ue such
that u∗

ese(b)ue = re(b) for all b ∈ Be. In the presence of conditional expectations
from As(e) and Ar(e) onto Be, one can also construct various representations of the
full fundamental C*-algebra on Hilbert modules over Av or Be. It is the interplay
with the representations that yields the tools we need to prove our results.

In our previous paper [FG15], we first looked at one of the simplest graphs:
one edge, two different endpoints. The full fundamental C*-algebra is then the
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full amalgamated free product. When the conditional expectations are not GNS-
faithful, there are two possible reduced versions: the reduced free product of D.
Voiculecscu, which we call the edge-reduced amalgamated free product, and the
vertex-reduced amalgamated free product we did construct in [FG15]. We did
show that the full amalgamated free product and the vertex-reduced amalgamated
free product are always K-equivalent and we did exhibit a long exact sequence in
KK-theory for both of them.

In this paper, we extend the results of [FG15] to any fundamental C*-algebra
of a finite graph of C*-algebras in the presence of conditional expectations, even
non-GNS-faithful ones.

Our first task is to introduce the good version of the reduced fundamental C*-
algebra since there are several possible constructions of the reduced fundamental
C*-algebra when the conditional expectations are not GNS-faithful, and this fact
was not clearly known to the authors in [FF13], in which it was always assumed
that the conditional expectations are GNS-faithful. The construction of the vertex-
reduced fundamental C*-algebra is made in section 2. We also describe in detail
its fundamental properties.

Our second task is to define the boundary maps in the long exact sequence. This
will be done in a natural way: by multiplication, in the Kasparov product sense,
by some elements in KK1 that we construct in a geometric way in section 3. We
also study the fundamental properties of these KK1 elements, which will be useful
to prove the exactness of the sequence.

In section 4 we prove our main result: the exactness of the sequence. This is
done by induction, using the analogue of Serre’s devissage process, the properties
of our KK1 elements, and the initial cases: the amalgamated free product case
which was done in [FG15] and the HNN-extension case which can be deduced from
the amalgamated free product case by a remark of Ueda [Ue08]. Explicitly, if C is
any separable C*-algebra and P the full or reduced fundamental C*-algebra of the
finite graph of C*-algebras (G, Ap, Be), then we have the two 6-term exact sequence,
where E+ is the set of positive edges and V is the vertex set of the graph G,

⊕
e∈E+ KK0(C,Be)

∑
s∗e−r∗e−→

⊕
p∈V KK0(C,Ap) −→ KK0(C,P )

↑ ↓
KK1(C,P ) ←−

⊕
p∈V KK1(C,Ap)

∑
s∗e−r∗e←−

⊕
e∈E+ KK1(C,Be)

and⊕
e∈E+ KK0(Be, C)

∑
se∗−re∗←−

⊕
p∈V KK0(Ap, C) ←− KK0(P,C)

↓ ↑
KK1(P,C) −→

⊕
p∈V KK1(Ap, C)

∑
se∗−re∗−→

⊕
e∈E+ KK1(Be, C)

In section 5 we give some applications of our results. A direct corollary of our
results is that the full and vertex-reduced fundamental C*-algebras of a graph of
C*-algebras are K-equivalent. This generalizes and simplifies the results of Pimsner
about the KK-theory of crossed-products by groups acting on trees [Pi86]. Also, our
results imply that the fundamental quantum group of a graph of discrete quantum
groups is K-amenable if and only if all the vertex quantum groups are K-amenable.
This generalizes and simplifies the results of [FF13].
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2. Preliminaries

2.1. Notation and conventions. All C*-algebras and Hilbert modules are sup-
posed to be separable. For a C*-algebra A and a Hilbert A-module H we denote
by LA(H) the C*-algebra of A-linear adjointable operators from H to H and by
KA(H) the sub-C*-algebra of LA(H) consisting of A-compact operators. We write
LA(a) ∈ LA(A) the left multiplication operator by a ∈ A. We use the term ucp for
unital completely positive. When ϕ : A → B is a ucp map the GNS construction is
the unique, triple (H, π, ξ) up to a canonical isomorphism, such that H is a Hilbert
B-module, π : A → LB(H) is a unital ∗-homomorphism, and ξ ∈ H is a vector
such that π(A)ξ ·B is dense in H and 〈ξ, π(a)ξ · b〉 = ϕ(a)b. We refer the reader to
[Bl86] for basic notions about Hilbert C*-modules and KK-theory.

2.2. Some homotopies.

Lemma 2.1. Let A, B be unital C*-algebras, let H, K be Hilbert B-modules,
let π : A → LB(H) and ρ : A → LB(K) be unital ∗-homomorphisms, and let
F ∈ LB(H,K) be a partial isometry such that Fπ(a) − ρ(a)F ∈ KB(H,K) for
all a ∈ A and F ∗F − 1 ∈ KB(H). Then, [(K, ρ, V )] = 0 ∈ KK1(A,B), where
V = 2FF ∗ − 1.

Proof. Let α := [(K, ρ, V )] ∈ KK1(A,B). For t ∈ [0, 1], define

Ut =

(
1− FF ∗ 0

0 0

)
+cos(πt)

(
FF ∗ 0
0 −1

)
−sin(πt)

(
0 F
F ∗ 0

)
∈LB(K⊕H).

We have U0 =

(
1 0
0 −1

)
and U1 = −

(
V 0
0 1

)
. Note that, for all t ∈ [0, 1],

U∗
t = Ut and

U2
t =

(
1− FF ∗ 0

0 0

)
+ cos(πt)2

(
FF ∗ 0
0 1

)
+ sin(πt)2

(
FF ∗ 0
0 F ∗F

)
=

(
1− FF ∗ 0

0 0

)
+

(
FF ∗ 0
0 1

)
+Kt =

(
1 0
0 1

)
+Kt,

where Kt = sin(πt)2
(

0 0
0 F ∗F − 1

)
∈ KB(K ⊕H) for all t ∈ [0, 1], since F ∗F −

1 ∈ KB(H). Moreover, Ut(ρ ⊕ π)(a) − (ρ ⊕ π)(a)Ut ∈ KB(K ⊕ H) for all a ∈ A
since Fπ(a) − ρ(a)F ∈ KB(H,K) for all a ∈ A. Consider the unique operators
U ∈ LB⊗C([0,1])(K ⊕H)⊗C([0, 1])) and K ∈ KB⊗C([0,1])(K ⊕H)⊗C([0, 1])) such
that the evaluation of U at t is Ut and the evaluation of K at t is Kt for all t ∈ [0, 1].
In particular we have U = U∗ and U2 = 1 + K, and, since Ut(ρ ⊕ π)(a) − (ρ ⊕
π)(a)Ut ∈ KB(K ⊕H) for all a ∈ A and all t ∈ [0, 1], we have

U(ρ⊕ π)(a)⊗ 1C([0,1]) − (ρ⊕ π)(a)⊗ 1C([0,1])U ∈ KB⊗C([0,1])((K ⊕H)⊗ C([0, 1]))

for all a ∈ A. Hence we get a homotopy

γ = [((K⊕H)⊗C([0, 1]), (ρ⊕π)⊗1C([0,1]), U)] ∈ KK1(A⊗C([0, 1]), B⊗C([0, 1]))

between γ0 = [(K ⊕ H, ρ ⊕ π, U0)] = [(K ⊕ H, ρ ⊕ π,

(
1 0
0 −1

)
)] = 0 since the

triple is degenerated and γ1 = [(K⊕H, ρ⊕π, U1)] = [(K⊕H, ρ⊕π,−
(

V 0
0 1

)
)].
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Hence, γ1 = x⊕ y, where x = [(K, ρ,−V )] = −α and y = [(H, π,−idH)] = 0, since
the triple is degenerated. �

2.3. Fundamental C*-algebras. In this section we recall the results and nota-
tion of [FF13] and generalize the constructions to the case of non-GNS-faithful
conditional expectations.

If G is a graph in the sense of [Se77, Definition 2.1], its vertex set will be denoted
V(G) and its edge set will be denoted E(G). We will always assume that G is at
most countable. For e ∈ E(G) we denote by s(e) and r(e) respectively the source
and range of e and by e the inverse edge of e. An orientation of G is a partition
E(G) = E+(G) � E−(G) such that e ∈ E+(G) if and only if e ∈ E−(G). We call
G′ ⊂ G a connected subgraph if V (G′) ⊂ V (G), E(G′) ⊂ E(G) such that e ∈ E(G′) if
and only if e ∈ E(G′) and the graph G′ with the source map and inverse map given
that map the ones of G restricted to E(G′) is a connected graph.

Let (G, (Aq)q, (Be)e) be a graph of unital C*-algebras. This means that:

• G is a connected graph.
• For every q ∈ V(G) and every e ∈ E(G), Aq and Be are unital C*-algebras.
• For every e ∈ E(G), Be = Be.
• For every e ∈ E(G), se : Be → As(e) is a unital faithful ∗-homomorphism.

For every e ∈ E(G), we set re = se : Be → Ar(e), B
s
e = se(Be), and Br

e = re(Be).
Given a maximal subtree T ⊂ G the maximal fundamental C*-algebra with respect
to T is the universal C*-algebra generated by the C*-algebras Aq, q ∈ V(G), and
by unitaries ue, e ∈ E(G), such that:

• For every e ∈ E(G), ue = u∗
e.

• For every e ∈ E(G) and every b ∈ Be, uese(b)ue = re(b).
• For every e ∈ E(T ), ue = 1.

This C*-algebra will be denoted by P or PG . We will always view Ap ⊂ P for
all p ∈ V (G) since, as explained in the following remark, the canonical unital ∗-
homomorphisms from Ap to P are all faithful.

Remark 2.2. The C*-algebra P is not zero, and the canonical maps νp : Ap → P are
injective for all p ∈ V (G). This follows easily from Voiculescu’s absorption theorem
since we did assume all our C*-algebras separable and the graph G countable.
Indeed, since Ap is separable for all p ∈ V (G) and since G is at most countable, we
can represent faithfully all the Ap on the same separable Hilbert space H. Denote
by π′

p : Ap → L(H) the faithful representation. Replacing H by H ⊗ H and π′
p

by π′
p ⊗ id if necessary, we may and will assume that π′

p(Ap) ∩ K(H) = {0} for all
p ∈ V (G). Denote by C = L(H)/K(H) the Calkin algebra and by Q : L(H) → C
the canonical surjection. Fix an orientation of G. For e ∈ E(G) we have two
faithful representations π′

s(e) ◦ se and π′
r(e) ◦ re of Be on H, both having trivial

intersection with K(H). By Voiculescu’s absorption theorem there exists, for all
e ∈ E+(G), a unitary Ve ∈ C such that Q ◦ π′

r(e)(re(b)) = V ∗
e Q ◦ π′

s(e)(se(b))Ve

for all b ∈ Be and all e ∈ E+(G). For e ∈ E−(G) define Ve := (Ve)
∗ so that

the relations (Ve)
∗ = Ve and Q ◦ π′

r(e)(re(b)) = V ∗
e Q ◦ π′

s(e)(se(b))Ve hold for all

b ∈ Be and all e ∈ E(G). When ω = (e1, . . . en) is a path in G, we denote by
Vω the unitary Vω := Ve1 . . . Ven ∈ C (if ω is the empty path we put Vω = 1).
Fix a maximal subtree T ⊂ G. For p, q ∈ V (G) let gpq be the unique geodesic
path in T from p to q (if p = q, then gpq is the empty path by convention). Fix
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p0 ∈ V (G) and, for e ∈ E(G), define Ue := (Vgs(e)p0
)∗V(e,gr(e)p0 )

so that the relations

Ue = U∗
e hold for any e ∈ E(G) and Ue = 1 for any e ∈ E(T ). Finally, for

p ∈ V (G), define the faithful (since π′
p(Ap)∩K(H) = {0}) unital ∗-homomorphism

πp : Ap → C by πp := (Vgp0p
)∗Q ◦ π′

p(·)Vgp0p
. Then, it is easy to check that

the relation πr(e)(re(b)) = U∗
e πs(e)(se(b))Ue holds for all b ∈ Be and all e ∈ E(G).

Hence, P is not zero, and we have a unique unital ∗-homomorphism π : P → C
such that π(ue) = Ue and π ◦ νp = πp for all p ∈ V (G). In particular, the canonical
map νp from Ap to P is faithful since πp is faithful. Note that when the C*-algebras
Ap are not supposed to be separable and/or the graph G is not countable anymore,
the result is still true by considering the universal representation, as in the proof
of [Pe99, Theorem 4.2] (which was inspired by [Bl78]).

Remark 2.3. Let A ⊂ P be the ∗-algebra generated by the Aq, for q ∈ V (G), and by
the unitaries ue, for e ∈ E(G). Then A is a dense unital ∗-algebra of P . Moreover,
since the graph G is supposed to be connected, for any fixed p ∈ V(G), A is the
linear span of Ap with elements of the form a0ue1 . . . uenan where (e1, . . . , en) is a
path in G from p to p, a0 ∈ Ap, and ai ∈ Ar(ei) for 1 � i � n.

We now recall the construction of the reduced fundamental C*-algebra when
there is a family of conditional expectations Es

e : As(e) → Bs
e , for e ∈ E(G). Set

Er
e = Es

e : Ar(e) → Br
e and note that, in contrast with [FF13], we do not assume the

conditional expectations Es
e to be GNS-faithful. However, as was already mentioned

in [FF13], all the constructions can be easily carried out without the non-degeneracy
assumption. Let us recall these constructions now. We shall omit the proofs,
which are exactly the same as the GNS-faithful case and concentrate only on the
differences with the GNS-faithful case.

For every e ∈ E(G) let (Ks
e , ρ

s
e, η

s
e) be the GNS construction of the ucp map

s−1
e ◦ Es

e : As(e) → Be. This means that Ks
e is a right Hilbert Be-module,

ρse : As(e) → LBe
(Ks

e ) and ηse ∈ Ks
e are such that Ks

e = ρse(As(e))ηse ·Be and

〈ηse , ρse(a)ηse · b〉 = s−1
e ◦ Es

e(a)b. In particular, we have the formula ρse(a)η
s
e · b =

ρse(ase(b))η
s
e . Let us notice that the submodule ηse .Be of Ks

e is orthogonally com-
plemented. In fact, its orthogonal complement (Ks

e)
◦ is the closure of the set

{ρse(a)ηse : a ∈ As(e), E
s
e(a) = 0}, which is easily seen to be a Hilbert Be-submodule

of Ks
e . Similarly, the orthogonal complement of ηre .Be in Kr

e will be denoted (Kr
e )

◦.
Note that ρse(B

s
e)(K

s
e)

◦ ⊂ (Ks
e)

◦.
Let n � 1 and let w = (e1, . . . , en) be a path in G. We define Hilbert C*-modules

Ki for 0 � i � n by

• K0 = Ks
e1 ;

• if ei+1 �= ei, then Ki = Ks
ei+1

;

• if ei+1 = ei, then Ki = (Ks
ei+1

)◦;
• Kn = Ar(en).

For 0 � i � n−1, Ki is a right Hilbert Bei+1
-module and Kn will be seen as a right

Hilbert Ar(en)-module. We define, for 1 � i � n− 1, the unital ∗-homomorphism

ρi = ρsei+1
◦ rei : Bei → LBei+1

(Ki)

and ρn = LAr(en)
◦ ren : Ben → LAr(en)

(Kn). We can now define the right Hilbert
Ar(en)-module

Hw = K0 ⊗
ρ1

. . . ⊗
ρn

Kn
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endowed with the left action of As(e1) given by the unital ∗-homomorphism defined
by

λw = ρse1 ⊗ id : As(e1) → LAr(en)
(Hw).

For any two vertices p, q ∈ V(G), we define the Hilbert Ap-module Hq,p =
⊕

w Hw,
where the sum runs over all paths w in G from q to p. By convention, when q = p,
the sum also runs over the empty path, where H∅ = Ap with its canonical Hilbert
Ap-module structure. We equip this Hilbert C*-module with the left action of Aq

which is given by λq,p : Aq → LAp
(Hq,p) defined by λq,p =

⊕
w λw, where, when

q = p and w = ∅, is the empty path λ∅ := LAp
.

For every e ∈ E(G) and p ∈ V(G), we define an operator up
e : Hr(e),p → Hs(e),p

in the following way. Let w be a path in G from r(e) to p and let ξ ∈ Hw.

• If p = r(e) and w is the empty path, then up
e(ξ) = ηse ⊗ ξ ∈ H(e).

• If n = 1, w = (e1), ξ = ρse1(a)η
s
e1 ⊗ ξ′ with a ∈ As(e1) and ξ′ ∈ Ap, then

– if e1 �= e, up
e(ξ) = ηse ⊗ ξ ∈ H(e,e1).

– if e1 = e, up
e(ξ) =

{
ηse ⊗ ξ ∈ H(e,e1) if Es

e1(a) = 0,
re1 ◦ s−1

e1 (a)ξ′ ∈ Ap if a ∈ Bs
e1 .

• If n � 2, w = (e1, . . . , en), ξ = ρse1(a)η
s
e1 ⊗ ξ′ with a ∈ As(e1) and ξ′ ∈

K1 ⊗
ρ2

. . . ⊗
ρn

Kn, then

– if e1 �= e, up
e(ξ) = ηse ⊗ ξ ∈ H(e,e1,...,en).

– if e1 = e, up
e(ξ) =

{
ηse ⊗ ξ ∈ H(e,e1,...,en) if Es

e1(a) = 0,
(ρ1(s

−1
e1 (a))⊗ id)ξ′ ∈ H(e2,...,en) if a ∈ Bs

e1 .

One easily checks that the operators up
e commute with the right actions of Ap on

Hr(e),p and Hs(e),p and extend to unitary operators (still denoted up
e) in

LAp
(Hr(e),p, Hs(e),p) satisfying (up

e)
∗ = up

e . Moreover, for every e ∈ E(G) and
every b ∈ Be, the definition implies that

up
eλs(e),p(se(b))u

p
e = λr(e),p(re(b)) ∈ LAp

(Hr(e),p).

Let w = (e1, . . . , en) be a path in G and let p ∈ V(G). We set up
w = up

e1 . . . u
p
en ∈

LAp
(Hr(en),p, Hs(e1),p).

The p-reduced fundamental C*-algebra is the C*-algebra

Pp = 〈(up
z)

∗λq,p(Aq)u
p
w|q ∈ V(G), w, z paths from q to p 〉 ⊂ LAp

(Hp,p).

We sometimes write PG
p = Pp. Let us now explain how one can canonically view

Pp as a quotient of P . Let T be a maximal subtree in G. Given a vertex q ∈ V(G),
we denote by gqp the unique geodesic path in T from q to p. For every e ∈ E(G),
we define a unitary operator wp

e = (up
gs(e)p

)∗up
(e,gr(e)p)

∈ Pp.

For every q ∈ V(G), we define a unital faithful ∗-homomorphism πq,p : Aq → Pp

by
πq,p(a) = (up

gqp)
∗λq,p(a)u

p
gqp for all a ∈ Aq.

It is not difficult to check that the following relations hold:

• wp
e = (wp

e)
∗ for every e ∈ E(G),

• wp
e = 1 for every e ∈ E(T ),

• wp
eπs(e),p(se(b))w

p
e = πr(e),p(re(b)) for every e ∈ E(G), b ∈ Be.

Thus, we can apply the universal property of the maximal fundamental C*-
algebra P to get a unique surjective ∗-homomorphism λp : P → Pp such that
λp(ue) = wp

e for all e ∈ E(G) and λp(a) = πq,p(a) for all a ∈ Aq and all q ∈ V (G).
We sometimes write λG

p = λp.
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Let p0, p, q ∈ V (G) and
a = λp0,p(a0)u

p
e1λs(e2),p(a1)u

p
e2 . . . u

p
enλq,p(an) ∈ LAp

(Hq,p, Hp0,p),

where w = (e1, . . . , en) is a (non-empty) path in G from p0 to q, a0 ∈ Ap0
, and, for

1 � i � n, ai ∈ Ar(ei). The operator a is said to be reduced (from p0 to q) if for all
1 � i � n− 1 such that ei+1 = ei, we have Es

ei+1
(ai) = 0.

Let w = (e1, . . . , en) be a path from p to p. It is easy to check that any reduced
operator of the form a = λp0,p(a0)u

p
e1 . . . u

p
enλq,p(an) is in Pp and that the linear

span Ap of Ap and the reduced operators from p to p form a dense ∗-subalgebra
of Pp.

Remark 2.4. The notion of reduced operator also makes sense in the maximal
fundamental C*-algebra (if we assume the existence of conditional expectations),
and, for any fixed p ∈ V (G), the linear span of Ap and the reduced operators from
p to p are the ∗-algebra A introduced in Remark 2.3, which is dense in the maximal
fundamental C*-algebra. Observe that, by definition, the morphism λp : P → Pp

is the unique unital ∗-homomorphism which is formally equal to the identity on the
reduced operators from p to p. More precisely, one has, for any reduced operator
a = a0ue1 . . . uenan ∈ P from p to p, λp(a) = λp,p(a0)u

p
e1 . . . u

p
enλp,p(an).

We will need the following purely combinatorial lemma which gives an explicit
decomposition of the product of two reduced operators in P from p to p as a sum of
reduced operators from p to p plus an element in Ap. For e ∈ E(G) and x ∈ Ar(e)

we write Pr
e (x) := x− Er

e (x).

Lemma 2.5 ([FF13, Lemma 3.17]). Let w = (en, . . . , e1) and let μ = (f1, . . . , fm)
be paths from p to p. Set n0 = max{1 � k � min(n,m)|ei = f i, ∀i � k}.
If the above set is empty, set n0 = 0. Let a = anuen . . . ue1a0 ∈ P and b =
b0uf1 . . . ufmbm ∈ P be reduced operators. Set x0 = a0b0 and, for 1 � k � n0,
xk = ak(sek ◦ r−1

ek
◦ Er

ek
(xk−1))bk and yk = Pr

ek
(xk−1). The following hold:

(1) If n0 = 0, then ab = anuen . . . ue1x0uf1 . . . ufmbm.
(2) If n0 = n = m, then ab =

∑n
k=1 anuen . . . uekykufk . . . ufnbn + xn.

(3) If n0 = n < m, then ab =
∑n

k=1 anuen . . . uekykufk . . . ufmbm
+ xnufn+1

. . . ufmbm.
(4) If n0 = m < n, then ab =

∑m
k=1 anuen . . . uekykufk . . . ufmbm

+ anuen . . . uem+1
xm.

(5) If 1 � n0 < min{n,m}, then

ab =
n∑

k=1

anuen . . . uekykufk . . . ufmbm + anuen . . . uen0+1
xn0

ufn0+1
. . . ufmbm.

Note that the preceding lemma also holds in Pp, for all p ∈ V (G), simply by ap-
plying the unital ∗-homomorphism λp which is formally the identity on the reduced
operators from p to p, as explained in Remark 2.4.

In the following proposition we completely characterize the p-reduced fundamen-
tal C*-algebra: it is the unique quotient of P for which there exists a GNS-faithful
ucp map Pp → Ap which is zero on the reduced operators and “the identity on Ap”.
The proof of this result is contained in [FF13] in the GNS-faithful case, but it is
not explicitly stated. Since the proof is the same as the one of [FG15, Proposition
2.4] and all the necessary arguments are contained in [FF13], we will only sketch
the proof of the next proposition.
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Proposition 2.6. For all p ∈ V (G) the following hold.

(1) The morphism λp is faithful on Ap.
(2) There exists a unique ucp map Ep : Pp → Ap such that Ep ◦ λp(a) = a for

all a ∈ Ap and

Ep(λp(a0ue1 . . . uenan)) = 0 for all a = a0ue1 . . . uenan ∈ P a reduced operator

from p to p.

Moreover, Ep is GNS-faithful.
(3) For any unital C*-algebra with a surjective unital ∗-homomorphism π :

P → C and a GNS-faithful ucp map E : C → Ap such that E ◦ λ(a) = a
for all a ∈ Ap and

E(π(a0ue1 . . . uenan)) = 0 for all a = a0ue1 . . . uenan ∈ P a reduced operator

from p to p,

there exists a unique unital ∗-isomorphism ν : Pp → C such that ν◦λp = π.
Moreover, ν satisfies E ◦ ν = Ep.

Proof. Assertion (1) follows from assertion (2), since Ep ◦ λp(a) = a for all a ∈ Ap.
Let us sketch the proof of assertion (2). Define ξp = 1Ap

∈ Ap ⊂ Hp,p and Ep(x) =
〈ξp, xξp〉 for all x ∈ Pp. Then Ep : Pp → Ap is a ucp map and, for all a ∈ Ap,
Ep(λp(a)) = 〈1Ap

, LAp
(a)1Ap

〉 = a. Repeating the proof of [FF13, Proposition

3.18], we see that Ppξp ·Ap = Hp,p and, for any reduced operator a ∈ Ap, one has
〈ξp, aξp〉 = 0. It follows that the triple (Hp,p, id, ξp) is a GNS-construction of Ep (in
particular Ep is GNS-faithful) and Ep(λp(x)) = 0 for any reduced operator x ∈ P
from p to p, since the map λp sends reduced operators in P from p to p to reduced
operators in Pp.

The proof of (3) is a routine. Since E is GNS-faithful on C we may and will
assume that C ⊂ LAp

(K), where (K, id, η) is a GNS-construction of E. By the
properties of E and Ep, the operator U : Hp,p → K defined by U(λp(x)ξp) = π(x)η
for all x ∈ P reduced operator from p to p or x ∈ Ap ⊂ P extends to a unitary
operator U ∈ LAp

(Hp,p,K). By the definition of U , the map ν(x) = UxU∗, for
x ∈ Pp, does the job. The uniqueness is obvious. �

Notation. We sometimes write E
G
p = Ep.

For a connected subgraph G′ ⊂ G with a maximal subtree T ′ ⊂ G′ such that
T ′ ⊂ T we denote by PG′ the maximal fundamental C*-algebra of our graph of C*-
algebras restricted to G′ with respect to the maximal subtree T ′. By the universal
property there exists a unique unital ∗-homomorphism πG′ : PG′ → P such that
λG′(a) = a for all a ∈ Ap, p ∈ V (G′) and πG′(ue) = ue for all e ∈ E(G′). The

following corollary says that we have a canonical identification of PG′

p with the
sub-C*-algebra of Pp generated by Ap and the reduced operators from p to p with
associated path in G′.

Proposition 2.7. For all p ∈ V (G′), there exists a unique faithful ∗-homomorphism

πG′

p : PG′

p → Pp such that πG′

p ◦ λG′

p = λp ◦ πG′ . The morphism πG′

p satisfies

Ep ◦πG′

p = E
G′

p . Moreover, there exists a unique ucp map E
G′

p : Pp → PG′

p such that

E
G′

p ◦πG′

p = id and E
G′

p (λp(a)) = 0 for all a ∈ P a reduced operator from p to p with
associated path containing at least one vertex which is not in G′.
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Proof. The uniqueness of πG′

p being obvious, let us show the existence. Define

P ′ = πG′

p ◦ λG′

p (PG′) ⊂ Pp and let E : P ′ → Ap be the ucp map defined by
E = Ep|P ′ . By the universal property of Proposition 2.6, assertion (3), it suffices to
check that E is GNS-faithful. Let x ∈ P ′ such that E(y∗x∗xy) = Ep(y

∗x∗xy) = 0
for all y ∈ P ′. In particular Ep(x

∗x) = 0, and we may and will assume that x∗x
is the image under λp of a sum of reduced operators from p to p with associated
vertices in G′. Let us show that x = 0. Since Ep is GNS-faithful and since P ′

contains the image under λp of Ap and of the reduced operators from p to p in
P whose associated path is in G′, it suffices to show that Ep(y

∗x∗xy) = 0 for all
y = λp(a), where a ∈ P is a reduced operator from p to p whose associated path
contains at least one vertex which is not in G′. It follows easily from Lemma 2.5
since this lemma implies that for all z ∈ P a reduced operator from p to p with all
edges in G′ or z ∈ Ap and for all a ∈ P a reduced operator from p to p with at
least one vertex which is not in G′, the product a∗za is equal to a sum of reduced
operators from p to p with at least one vertex which is not in G′. In particular,
Ep(λp(a

∗za)) = 0 for all such a and z. Hence, Ep(yx
∗xy) = 0 for all y ∈ Pp. By

construction, πG′

p satisfies Ep ◦ πG′

p = E
G′

p . Let us now construct the ucp map E
G′

p

(the uniqueness is obvious).
Let H ′

p,p =
⊕

ω a path in G′ from p to p

Hω ⊂ Hp,p. By convention the sum also con-

tains the empty path for which H∅ = Ap. Observe that H ′
p,p is a complemented

Hilbert sub-Ap-module of Hp,p. Let Q ∈ LAp
(Hp,p) be the orthogonal projection

onto H ′
p,p and define the ucp map E

G′

p : Pp → LAp
(H ′

p,p) by E
G′

p (x) = QxQ.

Since xH ′
p,p ⊂ H ′

p,p for all x ∈ PG′

p , the projection Q commutes with every

x ∈ PG′

p . Hence, after the identification PG′

p ⊂ Pp, we have E
G′

p (x) = x for all

x ∈ PG′

p .
Let a = a0ue1 . . . uenan ∈ P be a reduced operator with ω = (e1, . . . en) a path in

G from p to p such that ek /∈ E(G′) for some 1 ≤ k ≤ n. Observe that, by Lemma 2.5,
for all b ∈ P a reduced operator from p to p with associated path in G′ or for b ∈ Ap

the product ab is a sum of reduced operators from p to p whose associated path has
at least one edge from G′. Hence, λp(ab)ξp ∈ Hp,p �H ′

p,p (where ξp = 1Ap
∈ Hp,p).

It follows now easily from this observation that Qλp(a)Qλp(b)ξp = 0 for all b ∈ P
a reduced operator from p to p or b ∈ Ap. Hence, Qλp(a)Q = 0, and this concludes
the proof. �

The following definition is not contained in [FF13]. It is the correct version of
the reduced fundamental C*-algebra in the case of non-GNS-faithful conditional
expectations in order to obtain the K-equivalence with the full fundamental C*-
algebra. It is the main contribution of this preliminary section to the general theory
of fundamental C*-algebras developed in [FF13].

Definition 2.8. The vertex-reduced fundamental C*-algebra Pvert is the C*-algebra
obtained by separation completion of P for the C*-semi-norm ‖x‖v = Sup{‖λp(x)‖ :
p ∈ V (G)} on P .

We sometimes write PG
vert = Pvert. We will denote by λ : P → Pvert (or λG)

the canonical surjection. Note that by construction of Pvert, for all p ∈ V (G), there
exists a unique unital (surjective) ∗-homomorphism λv,p : Pvert → Pp such that
λv,p ◦ λ = λp. We sometimes write λG

v,p = λv,p. We describe the fundamental
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properties of Pvert in the following proposition. We call a family of ucp maps
{ϕi}i∈I , ϕi : A → Bi GNS-faithful if

⋂
i∈I Ker(πi) = {0}, where (Hi, πi, ξi) is a

GNS-construction for ϕi.

Proposition 2.9. The following hold.

(1) The morphism λ is faithful on Ap for all p ∈ V (G).
(2) For all p ∈ V (G), there exists a unique ucp map EAp

: Pvert → Ap such
that EAp

◦ λ(a) = a for all a ∈ Ap and all p ∈ V (G) and
EAp

(λv(a0ue1 . . . uenan)) = 0 for all a = a0ue1 . . . uenan ∈ P a reduced operator

from p to p.

Moreover, the family {EAp
: p ∈ V (G)} is GNS-faithful.

(3) Suppose that C is a unital C*-algebra with a surjective unital ∗-homomor-
phism π : P → C and with ucp maps EAp

: C → Ap, for p ∈ V (G), such
that EAp

◦ π(a) = a for all a ∈ Ap, all p ∈ V (G), and
EAp

(π(a0ue1 . . . uenan)) = 0 for all a = a0ue1 . . . uenan ∈ P a reduced operator

from p to p,

and the family {EAp
: p ∈ V (G)} is GNS-faithful. Then, there exists a

unique unital ∗-isomorphism ν : Pvert → C such that ν ◦λ = π. Moreover,
ν satisfies E ◦ ν = Ep for all p ∈ V (G).

Proof. (1) It follows from (2) since EAp
◦ λ(a) = a for all a ∈ Ap and all p ∈ V (G).

(2) By Proposition 2.6, the maps EAp
= Ep ◦ λv,p satisfy the desired properties,

and it suffices to check that the family {EAp
: p ∈ V (G)} is GNS-faithful. This is

done exactly as in the proof of assertion (2) of [FG15, Proposition 2.8].
(3) The proof is the same as the proof of assertion (3) of [FG15, Proposition

2.8] by using the universal property stated in Proposition 2.6 and the definition
of Pvert. �
Notation. We sometimes write E

G
Ap

= EAp
.

Proposition 2.10. Let G′ ⊂ G be a connected subgraph with maximal subtree

T ′ ⊂ T . There exists a unique faithful ∗-homomorphism πG′

vert : PG′

vert → Pvert such

that πG′

vert ◦ λG′ = λ ◦ πG′ . The morphism πG′

vert satisfies EAp
◦ πG′

vert = E
G′

Ap
for all

p ∈ V (G). Moreover, there exists a unique ucp map EG′ : Pvert → PG′

vert such that

λG′

v,p ◦ EG′ = E
G′

p ◦ λv,p for all p ∈ V (G′).

Proof. Define P ′ = λ ◦ πG′(PG′) ⊂ Pvert and consider, for p ∈ V (G), the ucp map
EAp

= EAp
|P ′ . Using the universal property of Proposition 2.9, assertion (3), it

suffices to check that the family {EAp
: p ∈ V (G)} is GNS-faithful. Let x ∈ P ′

such that EAp
(y∗x∗xy) = 0 for all y ∈ P ′ and all p ∈ V (G). Arguing as in

the proof of Proposition 2.7 we find that EAp
(y∗x∗xy) = 0 for all y ∈ Pvert and

all p ∈ V (G). Since the family {EAp
: p ∈ V (G)} is GNS faithful, the family

{EAp
: p ∈ V (G)} is also GNS-faithful. The construction of the canonical ucp map

EG′ : Pvert → PG′

vert is similar to the construction made in the proof of Proposition
2.7. Indeed, let A =

⊕
p∈V (G) Ap and consider the Hilbert A-module

⊕
p∈V (G)Hp,p

with the (faithful) left action of Pvert given by ν =
⊕

p∈V (G) λv,p. As in the proof

of Proposition 2.7, given any p ∈ V (G′), we identify the Hilbert module of path in
G′ from p to p, with the canonical Hilbert Ap-submodule H ′

p,p ⊂ Hp,p and we also
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view
⊕

p∈V (G′) H
′
p,p ⊂

⊕
p∈V (G) Hp,p as a Hilbert A-submodule. Note that the left

action
⊕

p∈V (G′) λ
G′

v,p of PG′

vert on
⊕

p∈V (G′) H
′
p,p is faithful so that we may and will

view PG′

vert ⊂ LA(
⊕

p∈V (G′) H
′
p,p). Let Q ∈ LA(

⊕
p∈V (G)Hp,p) be the orthogonal

projection onto
⊕

p∈V (G′) H
′
p,p. Then it is not difficult to check that the ucp map

x �→ Qν(x)Q has the desired properties. �

Example 2.11. When the graph contains two edges, e and its opposite e, then
either s(e) �= r(e) and the construction considered above is the vertex-reduced
amalgamated free product studied in [FG15, section 2] or s(e) = r(e) and the
construction above is the vertex-reduced HNN-extension. Let us reformulate in
detail below our construction in that specific case. Note that the edge-reduced
HNN-extension has been described in detail in [Fi13].

Let A,B be unital C*-algebras and, for ε ∈ {−1, 1}, let πε : B → A be a unital
faithful ∗-homomorphism and Eε : A → B a ucp map such that Eε ◦ πε = idB.
The full HNN-extension is the universal unital C*-algebra generated by A and a
unitary u such that uπ−1(b)u

∗ = π1(b) for all b ∈ B. We denote this C*-algebra by
HNN(A,B, π1, π−1). The (vertex) reduced HNN-extension C is the unique, up to
isomorphism, unital C*-algebra satisfying the following properties:

(1) There exist a unital ∗-homomorphism ρ : A → C and a unitary u ∈ C
such that uρ(π−1(b))u

∗ = ρ(π1(b)) for all b ∈ B and C is generated by ρ(A)
and u.

(2) There exists a GNS-faithful ucp map E : C → A such that E ◦ ρ = idA
and E(x) = 0 for all x ∈ C of the form x = ρ(a0)u

ε1 . . . uεnρ(an) where
n ≥ 1, ak ∈ A, and εk ∈ {−1, 1} are such that, for all 1 ≤ k ≤ n − 1,
εk+1 = −εk =⇒ E−εk(ak) = 0.

(3) Let D be a unital C*-algebra with a unital ∗-homomorphism ν : A → D,
a unitary v ∈ D, and a GNS-faithful ucp map E′ : D → A such that

• vν(π−1(b))v
∗ = ν(π1(b)) for all b ∈ B and D is generated by ν(A)

and v;
• E′ ◦ ν = idA and E′(x) = 0 for all x ∈ D of the form x = ν(a0)v

ε1 . . .
vεnν(an) with n ≥ 1, εk ∈ {−1, 1}, ak ∈ A such that, for all 1 ≤ k ≤
n− 1 one has εk+1 = −εk =⇒ E−εk(ak) = 0.

Then there exists a unique unital ∗-homomorphism ν̃ : C → D such that
ν̃ ◦ ρ = ν and ν̃(u) = v. Moreover, E′ ◦ ν̃ = E. We denote this C*-algebra
by HNNvert(A,B, π1, π−1).

We now describe Serre’s devissage process for our vertex-reduced fundamental
C*-algebras.

For e ∈ E(G), let Ge be the graph obtained from G by removing the edges
e and e, i.e., V (Ge) = V (G) and E(Ge) = E(G) \ {e, e}. The source range and
inverse maps are the restrictions of the one for G. Serre’s devissage shows that
when Ge is not connected, the vertex-reduced fundamental C*-algebra is a vertex-
reduced amalgamated free product and when Ge is connected, the vertex-reduced
fundamental C*-algebra is a vertex-reduced HNN-extension. We shall use freely
the notation and results of [FG15, section 2] about vertex-reduced amalgamated
free products.

Case 1: Ge is not connected. Let Gs(e) (respectively Gr(e)) be the connected compo-
nent of s(e) (resp. r(e)) in Ge. Since Ge is not connected e ∈ E(T ) and the graphs
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Ts(e) := T ∩ Gs(e) and Tr(e) := T ∩ Gr(e) are maximal subtrees of Gs(e) and Gr(e)

respectively. Let PGs(e)
and PGr(e)

be the maximal fundamental C*-algebras of our

graph of C*-algebras restricted to Gs(e) and Gr(e) respectively and with respect to
the maximal subtrees Ts(e) and Tr(e) respectively. Recall that we have canonical
maps πGs(e)

: PGs(e)
→ P and πGr(e)

: PGr(e)
→ P .

Let PGs(e)
∗
Be

PGr(e)
be the full free product of PGs(e)

and PGr(e)
amalgamated over

Be relative to the maps se : Be → PGs(e)
and re : Be → PGr(e)

. Observe that,

since e ∈ E(T ), we have ue = 1 ∈ P . Hence, we have se(b) = re(b) in P , for all
b ∈ Be. By the universal property of the full amalgamated free product there exists
a unique unital ∗-homomorphism ν : PGs(e)

∗
Be

PGr(e)
→ P such that ν|PGs(e)

= πGs(e)

and ν|PGr(e)
= πGr(e)

. Moreover, by the universal property of P , there exists also a

unital ∗-homomorphism P → PGs(e)
∗
Be

PGr(e)
which is the inverse of ν. Hence, ν is

a ∗-isomorphism. Actually, this is also true at the vertex-reduced level.
Note that we have injective unital ∗-homomorphisms ιs(e) = λGs(e)

◦ se : Be →
P

Gs(e)

vert and ιs(e) = λGr(e)
◦ re : Be → P

Gr(e)

vert and conditional expectations Es(e) =

λGs(e)
◦ Es

e ◦ E
Gs(e)

As(e)
from P

Gs(e)

vert to ιs(e)(Be) and Er(e) = λGr(e)
◦ Er

e ◦ E
Gr(e)

Ar(e)
from

P
Gr(e)

vert to ιr(e)(Be) so that we can perform the vertex-reduced amalgamated free
product. Following [FG15, section 2], we denote by

π : P
Gs(e)

vert ∗
Be

P
Gr(e)

vert → P
Gs(e)

vert

v∗
Be

P
Gr(e)

vert

the canonical surjection for the full amalgamated free product to the vertex-reduced
amalgamated free product and by E1 (resp. E2) the canonical ucp map from

P
Gs(e)

vert

v∗
Be

P
Gr(e)

vert to P
Gs(e)

vert (resp. to P
Gr(e)

vert ).

Lemma 2.12. There exists a unique ∗-isomorphism νe : P
Gs(e)

vert

v∗
Be

P
Gr(e)

vert → Pvert

such that

νe ◦ π ◦ λGs(e)
= λ ◦ πGs(e)

and νe ◦ π ◦ λGr(e)
= λ ◦ πGr(e)

.

Moreover we have EGs(e)
◦ νe = E1 and EGr(e)

◦ νe = E2.

Proof. The proof is the same as the proof of [FF13, Lemma 3.26], so it suffices to

prove that Pvert satisfies the universal property of P
Gs(e)

vert

v∗
Be

P
Gr(e)

vert : the canonical

ucp maps from Pvert to P
Gs(e)

vert and P
Gr(e)

vert are the ones constructed in Proposition
2.10, i.e., EGs(e)

and EGr(e)
. By [FG15, Proposition 2.8, assertion (3)], the resulting

isomorphism νe intertwines the canonical ucp maps. �

Case 2: Ge is connected. Let e ∈ E(G) and suppose that Ge is connected. Up
to a canonical isomorphism of P we may and will assume that T ⊂ Ge, so that
we have the canonical unital ∗-homomorphism πGe

: PGe
→ P . We consider the

two unital faithful ∗-homomorphisms se, re : Be → PGe
. By definition, we have

uere(b)u
∗
e = se(b) for all b ∈ Be and P is generated, as a C*-algebra, by πGe

(PGe
)

and ue. By the universal property of the maximal HNN-extension, there exists
a unique unital (surjective) ∗-homomorphism ν : HNN(PGe

, Be, se, re) → P such
that ν|PGe

= πGe
and ν(u) = ue. Observe that by the universal property of P , there
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exists a unital ∗-homomorphism P → HNN(PGe
, Be, se, re) which is the inverse of ν.

Hence ν is a ∗-isomorphism. Actually this is also true at the vertex-reduced level.
Define the faithful unital ∗-homomorphism π1, π−1 : Be → PGe

vert by π−1 =

λGe
◦ se and π1 = λGe

◦ re. Note that the ucp maps Eε : PGe
vert → Be defined

by E1 = s−1
e ◦ Es

e ◦ E
Ge

s(e) and E−1 = r−1
e ◦ Er

e ◦ E
Ge

r(e) satisfy Eε ◦ πε = idBe

for ε ∈ {−1, 1}. Hence we may consider the vertex-reduced HNN-extension and

the canonical surjection λe : HNN(PGe
vert, Be, se, re) → HNNvert(P

Ge
vert, Be, π1, π−1).

Write v = λe(u), where u ∈ HNN(PGe
vert, Be, se, re) is the “stable letter”. Recall

that, by Proposition 2.10, we have the canonical faithful unital ∗-homomorphism
πGe
vert : PGe

vert → Pvert. Let E : HNNvert(P
Ge
vert, Be, π1, π−1) → PGe

vert be the canonical
GNS-faithful ucp map.

Lemma 2.13. There is a unique ∗-isomorphism νe : HNNvert(P
Ge
vert, Be, π1, π−1) →

Pvert such that νe ◦ λe|PGe
vert

= πGe
vert and νe(u) = ue. Moreover EGe

◦ νe = E.

Proof. Since we have ueπ
Ge
vert(π−1(b))u

∗
e = πGe

vert(π1(b)) for all b ∈ Be, it suffices, by
the universal property of the vertex-reduced HNN-extension explained in Exam-
ple 2.11, to check that we have a GNS-faithful ucp map Pvert → PGe

vert satisfying
the conditions described in Example 2.11. This ucp map is the one constructed in
Proposition 2.10: it is the map EGe

, and the conditions can be checked as in the
proof of [FF13, Lemma 3.27]. The fact that the resulting isomorphism νe inter-
twines the ucp maps follows from the universal property. �

We end this preliminary section with an easy lemma.

Lemma 2.14. If x = a0ue1 . . . uenan ∈ P is a reduced operator from p to p and
an ∈ Br

en , then

Ep(λp(x
∗x)) = Er

en ◦ Ep(λp(x
∗x)).

Proof. Define x0 = a∗0a0 and for 1 ≤ k ≤ n, xk = a∗k(rek ◦ s−1
ek

◦ Es
ek
(xk−1))ak. We

apply Lemma 2.5 to the pair a = x∗ and b = x in case (2). It follows that x∗x =
y + xn, where y is a sum of reduced operators from p to p. Hence Ep(λp(y)) = 0,
and, since an ∈ Br

en
, we have xn = a∗n(ren ◦ s−1

en
◦ Es

en
(xn−1))an ∈ Br

en
. �

3. Boundary maps

Define the ucp map Ee = Er
e ◦ EAr(e)

: Pvert → Br
e . Note that the GNS

construction of Ee is given by (Hr(e),r(e) ⊗
Er

e

Br
e , λv,r(e) ⊗ 1, ξr(e) ⊗ 1). To simplify

the notation, we will denote by (Ke, ρe, ηe) the GNS construction of Ee. We define
Re ⊂ Ke as the Hilbert Br

e -submodule of Ke of the “words ending with e”. More
precisely,

Re := Span{ρe(λ(x))ηe |x = a0ue1 . . . uenan ∈ P reduced from r(e) to r(e)

with en = e and an ∈ Br
e} ⊂ Ke.

It is easy to see from the definition that Re is a Hilbert Br
e -submodule of Ke.

Moreover, it is complemented in Ke with the orthogonal complement given by

Le := Span{ρe(λ(x))ηe |x ∈ Ar(e) or x = a0ue1 . . . uenan ∈ P reduced from r(e) to

r(e) with en �= e or en = e and an ∈ Ar(e) �Br
e}.
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Let Qe ∈ LBr
e
(Ke) be the orthogonal projection onto Re and define

Xe = {x = a0ue1 . . . uenan ∈ P reduced from r(e) to r(e) with ek /∈ {e, e}
for all 1 ≤ k ≤ n},

Lemma 3.1. The following hold.

(1) For all reduced operators a = anuen . . . ue1a0 ∈ P from r(e) to r(e) we have

Im(Qeρe(λ(a))− ρe(λ(a))Qe) ⊂ Xa, where

Xa =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ya :=

( ⊕
k∈{1,...,n},ek=e

ρe(λ(anuen . . . uek))ηe ·Br
e

)
if e is not a loop,

Ya ⊕
( ⊕

k∈{1,...,n},ek=e

ρe(λ(anuen . . . uek+1
ak))ηe ·Br

e

)
if e is a loop

(by convention, the term in the last direct sum is ρe(λ(an))ηe · Br
e , when

en = e is a loop).
(2) Qe commutes with ρe(λ(a)) for all a ∈ Span

(
Ar(e) ∪Xe

)
.

(3) Qeρe(λ(a))− ρe(λ(a))Qe ∈ KBr
e
(Ke) for all a ∈ P .

Proof. During the proof we will use the notation Pr
e (x) = x−Er

e (x) for x ∈ Ar(e).
(1) Let n ≥ 1 and let a = anuen . . . ue1a0 ∈ P be a reduced operator from r(e)

to r(e).
Suppose that b ∈ Ar(e). We have Qeρe(λ(b))ηe = 0 and ab = anuen . . . ue1a0b ∈

P is reduced. Hence, if e1 �= e, we have Qeρe(λ(ab))ηe = 0 and if e1 = e, we have

ab = anuen . . . ueE
r
e(x0) + an . . . uePr

e (x0) where x0 = a0b.

It follows that Qeρe(λ(ab))ηe = ρe(λ(anuen . . . ueE
r
e (x0)))ηe. To conclude we have,

∀b ∈ Ar(e),

(Qeρe(λ(a))− ρe(λ(a))Qe)ρe(λ(b))ηe

=

{
0 ∈ Xa if e1 �= e,
ρe(λ(anuen . . . ue1))ηe · Er

e (a0b) ∈ Xa if e1 = e.

Suppose that b = b0uf1 . . . ufmbm ∈ P is a reduced operator from r(e) to r(e). Let
0 ≤ n0 ≤ min{n,m} be the integer associated to the couple (a, b) in Lemma
2.5. This lemma implies that when n0 = 0 or n0 = n < m or 1 ≤ n0 <
min{n,m}, ab is a reduced word or a sum of reduced words that ends with ufmbm.
Hence, in these cases, we have ρe(λ(b))ηe ∈ Re =⇒ ρe(λ(ab))ηe ∈ Re and
ρe(λ(b))ηe ∈ Le�Ar(e) =⇒ ρe(λ(ab))ηe ∈ Le�Ar(e). It follows that (Qeρe(λ(a))−
ρe(λ(a))Qe)ρe(λ(b))ηe = 0 ∈ Xa.

Suppose now that n0 = m < n. Lemma 2.5 implies that ab = y + z where y is
a sum of reduced words that ends with ufmbm and z = anuen . . . uem+1

xm. Hence
we have ρe(λ(b))ηe ∈ Re =⇒ ρe(λ(y))ηe ∈ Re and ρe(λ(b))ηe ∈ Le � Ar(e) =⇒
ρe(λ(y))ηe ∈ Le �Ar(e). It follows that

(Qeρe(λ(a))− ρe(λ(a))Qe)ρe(λ(b))ηe

=

{
Qeρe(λ(z))ηe if ρe(λ(b))ηe ∈ Le,
Qeρe(λ(z))ηe − ρe(λ(z))ηe if ρe(λ(b))ηe ∈ Re.
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We have ρe(λ(z))ηe = ρe(λ(anuen . . . uem+1
xm))ηe; hence

Qeρe(λ(z))ηe =

⎧⎨⎩
0 ∈ Xa if em+1 �= e or em+1 = e

and xm ∈ Ar(e) �Br
e ,

ρe(λ(anuen . . . uem+1
))ηe.xm ∈ Xa if em+1 = e and xm ∈ Br

e .

Hence (Qeρe(λ(a))−ρe(λ(a))Qe)ρe(λ(b))ηe∈Xa if ρe(λ(b))ηe∈Le, and if ρe(λ(b))ηe
∈ Re, we have fm = e and bm ∈ Br

e . Since n0 = m we conclude that em =
fm = e and xm is equal to am(re ◦ s−1

e ◦ Es
e(xm−1))bm. Note that since r(fm) =

r(e) and fm = e we find that s(e) = r(fm) = r(e). Hence e must be a loop.
Moreover, ρe(λ(z))ηe = ρe(λ(anuen . . . uem+1

am))ηe · x′
m ∈ Xa, where x′

m =
(re◦s−1

e ◦Es
e(xm−1))bm ∈ Br

e . It follows that (Qeρe(λ(a))−ρe(λ(a))Qe)ρe(λ(b))ηe ∈
Xa also when ρe(λ(b))ηe ∈ Re.

Suppose that n0 = n = m. Lemma 2.5 implies that ab = y + xm where y is a
sum of reduced words that ends with ufmbm. As before, we deduce that

(Qeρe(λ(a))− ρe(λ(a))Qe)ρe(λ(b))ηe

=

{
Qeρe(λ(xm))ηe = 0 if ρe(λ(b))ηe ∈ Le,
Qeρe(λ(xm))ηe − ρe(λ(xm))ηe if ρe(λ(b))ηe ∈ Re.

And, if ρe(λ(b))ηe ∈ Re, then fm = e and bm ∈ Br
e . Since n0 = m = n, we deduce

that en = fm = e (hence e is a loop) and xm = an(re ◦ s−1
e ◦ Es

e(xn−1))bn ∈ anB
r
e .

Hence,

Qeρe(λ(xm))ηe − ρe(λ(xm))ηe = −ρe(λ(xm))ηe = −ρe(λ(an))ηe · x′
n ∈ Xa,

where x′
n = (re ◦ s−1

e ◦ Es
e(xn−1))bn ∈ Br

e . This concludes the proof of the lemma.
(2) It is obvious that ρe(λ(a)) commutes with Qe for all a ∈ Ar(e). Hence, (2)

follows from (1).
(3) Again, it directly follows from the computations made in (1), but we write

the details for the convenience of the reader. Since any reduced operator in P from
r(e) to r(e) may be written as a product of reduced operators a ∈ P from r(e)
to r(e) of the form (i): the edges in a are all different from e or e; (ii): a = uex,
where x is a reduced operator from s(e) to r(e) whose edges are all different from
e or e; (iii): a = xue, where x is a reduced operator from r(e) to s(e) whose edges
are all different from e or e. By (2) ρe(λ(a)) commutes with Qe for a of type
(i), and, since any element of type (ii) is the adjoint of an element of type (iii),
it suffices to show that the commutator of Qe and ρe(λ(a)) is compact for all a
of type (iii). First assume that e is a loop. In that case, it suffices to show that
Qeρe(λ(ue))−ρe(λ(ue))Qe is compact. Let b ∈ P . From the computations made in
(1), we see that (Qeρe(λ(ue))− ρe(λ(ue))Qe)ρe(λ(b))ηe = 0 for any b ∈ P reduced
operator from r(e) to r(e) and, for b ∈ Ar(e), one has

(Qeρe(λ(ue))− ρe(λ(ue))Qe)ρe(λ(b))ηe = ρe(λ(ue)ηe · Er
e(b))

= ρe(λ(ue))ηe · 〈ηe, ρe(λ(b))ηe〉.
Hence, the equality (Qeρe(λ(ue)) − ρe(λ(ue))Qe)ξ = ρe(λ(ue))ηe · 〈ηe, ξ〉 holds for
any ξ = ρe(λ(b))ηe with b in the span of Ar(e) and the reduced operators in P from
r(e) to r(e). Hence, it holds for any ξ ∈ Ke. It follows that the commutator of Qe

and ρe(λ(ue)) is a rank one operator, hence compact. Let us now assume that e
is not a loop. Write a = anuen . . . ue1a0ue, where n ≥ 1, ek /∈ {e, e} for all k. For
b ∈ P we write X(b) = (Qeρe(λ(a))− ρe(λ(a))Qe)ρe(λ(b))ηe. As before, following
the computations made in (1) we see that, since ek /∈ {e, e}, we have X(b) = 0
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whenever b is a reduced operator from r(e) to r(e). Moreover, when b ∈ Ar(e) we
have X(b) = ρe(λ(a))ηe · 〈ηe, ρe(λ(b))ηe〉. As before, it follows that the commutator
of Qe and ρe(λ(a)) is a rank one operator. �

Define Ve = 2Qe − 1 ∈ LBr
e
(Ke). We have V 2

e = 1, Ve = V ∗
e , and, for all

x ∈ Pvert, Lemma 3.1 implies that Veρe(x)− ρe(x)Ve ∈ KBr
e
(Ke). Hence we get an

element yGe ∈ KK1(Pvert, B
r
e). Define xG

e = yGe ⊗
Br

e

[r−1
e ] ∈ KK1(Pvert, Be).

Remark 3.2. Note that we also have an element zGe = [λ] ⊗
Pvert

xG
e ∈ KK1(P,Be).

Recall that for a subgraph G′ ⊂ G with a maximal subtree T ′ ⊂ G′ such that

T ′ ⊂ T we have the canonical unital faithful ∗-homomorphism πG′

vert : PG′

vert → Pvert

defined in Proposition 2.10.

Proposition 3.3. For all connected subgraphs G′ ⊂ G with maximal subtree T ′ ⊂
T , we have:

(1) if e ∈ E(G′), then [πG′

vert] ⊗
Pvert

xG
e = xG′

e ∈ KK1(PG′

vert, Be);

(2) if e /∈ E(G′), then [πG′

vert] ⊗
Pvert

xG
e = 0 ∈ KK1(PG′

vert, Be);

(3)
∑

r(e)=p x
G
e ⊗

Be

[re] = 0 ∈ KK1(Pvert, Ap) for all p ∈ V (G);

(4) for all e ∈ E(G) we have xG
e = −xG

e .

Proof. Let G′ ⊂ G be a connected subgraph with maximal subtree T ′ ⊂ T and
e ∈ E(G).

(1) Suppose that e ∈ E(G′) (hence e ∈ E(G′)). Recall that we have the canonical

ucp map EG′ : Pvert → PG′

vert from Proposition 2.10. Moreover, by definition of πG′

vert

we have E
G′

e = Ee ◦ πG′

vert, where E
G′

e = Er
e ◦ EG′

Ar(e)
.

Let (Ke, ρe, ηe) be the GNS construction of Ee and define

K ′
e = ρe ◦ πG′

vert(P
G′
vert)ηe ·Br

e .

Observe that K ′
e is complemented. Indeed, we have K ′

e ⊕ Le = Ke, where

Le = Span{ρe(x)ηe · b : b ∈ Br
e and x ∈ Pvert such that EG′(x) = 0}.

Let Re ∈ LBr
e
(Ke) be the orthogonal projection ontoK ′

e. Since ρe◦πG′

vert(x)K
′
e ⊂ K ′

e

for all x ∈ PG′

vert, Re commutes with ρe ◦ πG′

vert(x) for all x ∈ PG′

vert. It is also easy to
check that Re commutes with Qe, hence with Ve.

Since E
G′

e = Ee ◦ πG′

vert the triple (K ′
e, ρ

′
e, η

′
e), where ρ′e(x) = ρe ◦ πG′

vert(x)Re for

x ∈ PG′

vert and η′e = ηe, is a GNS construction of EG′

e . Let Q′
e ∈ LBr

e
(K ′

e) be the

associated operator such that xG′

e = [(K ′
e, ρ

′
e, V

′
e )], with V ′

e = 2Q′
e−1. By definition

we have Q′
e = QeRe, hence V ′

e = VeRe. It follows that [πG′

vert] ⊗
Pvert

xG
e = xG′

e ⊕ y,

where y ∈ KK1(PG′

vert, Be) is represented by the triple (Le, πe, Ve(1 − Re)), where

πe = ρe ◦ πG′

vert(·)(1−Re). To conclude the proof of (1) it suffices to check that this
triple is degenerated. Since Ve and (1−Re) commute, Ve(1−Re) is self-adjoint and

(Ve(1−Re))
2 = 1−Re = idLe

. Hence, it suffices to check that, for all a ∈ PG′

vert,

(Qeρe ◦ πG′

vert(a)− ρe ◦ πG′

vert(a)Qe)(1−Re) = 0.
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We already know from assertion (2) of Lemma 3.1 that Qeρe(λ(a)) = ρe(λ(a))Qe

for all a ∈ Ar(e) (and all a ∈ Xe). Let a = anuen . . . ue1a0 ∈ PG′ and b =
b0uf1 . . . ufmbm ∈ P be reduced operators from r(e) to r(e) and suppose that
EG′(λ(b)) = 0. Hence, there exists k ∈ {1, . . .m} such that fk /∈ E(G′), and it
follows that the integer n0 associated to the pair (πG′(a), b) in Lemma 2.5 sat-
isfies n0 < k since el ∈ E(G′) for all l ∈ {1, . . . , n}. Applying Lemma 2.5 in
case (5), we see that πG′(a)b is a sum of reduced operators that end with ufmbm.
Hence, ρe(λ(b))ηe ∈ Re =⇒ ρe(λ(πG′(a)b))ηe ∈ Re and ρe(λ(b))ηe ∈ Le =⇒
ρe(λ(πG′(a)b))ηe ∈ Le. It follows that

[Qeρe(π
G′

vert(λG′(a)))− ρe(π
G′

vert(λG′(a)))Qe]ρe(λ(b))ηe

= [Qeρe(λ(πG′(a)))− ρe(λ(πG′(a)))Qe]ρe(λ(b))ηe = 0.

This concludes the proof of (1).

(2) Suppose that e /∈ E(G′) (hence e /∈ E(G′)). The element [πG′

vert] ⊗
Pvert

xG
e

is represented by the triple (Ke, πe, Ve), where πe = ρe ◦ πG′

vert. Since V 2
e = 1

and V ∗
e = Ve, it suffices to show that Qe commutes with ρe(π

G′

vert(x)) for all x ∈
PG′

vert. It follows from assertion (2) of Lemma 3.1 since e, e /∈ E(G′) implies that

πG′

vert(P
G′

vert) ⊂ Span
(
λ(Ar(e)) ∪ λ(Xe)

)
.

(3) For p ∈ V (G) we use the notation (Hp, πp, ξp) := (Hp,p, λv,p, ξp) for the
GNS construction of the canonical ucp map EAp

: Pvert → Ap. Observe that
ξp · Ap is orthogonally complemented in Hp and set H◦

p = Hp � ξp · Ap. Define
Kp =

⊕
e∈E(G),r(e)=p Ke ⊗

Br
e

Ap and observe that, by Lemma 2.14, we have an

isometry Fp ∈ LAp
(H◦

p ,Kp) defined by

Fp(πp(λ(a0ue1 . . . uenan))ξp) = ρen(λ(a0ue1 . . . uen))ηen ⊗ an,

for all a0ue1 . . . uenan ∈ P reduced operators from p to p. We extend Fp to partial
isometry, still denoted Fp ∈ LAp

(Hp,Kp) by Fp|ξp·Ap
= 0. Then F ∗

pFp = 1 −Qξp ,
where Qξp ∈ LAp

(Hp) is the orthogonal projection onto ξp ·Ap. Moreover, FpF
∗
p =⊕

e∈E(G),r(e)=p Qe ⊗ 1.

Define ρp =
⊕

e∈E(G),r(e)=p ρe ⊗ 1 : Pvert → LAp
(Kp).

Lemma 3.4. For any a ∈ P we have (Fpπp(λ(a))− ρp(λ(a))Fp) ∈ KAp
(Hp,Kp).

Proof. It suffices to prove the lemma for any a = anuen . . . ue1a0 ∈ P reduced
operator from p to p since, for a ∈ Ap one has Fpπp(λ(a)) = ρp(λ(a))Fp. We may
and will assume that r(ek) �= p for all k �= 1 since reduced operators from p to
p may be written as the product of such operators. Fix such an operator a and,
for b ∈ P , write X(b) = (Fpπp(λ(a)) − ρp(λ(a))Fp)(πp(λ(b))ξp). If b ∈ Ap, then
Fpπp(λ(b))ξp = 0 and ab = anuen . . . ue1a0b ∈ P is reduced from p to p. Hence,
Fpπp(λ(ab))ξp = ρe1(λ(anuen . . . ue1))ηe1 ⊗ a0b, and we have

X(b) = (ρe1(λ(anuen . . . ue1))ηe1 ⊗ 1) · a0b
= (ρe1(λ(anuen . . . ue1))ηe1 ⊗ 1) · 〈πp(λ(a

∗
0))ξp, πp(λ(b))ξp〉.

Suppose that b = b0uf1 . . . ufmbm ∈ P is a reduced operator from p to p and write
b = b′bm, where b′ = b0uf1 . . . ufm . Let 0 ≤ n0 ≤ min{n,m} and, for 1 ≤ k ≤ n0,
let xk ∈ As(ek) be the data associated to the couple (a, b′) in Lemma 2.5. By
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Lemma 2.5 we can write ab′ = y + z, where y is either reduced and ends with ufm

or is a sum of reduced operators that end with ufm and

z =

⎧⎨⎩
anuen . . . uem+1

xm if n0 = m < n,
xn if n0 = n = m,
0 if n0 = 0 or n0 = n < m or 1 ≤ n0 < min{n,m}.

Since y is a sum of reduced operators ending with ufm we have Fpπp(λ(y))ξp =
ρfm(λ(y))ηfm ⊗ 1 and

X(b) = Fpπp(λ(ab
′))ξp · bm − ρfm(λ(ab′))ηfm ⊗ bm

= Fpπp(λ(y))ξp · bm − ρfm(λ(y))ηfm ⊗ bm

+Fpπp(λ(z))ξp · bm − ρfm(λ(z))ηfm ⊗ bm

= Fpπp(λ(z))ξp · bm − ρfm(λ(z))ηfm ⊗ bm.

Hence, if n0 = 0, n0 = n < m, or 1 ≤ n0 < min{n,m}, then X(b) = 0.
Note that if n0 = m < n, then fm = em, which implies that r(em+1) = s(em) =

r(fm) = p, which does not happen with our hypothesis on a.
Finally, if n0 = n = m, then z = xn = ansen ◦ r−1

en ◦ Er
en(xn−1) ∈ anB

r
en
,

and, since fm = fn = en, we have ρfm(λ(z))ηfm ⊗ bm = ρen(λ(xn))ηen ⊗ bn ∈
(ρen(λ(an))ηen ⊗ 1) ·Ap and Fpπp(λ(z))ξp · bm = Fpπp(λ(xn))ξp · bm = 0. Hence,

X(b) = −ρen(λ(xn))ηen ⊗ bn = −ρen(λ(an))ηen ⊗ sen ◦ r−1
en ◦ Er

en(xn−1)bn

= −(ρen(λ(an))ηen ⊗ 1) · 〈πp(λ(a
′)∗)ξp, πp(λ(b))ξp〉,

where a′ = uenan−1 . . . ue1a0. It follows that for any reduced operator b ∈ P from
p to p and for any b ∈ Ap, the element X(b) is equal to

(ρe1(λ(anuen . . . ue1))ηe1 ⊗ 1) · 〈πp(λ(a
∗
0))ξp, πp(λ(b))ξp〉

− (ρen(λ(an))ηen ⊗ 1) · 〈πp(λ(a
′)∗)ξp, πp(λ(b))ξp〉.

Hence, Fpπp(λ(a))− ρp(λ(a))Fp is a finite rank operator. �

Since Fp is a partial isometry satisfying FpF
∗
p − 1 = −Qξp ∈ KAp

(Hp), it follows
from Lemma 3.4 that we can apply Lemma 2.1 to conclude that [(Kp, ρp, Vp)] = 0 ∈
KK1(Pvert, Ap), where Vp = 2FpF

∗
p − 1 =

⊕
e∈E(G), r(e)=p Ve ⊗ 1 and Ve has been

defined previously by Ve = 2Qe−1. It follows from the definitions that (Kp, ρp, Vp)
is a triple representing the element

∑
r(e)=p x

G
e ⊗

Be

[re]. This concludes the proof of

(3).
(4) Note that for all e ∈ E(G) and all x ∈ P , we have

Ee(λ(x)) = λ(ue)Ee(λ(u
∗
exue))λ(u

∗
e).

It follows from this formula that the operator We : Ke ⊗
s−1
e

Be → Ke ⊗
r−1
e

Be defined

by

We(ρe(λ(x))ηe ⊗ b) = ρe(λ(xue))ηe ⊗ b for x ∈ P and b ∈ Be

is a unitary operator in LBe
(Ke ⊗

s−1
e

Be,Ke ⊗
r−1
e

Be). Moreover, it is clear that We

intertwines the representations ρe(·)⊗1 and ρe(·)⊗1, and we have W ∗
e (Qe⊗1)We =

1⊗ 1−Qe ⊗ 1. �
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Remark 3.5. Assertions (2) and (3) of the preceding proposition obviously hold for
the elements zGe = [λ] ⊗

Pvert

xG
e ∈ KK1(P,Be) and also assertions (1) and (2) with

πG′ instead of πG′

vert since we have πG′

vert ◦ λG′ = λ ◦ πG′ for any connected subgraph
G′ ⊂ G, with maximal subtree T ′ ⊂ T .

We study now in detail the behavior of our elements xG
e under Serre’s devissage

process.

The case of an amalgamated free product. Let A1, A2, and B be C*-algebras
with unital faithful ∗-homomorphisms ιk : B → Ak and conditional expectations

Ek : Ak → ιk(B) for k = 1, 2. Let Av = A1
v∗
B
A2 be the associated vertex-reduced

amalgamated free product, Af = A1 ∗
B
A2 the full amalgamated free product, and

π : Af → Av the canonical surjection. Let (K, ρ, η) be the GNS construction of
the canonical ucp map E : Av → B (which is the composition of the canonical
surjection from A to the edge-reduced amalgamated free product with the canonical
ucp map from the edge-reduced amalgamated free product to B) and let Ki, for
i = 1, 2, be the closed subspace of K generated by {ρ(π(x))η : x = a1 . . . an ∈
Af reduced and ending with Ai �B}. Observe that Ki is a complemented Hilbert
submodule of K. Actually we have K = K1 ⊕K2 ⊕ η ·B. Let Qi ∈ LB(K) be the
orthogonal projection onto Ki. The following proposition is actually a special case
of Lemma 3.1. In this special case the proof is very easy and left to the reader.

Proposition 3.6. (K, ρ, V ), where V =2Q1−1, defines an element xA=[(K, ρ, V )]
∈ KK1(Av, B).

Let e ∈ E(G) and suppose that Ge is not connected. We keep the same notation
as the one used in Serre’s devissage process explained in the previous section. In

particular we have the ∗-isomorphism νe : AGe
:= P

Gs(e)

vert

v∗
Be

P
Gr(e)

vert → Pvert from

Lemma 2.12. We now have two canonical elements in KK1(Pvert, Be): xG
e and

xGe
:= [ν−1

e ] ⊗
AGe

yGe
, where yGe

is the element associated to the vertex-reduced

amalgamated free product AGe
constructed in Proposition 3.6. These two elements

are actually equal.

Lemma 3.7. We have xGe
= xG

e ∈ KK1(Pvert, Be).

Proof. The proof is a simple identification: there is not a single homotopy to write,
only an isomorphism of Kasparov’s triples. The key to the proof is to realize that
the two ucp maps Pvert → Be defined by ϕ = r−1

e ◦ Ee and ψ = E ◦ ν−1
e are equal,

where E : AGe
→ Be is the canonical ucp map, and it directly follows from the

fact that νe intertwines the canonical ucp maps. Having this observation in mind,
one can construct an isomorphism of Kasparov’s triples.

Recall that (Ke, ρe, ηe) denotes the GNS construction of the ucp map Ee :
Pvert → Br

e and (K, ρ, η) denotes the GNS of the ucp map E : AGe
→ Be.

Since K = ρ ◦ ν−1
e (Pvert)η ·Be, Ke ⊗

r−1
e

Be = ρe(Pvert)ηe ⊗ 1 ·Be and

〈η, ρ ◦ ν−1
e (x)η〉K = ψ(x) = ϕ(x) = 〈ηe ⊗ 1, ρe(x)ηe ⊗ 1〉Ke ⊗

r
−1
e

Be
for all x ∈ Pvert,
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it follows that the map U : K → Ke ⊗
r−1
e

Be, U(ρ ◦ ν−1
e (x)η · b) = ρe(x)ηe ⊗ 1 · b

for x ∈ Pvert and b ∈ Be defines a unitary U ∈ LBe
(K,Ke ⊗

r−1
e

Be). Moreover, U

intertwines the representations ρ◦ν−1
e and ρe(·)⊗1. Observe that xGe

is represented
by the triple (K, ρ ◦ ν−1

e , V ), where V = 2Q− 1 and Q is the orthogonal projection

on the closed linear span of the ρ(π(x1 . . . xn)), where x1 . . . xn ∈ P
Gs(e)

vert ∗
Be

P
Gr(e)

vert

is a reduced operator in the free product sense and xn ∈ P
Gs(e)

vert . Moreover, xG
e is

represented by the triple (Ke ⊗
r−1
e

Be, ρe(·)⊗ 1, Ve), where Ve = Qe⊗ 1 and Qe is the

orthogonal projection onto the closed linear span of the ρe(λ(a0ue1 . . . uenan))ηe,
where a0ue1 . . . uenan ∈ P is reduced from r(e) to r(e) with en = e and an ∈ Br

e .
To conclude the proof, it suffices to observe that UV U∗ = Ve. �

We study now the case of an HNN-extension.

The case of an HNN extension. For ε ∈ {−1, 1}, let πε : B → A be a unital
faithful ∗-homomorphism and let Eε : A → B be a ucp map such that Eε◦πε = idB.
Let Cf be the full HNN-extension with stable letter u ∈ U(C), let Cv be the vertex-
reduced HNN-extension, and let π : Cf → Cv be the canonical surjection. Let
(K, ρ, η) be the GNS construction of the ucp map E = E1 ◦ EA : Cv → B, where
EA : Cv → A is the canonical GNS-faithful ucp map. Define the sub-B-module

K+ = Span{ρ(π(x))η : x = a0u
ε1 . . . uεnan∈Cf is a reduced operator with εn=1

and an ∈ π1(B)}.
Observe that K+ is complemented and let Q+ ∈ LB(K) be the orthogonal projec-
tion onto K+. The following proposition, which is a special case of Lemma 3.1, is
very easy to check.

Proposition 3.8. (K, ρ, V ), where V = 2Q+ − 1, defines an element xC ∈
KK1(Cv, B).

Let e ∈ E(G) and suppose that Ge is connected. Up to a canonical isomorphism
of P we may and will assume that T ⊂ Ge. Recall that we have a canonical ∗-
isomorphism νe : CGe

:= HNNvert(P
Ge
vert, Be, π1, π−1) → Pvert defined in Lemma

2.13. As before, we get two canonical elements in KK1(Pvert, Be): xG
e and xGe

:=
[ν−1

e ] ⊗
CGe

yGe
, where yGe

∈ KK1(CGe
, Be) is the element associated to the vertex-

reduced HNN-extension CGe
constructed in Proposition 3.8. As before, these two

elements are actually equal.

Lemma 3.9. We have xGe
= xG

e ∈ KK1(Pvert, Be).

Proof. Recall that (K, ρ, η) denotes the GNS construction of the canonical ucp map
E : CGe

→ Be. The proof is similar to the proof of Lemma 3.7 and is just a simple
identification. Since νe intertwines the canonical ucp maps, the two ucp maps
ϕ, ψ : Pvert → Be defined by ϕ = Ee and ψ = E ◦ ν−1

e are equal. As before, one
can deduce easily from this equality an isomorphism of Kasparov’s triples. Since
the arguments are the same, we leave the details to the reader. �

Remark 3.10. The analogue of Lemmas 3.7 and 3.9 are obviously still valid for the
elements zGe ∈ KK1(P,Be) defined in Remark 3.2.
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4. The exact sequence

For any separable C*-algebra C, let F ∗(−) be KK∗(C,−). It is a Z2-graded
covariant functor. If f is a morphism of C*-algebras, we will denote by f∗ the
induced morphism.

In what follows PG or simply P denotes either the full or the vertex reduced fun-
damental C*-algebra. We define the boundary maps γG

e from F ∗(PG)=KK∗(D,PG)
to KK∗+1(D,Be) = F ∗+1(Be) by γG

e (y) = y⊗P zGe when P is the full fundamental
C*-algebra or γG

e (y) = y ⊗P xG
e when P is the vertex reduced one. In what follows

we simply write xe = xG
e and ze = zGe .

If G is a graph, then E+ is the set of positive edges, V is the set of vertices,
and for any v ∈ V , the map from Av to PG is πv or sometimes πG

v if it is necessary
to indicate which graph we consider. If one removes an edge e0 (and its opposite)
to G, the new graph is called G0, P0 is the algebra associated to it, and π0

v is the
embedding of Av in P0. We also have for G1 ⊂ G a morphism πG1

from PG1
to PG .

Theorem 4.1. In the presence of conditional expectations (not necessarily GNS-
faithful), we have, for P the full or vertex reduced fundamental C*-algebra, a long
exact sequence

−→
⊕
e∈E+

F ∗(Be)
∑

e s∗e−r∗e−→
⊕
v∈V

F ∗(Av)
∑

v π∗
v−→ F ∗(P )

⊕eγ
G
e−→

⊕
e∈E+

F ∗+1(Be) −→ .

Proof. First note that it is indeed a chain complex. Because se and re are conju-
gated in the full or reduced fundamental C*-algebra, we only have to check that
γe ◦π∗

v = 0 (which is point (2) of Proposition 3.3) and (for Pvert),
∑

e∈E+ xe⊗ [re]−
xe ⊗ [se] = 0. As xe = −xē (point (4) of Proposition 3.3) and sē = re, this is the
same as point (3) of Proposition 3.3. Because of Remark 3.5, this is also true for
the full fundamental C*-algebra.

Also if the graph contains only one geometric edge (i.e., two opposite oriented
edges), we are in the case of the amalgamated free product or the HNN extension,
and the complex is known to be exact because of the results of [FG15]. For con-
venience we will briefly recall why and also we will identify the boundary map.
Let’s do the full amalgamated free product Af first. Recall that in Theorem 4.1 of
[FG15], we proved that the suspension of A1 ∗

B
A2 is KK-equivalent to D, the cone

of the inclusion of B in A1 and A2. Obviously D fits into a short exact sequence:

0 → A1 ⊗ S ⊕A2 ⊗ S −→ D
ev0−→ B → 0.

Therefore there is a long exact sequence for our functor F ∗:

F ∗(A1 ⊗ S ⊕A2 ⊗ S) → F ∗(D) → F ∗(B) → F ∗+1(A1 ⊗ S ⊕A2 ⊗ S).

But F ∗(Ak ⊗ S) identifies with F ∗+1(Ak) and F ∗(D) with F ∗+1(Af ). Via these
identifications, the map from F ∗(B) to F ∗(Ak) becomes i∗k or its opposite (this
is seen using the mapping cone exact sequence), and the map from F ∗(Ak) to
F ∗(Af ) is j∗k . The only thing left is the identification of the boundary map from
F ∗(Af ) to F ∗+1(B). It is obviously the Kasparov product by x ⊗ [ev0] where x
is the element in KK1(Af , D) that implements the K-equivalence. The element
x⊗ [ev0] ∈ KK1(Af , B) has been described in Lemma 4.9 of [FG15], and it is equal
to [π]⊗xA, where xA ∈ KK1(Av, B) is exactly the element of Proposition 3.6 and π
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is the canonical surjection from the full amalgamated free product Af to the vertex-
reduced amalgamated free product Av. Therefore the boundary map is exactly
given by the corresponding γG

e for the graph of the free product. Moreover, since x
actually factorizes as [π]⊗Av

z where z ∈ KK1(Av, D), the same identifications and
the same exact sequence hold for the vertex-reduced free product Av, and Theorem
4.1 is true for free products.

Now let’s tackle the HNN extension case. Let’s call Cm the full HNN extension of
(A,B, θ) and E and Eθ the conditional expectations from A to B and θ(B). We also
denote by Cv the vertex-reduced HNN extension and π : Cm → Cv the canonical
surjection. An explicit isomorphism is known to exist between Cm and the full
amalgamated free product e11M2(A) ∗

B⊕B
M2(B)e11 where B⊕B embeds diagonally

in M2(A) via the canonical inclusion and θ, e11 is the matrix unit

(
1 0
0 0

)
, and the

conditional expectations are E1

(
a1 a2
a3 a4

)
= E(a1)⊕Eθ(a4) from M2(A) to B⊕B

and E2

(
b1 b2
b3 b4

)
= b1 ⊕ b4 from M2(B) to B ⊕ B. The exact sequence for the

HNN extension is then deduced from this isomorphism of C*-algebras (cf. [Ue08]
for example).

If we call jA and jB the inclusions of M2(A), respectively M2(B) in the free prod-

uct, then the unitary u in Cm that implements θ is mapped to jA

(
0 1
0 0

)
jB

(
0 0
1 0

)
.

It is then clear that a reduced word in Cm that ends with u times b with b in B is

mapped into a reduced word in the free product that ends with jB

(
0 0
1 0

)(
b 0
0 0

)
=

jB

(
0 b′

b 0

)
e11, i.e., that ends in jB(M2(B))� (B⊕B). Therefore, in this situation

and after a Kasparov product by [π] on the left, the element described in Propo-
sition 3.8 is the same as the element described in Proposition 3.6, and we have
identified the correct boundary map.

Let’s have a look now at the vertex reduced situation. Observe that the con-
ditional expectation E2 from M2(B) to B ⊕ B is GNS-faithful. It follows from

the constructions of [FG15, section 2] that M2(A)
2∗

B⊕B
M2(B) is isomorphic to

M2(A)
e∗

B⊕B
M2(B) and as a consequence M2(A)

1∗
B⊕B

M2(B) is isomorphic to

M2(A)
v∗

B⊕B
M2(B). Using the universal properties it is now obvious that the

vertex-reduced HNN extension of (A,B, θ) is e11M2(A)
1∗

B⊕B
M2(B)e11. There-

fore the identification described earlier for the full free product and HNN extension
is again true for the vertex-reduced free product and corresponding vertex-reduced
HNN extension. Hence Theorem 4.1 is again valid for HNN extensions.

We now prove exactness at each place by induction on the cardinal of edges and
devissage. Note that Lemmas 3.7 and 3.9 allow us to decompose our fundamental
algebra in HNN or free product while using the same boundary maps γe.

Lemma 4.2. We have the exactness of
⊕

e∈E+ F ∗(Be)
∑

e s∗e−r∗e−→
⊕

v∈V F ∗(Av)
∑

v π∗
v−→ F ∗(P ).
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Proof. Choose a positive edge e0. Then without this edge (and its opposite), the
graph G0 is either connected (Case I) or has two connected components G1 and G2

(Case II).

Case I. P is the HNN extension of PG0
and Be0 . The set of vertices of G is the same

as the set of vertices of G0, and we may and will assume that v0 = s(e0) = r(e0). Let
x =

⊕
xv be in

⊕
v∈V F ∗(Av) such that

∑
v π

∗
v(xv) = 0. If y =

∑
v π

0
v
∗
(xv), then

clearly πG0
(y) = 0. Then, the long exact sequence for P seen as an HNN extension

implies that there exists y0 ∈ F ∗(Be0) such that (πv0 ◦se0)∗(y0)− (πv0 ◦re0)∗(y0) =
y =

∑
v π

0
v
∗
(xv). Hence,∑

v

π0
v
∗
(
⊕
v 	=v0

xv ⊕ (xv0 − s∗e0(y0) + r∗e0(y0)) = 0.

Using the exactness for P0 as G0 has one less edge, we get that there exists for any
e �= e0 a ye such that

∑
e 	=e0

s∗e(ye)− r∗e(ye) =
⊕

v 	=v0
xv ⊕ (xv0 − s∗e0(y0)+ r∗e0(y0)).

Thus, ∑
e 	=e0

s∗e(ye)− r∗e(ye) + s∗e0(y0)− r∗e0(y0) = x.

Case II. P is the amalgamated free product of P1 = PG1
and P2 = PG2

over Be0 . For
i = 1, 2, denote by Vi the vertices of Gi. We know that V is the disjoint union of V1

and V2. The map πi
v will be the embedding of Av in Pi. We also write v1 = s(e0)

and v2 = r(e0). Let x =
⊕

xv be in
⊕

v∈V F ∗(Av) such that
∑

v π
∗
v(xv) = 0.

Let xi =
⊕

v∈Vi
πi
v
∗
(xv). Clearly π∗

G1
(x1) + π∗

G2
(x2) = 0. Then, the long exact

sequence for P seen as an amalgamated free product gives a y0 ∈ F ∗(Be0) such
that (π1

v1 ◦ se0)∗(y0)− (π2
v2 ◦ re0)∗(y0) = x1 ⊕ x2. Define x̄1 =

⊕
v∈V1

xv − s∗e0(y0)

and x̄2 =
⊕

v∈V2
xv + r∗e0(y0). We have, for i = 1, 2,

∑
v∈Vi

πi
v
∗
(x̄i) = 0. Therefore

by induction as Gi has strictly fewer edges than G, there exists for any e �= e0 a
ye ∈ F ∗(Be) such that x̄1⊕ x̄2 =

∑
e 	=e0

s∗e(ye)−r∗e(ye). Hence, x =
∑

e 	=e0
s∗e(ye)−

r∗e(ye) + s∗v0(y0)− r∗v0(y0). �

Lemma 4.3. The following chain complex is exact in the middle:⊕
v∈V

F ∗(Av)
∑

v π∗
v−−−−→ F ∗(P )

⊕eγ
G
e−−−→

⊕
e∈E+

F ∗+1(Be).

Proof. As in the previous lemma, we separate Case I and Case II, in the proof.

Case I. Let x be in F ∗(P ) such that for any e, γG
e (x) = 0, in particular for the

edge e0. Using the long exact sequence for P seen as an HHN extension and since
γG
e0(x) = 0 we get that there exists x0 in F ∗(P0) such that π∗

G0
(x0) = x. For any

edges e �= e0, one has γG0
e (x0) = γG

e (π
∗
G0
(x0)) = 0. Hence by induction there exists

for any v ∈ V (G0) = V (G) a yv ∈ F ∗(Av) such that
∑

v π
0
v
∗
(yv) = x0. Hence

x =
∑

v(πG0
◦ π0

v)
∗(yv) =

∑
v π

∗
v(yv).

Case II. Using that P is the free product of P1 and P2, we get an xi ∈ F ∗(Pi) for
i = 1, 2 such that x = π∗

G1
(x1) + π∗

G2
(x2). Now for i = 1, 2 and for any edge e of Gi,

we have

γGi
e (xi) = γG

e (π
∗
Gi
(xi)) = γG

e (x)− γG
e (π

∗
Gj
(xj)) for j �= i.
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But e is not an edge of Gj , so γG
e ◦ π∗

Gj
= 0. Hence γGi

e (xi) = 0. By induction we

get for any vertex of V1 ∪ V2 = V (G) a yv ∈ F ∗(Av) such that xi =
∑

v∈Vi
πi
v
∗
(yv)

for i = 1, 2. Therefore x =
∑

v π
∗
v(yv). �

Lemma 4.4. The following chain complex is exact in the middle:

F ∗−1(P )
⊕eγ

G
e−−−→

⊕
e∈E+

F ∗(Be)
∑

e s∗e−r∗e−−−−−−→
⊕
v∈V

F ∗(Av).

Proof.

Case I. Let x =
⊕

e∈E+ xe such that
∑

e s
∗
e(xe)− r∗e(xe) = 0. Then for the distin-

guished vertex v0, one has

π0
v0

∗
(s∗e0(xe0))− π0

v0

∗
(r∗e0(xe0)) = −

∑
e 	=e0

π0
v0

∗
(s∗e(xe0))− π0

v0

∗
(r∗e(xe0)).

But as e is an edge of G0, se and re are conjugated by a unitary of P0. Therefore
their difference is 0 in any KK-groups. Thus π0

v0

∗
(s∗e0(xe0)) − π0

v0

∗
(r∗e0(xe0)) = 0.

Using the long exact sequence for P as an HHN extension, we get a y0 in F ∗−1(P )
such that γG

e0(y0) = xe0 . Now set x̄e = xe − γG
e (y0) for any e �= e0 and compute∑

e 	=e0

s∗e(x̄e)− r∗e(x̄e) =
∑
e 	=e0

s∗e(xe)− r∗e(xe)−
∑
e

s∗e(γ
G
e (y0))− r∗e(γ

G
e (y0))

+s∗e0(γ
G
e0(y0))− r∗e0(γ

G
e0(y0))

=
∑
e

s∗e(xe)− r∗e(xe),

by the third property of γe. Hence,
∑

e 	=e0
s∗e(x̄e)− r∗e(x̄e) = 0. By induction there

exists ȳ1 in F ∗−1(P0) such that for all e �= e0, γ
G0
e (y1) = x̄e. Set at last y1 = π∗

G0
(ȳ1),

which is an element of F ∗−1(P ). Now γG
e0(y0 + y1) = x0 + γG

e0 ◦ π∗
G0
(ȳ1). But e0

is not an edge of G0, so γG
e0 ◦ π∗

G0
= 0. Hence γG

e0(y0 + y1) = x0. On the other

hand, for e �= e0, γ
G
e (y0 + y1) = γG

e (y0) + x̄e as γG0
e = γG

e ◦ π∗
G0
. It follows that

γG
e (y0 + y1) = xe.

Case II. Call Ei the edges of Gi for i = 1, 2. Note that for any positive edge e,
if s(e) ∈ V1, then either e ∈ E1 or e = e0 and if r(e) ∈ V2, then e ∈ E2. Let
x =

⊕
e∈E+ xe such that

∑
e s

∗
e(xe) − r∗e(xe) = 0. The equality can be rewritten

as
∑

e∈E+
1
s∗e(xe) − r∗e(xe) + s∗e0(xe0) = 0 in

⊕
v∈V1

F ∗(Av) and
∑

e∈E+
2
s∗e(xe) −

r∗e(xe)− r∗e0(xe0) = 0 in
⊕

v∈V2
F ∗(Av). Let’s compute now π1

v1(xe0). It is

−
∑
e∈E+

1

(π1
s(e) ◦ se)∗(xe)− (πr(e)

1 ◦ re)∗(xe)

by the preceding remark. But as se and re are conjugated in P1 because e is an
edge of G1, this is 0. In the same way π2

v2(xe0) = 0. Therefore using the long exact

sequence for P as a free product of P1 and P2, there is a y0 in F ∗−1(P ) such that
γG
e0(y0) = xe0 . For all e �= e0 set x̄e = xe − γG

e (y0). Then,∑
e∈E+

1

s∗e(x̄e)− r∗e(x̄e) =
∑
e∈E+

1

s∗e(xe)− r∗e(xe)−

⎛⎝ ∑
e∈E+

1

s∗e ◦ γG
e (y0)− r∗e ◦ γG

e (y0)

⎞⎠ .
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But the third property of the γG
e implies that 0 =

∑
e∈E+

1
s∗e ◦ γG

e + s∗e0 ◦ γG
e0 −∑

e∈E+
1
r∗e ◦ γG

e using the remark made at the begining of this proof. Hence,∑
e∈E+

1

s∗e(x̄e)− r∗e(x̄e) =
∑
e∈E+

1

s∗e(xe)− r∗e(xe) + s∗e0(xe0) = 0.

Similarly,
∑

e∈E+
2
s∗e(x̄e) − r∗e(x̄e) = 0. Therefore, by induction, there exists for

i = 1, 2, an element yi in F ∗−1(Pi) such that for all e in E+
i , γGi

e (yi) = x̄e. Now set
y = y0 + πG1

(y1) + πG2
(y2) in F ∗−1(P ). Then γG

e0(y) = xe0 + γG
e0 ◦ π∗

G1
(y1) + γG

e0 ◦
π∗
G2
(y2) = xe0 as γG

e0 ◦ πGi
= 0 since e0 is not an edge of G1 or G2. On the other

hand, for e ∈ E1, γ
G
e (y) = γG

e (y0) + γG1
e (y1) + 0 as e is not an edge of G2. Hence

γG
e (y) = γG

e (y0) + x̄e = xe. The same is of course true for an edge in E2. So we are
done. �

The proof of Theorem 4.1 is now complete. �
Now let’s treat the case F ∗(−) = KK(−, C). Again if f is a morphism of C*-

algebras we will adopt the same notation f∗ for the induced morphism. Now the
map γG

e from F (Be) to F (P ) is defined as γG
e (a) = xG

e ⊗Be
a if P is the vertex

reduced fundamental C*-algebra or γG
e (a) = zGe ⊗Be

a if P is the full fundamental
C*-algebra.

Theorem 4.5. In the presence of conditional expectations, we have, for P the full
or reduced fundamental C*-algebra, a long exact sequence

←−
⊕
e∈E+

F ∗(Be)
∑

e s∗e−r∗e←−−−−−−
⊕
v∈V

F ∗(Av)
∑

v π∗
v←−−−− F ∗(P )

⊕eγ
G
e←−−−

⊕
e∈E+

F ∗+1(Be) ←− .

Proof. As before this is a chain complex, and the same identifications prove it for
free products and an HNN extension. We will now show exactness with the three
following lemmas.

Lemma 4.6. We have the exactness of
⊕

e∈E+ F ∗(Be)
∑

e s∗e−r∗e←−
⊕

v∈V F ∗(Av)
∑

v π∗
v←− F ∗(P ).

Proof. Let x =
⊕

xv ∈
⊕

v F (Av) such that
∑

e s
∗
e(
⊕

xv)− r∗e(
⊕

xv) = 0.

Case I. We have
∑

e 	=e0
s∗e(

⊕
xv)−r∗e(

⊕
xv) = 0; hence, there is a y0 in F (P0) such

that for all v, π0
v
∗
(y0) = xv. But s

∗
e0◦π0

v0

∗
(y0) = s∗e0(xv0) = r∗e0(xv0) = r∗e0◦π0

v0

∗
(y0).

Using the exact sequence for P as an HNN extension of P0 and the two copies
of Be0 , we get that there is y ∈ F (P ) such that πG0

∗(y) = y0. Now for all v,
π∗
v(y) = π0

v
∗
(y0) = xv.

Case II. We have, for k = 1, 2,
∑

e∈E+
k
s∗e(

⊕
xv) − r∗e(

⊕
xv) = 0; hence there is

yk ∈ F (Pk) such that πk
v
∗
(yk) = xv for any v ∈ Vk, as s∗e0 ◦ π1

v1

∗
(y1) = s∗e0(xv1) =

r∗e0(xv2) = r∗e0 ◦π2
v2

∗
(y2). Using the exact sequence for P as a free product, we have

a y ∈ F (P ) such that πGk
∗(y) = yk for k = 1, 2. Then for k = 1, 2 and all v ∈ Vk,

π∗
v(y) = πk

v
∗
(yk) = xv. �

Lemma 4.7. The following chain complex is exact in the middle:⊕
v∈V

F ∗(Av)
∑

v π∗
v←−−−− F ∗(P )

⊕eγ
G
e←−−−

⊕
e∈E+

F ∗+1(Be).



7076 PIERRE FIMA AND EMMANUEL GERMAIN

Proof. Let y be in F (P ) such that π∗
v(y) = 0 for all v.

Case I. Let y0 = π∗
G0
(y). Then for all v, π0

v
∗
(y0) = π∗

v(y) = 0. Therefore there

exists x =
∑

e 	=e0
xe such that

∑
e 	=e0

γG0
e (xe) = y0. Put z = y −

∑
e 	=e0

γG
e
∗
(xe).

Then,

π∗
G0
(z) = y0 −

∑
e 	=e0

γG0
e (xe) = 0.

Hence there is an xe0 ∈ F (Be0) such that γe0(xe0) = z and y =
∑

e 	=e0
γG
e (xe) +

γe0(xe0).

Case II. Let yk = π∗
Gk
(y) for k = 1, 2. For all v ∈ Vk, πk

v
∗
(yk) = π∗

v(y) = 0;

hence there exists xk =
⊕

e∈E+
k
xe such that

∑
e∈E+

k
γGk
e (xe) = yk. Let z = y −∑

e 	=e0
γG
e
∗
(xe). Then for k = 1, 2, π∗

Gk
(z) = yk−

∑
e∈E+

k
γGk
e (xe) = 0 as π∗

G2
◦γG1

e = 0

because of Proposition 3.3. Hence z = γe0(xe0) for some xe0 in F (Be0), and we are
done. �
Lemma 4.8. The following chain complex is exact in the middle:

F ∗−1(P )
⊕eγ

G
e←−−−

⊕
e∈E+

F ∗(Be)
∑

e s∗e−r∗e←−−−−−−
⊕
v∈V

F ∗(Av).

Proof. Let x =
⊕

xe in F (
⊕

e Be) such that
∑

e∈E+ γG
e (xe) = 0.

Case I. We have 0 = πG0
∗(
∑

e∈E+ γG
e (xe)) =

∑
e 	=e0

γG0
e (xe) as πG0

∗ ◦ γe0 = 0.

Hence by induction, there is a z =
⊕

zv in
⊕

v F (Av) such that for all e �= e0,
xe = s∗e(zs(e)) − r∗e(zr(e)). Put x0 = xe0 − s∗e0(zv0) − r∗e0(zv0). By Remark 5.5 we
have

∑
e∈E+ γe ◦ s∗e − γe ◦ r∗e = 0; hence

γe0 ◦ (−s∗e0(zv0) + r∗e0(zv0)) =
∑
e 	=e0

γe(s
∗
e(
⊕

zv))− γe(r
∗
e(
⊕

zv)) =
∑
e 	=e0

γe(xe).

It follows that γe0(x0) = γe0(xe0)+
∑

e 	=e0
γe(xe) = 0. Using the long exact sequence

for P as an HNN extension of P0 and Be0 , we get a z0 ∈ F (P0) such that x0 =
s∗e0(π

0
v0

∗
(z0)) − r∗e0(π

0
v0

∗
(z0)). So xe0 = s∗e0(zv0 + π0

v0

∗
(z0)) − r∗e0(zv0 + π0

v0

∗
(z0)),

and we are done.

Case II. Let 0 = πGk
∗(
∑

e∈E+ γG
e (xe)) =

∑
e 	=E+

k
γGk
e (xe) for k = 1, 2. Hence

there is a z =
⊕

zv such that for all e ∈ E+
k , xe = s∗e(zs(e)) − r∗e(zr(e)). Write

x0 = xe0 −s∗e0(zv1)−r∗e0(zv2). As before we have that γe0(x0) = 0, and by exactness
of the exact sequence for the free product of P1 and P2 there are z1 ∈ F (P1) and
z2 ∈ F (P2) such that x0 = s∗e0(π

1
v1

∗
(z1))− r∗e0(π

2
v2

∗
(z2)). Finally

xe0 = s∗e0(zv1 + π1
v1

∗
(z1))− r∗e0(zv2 + π2

v2

∗
(z2)). �

The proof of Theorem 4.5 is now complete. �

5. Applications

In this section we collect some applications of our results to K-equivalence and
K-amenability of quantum groups.

Let (G, Ap, Be) and (G, A′
p, B

′
e) be two graphs of unital C*-algebras with maps

se and s′e and conditional expectations Es
e and (Es

e)
′. Suppose that we have unital

∗-homomorphisms νp : Ap → A′
p and νe : Be → B′

e such that νe = νe and
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νs(e) ◦se = s′e ◦νe for all e ∈ E(G). Let P and P ′ be the associated full fundamental
C*-algebras with canonical unitaries ue and u′

e respectively. By the relations νe = νe
and νs(e)◦se = s′e◦νe and the universal property of the full fundamental C*-algebra,
there exists a unique unital ∗-homomorphism ν : P → P ′ such that

ν|Ap
= νp and ν(ue) = u′

e for all p ∈ V (G), e ∈ E(G).

Theorem 5.1. If (Es
e)

′ ◦ νs(e) = νs(e) ◦ Es
e and νp, νe are K-equivalences for all

p ∈ V (G), e ∈ E(G), then ν is a K-equivalence.

Proof. Consider the following diagrams with exact rows:
⊕

e∈E+
KK(D,Be) →

⊕

p∈V
KK(D,Ap) → KK(D, P ) →

⊕

e∈E+
KK1(D,Be) →

⊕

p∈V
KK1(D,Ap)

↓
⊕

· ⊗
Be

[νe] ↓
⊕

· ⊗
Ap

[νp] ↓ · ⊗
P

[ν]
⊕

· ⊗
Be

[νe] ↓
⊕

· ⊗
Ap

[νp]

⊕

e∈E+
KK(D,B′

e) →
⊕

p∈V
KK(D,A′

p) → KK(D,P ′) →
⊕

e∈E+
KK1(D,B′

e) →
⊕

p∈V
KK1(D,A′

p)

⊕

e∈E+
KK(B′

e, D) →
⊕

p∈V
KK(A′

p, D) → KK(P ′, D) →
⊕

e∈E+
KK1(B′

e, D) →
⊕

p∈V
KK1(A′

p, D)

↓
⊕

[νe] ⊗
Be

· ↓
⊕

[νp] ⊗
Ap

· ↓ [ν] ⊗
P

·
⊕

[νe] ⊗
Be

· ↓
⊕

[νp] ⊗
Ap

·
⊕

e∈E+
KK(Be, D) ←

⊕

p∈V
KK(Ap, D) ← KK(P,D) ←

⊕

e∈E+
KK1(Be, D) ←

⊕

p∈V
KK1(Ap, D)

By the Five Lemma and the hypothesis, it suffices to check that, for eachD, every
square of the two diagrams is commutative. We check that for the first diagram.
The verification for the second diagram is similar. For a unital inclusion X ⊂ Y
of unital C*-algebras, we write ιX⊂Y the inclusion map. The first square on the
left and the last square on the right of the first diagram are obviously commutative
since, by hypothesis, νs(e) ◦ se = s′e ◦ νe and νr(e) ◦ re = r′e ◦ νe for all e ∈ E+.
The second square on the left is commutative since, by definition of ν, we have
ν ◦ ιAp⊂P = ιA′

p⊂P ′ ◦ νp for all p ∈ V . Hence, it suffices to check that the third
square, starting from the left, is commutative. Note that the commutativity of
this square is equivalent to the equality ze ⊗

Be

[νe] = [ν] ⊗
P ′

z′e ∈ KK1(P,B′
e), where

ze ∈ KK1(P,Be) and z′e ∈ KK1(P ′, B′
e) are the KK1 elements constructed in

Lemma 3.7 associated with the graphs of C*-algebras (G, Ap, Be) and (G, A′
p, B

′
e)

respectively. This equality follows easily from the assumption that (Es
e)

′ ◦ νs(e) =
νs(e)◦Es

e since it gives a canonical isomorphism of Hilbert modules Ke⊗νe
B′

e � K ′
e,

which is easily seen to implement an isomorphism between the Kasparov triples
representing ze ⊗

Be

[νe] and [ν] ⊗
P ′

z′e. �

We denote by Pvert the vertex-reduced fundamental C*-algebra of (G, Ap, Be)
and by λ : P → Pvert the canonical surjective unital ∗-homomorphism. The
following theorem is an immediate consequence of the two 6-term exact sequences
we proved in this paper: one for the full fundamental C*-algebra P and one for the
vertex-reduced fundamental C*-algebra Pvert and the Five Lemma.

Theorem 5.2. Suppose that G is a finite graph. Then the class of the canonical
surjection [λ] ∈ KK(P, Pvert) is invertible.

Remark 5.3. The previous result is actually true without assuming the graph G to
be finite. Indeed the inverse of [λ] and the homotopy showing that it is an inverse
can be constructed directly, without using induction. Since such a proof requires
more work and does not bring any new ideas, we chose not to include it.
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Corollary 5.4. The following hold.

(1) If G is the fundamental compact quantum group of a finite graph of compact

quantum groups (Gp, Ge,G), then Ĝ is K-amenable if and only if Ĝp is K-
amenable for all p.

(2) If G is the compact quantum group obtained from the (finite) graph product
of the family of compact quantum groups Gp, p ∈ V (G) (see [CF14]), then

Ĝ is K-amenable if and only if Ĝp is K-amenable for all p ∈ V (G).

Proof. Using induction, (2) is a consequence of (1) since, as observed in [CF14],
a graph product may be written as an amalgamated free product using a kind of
devissage strategy.

Let’s prove (1). Consider the two graphs of C*-algebras (G, Cmax(Gp), Cmax(Ge))
and (G, Cred(Gp), Cred(Ge)) with full fundamental C*-algebra Pmax and P respec-
tively. Note that both graphs have natural families of conditional expectations but
only the conditional expectations on (G, Cred(Gp), Cred(Ge)) are GNS-faithful (ex-
cept in the presence of coamenability) Let Pred be the vertex-reduced fundamen-
tal C*-algebra of (G, Cred(Gp), Cred(Ge)). We recall that Cmax(G) = Pmax and
Cred(G) = Pred (see [FF13]). Let λ : P → Pred be the canonical surjection, which
is a K-equivalence by Theorem 5.2, and let ν : Pmax → P be the canonical sur-
jection obtained from the canonical surjections νp := λGp

: Cmax(Gp) → Cred(Gp)
and νe := λGe

: Cmax(Ge) → Cred(Ge) as explained in the discussion before
Thereom 5.1. Since the hypothesis on the conditional expectations of this theorem

are obviously satisfied, it follows that whenever Ĝp is K-amenable for all p (hence

Ĝe is also K-amenable for all e as a quantum subgroup of Ĝs(e)), Ĝ is K-amenable.
The proof of the converse is obvious. �

Remark 5.5. The first assertion of the previous corollary strengthens the results of
[Pi86, Corollary 19] and also of [FF13,Fi13,Ve04] and unifies all the proofs.
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