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MAXIMAL FUNCTION CHARACTERIZATIONS FOR NEW

LOCAL HARDY-TYPE SPACES ON SPACES

OF HOMOGENEOUS TYPE

THE ANH BUI, XUAN THINH DUONG, AND FU KEN LY

Abstract. Let X be a space of homogeneous type and let L be a nonnegative
self-adjoint operator on L2(X) enjoying Gaussian estimates. The main aim
of this paper is twofold. Firstly, we prove (local) nontangential and radial
maximal function characterizations for the local Hardy spaces associated to L.
This gives the maximal function characterization for local Hardy spaces in the
sense of Coifman and Weiss provided that L satisfies certain extra conditions.
Secondly we introduce local Hardy spaces associated with a critical function ρ
which are motivated by the theory of Hardy spaces related to Schrödinger op-
erators and of which include the local Hardy spaces of Coifman and Weiss as a
special case. We then prove that these local Hardy spaces can be characterized
by (local) nontangential and radial maximal functions related to L and ρ, and
by global maximal functions associated to ‘perturbations’ of L. We apply our
theory to obtain a number of new results on maximal characterizations for the
local Hardy type spaces in various settings ranging from Schrödinger opera-
tors on manifolds to Schrödinger operators on connected and simply connected
nilpotent Lie groups.
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1. Introduction

The main aim of this article is to obtain maximal function characterizations of
various local Hardy-type spaces beyond the classical local Hardy spaces on a space
of homogeneous type.

Hardy spaces, which originated in the study of boundary values of holomorphic
functions, have since proven to be highly useful in many problems in analysis and
partial differential equations. See for example [2,19,34] and the references therein.
Part of their usefulness arises from their many characterizations. We shall highlight
the ones most pertinent to our article, which are maximal and atomic character-
izations. For 0 < p ≤ 1, a distribution f ∈ S ′(Rn) belongs to the Hardy space
Hp(Rn) if any of the following occurs:

(i) sup
0<t<∞

|e−t2Δf(x)| ∈ Lp(Rn).

(ii) sup
0<t<∞

sup
|x−y|<t

|e−t2Δf(y)| ∈ Lp(Rn).

(iii) f has a decomposition f =
∑∞

j=0 λjaj , with
∑

j |λj |p < ∞, and each
aj is an “atom” in the following sense: aj is supported in some ball B,

|aj | ≤ |B|−1/p, and the cancellation
´
xβaj(x) dx = 0 holds whenever β is

a multi-index of order |β| ≤ �n( 1p − 1)�. When n
n+1 < p ≤ 1 then one can

use atoms with
´
aj(x) dx = 0.

The objects in (i) and (ii) are typically referred to as the radial (or vertical) and
the non-tangential maximal functions, respectively. If we denote the spaces arising
from (i), (ii), and (iii) by Hp

Δ,rad(R
n), Hp

Δ,max(R
n), and Hp

at(R
n), then we can

describe the above characterization more succinctly as

Hp
Δ,rad(R

n) ≡ Hp
Δ,max(R

n) ≡ Hp
at(R

n)(1)

for all 0 < p ≤ 1.
We are interested in generalizations of (1) to metric spaces other than Rn and to

operators other than the Laplacian −Δ. In the first direction Coifman and Weiss
[6] introduced Hp

at(X) on a space X of homogeneous type (see (8) below) and gave
versions of (1) under further geometric conditions on X. Whether something like
(1) holds without any extra condition on X is still open, but the case when X has
“reverse doubling” has been solved in [38,41] for p ∈ (p0, 1] with certain p0 ∈ (0, 1).

For the second direction (in generalizing the Laplacian to some other operator
L) we cite the body of work in [10–14, 17, 23–25]. The starting point here is to

replace the semigroup e−t2Δ in (i) and (ii) by some other semigroup e−t2L, but one
can define an adaptation of (iii) by encoding the cancellation of atoms using L in
a certain way (see [23] and also Definition 2.1 below). One may ask to what extent
(1) can hold in these settings. That is, when do we have

Hp
L,rad(X) ≡ Hp

L,max(X) ≡ Hp
L,at(X)(2)

for 0 < p ≤ 1? It turns out this can be achieved if L is a non-negative and

self-adjoint on L2(X) with Gaussian upper bounds on the kernel of e−t2L (see
assumptions (A1) and (A2) in Section 2.1). This was proved in full only recently in
[36] (see also [37]). Prior to [36] the direction Hp

L,rad(X) ⊇ Hp
L,max(X) ⊇ Hp

L,at(X)

can be found in [10, 23, 25], but the reverse direction was only known for special
cases of L [17, 23, 24].
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We would like to point out in passing that one can add the atomic space of

Coifman and Weiss Hp
at(X), to the picture in (2) if the semigroup e−t2L has Hölder

regularity and is conservative (see assumptions (A3) and (A4) in Section 2.2 below)
for n

n+δ < p ≤ 1 where δ is the Hölder regularity exponent. We refer the reader to

Lemma 9.1 in [23] and the proof of Theorem 2.7 in the present article. This yields
one answer to the question of Coifman and Weiss when X may not have reverse
doubling but admits the existence of an operator L with the appropriate properties.

Our paper is concerned with local versions of the above theory. Local Hardy
spaces hp(Rn) were introduced by Goldberg [20] to address certain shortcomings
of their global counterparts (a good account of this is in [20]) and have proven to
be more useful for certain problems in partial differential equations. They can be
defined by restricting t to less than 1 in the maximal functions of (i) and (ii) above,
or by restricting the cancellation requirement in (iii) to only balls whose radii are
less than 1. Then the following local version of (1):

hp
Δ,rad(R

n) ≡ hp
Δ,max(R

n) ≡ hp
at(R

n)(3)

holds for 0 < p ≤ 1 (see [20]).
In the first part of our article we consider an operator L satisfying (A1) and (A2)

and by an appropriate modfication of (i)-(iii) we can define the local Hardy spaces
hp
L,rad(X), hp

L,max(X), and hp
L,at(X) (see Section 2). We then prove a generalization

of (2) and (3) to

hp
L,rad(X) ≡ hp

L,max(X) ≡ hp
L,at(X)(4)

for 0 < p ≤ 1, which is the content of Theorem 2.4. This can be viewed as a local
version of those in [36]. If one further assumes (A3) and (A4), then one can add
hp
at(X) to picture for n

n+δ < p ≤ 1, which is the content of Theorem 2.7. We remark

that the ideas in the proof of Theorem 2.4 rely on the innovations in [36], although
some significant modifications are needed, not least of which is the development of
an inhomogeneous Calderón reproducing formula (Proposition 3.6).

In the second part of our article we consider local Hardy-type spaces where the
notion of “localness” may vary spatially. More precisely we replace the role of 1
in the definitions of the spaces in (3) and (4) by a positive function ρ(x) (which
we call a “critical radius function”) that does not fluctuate too quickly in a certain
sense (see (12)). Spaces induced by such a function ρ arise as spaces related to
lower order perturbations of L. A model case is the Schrödinger operator −Δ+ V
where one has

Hp
−Δ+V, rad(X) = hp

at,ρ(X)(5)

for certain potentials V and with ρ related to V . We wish to point out that the
atomic space in (5) is a modification of the atomic spaces of Coifman and Weiss
– see Definition 2.9. The spaces in (5) and their identification were originally
studied in [13, 14, 17] for X = Rn, while variations have since been considered in
say [15, 16, 28, 40].

With these examples in mind, we are interested in developing a general frame-
work for (5) on a space X of homogeneous type. This was done in [40] for p = 1
assuming that X has reverse doubling (there the term “admissible function” is used
for ρ); however, we found we could not extend their approach to p below 1. Thus
a key motivation for our work is to find a way to address the scale p < 1. We
emphasize that we do not assume the reverse doubling condition in the theory.
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We first obtain a generalization of (3) and (4) in Theorem 2.12:

hp
L,rad,ρ(X) ≡ hp

L,max,ρ(X) ≡ hp
at,ρ(X)(6)

for n
n+δ < p ≤ 1. Next we extend (5) to an operator L that can be considered

a perturbation of L in a sense (encapsulated in assumptions (B1)-(B3) in Section
2.3) and obtain

Hp
L,rad(X) = Hp

L,max(X) = hp
at,ρ(X)(7)

for a suitable range of p. This is contained in Theorem 2.15. It is worth noting that
the proof (7) relies on the theory of local Hardy spaces that we develop for (4).

We conclude this introduction with some comments on our results. First, we give
a list of examples of our setting in Section 6. Although the list is not exhaustive,
this is intended to show the variety of possible applications and the generality of
our assumptions. Second, we remark that our setting provides a unifying way to
study the maximal function chracterization for local Hardy-type spaces related to
Schrödinger-type operators with non-negative potentials satisfying a reverse Hölder
inequality. Note that these conditions are technical conditions which exclude poten-
tials with small negative parts. We believe that our approach is flexible enough to
give maximal function chracterizations for local Hardy-type spaces with weights or
local Musielak-Orlicz Hardy-type spaces. We shall leave these for a future project.
Third, our approach can be adapted to settings with reverse doubling to give maxi-
mal function characterizations in terms of certain “approximations of the identity”,
extending the results in [40] for p = 1 to 0 < p ≤ 1. See Remark 5.8.

The rest of the article is organized in the following manner. Section 2 gives
the statement of our main results. In Section 3 we give some preliminary material
including a covering lemma, an inhomogeneous Calderón reproducing formula, and
some estimates for critical functions and functional calculus kernels. We prove (3)
and (4) in Section 4, and (6) and (7) in Section 5. Section 6 contains examples of
situations for which our setting applies, and a few of the more technical proofs are
relegated to the appendix in Section 7.

Throughout the paper, we always use C and c to denote positive constants that
are independent of the main parameters involved but whose values may differ from
line to line. We will write A � B if there is a universal constant C so that A ≤ CB
and A ∼ B if A � B and B � A. We denote a ∧ b = min{a, b}, a ∨ b = max{a, b}.
We will repeatedly apply the inequality e−xxα ≤ C(α)e−x/2 for x ≥ 0 and α > 0
without mention. We write B(x, r) to denote the ball centred at x with radius r.
By a “ball B” we mean the ball B(xB, rB) with some fixed centre xB and radius rB.

2. Statement of main results

Throughout the rest of this article X will be a space of homogeneous type. That
is, (X, d, μ) is a metric space endowed with a non-negative Borel measure μ with
the following “doubling” condition: there exists a constant C1 > 0 such that

(8) μ(B(x, 2r)) ≤ C1μ(B(x, r))

for all x ∈ X and r > 0, and all balls B(x, r) := {y ∈ X : d(x, y) < r}. In this
paper, we assume that μ(X) = ∞.
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It is not difficult to see that the condition (8) implies that there exists a constant
n ≥ 0 so that

(9) μ(B(x, λr)) ≤ C2λ
nμ(B(x, r))

for all x ∈ X, r > 0, and λ ≥ 1, and

(10) μ(B(x, r)) ≤ C3μ(B(y, r))
(
1 +

d(x, y)

r

)n
for all x, y ∈ X, r > 0.

Note that the doubling condition (9) implies that

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
� 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

c′t

)
and

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
� 1

μ(B(x, d(x, y)))
exp
(
− d(x, y)2

c′t

)
for any c′ > c. These two inequalities will be used frequently without mentioning.

In this paper, unless otherwise specified, for a ball B we shall mean B =
B(xB, rB).

2.1. Local Hardy spaces associated to operators. Let L be a non-negative
self-adjoint operator on L2(X) which generates semigroups {e−tL}t>0. Denote by
p̃t(x, y) and q̃t(x, y) the kernels associated with e−tL and tLe−tL, respectively.

We assume that L satisfies the following conditions:

(A1) L is a non-negative self-adjoint operator on L2(X).
(A2) The kernel p̃t(x, y) of e

−tL admits a Gaussian upper bound. That is, there
exist two positive constants C and c so that for all x, y ∈ X and t > 0,

(GE) |p̃t(x, y)| ≤
C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

We now give a definition of the (local) atomic Hardy spaces associated to oper-
ators for 0 < p ≤ 1. Note that the particular case p = 1 was investigated in [21].

Definition 2.1. Let p ∈ (0, 1], q ∈ [1,∞] ∩ (p,∞], and M ∈ N. A function a
supported in a ball B is called a (local) (p, q,M)L-atom if ‖a‖Lq(X) ≤ μ(B)1/q−1/p

and either

(a) rB ≥ 1; or
(b) rB < 1 and if there exists a function b ∈ D(LM ) such that

(i) a = LMb;
(ii) suppLkb ⊂ B, k = 0, 1, . . . ,M ;

(iii) ‖(r2BL)kb‖Lq(X) ≤ r2MB μ(B)
1
q−

1
p , k = 0, 1, . . . ,M .

It is obvious that the atoms in (a) do not depend on L and M but for the sake
of convenience we shall abuse notation and use (p, q,M)L to refer to atoms in both
(a) and (b) of Definition 2.1.

Next we define the atomic Hardy space hp,q
L,at,M (X).

Definition 2.2. Given p ∈ ( n
n+1 , 1], q ∈ [1,∞] ∩ (p,∞], and M ∈ N, we say that

f =
∑

λjaj is a (local) atomic (p, q,M)L-representation if {λj}∞j=0 ∈ lp, each aj is
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a (local) (p, q,M)L-atom, and the sum converges in L2(X). The space hp,q
L,at,M (X)

is then defined as the completion of{
f ∈ L2(X) : f has an atomic (p, q,M)L-representation

}
,

with the norm given by

‖f‖hp,q
L,at,M (X)

= inf

{(∑
|λj |p

)1/p
: f =

∑
λjaj is an atomic (p, q,M)L-representation

}
.

For f ∈ L2(X), we define the localized non-tangential maximal function as

f∗
L(x) = sup

0<t<1
sup

d(x,y)<t

|e−t2Lf(y)|

and the localized radial maximal function as

f+
L
(x) = sup

0<t<1
|e−t2Lf(x)|.

The maximal Hardy space associated to L is defined as follows.

Definition 2.3. Given p ∈ (0, 1], the Hardy space hp
L,max(X) is defined as the

completion of {
f ∈ L2(X) : f∗

L ∈ Lp(X)
}
,

with the norm given by

‖f‖hp
L,max(X) = ‖f∗

L‖Lp(X).

Similarly, the Hardy space hp
L,rad(X) is defined as the completion of{

f ∈ L2(X) : f+
L

∈ Lp(X)
}
,

with the norm given by

‖f‖hp
L,rad(X) = ‖f+

L
‖Lp(X).

It is obvious that hp
L,max(X) ⊂ hp

L,rad(X) for 0 < p ≤ 1. Moreover, by the

similar argument to Step I in the proof of Theorem 3.5 in [11], we obtain that
hp,q
L,at,M (X) ⊂ hp

L,max(X) provided p ∈ (0, 1], q ∈ [1,∞]∩(p,∞], and M > n
2 (

1
p −1).

Hence, the following conclusion holds true:

(11) hp,q
L,at,M (X) ⊂ hp

L,max(X) ⊂ hp
L,rad(X).

So it is both natural and interesting to raise the question of whether the reverse
inclusion of (11) still holds true. Our first main result is to give an affirmative
answer to this question.

Theorem 2.4. Let L satisfy (A1) and (A2). Let p ∈ (0, 1], q ∈ [1,∞] ∩ (p,∞],
and M > n

2 (
1
p − 1). Then the Hardy spaces hp,q

L,at,M (X), hp
L,max(X), and hp

L,rad(X)

coincide with equivalent norms.

Due to this coincidence, we shall write hp
L
(X) for any hp,q

L,at,M (X), hp
L,max(X),

and hp
L,rad(X) with p ∈ (0, 1], q ∈ [1,∞] ∩ (p,∞], and M > n

2 (
1
p − 1).
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2.2. Local Hardy spaces. The second main result is to give a maximal function
characterization for the local Hardy spaces on a space of homogeneous type. Note
that this was proved by Goldberg [20] in the Euclidean setting; however, in spaces
of homogeneous type this problem is much more difficult. This was solved by
Uchiyama [38] for the Hardy spaces Hp, but the range of p seems not to be optimal.
The complete solution can be found in [41] under the extra condition of the reverse
doubling condition imposed in the underlying spaces. The second main aim of
this paper is to deliver a new result on maximal function characterizations of local
Hardy spaces associated to an operator.

For convenience we recall the notion of (local) atomic Hardy spaces [6, 20, 40].

Definition 2.5. Let p ∈ ( n
n+1 , 1] and q ∈ [1,∞] ∩ (p,∞]. A function a is called a

(p, q)-atom associated to the ball B if

(i) supp a ⊂ B;
(ii) ‖a‖Lq(X) ≤ μ(B)1/q−1/p;

(iii)

ˆ
a(x)dμ(x) = 0 if rB ≤ 1.

We now define the atomic Hardy space on X.

Definition 2.6. Given p ∈ ( n
n+1 , 1] and q ∈ [1,∞]∩(p,∞], we say that f =

∑
λjaj

is an atomic (p, q)-representation if {λj}∞j=0 ∈ lp, each aj is a (p, q)-atom, and the

sum converges in L2(X). The space hp,q
at (X) is then defined as the completion of{

f ∈ L2(X) : f has an atomic (p, q)-representation
}
,

with the norm given by

‖f‖hp,q
at (X)=inf

{(∑
|λj |p

)1/p
: f=

∑
λjaj is an atomic (p, q)-representation

}
.

Assume now that the operator L satisfies the following two additional conditions:

(A3) There is a positive constant δ1 > 0 so that

(H) |p̃t(x, y)− p̃t(x, y)| ≤
C

μ(B(x,
√
t))

[d(x, x)√
t

]δ1
exp
(
− d(x, y)2

ct

)
,

whenever d(x, x) ≤ [
√
t+ d(x, y)]/2 and t > 0.

(A4) For every x ∈ X,

(C)

ˆ
X

p̃t(x, y)dμ(x) = 1.

Then we have the following.

Theorem 2.7. Let L satisfy (A1), (A2), (A3), and (A4). Let p ∈ ( n
n+δ1

, 1] and

q ∈ [1,∞] ∩ (p,∞]. Then the Hardy spaces hp,q
at (X), hp

L,max(X), and hp
L,rad(X)

coincide with equivalent norms. Hence, in this case, we shall write hp(X) for any
hp,q
at (X), hp

L,max(X), and hp
L,rad(X) with p ∈ ( n

n+δ1
, 1] and q ∈ [1,∞] ∩ (p,∞].

As mentioned earlier, the maximal function chracterization result for local Hardy
spaces was proved in [41] under the presence of the reverse doubling condition.
Hence, the main contribution of Theorem 2.7 is to remove the reverse doubling
condition. This allows us to apply the theorem to more general settings.

As a direct consequence of Theorem 2.4 and Theorem 2.7, we obtain the follow-
ing.
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Corollary 2.8. Let L satisfy (A1), (A2), (A3), and (A4). Let p ∈ ( n
n+δ1

, 1],

q ∈ [1,∞]∩ (p,∞], and M > n
2 (

1
p −1). Then the Hardy spaces hp,q

at (X) and hp,q
L,at,M

coincide with equivalent norms.

We note that apart from examples given in Section 6, our results can be applied
to certain operators defined on an open subset of R2. More precisely, when X = Ω
is an unbounded domain of Rn with smooth boundary and L = −ΔD is the Laplace
operator on Ω with Dirichlet boundary condition, then L satisfies (A1) and (A2). If
instead we take L = −ΔN to be the Laplace operator on Ω with Neumann boundary
condition, then L satisfies (A1)–(A4). The bounded case needs new ideas and a
new approach.

2.3. Local Hardy spaces associated to critical functions. A function ρ : X →
(0,∞) is called a critical function if there exist positive constants C and k0 so that

(12) ρ(y) ≤ Cρ(x)

(
1 +

d(x, y)

ρ(x)

) k0
k0+1

for all x, y ∈ X.
Note that the concept of critical functions was introduced in the setting of

Schrödinger operators on Rn in [18] (see also [33]) and then was extended to the
spaces of homogeneous type in [40].

A simple example of a critical function is ρ ≡ 1. Moreover, one of the most
important classes of the critical functions is the one involving the weights satisfying
the reverse Hölder’s inequality. Recall that a non-negative locally integrable func-
tion w is said to be in the reverse Hölder class RHq(X) with q > 1 if there exists
a constant C > 0 so that(  

B

w(x)qdμ(x)
)1/q

≤
 
B

w(x)dμ(x)

for all balls B ⊂ X. Note that if w ∈ RHq(X), then w is a Muckenhoupt weight.
See [35].

Now suppose V ∈ RHq(X) for some q > 1 and, following [33, 40], set

(13) ρ(x) = sup
{
r > 0 :

r2

μ(B(x, r))

ˆ
B(x,r)

V (y)dμ(y) ≤ 1
}
.

Then it was proved in [33, 40] that ρ is a critical function provided n ≥ 1 and
q > max{1, n/2}.

We now introduce new local Hardy spaces associated to critical functions ρ.

Definition 2.9. Let ρ be a critical function on X. Let p ∈ ( n
n+1 , 1], q ∈ [1,∞] ∩

(p,∞], and ε ∈ (0, 1]. A function a is called a (p, q, ρ, ε)-atom associated to the ball
B(x0, r) if

(i) supp a ⊂ B(x0, r);
(ii) ‖a‖Lq(X) ≤ μ(B(x0, r))

1/q−1/p;

(iii)

ˆ
a(x)dμ(x) = 0 if r < ερ(x0)/4.

For the sake of convenience, when ε = 1 we shall write (p, q, ρ)-atom instead of
(p, q, ρ, ε)-atom.
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Definition 2.10. Let ρ be a critical function on X. Let p ∈ ( n
n+1 , 1], q ∈ [1,∞] ∩

(p,∞], and ε ∈ (0, 1]. We say that f =
∑

λjaj is an atomic (p, q, ρ, ε)-representation
if {λj}∞j=0 ∈ lp, each aj is a (p, q, ρ, ε)-atom, and the sum converges in L2(X). The

space hp,q
at,ρ,ε(X) is then defined as the completion of{

f ∈ L2(X) : f has an atomic (p, q, ρ, ε)-representation
}
,

with the norm given by

‖f‖hp,q
at,ρ,ε(X)

= inf
{(∑

|λj |p
)1/p

: f =
∑

λjaj is an atomic (p, q, ρ, ε)-representation
}
.

In the particular case ε = 1 we write hp,q
at,ρ(X) instead of hp,q

at,ρ,ε(X). It is clear

when ρ ≡ 1 (or any fixed positive constant) we have hp,q
at,ρ(X) ≡ hp,q

at (X).
Assume that the operator L satisfies (A1)-(A4). Let ρ be a critical function on

X. For f ∈ L2(X) we define

f∗
L,ρ(x) = sup

0<t<ρ(x)2
sup

d(x,y)<t

|e−t2Lf(y)|

and

f+
L,ρ(x) = sup

0<t<ρ(x)2
|e−t2Lf(x)|

for all x ∈ X.
The maximal Hardy spaces associated to L and ρ are defined as follows.

Definition 2.11. Let L satisfy (A1)-(A4) and let ρ be a critical function on X.
Given p ∈ (0, 1], the Hardy space hp

L,max,ρ(X) is defined as the completion of

{f ∈ L2(X) : f∗
L,ρ ∈ Lp(X)}

under the norm given by

‖f‖hp
L,max,ρ(X) = ‖f∗

L,ρ‖Lp(X).

Similarly, the Hardy space hp
L,rad,ρ(X) is defined as a completion of

{f ∈ L2(X) : f+
L,ρ ∈ Lp(X)}

under the norm given by

‖f‖hp
L,rad,ρ(X) = ‖f+

L,ρ‖Lp(X).

We have the following result.

Theorem 2.12. Let L satisfy (A1), (A2), (A3), and (A4) and let ρ be a critical
function on X. Let p ∈ ( n

n+δ1
, 1] and q ∈ [1,∞] ∩ (p,∞]. Then we have

hp,q
at,ρ(X) ≡ hp

L,max,ρ(X) ≡ hp
L,rad,ρ(X).

We now consider another non-negative self-adjoint operator L on L2(X) which
acts as a perturbation of the operator L. Denote by pt(x, y) the kernels associated



7238 THE ANH BUI, XUAN THINH DUONG, AND FU KEN LY

with e−tL, and qt(x, y) = pt(x, y) − p̃t(x, y), where p̃t(x, y) is the kernel of e−tL.
We assume the following conditions:

(B1) For all N > 0, there exist positive constants c and C so that

|pt(x, y)| ≤
C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

for all x, y ∈ X and t > 0.
(B2) There is a positive constant δ2 > 0 so that

|qt(x, y)| ≤
( √

t√
t+ ρ(x)

)δ2 C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
for all x, y ∈ X and t > 0.

(B3) There is a positive constant δ3 > 0 so that

|qt(x, y)− qt(x, y)|

≤ min

{[d(x, x)
ρ(y)

]δ3
,
[d(x, x)√

t

]δ3} C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
whenever d(x, x) ≤ min{d(x, y)/4, ρ(x)} and t > 0.

Remark 2.13. The assumptions (A3) and (B3) imply that

(14) |pt(x, y)− pt(x, y)| ≤
[d(x, x)√

t

]δ3∧δ1 C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
whenever d(x, x) ≤ min{d(x, y)/4, ρ(x)} and t > 0, where δ3 ∧ δ1 = min{δ1, δ3}.

Let ρ be a critical function on X. For f ∈ L2(X) we define

Mmax,Lf(x) = sup
t>0

sup
d(x,y)<t

|e−t2Lf(y)|

and

Mrad,Lf(x) = sup
t>0

|e−t2Lf(x)|

for all x ∈ X.
The maximal Hardy spaces associated to L are defined as follows.

Definition 2.14. Given p ∈ (0, 1], the Hardy space Hp
L,max(X) is defined as a

completion of {
f ∈ L2(X) : Mmax,Lf ∈ Lp(X)

}
,

under the norm

‖f‖Hp
L,max(X) = ‖Mmax,L‖Lp(X).

Similarly, the Hardy space Hp
L,rad(X) is defined as a completion of{

f ∈ L2(X) : Mrad,Lf ∈ Lp(X)
}
,

under the norm

‖f‖Hp
L,rad(X) = ‖Mrad,Lf‖Lp(X).

Theorem 2.15. Let L and L satisfy (A1)-(A4) and (B1)-(B3), respectively. Let
p ∈ ( n

n+δ0
, 1] and q ∈ [1,∞] ∩ (p,∞], where δ0 = min{δ1, δ2, δ3}. Then we have

hp,q
at,ρ(X) ≡ Hp

L,max(X) ≡ Hp
L,rad(X).
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3. A covering lemma, critical functions, a Calderón reproducing

formula and some kernel estimates

For a measurable subset E ⊂ X and f ∈ L1(E) we denote 
E

fdμ =
1

μ(E)

ˆ
E

fdμ.

We denote by M the Hardy-Littlewood maximal function defined by

Mf(x) = sup
B�x

 
B

|f |dμ,

where the supremum is taken over all balls B containing x.
We will now recall an important covering lemma from [5]. The open sets de-

scribed in the lemma play the role of dyadic cubes in our setting.

Lemma 3.1. There exists a collection of open sets {Qk
τ ⊂ X : k ∈ Z, τ ∈ Ik},

where Ik denotes a certain (possibly finite) index set depending on k, and constants
ρ ∈ (0, 1), a0 ∈ (0, 1], and C1 ∈ (0,∞) such that

(i) μ(X\
⋃

τ Q
k
τ ) = 0 for all k ∈ Z;

(ii) if i ≥ k, then either Qi
τ ⊂ Qk

β or Qi
τ ∩Qk

β = ∅;
(iii) for (k, τ ) and each i < k, there exists a unique τ ′ such that Qk

τ ⊂ Qi
τ ′ ;

(iv) the diameter diam (Qk
τ ) ≤ C1ρ

k;
(v) each Qk

τ contains a certain ball B(xQk
τ
, a0ρ

k).

The following elementary estimate will be used frequently. Its proof is simple
and we omit it.

Lemma 3.2. Let ε > 0. We haveˆ
X

1

μ(B(x, s)) ∧ μ(B(y, s))

(
1 +

d(x, y)

s

)−n−ε

|f(y)|dμ(y) � Mf(x)

for all x ∈ X and s > 0.

3.1. Critical functions. For x ∈ X, we call the ball B(x, ρ(x)) a critical ball. We
now give some basic properties for the critical functions and critical balls.

Lemma 3.3. Let ρ be a critical function on X.

(a) For λ > 0 and x ∈ X, we have

(1 + λ)−k0ρ(x) � ρ(y) � (1 + λ)
k0

k0+1 ρ(x) for all y ∈ B(x, λρ(x)).

(b) For all x, y ∈ X, we have ρ(x) + d(x, y) ≈ ρ(y) + d(x, y).
(c) There exists a constant C so that

ρ(y) ≥ C[ρ(x)]1+k0 [ρ(y) + d(x, y)]−k0

for all x, y ∈ X.
(d) Let ε ∈ (0, 1] and a > 0. For any N > 0 we have

(15) exp
(
− d(x, y)2

a[ερ(x)]2

)
≤ c(a,N)

( ερ(y)

d(x, y)

)N
and

(16) exp
(
− d(x, y)2

a[ερ(x)]2

) 1

ρ(y)
≤ c(a,N)

ρ(x)

( ερ(y)

d(x, y)

)N
for all x, y ∈ X.
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Proof. (a) By (12), we have ρ(y) � (1 + λ)
k0

k0+1 ρ(x) for all y ∈ B(x, λρ(x)). It
remains to prove the first inequality. Indeed, if ρ(y) ≥ ρ(x), there is nothing to
prove. If ρ(y) ≤ ρ(x), by (12), we write

ρ(x) � [ρ(y)]
1

1+k0 [ρ(y) + d(x, y)]
k0

k0+1 � (1 + λ)
k0

k0+1 [ρ(y)]
1

1+k0 [ρ(x)]
k0

k0+1 .

It implies that ρ(y) ≥ (1 + λ)−k0ρ(x). This completes the proof of (a).
For the proofs of (b) and (c), we refer to [40, Lemma 2.1].
(d) We only provide the proof of (16), since the proof of (16) is similar and

easier.
We consider two cases.

Case 1 (d(x, y) ≤ ρ(y)). From (c) we have ρ(x) � ρ(y). This, along with the fact

that e−x2 � x−N , yields (16).

Case 2 (d(x, y) > ρ(y)). From (12) we have

ρ(x) ≤ Cρ(y)

(
d(x, y)

ρ(y)

) k0
k0+1

.

This, in combination with inequality e−x2 � x−N(k0+1)−k0 , implies

exp
(
− d(x, y)2

a[ερ(x)]2

) 1

ρ(y)

� 1

ρ(x)

(
d(x, y)

ρ(y)

) k0
k0+1 ( ερ(x)

d(x, y)

)N(k0+1)+k0

� 1

ρ(x)

(
d(x, y)

ρ(y)

) k0
k0+1

⎡⎣ ερ(y)

d(x, y)

(
d(x, y)

ρ(y)

) k0
k0+1

⎤⎦N(k0+1)+k0

� εk0(N+1)

ρ(x)

(
d(x, y)

ρ(y)

) k0
k0+1

[
ερ(y)

d(x, y)

]N
,

which implies (16). �

A direct consequence of Lemma 3.3 is that whenever B := B(x0, ρ(x0)) is a
critical ball, then ρ(x0) ∼ ρ(x) for all x ∈ B.

The following result will be useful in what follows. See Lemma 2.3 and Lemma
2.4 in [40].

Lemma 3.4. Let ρ be a critical function on X. Then there exists a sequence of
points {xα}α∈I ⊂ X and a family of functions {ψα}α∈I satisfying for some C > 0

(i)
⋃
α∈I

B(xα, ρ(xα)) = X.

(ii) For every λ ≥ 1 there exist constants C and N1 such that∑
α∈I

χB(xα,λρ(xα)) ≤ CλN1 .

(iii) suppψ ⊂ B(xα, ρ(xα)/2) and 0 ≤ ψα(x) ≤ 1 for all x ∈ X.
(iv) |ψα(x)− ψα(y)| ≤ Cd(x, y)/ρ(xα).
(v)

∑
α∈I ψα(x) = 1 for all x ∈ X.
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3.2. Calderón reproducing formula and some kernel estimates. In this sub-
section, we assume that L satisfies (A1) and (A2) only.

Denote by EL(λ) a spectral decomposition of L. Then by spectral theory, for
any bounded Borel function F : [0,∞) → C we can define

F (L) =

ˆ ∞

0

F (λ)dEL(λ)

as a bounded operator on L2(X). It is well known that the kernel Kcos(t
√
L) of

cos(t
√
L) satisfies

(17) suppKcos(t
√
L) ⊂ {(x, y) ∈ X ×X : d(x, y) ≤ t}.

See for example [7]. We have the following useful lemma.

Lemma 3.5 ([23]). Let ϕ ∈ C∞
0 (R) be an even function with suppϕ ⊂ (−1, 1) and´

ϕ = 2π. Denote by Φ the Fourier transform of ϕ. For every  ∈ N, set Φ(	)(ξ) :=
d�

dξ�
Φ(ξ). Then for every k,  ∈ N and k +  ∈ 2N, the kernel K(t

√
L)kΦ(�)(t

√
L) of

(t
√
L)kΦ(	)(t

√
L) satisfies

(18) suppK(t
√
L)kΦ(�)(t

√
L) ⊂ {(x, y) ∈ X ×X : d(x, y) ≤ t}

and

(19) |K(t
√
L)kΦ(�)(t

√
L)(x, y)| ≤

C

μ(B(x, t))
.

The following inhomogeneous Calderón reproducing formula related to L will be
crucial for the development of our paper.

Proposition 3.6. Let ϕ be as in Lemma 3.5. Let ψ ∈ C∞
0 (R) be an even function

with suppψ ⊂ (−1, 1) and
´
ψ = 2π. For every k, j ∈ N, set Φk,j(ξ) := ξjΦ(k)(ξ)

and Ψk,j(ξ) := ξjΨ(k)(ξ), where Φ and Ψ are the Fourier transforms of ϕ and ψ,
respectively. Then for each M ∈ N and f ∈ L2(X) there exist numbers c(M,k) and
c(M,k, j) so that

(20)

f =
M+1∑
k=0

c(M,k)

ˆ 1/2

0

(t2L)MΦ2k,2(t
√
L)Ψ(2M−2k+2)(t

√
L)f

dt

t

+
M∑
k=0

c(M,k)

ˆ 1/2

0

(t2L)MΦ2k+1,1(t
√
L)Ψ2M−2k+1,1(t

√
L)f

dt

t

+

2M+2∑
k=1

k∑
j=0

c(M,k, j)Φj,j(2
−1

√
L)Ψk−j,k−j(2

−1
√
L)f

in L2(X).

Proof. By Lebnitz’s rule we have for any k ∈ N

(21)
dk

dsk
(Φ(s)Ψ(s)) =

k∑
j=0

Ck
j Φ

(j)(s)Ψ(k−j)(s).
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On the other hand, by integration by parts and a straightforward calculation we
obtainˆ 1/2

0

(tz)2M+2(ΦΨ)(2M+2)(tz)
dt

t

=

2M+1∑
k=0

(−1)k−1 (2M + 2)!

(k + 1)!

(z
2

)k
(ΦΨ)(k)

(z
2

)
+ (2M + 2)!

=
2M+1∑
k=0

k∑
j=0

(−1)k−1Ck
j

(2M)!

(k + 1)!
Φj,j

(z
2

)
Ψk−j,k−j

(z
2

)
+ (2M + 2)!.

This, along with the spectral theory, implies

f =
1

(2M + 2)!

ˆ 1/2

0

(t
√
L)2M+2(ΦΨ)(2M+2)(t

√
L)

dt

t

+
2M+1∑
k=0

k∑
j=0

c(M,k, j)Φj,j(2
−1

√
L)Ψk−j,k−j(2

−1
√
L)f.

Moreover, from (21) we can find that
ˆ 1/2

0

(t
√
L)2M+2(ΦΨ)(2M+2)(t

√
L)

dt

t

=

2M+2∑
k=0

C2M+2
k

ˆ 1/2

0

(t2L)M+2Φ(k)(t
√
L)Ψ(2M−k+2)(t

√
L)f

dt

t

=
M+1∑
k=0

c(M,k)

ˆ 1/2

0

(t2L)MΦ2k,2(t
√
L)Ψ(2M−2k+2)(t

√
L)f

dt

t

+

M∑
k=0

c(M,k)

ˆ 1/2

0

(t2L)MΦ2k+1,1(t
√
L)Ψ2M−2k+1,1(t

√
L)f

dt

t
.

Taking these two estimates we obtain (20). �

We record the following result in [9].

Lemma 3.7. Let ϕ ∈ S (R) be an even function with ϕ(0) = 1 and let N > 0.
Then there exist even functions φ, ψ ∈ S (R) with φ(0) = 1 and ψ(ν)(0) = 0, ν =
0, 1, . . . , N so that for every f ∈ L2(X) and every j ∈ Z we have

f = φ(2−j
√
L)ϕ(2−j

√
L)f +

∑
k≥j

ψ(2−k
√
L)[ϕ(2−k

√
L)−ϕ(2−k+1

√
L)]f in L2(X).

The following results give some kernel estimates which play an important role in
the proof of the main results.

Lemma 3.8.

(a) Let ϕ ∈ S (R) be an even function. Then for any N > 0 there exists C
such that

(22) |Kϕ(t
√
L)(x, y)| ≤

C

μ(B(x, t)) + μ(B(y, t))

(
1 +

d(x, y)

t

)−n−N

for all t > 0 and x, y ∈ X.
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(b) Let ϕ1, ϕ2 ∈ S (R) be even functions. Then for any N > 0 there exists C
such that

(23) |Kϕ1(t
√
L)ϕ2(s

√
L)(x, y)| ≤ C

1

μ(B(x, t)) + μ(B(y, t))

(
1 +

d(x, y)

t

)−n−N

for all t ≤ s < 2t and x, y ∈ X.

(c) Let ϕ1, ϕ2 ∈ S (R) be even functions with ϕ
(ν)
2 (0) = 0 for ν = 0, 1, . . . , 2

for some  ∈ Z+. Then for any N > 0 there exists C such that

(24) |Kϕ1(t
√
L)ϕ2(s

√
L)(x, y)| ≤ C

(s
t

)2	 1

μ(B(x, t)) + μ(B(y, t))

(
1+

d(x, y)

t

)−n−N

for all t ≥ s > 0 and x, y ∈ X.

Proof. (a) The estimate (22) was proved in [3, Lemma 2.3] in the particular case
X = Rn but the proof is still valid in the spaces of homogeneous type.

(b) We have

Kϕ1(t
√
L)ϕ2(s

√
L)(x, y) =

ˆ
X

Kϕ1(t
√
L)(x, z)Kϕ2(t

√
L)(z, y)dz.

This along with (a) implies that

|Kϕ1(t
√
L)ϕ2(s

√
L)(x, y)|

�
ˆ
X

1

μ(B(x, t))

(
1 +

d(x, z)

t

)−2n−N 1

μ(B(y, s))

(
1 +

d(z, y)

s

)−3n−N−1

dz

�
ˆ
X

1

μ(B(x, t))

(
1 +

d(x, z)

t

)−2n−N 1

μ(B(y, t))

(
1 +

d(z, y)

t

)−3n−N−1

dz

�
ˆ
X

1

μ(B(x, t))

(
1 +

d(x, y)

t

)−2n−N 1

μ(B(y, t))

(
1 +

d(z, y)

t

)−n−1

dz

� 1

μ(B(x, t))

(
1 +

d(x, y)

t

)−2n−N

,

where in the second inequality we used the fact that s ∼ t and in the last inequality
we used Lemma 3.2.

This, in combination with (9), gives (b).
(c) Set ψ1(λ) = λ2	ϕ1(λ) and ψ2(λ) = λ−2	ϕ2(λ). It is obvious that ψ1, ψ2 are

even functions and ψ1 ∈ S (R). Moreover, since ϕ
(ν)
2 (0) = 0 for ν = 0, 1, . . . , 2,

one has ψ2 ∈ S (R). Moreover,

Kϕ1(t
√
L)ϕ2(s

√
L)(x, y) =

(s
t

)2	
Kψ1(t

√
L)ψ2(s

√
L)(x, y).

At this stage, arguing similarly to (b) we obtain (c). �

4. Maximal function characterizations for local Hardy spaces

related to L

The bulk of this section will be devoted to the proof of Theorem 2.4. Theorem
2.7 will then be deduced from Theorem 2.4 at the end of the section.
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4.1. Proof of Theorem 2.4. Due to (11), to prove Theorem 2.4 it suffices to
prove that

(25) hp
L,rad(X) ⊂ hp

L,max(X)

and

(26) hp
L,max(X) ⊂ hp,q

L,at,M (X)

for all p ∈ (0, 1], q ∈ [1,∞] ∩ (p,∞], and M > n
2 (

1
p − 1).

In order to prove (25) we need the following auxiliary results.
Let F be a measurable function on X × (0,∞). For α > 0 we set

F ∗
α(x) = sup

0<t<1
sup

d(x,y)<αt

|F (y, t)|.

In the particular case α = 1, we write F ∗ instead of F ∗
α.

We have the following result whose proof is similar to that of [4, Theorem 2.3].

Lemma 4.1. For any p > 0 and 0 < α2 ≤ α1, there exists C depending on n and
p so that

‖F ∗
α1
‖Lp(X) ≤ C

(
1 +

2α1

α2

)n/p
‖F ∗

α2
‖Lp(X).

From the lemma above we immediately imply the following result.

Lemma 4.2. For any p ∈ (0, 1] and λ > n/p, there exists C depending on n and
p so that ∥∥∥ sup

0<t<1
sup
y

F (y, t)
(
1 +

d(x, y)

t

)−λ∥∥∥
Lp

x(X)
≤ C‖F ∗‖Lp(X).

Proof. The proof is standard but we provide it for the sake of completeness.
We have

sup
0<t<1

sup
y

F (y, t)
(
1 +

d(x, y)

t

)−λ

≤ F ∗(x) +
∞∑
k=0

sup
0<t<1

sup
2kt≤d(x,y)<2k+1t

F (y, t)
(
1 +

d(x, y)

t

)−λ

≤ F ∗(x) +
∞∑
k=0

2−kλF ∗
2k+1(x).

For p ∈ (0, 1], we then imply∥∥∥ sup
0<t<1

sup
y

F (y, t)
(
1 +

d(x, y)

t

)−λ∥∥∥p
Lp

x(X)
≤

∞∑
k=0

2−kpλ‖F ∗
2k‖

p
Lp(X).

This, in combination with Lemma 4.1, yields that∥∥∥ sup
0<t<1

sup
y

F (y, t)
(
1 +

d(x, y)

t

)−λ∥∥∥p
Lp

x(X)
≤ cn,p

∞∑
k=0

2kn2−kpλ‖F ∗‖pLp(X)

� ‖F ∗‖pLp(X),

as long as λ > n/p. �
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For any even function ϕ ∈ S (R), α > 0, and f ∈ L2(X) we define

ϕ∗
L,α(f)(x) = sup

0<t<1
sup

d(x,y)<αt

|ϕ(t
√
L)f(y)|

and

ϕ+
L,α(f)(x) = sup

0<t<1
|ϕ(t

√
L)f(x)|.

As usual, we drop the index α as α = 1.
We now are in position to prove the following estimate.

Proposition 4.3. Let p ∈ (0, 1]. Let ϕ1, ϕ2 ∈ R be even functions with ϕ1(0) = 1
and ϕ2(0) = 0 and α1, α2 > 0. Then for every f ∈ L2(X) we have

(27) ‖(ϕ2)
∗
L,α2

f‖Lp(X) � ‖(ϕ1)
∗
L,α1

f‖Lp(X).

As a consequence, for every even function ϕ with ϕ(0) = 1 and α > 0 we have

(28) ‖ϕ∗
L,αf‖Lp(X) ∼ ‖f∗

L,loc‖Lp(X).

Proof. From Lemma 4.1 it suffices to prove the proposition with α1 = α2 = 1.
Fix t ∈ (0, 1) and let j0 ∈ Z

+ so that 2−j0+1 ≤ t < 2−j0+2. According to
Lemma 3.7 there exist even functions φ, ψ ∈ R with φ(0) = 1 and ψ(ν)(0) = 0 for
ν = 0, 1, . . . , 2 ( will be determined later) so that

f = φ(2−j0
√
L)ϕ1(2

−j0
√
L)f +

∑
k≥j0

ψ(2−k
√
L)[ϕ1(2

−k
√
L)− ϕ1(2

−k+1
√
L)]

which implies

ϕ2(t
√
L)f = ϕ2(t

√
L)φ(2−j0

√
L)ϕ1(2

−j0
√
L)f

+
∑
k≥j0

ϕ2(t
√
L)ψ(2−k

√
L)[ϕ1(2

−k
√
L)− ϕ1(2

−k+1
√
L)]f.

Hence,

sup
d(x,y)<t

|ϕ2(t
√
L)f(y)| ≤ sup

d(x,y)<t

|ϕ2(t
√
L)φ(2−j0

√
L)ϕ1(2

−j0
√
L)f(y)|

+
∑
k≥j0

sup
d(x,y)<t

|ϕ2(t
√
L)ψ(2−k

√
L)ϕ1(2

−k
√
L)f(y)|

+
∑
k≥j0

sup
d(x,y)<t

|ϕ2(t
√
L)ψ(2−k

√
L)ϕ1(2

−k+1
√
L)f(y)|

=: I1 + I2 + I3.

Fix λ > n/p and N > 0. Using (23) we have

I1 � sup
d(x,y)<t

ˆ
X

1

V (y, 2−j0)

(
1 +

d(y, z)

2−j0

)−n−N−λ

|ϕ1(2
−j0

√
L)f(z)|dμ(z).

Since d(x, y) < t < 2−j0+2, we have(
1 +

d(y, z)

2−j0

)−λ

∼
(
1 +

d(x, z)

2−j0

)−λ

.
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As a consequence, we have
(29)

I1 � sup
z

(
1 +

d(x, z)

2−j0

)−λ

|ϕ1(2
−j0

√
L)f(z)|

ˆ
X

1

V (y, 2−j0)

(
1+

d(y, z)

2−j0

)−n−N

dμ(z)

� sup
z

(
1 +

d(x, z)

2−j0

)−λ

|ϕ1(2
−j0

√
L)f(z)|

� sup
0<t<1

sup
z

(
1 +

d(x, z)

t

)−λ

|ϕ1(t
√
L)f(z)|.

Note that t ≥ 2−k as k ≥ j0. Hence, applying (24) we obtain

I2 �
∑
k≥j0

sup
d(x,y)<t

ˆ
X

(2−k

t

)2	 1

μ(B(y, t))

×
(
1 +

d(y, z)

t

)−n−N−λ

|ϕ1(2
−k

√
L)f(z)|dμ(z)

�
∑
k≥j0

sup
d(x,y)<t

ˆ
X

2−2	(k−j0)
1

μ(B(y, t))

×
(
1 +

d(y, z)

t

)−n−N−λ

|ϕ1(2
−k

√
L)f(z)|dμ(z),

where in the last inequality we used t ∼ 2−j0 .
On the other hand, we have(

1 +
d(y, z)

t

)−λ

∼
(
1 +

d(x, z)

t

)−λ

∼
(
1 +

d(x, z)

2−j0

)−λ

as d(x, y) < t.

Hence, by Lemma 3.2 we have

I2 �
∑
k≥j0

ˆ
X

2−2	(k−j0)
1

μ(B(y, t))

(
1 +

d(y, z)

t

)−n−N

×
(
1 +

d(x, z)

2−j0

)−λ

|ϕ1(2
−k

√
L)f(z)|dμ(z)

�
∑
k≥j0

ˆ
X

2−(2	−λ)(k−j0)
1

μ(B(y, t))

(
1 +

d(y, z)

t

)−n−N

×
(
1 +

d(x, z)

2−k

)−λ

|ϕ1(2
−k

√
L)f(z)|dμ(z)

�
∑
k≥j0

2−(2	−λ)(k−j0) sup
z

(
1 +

d(x, z)

2−k

)−λ

|ϕ1(2
−k

√
L)f(z)|.

We now choose  > λ/2. Then from the inequality above we arrive at

(30) I2 � sup
0<t<1

sup
z

(
1 +

d(x, z)

t

)−λ

|ϕ1(t
√
L)f(z)|.

Similarly,

(31) I3 � sup
0<t<1

sup
z

(
1 +

d(x, z)

t

)−λ

|ϕ1(t
√
L)f(z)|.

Taking these three estimates (29), (30), and (31) into account and then applying
Lemma 4.2 we get (27) as desired.
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To prove (28), we apply (27) for ϕ1(λ) = ϕ(λ) − e−λ2

, ϕ2(λ) = e−λ2

, α1 = α,
and α2 = 1 to obtain∥∥∥ sup

0<t<1
sup

d(x,y)<αt

|ϕ(t
√
L)f(y)− e−t2Lf(y)|

∥∥∥
Lp

x(X)
� ‖f∗

L‖Lp(X).

This, along with Lemma 4.1, yields

‖ϕ∗
L,αf‖Lp(X) � ‖f∗

L‖Lp(X).

Similarly, we obtain

‖f∗
L‖Lp(X) � ‖ϕ∗

L,αf‖Lp(X).

This proves (28). �

For each N > 0 and each even function ϕ ∈ S (R) we define

M∗
L,ϕ,Nf(x) = sup

0<t<1
sup
y∈X

|ϕ(t
√
L)f(y)|(

1 + d(x,y)
t

)N
for each f ∈ L2(X).

Obviously, we have ϕ∗
Lf(x) ≤ M∗

L,ϕ,Nf(x) for all x ∈ X,N > 0, and even

functions ϕ ∈ S (R).
The inclusion (25) follows immediately from the following result.

Proposition 4.4. Let p ∈ (0, 1]. Let ϕ ∈ S (R) be an even function with ϕ(0) = 1.
Then we have, for every f ∈ L2(X),

(32)
∥∥∥M∗

L,ϕ,Nf
∥∥∥
Lp(X)

� ‖ϕ+
L
f‖Lp(X),

provided N > n/p.
As a consequence, we have∥∥∥ϕ∗

Lf
∥∥∥
Lp(X)

� ‖ϕ+
L
f‖Lp(X).

Proof. We fix 0 < θ < p and  ∈ N so that N > n/θ and  > N/2. Fix t ∈ (0, 1)
and let j0 ∈ Z+ so that 2−j0+1 ≤ t < 2−j0+2. According to Lemma 3.7 there exist
even functions φ, ψ ∈ R with φ(0) = 1 and ψ(ν)(0) = 0 for ν = 0, 1, . . . , 2 so that

ϕ(t
√
L)f = ϕ(t

√
L)φ(2−j0

√
L)ϕ(2−j0

√
L)f

+
∑
k≥j0

ϕ(t
√
L)ψ(2−k

√
L)[ϕ(2−k

√
L)− ϕ(2−k+1

√
L)]f.

Hence, for any y ∈ X we have

(33)

(
1 +

d(x, y)

t

)−N

|ϕ(t
√
L)f(y)|

≤
(
1 +

d(x, y)

t

)−N

|ϕ(t
√
L)φ(2−j0

√
L)ϕ(2−j0

√
L)f(y)|

+
∑
k≥j0

(
1 +

d(x, y)

t

)−N

|ϕ(t
√
L)ψ(2−k

√
L)ϕ(2−k

√
L)f(y)|

+
∑
k≥j0

(
1 +

d(x, y)

t

)−N

|ϕ(t
√
L)ψ(2−k

√
L)ϕ(2−k+1

√
L)f(y)|

=: J1 + J2 + J3.
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We now estimate the term J1. Using (23) and the fact that t ∼ 2−j0 we obtain

(34)

J1 �
ˆ
X

1

μ(B(z, t))

(
1 +

d(y, z)

t

)−N(
1 +

d(x, y)

t

)−N

|ϕ(t
√
L)f(z)|dμ(z)

�
ˆ
X

1

μ(B(z, t))

(
1 +

d(x, z)

t

)−N

|ϕ(t
√
L)f(z)|dμ(z)

� [M∗
L,ϕ,Nf(x)]1−θ ×

ˆ
X

1

μ(B(z, t))

(
1 +

d(x, z)

t

)−Nθ

|ϕ(t
√
L)f(z)|θdμ(z)

� [M∗
L,ϕ,Nf(x)]1−θM(|ϕ+

L
f |θ)(x),

where we used Lemma 3.2 in the last inequality due to Nθ > n.
Since t ≥ 2−k as k ≥ j0, using (24) we find that

(35)

J2 �
∑
k≥j0

ˆ
X

(2−k

t

)2	 1

μ(B(z, t))

(
1 +

d(y, z)

t

)−N

×
(
1 +

d(x, y)

t

)−N

|ϕ(2−k
√
L)f(z)|dμ(z)

�
∑
k≥j0

ˆ
X

2−2	(k−j0)
1

V (z, 2−j0)

(
1 +

d(x, z)

2−j0

)−N

|ϕ(2−k
√
L)f(z)|dμ(z),

where in the last inequality we used t ∼ 2−j0 .
Note that (

1 +
d(x, z)

2−j0

)−N

≤ 2(k−j0)N
(
1 +

d(x, z)

2−k

)−N

.

Inserting this into (35), we get that

J2 �
∑
k≥j0

2−(2	−N)(k−j0)

ˆ
X

1

V (z, 2−k)

(
1 +

d(x, z)

2−k

)−N

|ϕ(2−k
√
L)f(z)|dμ(z).

Arguing similarly to (34) we obtain

(36)

J2 �
∑
k≥j0

2−(2	−N)(k−j0)[M∗
L,ϕ,Nf(x)]1−θM(|ϕ+

L
f |θ)(x)

� [M∗
L,ϕ,Nf(x)]1−θM(|ϕ+

L
f |θ)(x).

Similarly,

(37) J3 � [M∗
L,ϕ,Nf(x)]1−θM(|ϕ+

L
f |θ)(x).

Plugging the estimates J1, J2, and J3 into (33) and then taking the supremum over
y ∈ X and 0 < t < 1 we obtain

M∗
L,ϕ,Nf(x) � [M∗

L,ϕ,Nf(x)]1−θM(|ϕ+
L
f |θ)(x).

Hence,

M∗
L,ϕ,Nf(x) �

[
M(|ϕ+

L
f |θ)(x)

] 1
θ .

Using the L
p
θ -boundedness of the maximal function M we get (32) as desired. �

To complete the proof of Theorem 2.4, we need only to show (26). To do this,
we need the following covering lemma in [6] (see also [9]).
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Lemma 4.5. Let E ⊂ X be an open subset with finite measure. Then there exists a
collection of balls {Bk := B(xBk

, rBk
) : xBk

∈ E, rBk
= d(xBk

, Ec)/2, k = 0, 1, . . .}
so that

(i) E =
⋃
k

B(xBk
, rBk

);

(ii) {B(xBk
, rBk

/5)}∞k=1 are disjoint.

Proof of (26). Since hp,∞
L,at,M (X) ⊂ hp,q

L,at,M (X) for all p ∈ (0, 1], q ∈ [1,∞]∩ (p,∞],

and M > n
2 (

1
p − 1), it suffices to prove that hp

max,L ∩ L2(X) ⊂ hp,∞
L,at,M (X).

Fix f ∈ hp
max,L ∩ L2(X). Let Φ and Ψ be functions in Proposition 3.6. From

Proposition 3.6, for M ∈ N,M > n
2 (

1
p − 1) we have

(38)

f =
M+1∑
	=0

c(M, )

ˆ 1/2

0

(t2L)MΦ2	,2(t
√
L)Ψ(2M−2	+2)(t

√
L)f

dt

t

+

M∑
	=0

c(M, )

ˆ 1/2

0

(t2L)MΦ2	+1,1(t
√
L)Ψ2M−2	+1,1(t

√
L)f

dt

t

+
2M+2∑
	=1

	∑
j=0

c(M, , j)Φj,j(2
−1

√
L)Ψ	−j,	−j(2

−1
√
L)f

= :

M+1∑
	=0

f	,1 +

M∑
	=0

f	,2 +

2M+2∑
	=1

	∑
j=0

g	,j

in L2(X).
We will prove that functions f	,1, f	,2, and g	,j admit atomic (p,∞)-representa-

tions.
We now take care of g	,j . Note that from Lemma 3.1, we can pick up a dis-

joint family of open sets {Qk}∞k=1 and {xk}∞k=1 so that X =
⋃

k Qk, Qk ⊂ Bk :=
B(xk, 1/2) and μ(Qk) ∼ μ(Bk) for all k. For each m, , j we decompose

g	,j =
∑
k

c(M, , j)Φj,j(2
−1

√
L)
[
Ψ	−j,	−j(2

−1
√
L)f.χQk

]
.

We now set

λk = μ(Qk)
1/p sup

x∈Qk

|Ψ	−j,	−j(2
−1

√
L)f(x)|

and

ak =
c(M, , j)

λk
Φj,j(2

−1
√
L)
[
Ψ	−j,	−j(2

−1
√
L)f.χQk

]
.

We then have g	,j =
∑

k λkak, and

|λk|p ≤ μ(Qk) inf
x∈Qk

sup
d(x,y)<1

|Ψ	−j,	−j(2
−1

√
L)f(y)|p

≤ μ(Qk) inf
x∈Qk

[
sup

0<t<1
sup

d(x,y)<2t

|Ψ	−j,	−j(t
√
L)f(y)|

]

≤
ˆ
Qk

|Ψ∗
	−j,	−jf(x)|pdμ(x),
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where

Ψ∗
	−j,	−jf(x) := sup

0<t<1
sup

d(x,y)<2t

|Ψ	−j,	−j(t
√
L)f(y)|.

This implies ∑
k

|λk|p ≤ ‖Ψ∗
	−j,	−jf‖

p
Lp(X) � ‖f‖p

hp
L,max(X)

,

where in the last inequality we used Lemma 4.1.
It remains to show that ak is a multiple of a (p,∞,M)L-atom with a harmless

constant for each k. Indeed, from (19) we imply

supp ak ⊂ B(xk, 1).

Moreover, we have

ak(x) =
c(M, , j)

λk

ˆ
Qk

KΦj,j(2−1
√
L)(x, y)Ψ	−j,	−j(2

−1
√
L)f(y)dμ(y).

This, along with (18) and the expression of λk, yields

|ak(x)| ≤ μ(Qk)
−1/p

ˆ
Qk

|KΦj,j(2−1
√
L)(x, y)|dμ(y) � μ(Qk)

−1/p.

This shows ak is a multiple of a (p,∞,M)L-atom.
We now take care of f	,1. For a fixed  ∈ {0, 1, . . . ,M + 1} we define

η	(x) =

ˆ 1

0

(t2x2)MΦ2	,2(tx)Ψ
(2M−2	+2)(tx)

dt

t

=

ˆ x

0

t2M+1Φ2	,2(t)Ψ
(2M−2	+2)(t)dt.

Then η	 ∈ S (R) and η	(0) = 0 for each .
Moreover, we have, for any a, b > 0,

η	(b
√
L)− η	(a

√
L) =

ˆ b

a

(t2L)MΦ2	,2(t
√
L)Ψ(2M−2	+2)(t

√
L)

dt

t
.

Define

MLf(x) = sup
0<t<1

sup
d(x,y)<5t

[
|η	(t

√
L)f(y)|+ |Ψ(2M−2	+2)(t

√
L)f(y)|

]
.

This along with Proposition 4.3 yields

(39) ‖MLf‖Lp(X) � ‖f‖Hp
max,L(X).

The remainder of the proof is similar to that of [36, Theorem 1.3]; hence we
just sketch it here. For each i ∈ Z we set Oi := {x ∈ X : MLf(x) > 2i} and set

Ôi := (x, t) ∈ X × (0, 1) : B(x, 4t) ⊂ O. Then we have

X × (0, 1) =
⋃
i

Ôi\Ôi+1 =:
⋃
i

Ti.

For each Oi let {Bk
i }∞k=1 be a family of balls covering Oi as in Lemma 4.5. For

i ∈ Z and k = 0, 1, . . . we define

R(B0
i ) := ∅ and R(Bk

i ) := {(x, t) ∈ X × (0, 1) : d(x,Bk
i ) < t}, k = 1, 2, . . . .
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Hence, Ôi ⊂
⋃∞

k=0R(Bk
i ). We now define, for i ∈ Z and k = 0, 1, . . .,

T k
i = Ti ∩

⎛⎝R(Bk
i )\

k−1⋃
j=0

R(Bj
i )

⎞⎠ .

It is obvious that T k
i ∩ T l

j = ∅ either i �= j or k �= l; moreover,

X × (0, 1) =
⋃
i∈Z

⋃
k∈N

T k
i .

We can write

f	,1 = c(M, )
∑

i∈Z,k∈N

ˆ 1/2

0

(t2L)MΦ2	,2(t
√
L)
[
Ψ(2M−2	+2)(t

√
L)f.χTk

i

] dt
t
.

We now define λk
i = 2iμ(Bk

i )
1/p and aki = LMbik with

bki =
c(M, )

λk
i

ˆ 1/2

0

t2MΦ2	,2(t
2
√
L)
[
Ψ(2M−2	+2)(t

√
L)f.χTk

i

] dt
t
.

Hence, f =
∑

i∈Z,k∈N
λk
i a

k
i and it is not difficult to see that this series converges

in L2(X).
On the other hand, from the definition of the level set Oi we obtain∑

i∈Z,k∈N

|λk
i |p =

∑
i∈Z,k∈N

2ipμ(Bk
i ) �

∑
i∈Z

2ipμ(Oi) � ‖MLf‖pLp(X) � ‖f‖p
Hp

L,max(X)
.

It remains to prove that each aki is a multiple of a (p,∞,M)L-atom with a
universal constant. To see this, we observe that for (y, t) ∈ T k

i we then have

(y, t) ∈ Ôi and hence B(y, 4t) ⊂ Oi. This implies d(y,Oc
i ) > 4t. On the other

hand, (y, t) ∈ R(Bk
i ) and hence d(y,Bk

i ) < 2t. This leads to d(y, xBk
i
) < t + rBk

i
.

As a consequence, we have

4t < d(y,Oc
i ) ≤ d(y, xBk

i
) + d(xBk

i
, Oc

i ) < t+ rBk
i
+ 2rBk

i
,

where in the last inequality we used the fact that d(xBk
i
, Oc

i ) = 2rBk
i
.

This gives t < rBk
i
. This along with (18) implies that

suppLmbki ⊂ 3Bk
i , m = 0, 1, . . . ,M.

Applying the argument in the proof of [36, Theorem 1.3] mutatis mutandis we
conclude that

‖(r2Bk
i
L)mbki ‖L∞(X) ≤ r2MBk

i
μ(Bk

i )
− 1

p , m = 0, 1, . . . ,M.

Similarly, we can prove that each f	,2 admits a (p,∞,M)L-atom decomposition.
This completes our proof of (26) and hence the proof of Theorem 2.4 is complete.

�
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4.2. Proof of Theorem 2.7. Since the proof of the inclusion hp,q
at (X) ⊂ hp

L,max(X)

for p ∈ ( n
n+δ1

, 1] and q ∈ [1,∞]∩ (p,∞] is standard we will leave it to the interested

reader. It remains to show that hp
L,max(X) ⊂ hp,q

at (X). Indeed, for f ∈ hp
L,max(X)∩

L2(X), from Theorem 2.4 we can decompose f =
∑

j λjaj as an atomic (p, q,M)L-

representation with M > n
2 (

1
p − 1), where aj is a (p, q,M)L-atom associated to a

ball Bj for j ≥ 1. If rBj
≥ 1, it is obvious that the (p,∞,M)L-atom aj is also a

(local) (p, q)-atom. Otherwise, if rBj
< 1, the argument used in Lemma 9.1 in [23]

shows that ˆ
ajdμ = 0.

Hence, in this case a (p, q,M)L-atom aj is a (local) (p, q)-atom. As a consequence,
f =

∑
j λjaj is an atomic (p, q)-representation, and hence f ∈ hp,q

at (X). This
completes the proof of Theorem 2.7.

As a byproduct, by a careful examination of the proof of Theorem 2.4 we obtain
the following result.

Proposition 4.6. Let L satisfy (A1) and (A2). Let p ∈ (0, 1], q ∈ [1,∞]∩ (p,∞],
and M > n

2 (
1
p − 1). If f ∈ hp

L
(X) ∩ L2(X) and supp f ⊂ B(x0, r), then f has an

atomic (p, q,M)L-representation f =
∑∞

j=1 λjaj with supp aj ⊂ B(x0, r + 1) for
all j.

In the proof of Theorem 2.7 we have proved that if L satisfies (A1)-(A4), then
each (p, q,M)L-atom is also a (p, q)-atom. Hence, this along with the proposition
above implies the following.

Proposition 4.7. Let L satisfy (A1)-(A4). Let p ∈ ( n
n+δ1

, 1]. If f ∈ hp(X)∩L2(X)

and supp f ⊂ B(x0, r), then f has an atomic (p,∞)-representation f =
∑∞

j=1 λjaj
with supp aj ⊂ B(x0, r + 1) for all j.

5. Maximal function characterizations for local Hardy spaces

associated to critical functions

This section is dedicated to the proof of Theorem 2.12 and Theorem 2.15.
We fix a family of balls {Bα}α∈I and functions {ψα}α∈I from Lemma 3.4. We

then set, for each α,

(40) Iα = {j ∈ I : Bj ∩Bα �= ∅}.
Then it follows from Lemma 3.4 and the doubling property that there exists C > 0
so that

(41) �Iα ≤ C for all α ∈ I.
From Lemma 3.3, we can see that there exists Cρ so that if y ∈ B(x, ρ(x)), then

C−1
ρ ρ(x) ≤ ρ(y) ≤ Cρρ(x). We shall fix the constant Cρ and for any ball B ⊂ we

denote B∗ = 4CρB.

Lemma 5.1. Let ρ be a critical function on X. Let p ∈ ( n
n+1 , 1], q ∈ [1,∞]∩(p,∞],

and ε ∈ (0, 1]. Assume that T is a bounded sublinear operator on L2(X). If there
exists C so that

‖Ta‖Lp(X) ≤ C

for all (p, q, ρ, ε)-atom a, then T can be extended to be bounded from hp,q
at,ρ,ε(X) to

Lp(X).
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Proof. The proof of the lemma is quite standard. See for example Lemma 4.1 in
[24]. Hence, we omit the details. �

We first concentrate on some localized maximal function estimates which will be
useful in the proof of the main results.

Lemma 5.2. Let n
n+δ1

< p ≤ 1 and q ∈ (p,∞] ∩ [1,∞]. Then there exists κ > 0
so that for any 0 < ε ≤ 1, we have∥∥∥ sup

0<t≤[ερ(xα)]2
|e−tL(fψα)(x)|

∥∥∥p
Lp(X\B∗

α)
� εκ‖f‖p

hp,q
at,ρ,ε(X)

for all f ∈ hp,q
at,ρ,ε and each function ψα from Lemma 3.4.

Proof. It is obvious that

sup
0<t≤[ερ(xα)]2

|e−tL(fψα)(x) � Mf(x).

Hence, from Lemma 5.1 it suffices to prove that∥∥∥ sup
0<t≤[ερ(xα)]2

|e−tL(aψα)(x)|
∥∥∥
Lp(X\B∗

α)
� εκ

for all (ρ, p, q, ε)-atoms associated to balls B(x0, r) so that B(x0, r) ∩Bα �= ∅.
To do this, we consider two cases.

Case 1 (ερ(x0)/4 < r ≤ ερ(x0)). Using the Gaussian upper bound of p̃t(x, y) and
the fact that d(x, y) ∼ d(x, xα) for x ∈ X\B∗

α and y ∈ Bα, we have, for x ∈ X\B∗
α,

|e−tL(aψα)(x)| �
ˆ
Bα

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
|a(y)|dμ(y)

� 1

μ(B(x, d(x, xα)))
exp
(
− d(x, xα)

2

ct

) ˆ
B

|a(y)|dμ(y)

� 1

μ(B(x, d(x, xα)))
exp
(
− d(x, xα)

2

c[ερ(xα)]2

)
μ(B(x0, r))

1−1/p.

This implies that

(42)

∥∥∥ sup
0<t≤[ερ(xα)]2

|e−tL(aψα)(x)|
∥∥∥
Lp(X\B∗

α)
� e−c/ε

( μ(Bα)

μ(B(x0, r))

)1/p−1

.

Note that since B(x0, r) ∩Bα �= ∅ and r ≤ ρ(x0), applying Lemma 3.3 (i) we have
ρ(xα) ∼ ρ(x0). Hence, μ(Bα) ∼ μ(B(x0, ρ(x0))). This together with (42) yields
that ∥∥∥ sup

0<t≤[ερ(xα)]2
|e−tL(aψα)(x)|

∥∥∥
Lp(X\B∗

α)
� e−c/ε

(μ(B(x0, ρ(x0)))

μ(B(x0, r))

)1/p−1

� e−c/ε
(ρ(x0)

r

)n(1/p−1)

� e−c/ε.

Case 2 (r ≤ ερ(x0)/4). Using the cancellation property of a we obtain

|e−tL(aψα)(x)| �
ˆ
B(x0,r)

|p̃t(x, y)− p̃t(x, x0)| |a(y)|dμ(y)

+

ˆ
B(x0,r)

|p̃t(x, x0)| |ψα(y)−ψα(x0)| |a(y)|dμ(y) :=I1(x)+I2(x).
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By (H) and a similar argument used in Case 1, we obtain that

I1(x) �
( r√

t

)δ1 1

μ(B(x,
√
t))

exp
(
− d(x, x0)

2

ct

)
μ(B(x0, r))

1−1/p

�
( r

d(x, x0)

)δ1 1

μ(B(x0, d(x, x0)))
exp
(
− d(x, x0)

2

ct

)
μ(B(x0, r))

1−1/p

�
( r

d(x, x0)

)δ1 1

μ(B(x0, d(x, x0)))
μ(B(x0, r))

1−1/p

which together with the doubling property implies that

I1(x) �
( r

d(x, x0)

)δ1+n−n/p 1

μ(B(x0, d(x, x0)))
μ(B(x0, d(x, x0)))

1−1/p

�
( r

d(x, xα)

)δ1+n−n/p

μ(B(xα, d(x, xα)))
−1/p.

Similarly, by using the fact that |ψα(y)−ψα(x0)| � d(y, x0)/ρ(xα) we also obtain
that

I2(x) �
( r

d(x, xα)

)δ1+n−n/p

μ(B(xα, d(x, xα)))
−1/p.

From these two estimates and the fact that p > n
n+δ1

we deduce the desired estimate.

�
From Lemma 5.2, we deduce the following estimate.

Corollary 5.3. Let n
n+δ1

< p ≤ 1 and q ∈ (p,∞] ∩ [1,∞]. Then there exists κ so
that for any 0 < ε ≤ 1, we have∥∥∥ sup

0<t≤[ερ(xα)]2
|e−tL(fψα)(x)|

∥∥∥p
Lp(X\B∗

α)
� εκ

∑
j∈Iα

‖fψj‖php,q
at,ρ,ε(X)

for all f ∈ hp,q
at,ρ,ε(X) and each function ψα from Lemma 3.4, where Iα is defined

as in (40).

Proof. We first note that

fψα =
∑
j∈Iα

ψα(fψj).

Therefore, ∥∥∥ sup
0<t≤[ερ(xα)]2

|e−tL(fψα)(x)|
∥∥∥p
Lp(X\B∗

α)

≤
∑
j∈Iα

∥∥∥ sup
0<t≤[ερ(xα)]2

|e−tL[ψα(fψj)](x)|
∥∥∥p
Lp(X\B∗

α)

which together with Lemma 5.2 implies that∥∥∥ sup
0<t≤[ερ(xα)]2

|e−tL(fψα)(x)|
∥∥∥p
Lp(X\B∗

α)
� εκ

∑
j∈Iα

‖fψj‖php,q
at,ρ,ε

. �

For each ε ∈ (0, 1] we define a sublinear operator Tε by setting

Tεf(x) :=
∑
α∈I

sup
0<t≤[ερ(x)]2

|ψα(x)e
−tLf(x)− e−tL(fψα)(x)|.

We first prove the L2-boundedness of Tε. More precisely, we have the following
result.
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Lemma 5.4. For each ε ∈ (0, 1], Tε is bounded on Lp(X) for all 1 < p < ∞.

Proof. Observe that

Tεf(x) =
∑
α∈I

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
X

(ψα(x)− ψα(y))p̃t(x, y)f(y)dμ(y)
∣∣∣.

From Lemma 3.4 we obtain

‖Tεf‖pLp(X)

�
∑
β∈I

ˆ
Bβ

[∑
α∈I

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
X

(ψα(x)− ψα(y))p̃t(x, y)f(y)dμ(y)
∣∣∣]pdμ(x)

�
∑
β∈I

ˆ
Bβ

[ ∑
α∈Iβ,1

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
X

(ψα(x)− ψα(y))p̃t(x, y)f(y)dμ(y)
∣∣∣]pdμ(x)

+
∑
β∈I

ˆ
Bβ

[ ∑
α∈Iβ,2

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
X

(ψα(x)− ψα(y))p̃t(x, y)f(y)dμ(y)
∣∣∣]pdμ(x)

=: I1 + I2,

where

Iβ,1 = {α ∈ I : Bα ∩B∗
β �= ∅} and Iβ,2 = {α ∈ I : Bα ∩B∗

β = ∅}.

For each α ∈ I we have

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
X

(ψα(x)− ψα(y))p̃t(x, y)f(y)dμ(y)
∣∣∣ ≤ 2 sup

t>0

ˆ
X

p̃t(x, y)|f(y)|dμ(y)

� Mf(x).

This, in combination with the fact that �Iβ,1 � 1, implies

I1 �
∑
β∈I

ˆ
Bβ

|Mf(x)|pdμ(x) ∼ ‖Mf‖pLp(X) � ‖f‖pLp(X).

To estimate I2, we can see that ψα(x) = 0 for x ∈ Bβ, α ∈ Iβ,2. Hence,

I2 =
∑
β∈I

ˆ
Bβ

[ ∑
α∈Iβ,2

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
Bα

ψα(y)p̃t(x, y)f(y)dμ(y)
∣∣∣]pdμ(x)

�
∑
β∈I

ˆ
Bβ

[ ∑
α∈Iβ,2

ˆ
Bα

1

μ(B(x, d(x, y)))
exp
(
− d(x, y)2

cρ(x)2

)
|f(y)|dμ(y)

]p
dμ(x).

Since x ∈ Bβ and y ∈ Bα, α ∈ Iβ,2, then d(x, y) ≥ rBβ
∼ ρ(x). Hence, we find that

(43)

I2 �
∑
β∈I

ˆ
Bβ

[ ∑
α∈Iβ,2

ˆ
Bα

1

μ(B(x, ρ(x)))
exp
(
− d(x, y)2

cρ(x)2

)
|f(y)|dμ(y)

]p
dμ(x)

�
∑
β∈I

ˆ
Bβ

[ˆ
X

1

μ(B(x, ρ(x)))
exp
(
− d(x, y)2

cρ(x)2

)
|f(y)|dμ(y)

]p
dμ(x).

Moreover,ˆ
X

1

μ(B(x, ρ(x)))
exp
(
− d(x, y)2

cρ(x)2

)
|f(y)|dμ(y) � Mf(x).
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Inserting this into (43), we arrive at

I2 �
∑
β∈I

ˆ
Bβ

|Mf(x)|pdμ(x) ∼ ‖Mf‖pLp(X) � ‖f‖pLp(X).

This completes our proof. �

Lemma 5.5. Let n
n+δ1

< p ≤ 1 and q ∈ (p,∞]∩ [1,∞]. Then there exists κ so that
for any 0 < ε ≤ 1, we have

(44)
∥∥∥∑

α∈I
sup

0<t≤[ερ(x)]2
|ψα(x)e

−tLf(x)− e−tL(fψα)(x)|
∥∥∥p
Lp(X)

� εκ‖f‖p
hp,q
at,ρ,ε(X)

for all f ∈ hp,q
at,ρ,ε(X).

Proof. Due to Lemma 5.1 and Lemma 5.4 it suffices to prove (44) for any (p, q, ρ, ε)-
atom a. Assume that a is a (p, q, ρ, ε)-atom associated to B := B(x0, r). We then
set

I1,B := {α : Bα ∩B(x0, ρ(x0))
∗ �= ∅},

I2,B := {α : Bα ∩B(x0, ρ(x0))
∗ = ∅}.

Hence,

(45)

∥∥∥∑
α∈I

sup
0<t≤[ερ(x)]2

|ψα(x)e
−tLa(x)− e−tL(aψα)(x)|

∥∥∥p
Lp(X)

≤
∑
α∈I

∥∥∥ sup
0<t≤[ερ(x)]2

|ψα(x)e
−tLa(x)− e−tL(aψα)(x)|

∥∥∥p
Lp(X)

�
∑

α∈I1,B

. . .+
∑

α∈I2,B

. . .

=: J1 + J2.

Since aψα = 0 for all α ∈ I2,B , then from Lemma 3.4 we conclude that

(46)

J2 =
∑

α∈I2,B

∥∥∥ sup
0<t≤[ερ(x)]2

|ψα(x)e
−tLa(x)|

∥∥∥p
Lp(X)

�
∑

α∈I2,B

∥∥∥ sup
0<t≤[ερ(x)]2

|e−tLa(x)|
∥∥∥p
Lp(Bα)

�
∥∥∥ ∑

α∈I2,B

sup
0<t≤[ερ(x)]2

|e−tLa(x)|
∥∥∥p
Lp(X\B(x0,ρ(x0))∗)

.

We can argue as in Lemma 5.2 and arrive at J2 � εκ.
It remains to show that J1 � εκ. To do this, we first note that due to Lemma

3.4, � I1,B ≤ C where C is a constant independent of a. Hence, in order to prove
J1 � εκ, it suffices to prove that for α ∈ I1,B , we have∥∥∥ sup

0<t≤[ερ(x)]2
|ψα(x)e

−tLa(x)− e−tL(aψα)(x)|
∥∥∥p
Lp(X)

� εκ.
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Obviously,

∥∥∥ sup
0<t≤[ερ(x)]2

|ψα(x)e
−tLa(x)− e−tL(aψα)(x)|

∥∥∥p
Lp(X)

�
∥∥∥ sup

0<t≤[ερ(x)]2
|ψα(x)e

−tLa(x)− e−tL(aψα)(x)|
∥∥∥p
Lp(4B)

+
∥∥∥ sup

0<t≤[ερ(x)]2
|ψα(x)e

−tLa(x)− e−tL(aψα)(x)|
∥∥∥p
Lp(X\4B)

:= J11 + J12.

To take care of J11, using the fact that ρ(x) ∼ ρ(xα) and Hölder’s inequality, we
write

J11 =

ˆ
4B

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
B

p̃t(x, y)(ψα(x)− ψα(y))a(y)dμ(y)
∣∣∣pdμ(x)

�
ˆ
4B

sup
0<t≤[ερ(x)]2

[ˆ
B

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)d(x, y)
ρ(xα)

|a(y)|dμ(y)
]p
dμ(x)

�
ˆ
4B

sup
0<t≤[ερ(x)]2

[ˆ
B

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

) √
t

ρ(xα)
|a(y)|dμ(y)

]p
dμ(x)

� εpμ(B)1−p/q

×
[ ˆ

4B

(
sup

0<t≤[ερ(x)]2

ˆ
B

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
|a(y)|dμ(y)

)q
dμ(x)

]p/q
� εpμ(B)1−p/q

[ˆ
4B

(
M(|a|)

)q
dμ(x)

]p/q
� εpμ(B)1−p/q‖a‖pLq � εp,

where M is the Hardy-Littlewood maximal function.
We now take care of J12. To do this, we consider two cases.

Case 1 (ερ(x0)/4 ≤ r ≤ ερ(x0)). In this situation, we use the fact that d(x, y) ∼
d(x, x0) and ρ(xα) ∼ ρ(x0) for x ∈ X\4B and x0, y ∈ B and the argument above
to obtain that

J12 �
ˆ
X\4B

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
B

1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)d(x, y)
ρ(xα)

|a(y)|dμ(y)
∣∣∣pdμ(x)

�
ˆ
X\4B

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
B

1

μ(B(x0, d(x, x0)))

× exp
(
− d(x, x0)

2

c[ερ(x)]2

) √
t

ρ(x0)
|a(y)| dμ(y)

∣∣∣pdμ(x).
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This, in combination with (16), yields that for N > n(1− p)/p we have

J12 � εp
ˆ
X\4B

∣∣∣ ˆ
B

1

μ(B(x0, d(x, x0)))

( ερ(x0)

d(x, x0)

)N
|a(y)| dμ(y)

∣∣∣pdμ(x)
� εpμ(B)p−1

∑
j≥3

ˆ
Sj(B)

[ 1

μ(B(x0, d(x, x0)))

( r

d(x, x0)

)N]p
dμ(x)

� εp
∑
j≥3

(μ(2jB)

μ(B)

)1−p

2−jNp

� εp
∑
j≥3

2−j(Np−(1−p)n) � εp.

Case 2 (r < ερ(x0)/4). In this case, since
´
a(y)dμ(y) = 0, we have

J12 =

ˆ
X\4B

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
B

[p̃t(x, y)−p̃t(x, x0)](ψα(x)−ψα(x0))a(y)dμ(y)
∣∣∣pdμ(x)

+

ˆ
X\4B

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
B

p̃t(x, y)(ψα(x0)− ψα(y))a(y)dμ(y)
∣∣∣pdμ(x)

:= K1 +K2.

By (H) and the fact that ρ(xα) ∼ ρ(x0) we have

K1 �
ˆ
X\4B

sup
0<t≤[ερ(x)]2

∣∣∣ ˆ
B

(d(y, x0)√
t

)δ1 1

μ(B(x,
√
t))

× exp
(
− d(x, x0)

2

ct

)d(x, x0)

ρ(x0)
a(y)dμ(y)

∣∣∣pdμ(x)
�
ˆ
X\4B

∣∣∣ ˆ
B

(d(y, x0)

ρ(x0)

)δ1 1

μ(B(x0, d(x, x0)))

× exp
(
− d(x, x0)

2

c[ερ(x)]2

)
a(y)dμ(y)

∣∣∣pdμ(x)
which along with (15) gives

�
ˆ
X\4B

∣∣∣ ˆ
B

(d(y, x0)

ρ(x0)

)δ1 1

μ(B(x0, d(x, x0)))

( ερ(x0)

d(x, x0)

)δ1
a(y)dμ(y)

∣∣∣pdμ(x)
� εδ1p

ˆ
X\4B

∣∣∣ ˆ
B

( r

d(x, x0)

)δ1 1

μ(B(x0, d(x, x0)))
a(y)dμ(y)

∣∣∣pdμ(x)
� εδ1pμ(B)p−1

∑
j≥3

ˆ
Sj(B)

[( r

d(x, x0)

)δ1 1

μ(B(x0, d(x, x0)))

]p
dμ(x)

� εδ1p
∑
j≥3

( r

2jr

)δ1p(μ(2jB)

μ(B)

)1−p

� εδ1p
∑
j≥3

2−j(δ1p−(1−p)n) � εδ1p.

This completes our proof. �
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5.1. Proof of Theorem 2.12. For each t > 0 we define

Kt,ρ(x, y) = p̃t(x, y) exp

[
−
( √

t

ρ(x)

)δ1]
for all x, y ∈ X (where δ1 is the constant in (A3)) and its associated operator by

Tt,ρf(x) =

ˆ
X

Kt,ρ(x, y)f(y)dμ(y).

For each t > 0 we set

(47) Qt,ρ(x, y) = p̃t(x, y)−Kt,ρ(x, y) = p̃t(x, y)

[
1− e

−
[ √

t
ρ(x)

]δ1]
.

Then we have the following estimate.

Lemma 5.6. Let Qt,ρ be defined in (47). Then we have the following estimates:

(48) |Qt(x, y)| ≤
[ √

t

ρ(x)

]δ1 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
for all x, y ∈ X and t > 0, and

(49) |Qt(x, y)−Qt(x, y0)| ≤
[d(y, y0)

ρ(x)

]δ1 C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
whenever d(y, y0) ≤ d(x, y)/2 and t > 0.

Proof. Using (A2) and the inequality 1−e−x � x, valid for all x > 0, we obtain (48).
We now take care of (49). Observe that

Qt(x, y)−Qt(x, y0) = (p̃t(x, y)− p̃t(x, y0))

[
1− e

−
[ √

t
ρ(x)

]δ1]
.

This, along with (A3) and the inequality 1− e−x � x again implies (49). �

Lemma 5.7. Let n
n+δ1

< p ≤ 1 and q ∈ (p,∞]∩ [1,∞]. Then there exists κ so that
for any 0 < ε ≤ 1, we have

(50)
∥∥∥ sup

0<t≤[ερ(x)]2
|(e−tL − Tt,ρ)f(x)|

∥∥∥p
Lp(X)

� εκ‖f‖p
hp,q
at,ρ,ε(X)

for all f ∈ hp,q
at,ρ,ε(X).

Proof. Observe that

sup
0<t≤[ερ(x)]2

|(e−tL − Tt,ρ)f(x)| � sup
t>0

|e−tLf(x)| � Mf(x).

Hence, from this and Lemma 5.1 it suffices to prove (56) for all (p, q, ρ, ε)-atoms.
Let a be a (p, q, ρ, ε)-atom associated to a ball B := B(x0, r). We write∥∥∥ sup

0<t≤[ερ(x)]2
|(e−tL − Tt,ρ)f(x)|

∥∥∥p
Lp(X)

≤
∥∥∥ sup

0<t≤[ερ(x)]2
|(e−tL − Tt,ρ)f(x)|

∥∥∥p
Lp(4B)

+
∥∥∥ sup

0<t≤[ερ(x)]2
|(e−tL − Tt,ρ)f(x)|

∥∥∥p
Lp(X\4B)

= I1 + I2.
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Using (48), Hölder’s inequality and the Lq-boundedness of M, we get that

I1 �
ˆ
4B

[
sup

0<t≤[ερ(x)]2

[ √
t

ρ(x)

]δ1 ˆ
B

1

μ(B(x,
√
t))

× exp
(
− d(x, y)2

ct

)
|a(y)|dμ(y)

]p
dμ(x)

� εpδ1μ(B)1−p/q
[ˆ

4B

[
sup

0<t≤[ερ(x)]2

ˆ
B

1

μ(B(x,
√
t))

× exp
(
− d(x, y)2

ct

)
|a(y)|dμ(y)

]q
dμ(x)

]p/q
� εpδ1μ(B)1−p/q

[ˆ
4B

[
M(|a|)(x)

]q
dμ(x)

]p/q
� εpδ1 .

The estimate of I2 can be done by considering the following two cases.

Case 1 (ερ(x0)/4 ≤ r ≤ ερ(x0)). By (48) again, we can write

I2 =

ˆ
X\4B

[
sup

0<t≤[ερ(x)]2

ˆ
B

( √
t

ρ(x)

)δ1 1

μ(B(x,
√
t))

× exp
(
− d(x, y)2

ct

)
|a(y)|dμ(y)

]p
dμ(x)

� εpδ1‖a‖pL1

ˆ
X\4B

[ 1

μ(B(x0, d(x, x0)))
exp
(
− d(x, x0)

2

c[ερ(x)]2

)]p
dμ(x)

which along with (15) implies that, for N > n(1− p)/p,

I2 � εpδ1μ(B)p−1

ˆ
X\4B

[ 1

μ(B(x0, d(x, x0)))

( ερ(x0)

d(x, x0)

)N]p
dμ(x)

� εpδ1μ(B)p−1

ˆ
X\4B

[ 1

μ(B(x0, d(x, x0)))

( r

d(x, x0)

)N]p
dμ(x)

� εpδ1 .

Case 2 (r < ερ(x0)/4). In this situation,
´
a(y)dμ(y) = 0. This implies that

I2 =

ˆ
X\4B

∣∣∣ sup
0<t≤[ερ(x)]2

ˆ
B

(Qt(x, y)−Qt(x, x0))a(y)dμ(y)
∣∣∣pdμ(x).

Hence, by (49) we obtain that

I2 =

ˆ
X\4B

[
sup

0<t≤[ερ(x)]2

ˆ
B

(d(y, x0)

ρ(x)

)δ1 1

μ(B(x,
√
t))

× exp
(
− d(x, y)2

ct

)
|a(y)|dμ(y)

]p
dμ(x)

�
ˆ
X\4B

[ˆ
B

( r

ρ(x)

)δ1 1

μ(B(x0, d(x, x0)))
exp
(
− d(x, x0)

2

c[ερ(x)]2

)
|a(y)|dμ(y)

]p
dμ(x)

�
ˆ
X\4B

[ˆ
B

( εr

d(x, x0)

)δ1 1

μ(B(x0, d(x, x0)))
|a(y)|dμ(y)

]p
dμ(x)

� εδ1p,

as long as p > n/(n+ δ1).
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This completes our proof. �

Proof of Theorem 2.12. We first prove the continuous embedding

hp,q
at,ρ(X) ↪→ hp

L,max,ρ(X).

Since the space L2(X) is dense in both hp,q
at,ρ(X) and hp

L,rad,ρ(X), it suffices to

show that hp,q
at,ρ(X) ∩ L2(X) ↪→ hp

L,rad,ρ(X). Since f∗
L,ρ is dominated by Mf , from

Lemma 5.1 it suffices to show that there exists C so that

‖a∗L,ρ‖
p
Lp ≤ C(51)

for all (p, q, ρ)-atoms associated to balls B = B(x0, r).
To prove (51), we first write

‖a∗L,ρ‖
p
Lp ≤ ‖a∗L,ρ‖

p
Lp(4B) + ‖a∗L,ρ‖

p
Lp(M\4B) := I1 + I2.

The first term can be handled easily by Hölder’s inequality and the Lq-boundedness
of M:

I1 � μ(B)1−p/q‖a∗L,ρa‖
p
Lq(4B) � μ(B)1−p/q‖Ma‖pLq(X) ≤ C.

To take care of the term I2 we consider two cases.

Case 1 (ρ(x0)/4 ≤ r ≤ ρ(x0)). From (A2) we have

I2 �
ˆ
X\4B

sup
0<t<ρ(x)2

sup
d(x,y)<t

[ˆ
B

1

μ(B(z,
√
t))

exp
(
− d(y, z)2

ct

)
|a(z)|dμ(z)

]p
dμ(x).

This together with the fact that

exp
(
− d(y, z)2

ct

)
∼ exp

(
− d(x, z)2

ct

)
, as d(x, y) < t,

implies that

I2 �
ˆ
X\4B

sup
0<t<ρ(x)2

[ˆ
B

1

μ(B(z,
√
t))

exp
(
− d(x, z)2

ct

)
|a(z)|dμ(z)

]p
dμ(x).

We then apply (9) to obtain further

�
ˆ
X\4B

sup
0<t<ρ(x)2

[ˆ
B

1

μ(B(z, d(x, z)))
exp
(
− d(x, z)2

ct

)
|a(z)|dμ(z)

]p
dμ(x).

Moreover, obverse that in this situation d(x, z) ∼ d(x, x0). Hence, for N >
n(1− p)/p,

I2 �
ˆ
X\4B

[ ˆ
B

1

μ(B(x0, d(x, x0)))
exp
(
− d(x, x0)

2

cρ(x)2

)
|a(y)|dμ(y)

]p
dμ(x)

�
ˆ
X\4B

[ ˆ
B

1

μ(B(x0, d(x, x0)))

( ρ(x0)

d(x, x0)

)N
|a(y)|dμ(y)

]p
dμ(x)

�
ˆ
X\4B

[ ˆ
B

1

μ(B(x0, d(x, x0)))

( r

d(x, x0)

)N
|a(y)|dμ(y)

]p
dμ(x)

≤ C,

where in the second inequality we used (15).
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Case 2 (r < ρ(x0)/4). Observe that

I2 �
ˆ
X\4B

sup
0<t≤4r2

sup
d(x,y)<t

∣∣∣ ˆ
B

p̃t(y, z)a(z)dμ(z)
∣∣∣pdμ(x)

+

ˆ
X\4B

sup
4r2≤t<ρ(x)2

sup
d(x,y)<t

∣∣∣ ˆ
B

p̃t(y, z)a(z)dμ(z)
∣∣∣pdμ(x)

= I21 + I22.

Fix N > n(1− p)/p. Arguing similarly as above we obtain

I21 �
ˆ
X\4B

sup
0<t<ρ(x)2

[ˆ
B

1

μ(B(z, d(x, z)))
exp
(
− d(x, z)2

ct

)
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
X\4B

sup
0<t≤4r2

[ˆ
B

1

μ(B(z, d(x, z)))

( √
t

d(x, z)

)N
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
X\4B

[ˆ
B

1

μ(B(x0, d(x, x0)))

( r

d(x, x0)

)N
|a(y)|dμ(y)

]p
dμ(x)

≤ C.

To take care of I22 we use the cancellation property of a to arrive at

(52) I22 =

ˆ
X\4B

sup
4r2≤t<ρ(x)2

sup
d(x,y)<t

∣∣∣ ˆ
B

[p̃t(y, z)− p̃t(y, x0)]a(z)dμ(z)
∣∣∣pdμ(x).

From (A3), we have

|p̃t(y, z)− p̃t(y, x0)| ≤
(d(z, x0)√

t

)δ1[ 1

μ(B(z,
√
t))

× exp
(
− d(y, z)2

ct
+

1

μ(B(x0,
√
t))

exp
(
− d(y, x0)

2

ct

)]
.

Hence, for any x ∈ (4B)c with d(x, y) < t we have, by (9),

|p̃t(y, z)− p̃t(y, x0)|

≤
(d(z, x0)√

t

)δ1[ 1

μ(B(z,
√
t))

exp
(
− d(x, z)2

ct

)
+

1

μ(B(x0,
√
t))

exp
(
− d(x, x0)

2

ct

)]
≤
(d(z, x0)√

t

)δ1[ 1

μ(B(z, d(x, z)))
exp
(
− d(x, z)2

ct

)
+

1

μ(B(x0, d(x, x0)))
exp
(
− d(x, x0)

2

ct

)]
.

Note that d(x, z) ∼ d(x, x0) and μ(B(z, d(x, z))) ∼ μ(B(x0, d(x, x0))) as z ∈ B and
x ∈ (4B)c. From this and the inequality above we obtain

sup
d(x,y)<t

|p̃t(y, z)− p̃t(y, x0)| ≤
(d(z, x0)√

t

)δ1 1

μ(B(x0, d(x, x0)))
exp
(
− d(x, x0)

2

ct

)
.
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Inserting this into (52) we have

I22 �
ˆ
X\4B

sup
4r2≤t

[ˆ
B

(d(z, x0)√
t

)δ1 1

μ(B(x0, d(x, x0)))

× exp
(
− d(x, x0)

2

ct

)
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
X\4B

[ˆ
B

(d(z, x0)

d(x, x0)

)δ1 1

μ(B(x0, d(x, x0)))
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
M\4B

[ˆ
B

( r

d(z, x0)

)δ1 1

μ(B(x0, d(x, x0)))
|a(z)|dμ(z)

]p
dμ(x)

≤ C,

provided p > n/(n+ δ1). Therefore (51) holds.

Since hp
L,max,ρ(X) ⊂ hp

L,rad,ρ(X), to complete the proof it remains to prove that

hp
L,rad,ρ(X) ∩ L2(X) ↪→ hp,q

at,ρ(X) ∩ L2(X). To do this we first note that for fixed

numbers ε1, ε2 ∈ (0, 1], there exists C = C(ε1, ε2) so that

(53) C−1‖ · ‖hp,q
at,ρ,ε1

(X) ≤ ‖ · ‖hp,q
at,ρ,ε2

(X) ≤ C‖ · ‖hp,q
at,ρ,ε1

(X).

Hence, it suffices to prove that there exists ε0 ∈ (0, 1] so that

(54) ‖f‖hp,q
at,ρ,ε0

(X) � ‖f‖hp
L,rad,ρ(X),

for all f ∈ hp
L,rad,ρ(X) ∩ L2(X).

Indeed, we note that for each α ∈ I, fψα is supported in the ball Bα =
B(xα, ρ(xα)). Hence, by Proposition 4.7 and a scaling argument, we can decom-
pose fψα into an atomic (p, q, ρ, ε)-representation with (p, q, ρ, ε)-atoms supported
in B∗

α. Moreover, we have from Lemma 3.3 (a), the existence of c0 so that

c−1
0 ρ(xα) ≤ ρ(x) ≤ c0ρ(xα) for all x ∈ B∗

α and all α ∈ I.
Therefore, from Theorem 2.7 and Lemma 5.2, by a scaling argument we obtain∑
α∈I

‖ψαf‖php,q
at,ρ,ε(X)

�
∑
α∈I

∥∥∥ sup
0<t<[ερ(xα)]2

|e−tLψαf |
∥∥∥p
Lp(X)

�
∑
α∈I

∥∥∥ sup
0<t<[ερ(xα)]2

|e−tLψαf |
∥∥∥p
Lp(B∗

α)
+
∑
α∈I

∥∥∥ sup
0<t<[ερ(xα)]2

|e−tL(ψαf)|
∥∥∥p
Lp(X\B∗

α)

�
∑
α∈I

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)|
∥∥∥p
Lp(B∗

α)
+
∑
α∈I

εκ
∑
j∈Iα

‖ψjf‖php,q
at,ρ,ε(X)

�
∑
α∈I

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)|
∥∥∥p
Lp(B∗

α)
+ εκ

∑
α∈I

‖ψαf‖php,q
at,ρ,ε(X)

,

where ε̃ = c0ε.
As a consequence,∑

α

‖ψαf‖php,q
at,ρ,ε(X)

�
∑
α

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)|
∥∥∥p
Lp(B∗

α)
,

provided that ε is small enough.
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This, along with the inequality

‖f‖p
hp,q
at,ρ,ε(X)

≤
∑
α∈I

‖ψαf‖php,q
at,ρ,ε(X)

,

further implies that

‖f‖p
hp,q
at,ρ,ε(X)

�
∑
α

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)|
∥∥∥p
Lp(B∗

α)

�
∑
α

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)− ψα(·)e−tLf(·)|
∥∥∥p
Lp(B∗

α)

+
∑
α

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|ψα(·)[e−tL − Tt,ρ]f(·)|
∥∥∥p
Lp(B∗

α)

+
∑
α

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|ψα(·)Tt,ρf(·)|
∥∥∥p
Lp(B∗

α)

=: I1 + I2 + I3.

From Lemma 3.4, we conclude that

I1 �
∥∥∥∑

α

sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)− ψα(·)e−tLf(·)|
∥∥∥p
Lp(X)

.

Hence, we have

‖f‖p
hp,q
at,ρ,ε(X)

�
∑
α

∥∥∥ sup
0<t<[ε̃ρ(·)]2

|e−tL(ψαf)(·)− ψα(·)e−tLf(·)|
∥∥∥p
Lp(X)

+
∥∥∥ sup

0<t<[ε̃ρ(·)]2
|[e−tL − Tt,ρ]f(·)]|

∥∥∥p
Lp(X)

+
∥∥∥ sup

0<t<ε̃ρ(·)2
|Tt,ρf(·)|

∥∥∥p
Lp(X)

.

This along with Lemma 5.5 and Lemma 5.7 deduces that

(55) ‖f‖p
hp,q
at,ρ,ε(X)

� εκ‖f‖p
hp,q
at,ρ,ε̃

(X)
+
∥∥∥ sup

0<t<ρ(·)2
|Tt,ρf(·)|

∥∥∥p
Lp(X)

as long as ε̃ = c0ε < 1.
Note that since ε̃ = c0ε, from the definition of Hardy spaces hp,q

at,ρ,ε(X), there
exists C independent of ε so that

‖f‖p
hp,q
at,ρ,ε̃

(X)
≤ C‖f‖p

hp,q
at,ρ,ε(X)

.

This together with (55) implies that

‖f‖p
hp,q
at,ρ,ε(X)

� εκ‖f‖p
hp,q
at,ρ,ε(X)

+
∥∥∥ sup

0<t<ε̃ρ(·)2
|Tt,ρf(·)|

∥∥∥p
Lp(X)

.

Therefore, there exists ε0 so that

‖f‖hp,q
at,ρ,ε0

(X) �
∥∥∥ sup

0<t<ρ(·)2
|Tt,ρf(·)|

∥∥∥p
Lp(X)

.

On the other hand, from the expression of Tt,ρ we have

sup
0<t<ρ(x)2

|Tt,ρf(x]| ≤ f+
L,ρ(x) for all x ∈ X.

Therefore,

‖f‖hp,q
at,ρ,ε0

(X) �
∥∥∥f+

L,ρ

∥∥∥
Lp(X)

= ‖f‖hp
L,rad,ρ(X).
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This completes our proof of Theorem 2.12. �

Remark 5.8. Assume that the measure μ satisfies the extra condition of ‘reverse
doubling’. In [40] the authors characterized the local Hardy spaces h1,q

at,ρ, q ∈ [1,∞]
in terms of radial maximal functions

S+
ρ f(x) := sup

k∈Z,2−k<ρ(x)

Skf(x),

where {Sk}k∈Z is an approximation of the identity. See [40, Theorem 2.1]. By
replacing the semigroup {e−tL} by the family {Sk}k∈Z, our approach can be adapted
easily to give the radial maximal function S+

ρ characterization for the local Hardy

spaces hp,q
at,ρ with p, q as in Theorem 2.12. We leave the details to the interested

reader.

5.2. Proof of Theorem 2.15. The proof of Theorem 2.15 is quite similar to that
of Theorem 2.12 and hence we just sketch the main points. We first prove the
following estimates which is similar to that in Lemma 5.7.

Lemma 5.9. Let n
n+δ2∧δ3

< p ≤ 1 and q ∈ (p,∞] ∩ [1,∞]. Then there exists κ so
that for any 0 < ε ≤ 1, we have

(56)
∥∥∥ sup

0<t≤[ερ(x)]2
|(e−tL − e−tL)f(x)|

∥∥∥p
Lp(X)

� εκ‖f‖p
hp,q
at,ρ,ε(X)

for all f ∈ hp,q
at,ρ,ε(X).

Proof. The proof is completely analogous to that of Lemma 5.7 with a minor mod-
ification of using (B2) and (B3) in place of (48) and (49), respectively. �

We now turn to the proof of Theorem 2.15.

Proof of Theorem 2.15: As in the proof of Theorem 2.12, we first prove hp,q
at,ρ(X)∩

L2(X) ↪→ Hp
L,max(X). We note that the maximal operator Mmax,L is dominated

by the Hardy-Littlewood maximal function Mf . This fact along with Lemma 5.1
reduces our task to showing

‖Mmax,La‖pLp ≤ C(57)

for some uniform constant C and any (p, q, ρ)-atom a associated to a ball B =
B(x0, r).

We write

‖Mmax,La‖pLp ≤ ‖Mmax,La‖pLp(4B) + ‖Mmax,La‖pLp(M\4B) := I1 + I2.

The first term can be estimated exactly the same as the term I1 in the proof of
Theorem 2.12.

For the term I2 we consider two cases.

Case 1 (ρ(x0)/4 ≤ r ≤ ρ(x0)). From (B1) and the fact that r ∼ ρ(x0) ∼ ρ(z)
for z ∈ B and d(x, y) ∼ d(x, x0) for y, x0 ∈ B and x ∈ (4B)c, we have, for
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N > n(1− p)/p,

I2 �
ˆ
M\4B

sup
t>0

sup
d(x,y)<t

[ˆ
B

1

μ(B(z,
√
t))

× exp
(
− d(y, z)2

ct

)(ρ(z)√
t

)N
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
M\4B

sup
t>0

sup
d(x,y)<t

[ˆ
B

1

μ(B(z,
√
t))

× exp
(
− d(y, z)2

ct

)(ρ(x0)√
t

)N
|a(z)|dμ(z)

]p
dμ(x).

Due to

exp
(
− d(y, z)2

ct

)
∼ exp

(
− d(x, z)2

ct

)
, as d(x, y) < t,

we have

I2 �
ˆ
X\4B

sup
t>0

[ ˆ
B

1

μ(B(z,
√
t))

exp
(
− d(x, z)2

t

)(ρ(x0)√
t

)N
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
X\4B

sup
t>0

[ ˆ
B

1

μ(B(z, d(x, z)))

× exp
(
− d(x, z)2

t

)(ρ(x0)√
t

)N
|a(z)|dμ(z)

]p
dμ(x).

This along with the fact that d(x, z) ∼ d(x, x0) implies

I2 �
ˆ
X\4B

sup
t>0

[ˆ
B

1

μ(B(x, d(x, x0)))

× exp
(
− d(x, x0)

2

t

)(ρ(x0)√
t

)N
|a(z)|dμ(z)

]p
dμ(x)

�
ˆ
X\4B

[ˆ
B

1

μ(B(x, d(x, x0)))

( r

d(x, x0)

)N
|a(z)|dμ(z)

]p
dμ(x)

≤ C.

Case 2 (r < ρ(x0)/4). We now break I2 into two terms as follows:

I2 �
ˆ
X\4B

sup
0<t≤4r2

sup
d(x,y)<t

∣∣∣ ˆ
B

pt(y, z)a(z)dμ(z)
∣∣∣pdμ(x)

+

ˆ
X\4B

sup
4r2≤t

sup
d(x,y)<t

∣∣∣ ˆ
B

pt(y, z)a(z)dμ(z)
∣∣∣pdμ(x)

= I21 + I22.

The remaining parts can be done in the same manner as those in the proof of
Theorem 2.12 using (B1) and (14) in place of (A2) and (A3), and so we omit the
details. This completes the proof of (57).

Due to the fact thatHp
L,max(X) ⊂ Hp

L,rad(X), it remains to verify thatHp
L,rad(X)

∩ L2(X) ↪→ hp,q
at,ρ(X). This part can be done mutatis mutandis as in the proof of

Theorem 2.12 by replacing Tt,ρ and Lemma 5.7 by e−tL and Lemma 5.9, respec-
tively. �
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6. Some applications

We now give some applications to the main results. The list is not exhaustive
but is intended to show the variety of possible applications and the generality of
our assumptions.

6.1. Schrödinger operators on non-compact Riemannian manifolds. LetX
be a complete connected Riemannian manifold, let μ be the Riemannian measure
and let ∇ be the Riemannian gradient. Let −Δ be the Laplace-Beltrami operator.
It is well known that −Δ satisfies (A4). The geodesic distance between x ∈ X and
y ∈ X will be denoted by d(x, y). Denote by B(x, r) the open ball of radius r > 0
and center x ∈ X. Assume that the measure μ satisfies the doubling property, that
is, there exists a constant C > 0 and n ≥ 0 so that

(58) μ(B(x, λr)) ≤ Cλnμ(B(x, r))

for all x ∈ X, r > 0 and λ ≥ 1.
We also assume that X admits a Poincaré inequality. That is, there exists a

constant C > 0 such that for every function f ∈ C∞
0 (X) and every ball B ⊂ X, we

have

(59)
(  

B

|f − fB|2 dμ
)1/2

≤ CrB

(  
B

|∇f |2 dμ
)1/2

.

Denote by p̃t(x, y) the associated kernel to the semigroup etΔ. It is well known
that the doubling condition (58) and the Poincaré inequality (59) imply Gaussian
and Hölder continuity estimates for −Δ. More precisely, there exist C, c > 0 and
δ1 so that

(60) 0 ≤ p̃t(x, y) ≤
C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
for all t > 0, x, y ∈ X, and

(61) |p̃t(x, y)− p̃t(x
′, y)| ≤ C

(d(x, x′)√
t

)δ1 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
for all t > 0 and d(x, x′) < (d(x, y) +

√
t)/2. See for example [31, 32].

Note that the conditions (60) and (61) imply that for any δ ∈ (0, δ1] we have

|p̃t(x, y)− p̃t(x
′, y)|(62)

≤ C
(d(x, x′)√

t

)δ 1

μ(B(y,
√
t))

[
exp
(
− d(x, y)2

ct

)
+ exp

(
− d(x′, y)2

ct

)]
for all t > 0 and x, x′, y ∈ X.

Let ρ be a critical function on X. Hence we may apply Theorem 2.12 to L = −Δ
to obtain the following.

Theorem 6.1. For p ∈ ( n
n+δ1

, 1] and q ∈ [1,∞] ∩ (p,∞], we have

hp,q
at,ρ(X) ≡ hp

−Δ,max,ρ(X) ≡ hp
−Δ,rad,ρ(X).

This result is new even for p = 1. Moreover, in the particular case ρ ≡ 1, we
recover the result in [41].
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We now consider a Schrödinger operator L = −Δ + V where V ∈ A∞ ∩ RHσ

with σ > max{1, n/2}. See Subsection 6.1 for the definitions of the class A∞ and
RHq. Following the idea in [33] we define the critical function ρ on X by setting

(63) ρ(x) = sup
{
r > 0 :

r2

μ(B(x, r))

ˆ
B(x,r)

V (y)dμ(y) ≤ 1
}
.

We then have the following result.

Theorem 6.2. Let (X, d, μ) satisfy (58) and (59). Let L = −Δ + V where V ∈
A∞ ∩RHq with q > max{1, n/2}, and let ρ be defined as in (63). Then L satisfies
(B1)-(B3) with L = −Δ, δ2 = 2− n/q and any δ3 < min{δ1, δ2}.

The proof of this theorem is quite long and will be given in Subsection 7.2. More
precisely, the proof of (B1), (B2), and (B3) will be addressed in Propositions 7.12,
7.13, and 7.15, respectively.

As a direct consequence of Theorem 2.15 and Theorem 6.2 we obtain the follow-
ing.

Theorem 6.3. Assume that (X, d, μ) satisfies (58) and (59). Let L = −Δ + V
with V ∈ A∞∩RHq with q > max{1, n/2}. Let p ∈ ( n

n+δ0
, 1] and q ∈ [1,∞]∩(p,∞]

with δ0 = min{δ1, 2− n/q}. Then we have

hp,q
at,ρ(X) ≡ Hp

L,max(X) ≡ Hp
L,rad(X).

The result in this theorem is new even for p = 1.

6.2. Laguerre operators. Let X = ((0,∞)m, dμ(x)) where dμ(x) = dμ1(x1) . . .
dμm(xm) and dμk = xαk

k dxk, αk > −1 for k = 1, . . . ,m (dxj being the one
dimensional Lebesgue measure). We endow X with the distance d defined for
x = (x1, . . . , xm) and y = (y1, . . . , ym) ∈ X as

d(x, y) := |x− y| =
( m∑

k=1

|xk − yk|2
)1/2

.

Then it is clear that

(64) μ(B(x, r)) ∼ rm
m∏

k=1

(xk + r)αk .

Note that this estimate implies the doubling property (9) with n = m+α1+. . .+αm.
For an element x ∈ R

m, unless specified otherwise, we shall write xk for the kth
component of x, k = 1, . . . ,m.

We consider the second order Bessel differential operator

L = −Δ−
m∑

k=1

αk

xk

∂

∂xk
(65)

whose system of eigenvectors is defined by

Eλ(x) :=

m∏
k=1

Eλk
(xk), Eλk

(xk) := (xkλk)
−(αk−1)/2J(αk−1)/2(xkλk), λ, x ∈ X,

where J(αk−1)/2 is the Bessel function of the first kind of order (αk−1)/2 (see [27]).

It is known that L(Eλ) = |λ|2Eλ. Moreover, the functions Eλk
are eigenfunctions
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of the one dimension Bessel operators

Lk = − ∂2

∂xk
2
− αk

xk

∂

∂xk

and indeed Lk(Eλk
) = λ2

kEλk
for k = 1, . . . ,m.

It is well known that L satisfies (A1)-(A4) with δ1 = 1. See for example [27].
Hence, as a consequence of Theorem 2.12 we have the following.

Theorem 6.4. Let L be the Bessel operator defined in (65) and let ρ be a critical
function on X. If p ∈ ( n

n+1 , 1] and q ∈ [1,∞] ∩ (p,∞], then we have

hp,q
at,ρ(X) ≡ hp

L,max,ρ(X) ≡ hp
L,rad,ρ(X).

We next consider the Laguerre operator defined by

(66) L :=
m∑

k=1

Lk + |x|2 = L+ |x|2.

It is well known that the heat kernel pt(x, y) associated to the semigroup e−tL is
given by

pt(x, y) =

m∏
j=1

2e−2t

1− e−4t
exp
(
− 1

2

1 + e−4t

1− e−4t
(x2

j + y2j )
)

(67)

× (xjyj)
−(αj−1)/2I(αj−1)/2

( 2e−2t

1− e−4t
xjyj

)
for all t > 0, x, y ∈ X and I(αj−1)/2 being the Bessel function. See for example [27].

We define the critical function ρ on X by setting

(68) ρ(x) = sup
{
r > 0 :

r2

μ(B(x, r))

ˆ
B(x,r)

|y|2dμ(y) ≤ 1
}
.

Then by a simple calculation we can find that

(69) ρ(x) ∼ min{1, |x|−1}.
We have the following result.

Theorem 6.5. Let L be a Laguerre operator defined in (66). Then L satisfies
(B1)-(B3) with L defined in (65), δ2 = 1, any δ3 < 1, and with ρ defined in (68).

Proof. We only prove that L satisfies (B1). Once this is proved, arguing similarly
to the proof of Theorem 6.2 we can show that L satisfies (B2)-(B3).

We first recall some basic properties of Bessel functions Iν , ν > −1. It is well
known that

(70) z−νIν(z) ∼ 2−ν , z ∈ (0, 1];

(71) Iν(z) � z−1/2ez, z ≥ 1;

and

(72)
d

dz
(z−νIν(z)) = z−νIν+1(z).

See for example [27].



7270 THE ANH BUI, XUAN THINH DUONG, AND FU KEN LY

Due to (67) it suffices to prove (B1) for the one dimensional case m = 1. More
precisely we claim that for all N > 0, there exist positive constants c and C so that

(73) |pt(x, y)| ≤
C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

for all x, y ∈ X and t > 0. Here dμ = xαdx for α > −1 and

pt(x, y)=
2e−2t

1− e−4t
exp
(
− 1

2

1 + e−4t

1− e−4t
(x2 + y2)

)
(xy)−(α−1)/2I(α−1)/2

( 2e−2t

1− e−4t
xy
)
.

Setting s = 1−e−4t

2e−2t , we rewrite

pt(x, y) =
1

s
exp
(
− 1

2

1 + e−4t

1− e−4t
(x2 + y2)

)
(xy)−(α−1)/2I(α−1)/2

(xy
s

)
.

We consider two cases.

Case 1 (xy < s). In this situation, we have x <
√
s or y <

√
s. Without the loss

of generality, we may assume that x <
√
s and hence μ(B(x,

√
s)) ∼ s(α+1)/2.

Moreover, by (70),

(xy)−(α−1)/2I(α−1)/2

(xy
s

)
∼ s−(α−1)/2.

Hence,

(74)
pt(x, y) �

s−(α−1)/2

s
exp
(
− 1

2

1 + e−4t

1− e−4t
(|x|2 + |y|2)

)
� 1

μ(B(x,
√
s))

exp
(
− 1

4
(|x|2 + |y|2)

)
.

On the other hand, we also have

(75)

pt(x, y) �
s−(α−1)/2

s
exp
(
− 1

2

1 + e−4t

1− e−4t
(|x|2 + |y|2)

)
� 1

μ(B(x,
√
s))

exp
(
− 1

2

1 + e−4t

1− e−4t
(|x− y|2)

)
.

From (74) and (75) we conclude that
(76)

pt(x, y) �
1

μ(B(x,
√
s))

exp
(
− 1

4

1 + e−4t

1− e−4t
(|x− y|2)

)
exp
(
− 1

8
(|x|2 + |y|2)

)
.

If 0 < t ≤ 1, then 1 + e−4t ∼ 1, 1− e−4t ∼ t, and s ∼ t. This together with (69)
and (76) yields, for any N > 0,

pt(x, y) �
1

μ(B(x,
√
t))

exp
(
− |x− y|2

ct

)
exp
(
− 1

8
(|x|2 + |y|2)

)
� 1

μ(B(x,
√
t))

exp
(
− |x− y|2

ct

)(
1 +

√
t

ρ(x)
+

√
t

ρ(x)

)−N

.
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If t > 1, then 1 + e−4t ∼ 1, 1 − e−4t ∼ 1, and s ∼ e2t > tet. This along with (76)
implies

(77)

pt(x, y) �
1

μ(B(x,
√
tet))

exp
(
− c|x− y|2

)
exp
(
− 1

8
(|x|2 + |y|2)

)
� 1

μ(B(x,
√
tet))

exp
(
− |x− y|2

ct

)
exp
(
− 1

8
(|x|2 + |y|2)

)
.

Moreover, we can see that

(78) λκμ(B(x, r)) ≤ Cμ(B(x, λr))

for all x ∈ X, r > 0 and λ > 1, where κ = min{1, 1+α}. This, in combination with
(77), implies

pt(x, y) �
e−κt/2

μ(B(x,
√
t))

exp
(
− |x− y|2

ct

)
exp
(
− 1

8
(|x|2 + |y|2)

)
.

This and (69) gives (73).

Case 2 (xy ≥ s). By (71), we have
(79)

pt(x, y) �
1

s
exp
(
− 1

2

1 + e−4t

1− e−4t
(|x− y|2)

)
× exp

(
− 1 + e−4t

1− e−4t
xy
)
(xy)−(α−1)/2

( s

xy

)1/2
exp
(xy

s

)
=

1√
s
exp
(
− 1

2

1 + e−4t

1− e−4t
(|x− y|2)

)
exp
[(

− 1 + e−4t

1− e−4t
+

1

s

)
xy
]
(xy)−α/2

=
1√
s
exp
(
− 1

2

1 + e−4t

1− e−4t
(|x− y|2)

)
exp
(
− 1− e−2t

1 + e−2t
xy
)
(xy)−α/2.

Moreover,

exp
(
− 1

2

1 + e−4t

1− e−4t
(|x− y|2)

)
exp
(
− 1− e−2t

1 + e−2t
xy
)

≤ exp
(
− 1

2

1− e−2t

1 + e−2t
(|x− y|2)

)
exp
(
− 1− e−2t

1 + e−2t
xy
)

= exp
(
− 1− e−2t

2(1 + e−2t)
(|x|2 + |y|2)

)
.

This along with (79) implies
(80)

pt(x, y) �
1√
s
exp
(
− 1 + e−4t

4(1− e−4t)
(|x− y|2)

)
exp
(
− 1− e−2t

2(1 + e−2t)
xy
)
(xy)−α/2

× exp
(
− 1− e−2t

2(1 + e−2t)
(|x|2 + |y|2)

)
.

We consider three subcases.

Subcase 2.1 (x, y ≥
√
s). In this situation, we have μ(B(x,

√
s)) ∼ xα

√
s and

μ(B(y,
√
s)) ∼ yα

√
s.
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If 0 < t ≤ 1, we find that

pt(x, y) �
1√

t(xy)α
exp
(
− |x− y|2

ct

)
exp
(
− c(t|x|2 + t|y|2)

)
� 1[

μα(B(x,
√
t))μα(B(y,

√
t))
]1/2

× exp
(
− c

|x− y|2
t

)
exp
(
− c(t|x|2 + t|y|2)

)
.

This proves (73).
If t ≥ 1, similarly we have

pt(x, y) �
1

e2t(xy)α/2
exp
(
− |x− y|2

ct

)
exp
(
− c(|x|2 + |y|2)

)
� 1

et
[
μα(B(x,

√
t))μα(B(y,

√
t))
]1/2

× exp
(
− |x− y|2

ct

)
exp
(
− c(|x|2 + |y|2)

)
.

This implies (73).

Subcase 2.2 (x ≥ √
s ≥ y). If −1 < α ≤ 0, then

exp
(
− 1− e−2t

1 + e−2t
xy
)
(xy)−α/2 �

(1− e−2t

1 + e−2t

)α/2
.

Substituting into (80) we get that

pt(x, y) �
1√
s
exp
(
− 1 + e−4t

4(1− e−4t)
(|x− y|2)

)(1− e−2t

1 + e−2t

)α/2
× exp

(
− 1− e−2t

2(1 + e−2t)
(|x|2 + |y|2)

)
.

At this stage, using the same argument as above we conclude (73).
If α > 0, then

exp
(
− 1− e−2t

1 + e−2t
xy
)
(xy)−α/2 ≤ (xy)−α/2 ≤ s−α/2.

Inserting into (80) and using the argument as above, we also obtain the desired
estimate.

Subcase 2.3 (y ≥ √
s ≥ x). This subcase can be done in the same manner as in

Subcase 2.2 and we omit the details. �

From the above result and Theorem 2.15 we imply the following.

Theorem 6.6. Let L be a Laguerre operator defined in (66) and let ρ be a critical
function as in (69). Let p ∈ ( n

n+1 , 1] and q ∈ [1,∞] ∩ (p,∞]. Then we have

hp,q
at,ρ(X) ≡ Hp

L,max(X) ≡ Hp
L,rad(X).

Note that the particular case m = 1 and α ≥ 0 was obtained in [15]. Hence, the
theorem is new even for the case m = 1.
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6.3. Degenerate Schrödinger operators. Let w be a weight in Muckenhoupt
class A2(R

d), d ≥ 3. That is, there exist a constant C > 0 so that( 1

|B|

ˆ
B

w(x)dx
)( 1

|B|

ˆ
B

w−1(x)dx
)
≤ C

for all balls B ⊂ Rd. Then the triple (X, d, dμ) =
(
Rd, | · |, wdx

)
satisfies (8).

Moreover, there exist 0 < κ ≤ n < ∞ so that

λκw(B(x, r)) � w(B(x, λr)) � λnw(B(x, r))

for all x ∈ Rd, r > 0 and λ ≥ 1, where w(E) =
´
E
w(x)dx for any measurable

subset E ⊂ R
d.

Let {ai,j}di,j=1 be a real symmetric matrix function satisfying, for some C > 0

and every x, ξ ∈ Rd,

C−1|ξ|2w(x) ≤
∑
i,j

ai,j(x)ξiξj ≤ C|ξ|2w(x).

We consider the degenerate elliptic operator L defined by

Lf(x) = − 1

w(x)

∑
i,j

∂i(ai,j(·)∂jf)(x).(81)

Then the operator L satisfies the assumptions (A1)-(A4) with some δ1 ∈ (0, 1). See
for example [22].

Let ρ be a critical function on Rd. For p ∈ (0, 1] we define the Hardy space
hp
L,rad,ρ(R

d, | · |, w(x)dx) as the completion of{
f ∈ L2(Rd, | · |, w(x)dx) : f+

L,ρ ∈ Lp(Rd, | · |, w(x)dx)
}

with respect to the norm

‖f‖hp
L,rad,ρ(R

d,|·|,w(x)dx) :=
∥∥∥f+

L,ρ

∥∥∥
Lp(Rd,|·|,w(x)dx)

.

Similarly, the Hardy space hp
L,max,ρ(R

d, | · |, w(x)dx) as the completion of{
f ∈ L2(Rd, | · |, w(x)dx) : f∗

L,ρ ∈ Lp(Rd, | · |, w(x)dx)
}

with respect to the norm

‖f‖hp
L,max,ρ(R

d,|·|,w(x)dx) :=
∥∥∥f+

L,ρ

∥∥∥
Lp(Rd,|·|,w(x)dx)

.

Hence Theorem 2.7 implies the following.

Theorem 6.7. Let L be the operator in (81) and let ρ be a critical function on R
d.

Let p ∈ ( n
n+δ1

, 1] and q ∈ [1,∞] ∩ (p,∞]. Then we have

hp,q
at,ρ

(
R

d, | · |, wdx
)
≡ hp

L,max,ρ

(
R

d, | · |, wdx
)
≡ hp

L,rad,ρ

(
R

d, | · |, wdx
)
.

Let L = L + V be a so-called degenerate Schrödinger operator with V ∈
RHq(R

d, | · |, w(x)dx) with q > n/2. We define the critical function ρ by setting

(82) ρ(x) = sup
{
r > 0 :

r2

w(B(x, r))

ˆ
B(x,r)

V (y)w(y)dy ≤ 1
}
.

It was proved that the degenerate Schrödinger operator L satisfies the conditions
(B1) and (B2) with δ2 = 2− n/q. See for example [16, 40]. By a similar argument
to that in the proof of Proposition 7.15, we conclude that L satisfies (B3) for any
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δ3 < min{δ1, δ2}. Therefore Theorem 2.15 may be applied to deduce the following
result.

Theorem 6.8. Let L = L + V be a Schrödinger operator with L from (81) and
V ∈ RHq(X) for some q > n/2. Let ρ be defined as in (82). If p ∈ ( n

n+δ0
, 1] and

q ∈ [1,∞] ∩ (p,∞] with δ0 = min{δ1, 2− n/q}, then we have

hp,q
at,ρ

(
R

d, | · |, wdx
)
≡ Hp

L,max

(
R

d, | · |, wdx
)
≡ Hp

L,rad

(
R

d, | · |, wdx
)
.

The equivalence between Hp
at,ρ(X) and Hp

L,rad(X) for p = 1 was obtained in [16].

6.4. Schrödinger operators on Heisenberg groups. Let Hn be a (2n + 1)-
dimensional Heisenberg group. Recall that Hn is a connected and simply connected
nilpotent Lie group with the underlying manifold R

2n ×R. The group structure is
defined by

(x, s)(y, t) = (x+ y, s+ t+ 2

n∑
j=1

(xd+jyj − xjyd+j)).

The homogeneous norm on Hd is defined by

|(x, t)| = (|x|4 + |t|2)1/4 for all (x, t) ∈ H
n.

See for example [28].
This norm satisfies the triangle inequality and hence induces a left-invariant

metric d((x, t), (y, s)) = |(−x,−t)(y, s)|. Moreover, there exists a positive constant
C such that |B((x, t), r)| = CrQ, where Q = 2d+ 2 is the homogeneous dimension
of Hn and |B((x, t), r)| is the Lebesgue measure of the ball B((x, t), r). Obviously,
the triplet (Hn, d, dx) satisfies the doubling condition (8).

A basis for the Lie algebra of left-invariant vector fields on Hd is given by

X2n+1 =
∂

∂t
,Xj =

∂

∂xj
+ 2xn+j

∂

∂t
,Xn+j =

∂

∂xn+j
− 2xj

∂

∂t
, j = 1, . . . , n

and the sub-Laplacian −ΔHn defined by

ΔHn = −
2n∑
j=1

X2
j .

Furthermore, it was proved in [28] that the sub-Laplacian ΔHn satisfies (A1)-(A4)
with δ1 = 1. Therefore from Theorem 2.12 we have the following.

Theorem 6.9. Let ρ be a critical function on Hn. Let p ∈ ( Q
Q+1 , 1] and q ∈

[1,∞] ∩ (p,∞]. Then we have

hp,q
at,ρ(H

n) ≡ hp
ΔHn ,max,ρ(H

n) ≡ hp
ΔHn ,rad,ρ(H

n).

We now consider the Schrödinger operator on Hn defined by L = ΔHn +V where
V ∈ RHq(H

n), q > Q/2. We define the critical function ρ associated to V by setting

(83) ρ(x) = ρ(x) = sup
{
r > 0 :

1

rQ−2

ˆ
B((x,t),r)

V (y, s)dyds ≤ 1
}
.

Then, the Schrödinger operator L satisfies conditions (B1) and (B2) with L = ΔHn ,
with any δ2 = 2 − Q/q. See for example [28]. Arguing similarly to the proof of
Proposition 7.15 we imply that L satisfies (B3) with any 0 < δ3 < min{1, 2−Q/q}.
Then from Theorem 2.15 we obtain the following.
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Theorem 6.10. Let L = ΔHn + V where V ∈ RHq(H
n), q > Q/2 and let ρ be

defined in (83). Let p ∈ ( Q
Q+δ0

, 1] and q ∈ [1,∞]∩(p,∞] where δ0 = min{1, 2−Q/q}.
Then we have

hp,q
at,ρ(H

n) ≡ Hp
L,max(H

n) ≡ Hp
L,rad(H

n).

In the particular case p = 1, the theorem is in line with that in [28]. Our result
corresponding to p < 1 is new.

6.5. Schrödinger operators on connected and simply connected nilpotent
Lie groups. For background on connected and simply connected nilpotent Lie
groups see [29,39]. Let G be a connected and simply connected nilpotent Lie group.
Let X ≡ {X1, . . . , Xk} be left-invariant vector fields on G satisfying the Hömander
condition. Let d be the Carnot-Carathéodory distance on G associated to X and
let μ be a left-invariant Haar measure on G. Then, there exist 0 < κ ≤ n < ∞
such that μ(B(x, r)) ≈ rκ when 0 < r ≤ 1, and μ(B(x, r)) ≈ rn when r ≥ 1; see
for example [29].

The sub-Laplacian is defined by ΔG = −
∑k

j=1 X
2
j . Then the operator ΔG

generates the analytic semigroup {e−tΔG}t>0 whose kernels p̃t(x, y) satisfy (A1)-
(A4) with δ1 = 1. See for example [39]. Hence, Theorem 2.12 implies the following.

Theorem 6.11. Let ρ be a critical function on G. Let p ∈ ( n
n+1 , 1] and q ∈

[1,∞] ∩ (p,∞]. Then we have

hp,q
at,ρ(G) ≡ hp

ΔG,max,ρ(G) ≡ hp
ΔG,rad,ρ

(G).

Let V be a non-negative locally integrable function on G. Assume that V ∈
RHq(G), q > n/2 with its associated critical function ρ defined by

(84) ρ(x) = sup
{
r > 0 :

r2

μ(B(x, r))

ˆ
B(x,r)

V (y)dμ(y) ≤ 1
}
.

Then the operator L = ΔG + V generates the semigroup {e−tL}t>0 satisfying (B1)
and (B2) with L = ΔG and δ2 = 2 − n/q. See for example [40]. The argument
used in the proof of Proposition 7.15 yields that L satisfies (B3) with any 0 < δ3 <
min{1, 2− q/n}. Therefore, Theorem 2.15 deduces the following result.

Theorem 6.12. Let L = ΔG + V be a Schrödinger operator with V ∈ RHq(G)
with q > n/2 and let ρ be as in (84). Let p ∈ ( n

n+δ0
, 1] and q ∈ [1,∞] ∩ (p,∞] with

δ0 = min{1, 2− n/q}. Then we have

hp,q
at,ρ(G) ≡ Hp

L,max(G) ≡ Hp
L,rad(G).

In [40], the authors prove the equivalence betweenHp
at,ρ(G) andHp

L(G) for p = 1.
Our result is new for p ≤ 1.

7. Appendices

7.1. Muckenhoupt weights. LetX be a space of homogeneous-type as in Section
1. A weight w is a non-negative measurable and locally integrable function on X.
We say that w ∈ Ap, 1 < p < ∞, if there exists a constant C such that for every
ball B ⊂ X, (  

B

w(x)dμ(x)
)(  

B

w(x)−1/(p−1)dμ(x)
)p−1

≤ C.
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For p = 1, we say that w ∈ A1 if there is a constant C such that for every ball
B ⊂ X,  

B

w(y)dμ(y) ≤ Cw(x) for a.e. x ∈ B.

We set A∞ =
⋃

p≥1 Ap.
The reverse Hölder classes are defined in the following way: w ∈ RHq, 1 < q < ∞,

if there is a constant C such that for any ball B ⊂ X,(  
B

w(y)qdμ(y)
)1/q

≤ C

 
B

w(x)dμ(x).

The endpoint q = ∞ is given by the condition: w ∈ RH∞ whenever there is a
constant C such that for any ball B ⊂ X,

w(x) ≤ C

 
B

w(y)dμ(y) for a.e. x ∈ B.

It is well known that w ∈ A∞ if and only if w ∈ RHq for some q > 1.

7.2. Proof of Theorem 6.2. In this subsection we always assume that X is a
manifold satisfying the doubling condition (58) and a Poincaré inequality (59).

Our aim here is to give the proof of (B1)-(B3) in this setting. It is worth
mentioning that we in fact prove something more general than (B1) in Theorem
7.10 by assuming V ∈ A∞. Estimate (B1) will then be deduced from Theorem 7.10
by restricting V to RHq with q > max{1, n/2} (Proposition 7.12). The approach
is based on the approach in [26] and recently improved in [30] in the setting of
Euclidean spaces. The main idea is to use the Fefferman–Phong inequality in [1]
in place of the Fefferman–Phong inequality from [33]. To keep our article self-
contained we give full details below.

Before giving the proof of the theorem we need some technical results. The first
is the improved Fefferman-Phong inequality in [1].

Lemma 7.1. Let V ∈ A∞ and 1 ≤ p < ∞. Then there are constants C > 0 and
β ≤ 1 depending only on the A∞ constant of V , on p, and on the constants in (58)
and (59), such that for every ball B of radius rB > 0 and u ∈ W 1

p,loc

ˆ
B

(
|∇u|2 + V |u|2

)
dμ ≥ C

mβ

(
r2B

ffl
B
V
)

r2B

ˆ
B

|u|2 dμ,

where

mβ(x) :=

{
xβ , x ≥ 1,
x, x ≤ 1.

We now consider some estimates related to weak subsolutions and weak solutions
of the heat equation involving Schrödinger operators.

We fix the following notation. The set Q will denote the parabolic cylinder

Q := Q(xQ, rQ, tQ)

=
{
(x, t) ∈ X × (0,∞) : d(xQ, x) < rQ and tQ − r2Q < t < tQ

}
Given a fixed cylinder Q, we also write

BQ := B(xQ, rQ), IQ := [tQ − r2Q, tQ], ItQ := [tQ − r2Q, t].
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Definition 7.2. Let I be a closed interval in R and let Ω be an open subset of
X. Let V be a non-negative function on X. We say u is a weak subsolution of
(∂t −Δ+ V ) in I × Ω if u ∈ W 1,1

2 (I × Ω) ∩ L∞(I × Ω) andˆ
I×Ω

(utφ+∇u · ∇φ+ V uφ) dμ dt ≤ 0(85)

for every φ ∈ C∞
0 (I × Ω).

Definition 7.3. We call u(x, t) a weak solution to (∂t −Δ+ V )u = 0 in Q if

(a) u ∈ L∞(IQ;W 1,2(BQ)
)
∩ L2

(
IQ;W

1,2(BQ)
)
and

(b) u satisfies for each t ∈ IQ,

ˆ
BQ

u(x, t)φ(x, t) dμ−
tˆ

tQ−r2Q

ˆ
BQ

(
uφs +∇u · ∇φ+ V uφ

)
dμ ds = 0

for all φ ∈ D, where

D :=
{
ϕ ∈ L2

(
IQ;W

1,2(BQ)
)
: ϕs ∈ L2

(
IQ;L

2(BQ)
)

and ϕ(x, tQ, r
2
Q) = 0

}
.

We have the following simple result.

Lemma 7.4. Let I be a closed interval in R and let Ω be an open subset of X. Let
V be a non-negative function on X. Suppose u ∈ W 1,1

2 (I × Ω) ∩ L∞(I × Ω) is a
weak subsolution of (∂t −Δ+ V ) in I × Ω.

Let g : R → R satisfy g′′ ≥ 0, g′ ≥ 0, and g(0) = 0. Then g(u) is a weak
subsolution of (∂t −Δ+ V ) in I × Ω.

Proof. Let ϕ ∈ C∞
0 (I × Ω) be non-negative. We will check that g(u) and ϕ satisfy

(85).
First, take φ = ϕg′(u) as a test function in (85). This givesˆ

I×Ω

(utϕg
′(u) +∇u · ∇(ϕg′(u)) + V uϕg′(u)) dμ dt ≤ 0

or ˆ
I×Ω

(
utϕg

′(u) + ϕg′′(u)|∇u|2 + g′(u)∇u · ∇ϕ+ V uϕg′(u)
)
dμ dt ≤ 0.

Therefore the proceeding inequality impliesˆ
I×Ω

ϕ∂tg(u) +∇g(u) · ∇ϕ+ V g(u)ϕ

=

ˆ
I×Ω

ϕg′(u)∂tu+∇g(u) · ∇ϕ+ V g(u)ϕ

≤ −
ˆ
I×Ω

ϕg′′(u)|∇u|2 +
ˆ
I×Ω

V ϕ
(
g(u)− ug′(u)

)
≤
ˆ
I×Ω

V ϕ
(
g(u)− ug′(u)

)
≤ 0.

The second inequality holds because g′′ ≥ 0. The final inequality holds because
V, ϕ ≥ 0 and the hypotheses g′ ≥ 0 and g(0) = 0 imply that g(s) − sg′(s) ≤ 0 for
all s ∈ R. �
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The following estimate can be viewed as a Cacciopoli’s inequality related to
Schrödinger operators in manifolds.

Lemma 7.5. Let V be a non-negative function on X. Suppose that u is a weak
solution to (∂t −Δ+ V )u = 0 in 2Q. Then there exists C > 0 such that for every
σ ∈ (0, 1),

sup
t∈[tQ−(σrQ)2,tQ]

ˆ
σBQ

|u|2 dμ+

ˆ
σQ

|∇u|2 + V |u|2 dμ ds ≤ C

r2Q(1− σ)2

ˆ
Q

|u|2 dμ ds.

Proof. We adapt some ideas in [26] and proceed in the following steps.

Step 1 (The cutoff functions). We begin by defining some auxiliary functions: the
spatial cutoff χ ∈ C∞

0 (BQ) with

0 ≤ χ ≤ 1, χ ≡ 1 on σBQ, |∇χ| � 1

rQ(1− σ)
,

and the temporal cutoff η ∈ C∞(R) with

0 ≤ η ≤ 1, |ηt| �
1

r2Q(1− σ)2
, η(t) =

⎧⎨⎩
1, t ≥ tQ − (σrQ)

2,
... else,
0, t ≤ tQ − r2Q.

Step 2 (The test function). Let u be a weak solution to (∂t−Δ+V )u = 0 in 2Q in
the sense of Definition 7.3. We may assume that ut ∈ L2(2Q), since we can remove
this assumption by the argument in Aronson and Serrin (1967).

Take φ(x, t) := η(t)2χ(x)2u(x, t). Let us show that φ ∈ D. First, since u is a
weak solution, then u ∈ L2

(
IQ;W

1,2(BQ)
)
and hence η2χ2u ∈ L2

(
IQ;W

1,2(BQ)
)
.

Second, φt =
(
η2χ2u

)
t
= 2uχ2ηηt + η2χ2ut ∈ L2

(
IQ;L

2(BQ)
)
since ut ∈ L2(BQ).

Finally, φ(x, tQ − r2Q) = η2(tQ − r2Q)χ
2(x)u(x, tQ − r2Q) = 0 since η(tQ − r2Q) = 0.

Therefore we may conclude φ ∈ D.

Step 3 (The identity for weak solutions). Fix t ∈ [tQ − (σrQ)
2, tQ]. We use the

notation ItQ = [tQ − r2Q, t]. By parts with respect to the variable s givesˆ
It
Q

ˆ
BQ

η2χ2uus dμ ds =

ˆ
BQ

[
η2χ2u2

]t
tQ−r2Q

dμ−
ˆ
It
Q

ˆ
BQ

u ∂s
(
η2χ2u

)
dμ ds

=

ˆ
BQ

χ2(x)u2(x, t) dμ−
ˆ
It
Q

ˆ
BQ

u ∂s
(
η2χ2u2

)
dμ ds(86)

since η2(t) = 1 because t ≥ t2Q − (σrQ)
2.

Next the product rule with respect to s gives

ˆ
It
Q

ˆ
BQ

u∂s
(
η2χ2u

)
dμ ds = 2

ˆ
It
Q

ˆ
BQ

χ2u2ηηs dμ ds+

ˆ
It
Q

ˆ
BQ

η2χ2uus dμ ds.

(87)

Inserting (86) into (87) givesˆ
It
Q

ˆ
BQ

u∂s
(
η2χ2u

)
dμ ds = 2

ˆ
It
Q

ˆ
BQ

χ2u2ηηs dμ ds

+

ˆ
BQ

χ2u2 dμ−
ˆ
It
Q

ˆ
BQ

u∂s
(
η2χ2u

)
dμ ds.
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Rearrange this to getˆ
It
Q

ˆ
BQ

u∂s
(
η2χ2u

)
dμ ds =

ˆ
It
Q

ˆ
BQ

χ2u2ηηs dμ ds+ 1
2

ˆ
BQ

χ2u2 dμ.(88)

Now take φ = η2χ2u as a test function in Definition 7.3 (b) to getˆ
BQ

u2χ2 dμ−
ˆ
It
Q

ˆ
BQ

u∂s
(
η2χ2u

)
dμ ds

+

ˆ
It
Q

ˆ
BQ

∇u · ∇
(
η2χ2u

)
+ V u

(
η2χ2u

)
dμ ds = 0.

Insert (88) into the above to get

1
2

ˆ
BQ

χ2u2 dμ−
ˆ
It
Q

ˆ
BQ

χ2u2ηηs dμ ds(89)

+

ˆ
It
Q

ˆ
BQ

∇u · ∇
(
η2χ2u

)
+ V u

(
η2χ2u

)
dμ ds = 0.

Noting that

∇u · ∇
(
η2χ2u

)
= η2χ2∇u · ∇u+ η2u∇u · ∇(χ2)

and inserting this into the third term of (89) gives

1
2

ˆ
BQ

χ2u2 dμ+

ˆ
It
Q

ˆ
BQ

η2χ2|∇u|2 dμ ds+

ˆ
It
Q

ˆ
BQ

V u2η2χ2 dμ ds

=

ˆ
It
Q

ˆ
BQ

χ2u2ηηs dμ ds−
ˆ
It
Q

ˆ
BQ

η2u∇u · ∇(χ2) dμ ds.(90)

Step 4 (Control of the
´
|∇u|2 term). By the non-negativity of V , Cauchy–

Schwarzt’s inequality, Hölder’s inequality , and by taking t = tQ in (90) we ob-
tainˆ

Q

|∇u|2χ2η2 dμ ds

≤
ˆ
Q

χ2u2η|ηs| dμ ds+

ˆ
Q

η2|u|∇u · ∇(χ2) dμ ds

≤
ˆ
Q

u2|ηs| dμ ds+ 2

ˆ
Q

χη2|u||∇u||∇χ| dμ ds

≤
ˆ
Q

u2|ηs| dμ ds+ 2

ˆ
IQ

η2
(ˆ

BQ

|∇u|2χ2 dμ
)1/2(ˆ

BQ

|∇χ|2u2 dμ
)1/2

ds

≤
ˆ
Q

u2|ηs| dμ ds+ 2

ˆ
IQ

η2
[
1

4ε

ˆ
BQ

|∇u|2χ2 dμ+ ε

ˆ
BQ

|∇χ|2u2 dμ

]
ds,

which along with the fact that
√
A
√
B ≤ 1

4ε

√
A+ ε

√
B givesˆ

Q

|∇u|2χ2η2 dμ ds ≤ C

r2Q(1− σ)2

ˆ
Q

u2 dμ ds

+
1

2ε

ˆ
Q

|∇u|2χ2η2 dμ ds+
C ′ε

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.
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By using the properties |ηs| � r−2
Q (1 − σ)−2 and |∇χ| � r−1

Q (1 − σ)−1 and taking
ε = 1 we arrive atˆ

Q

|∇u|2χ2η2 dμ ds ≤ C ′′

r2Q(1− σ)2

ˆ
Q

u2 dμ ds+ 1
2

ˆ
Q

|∇u|2χ2η2 dμ ds.

Rearranging this inequality givesˆ
Q

χ2η2|∇u|2 dμ ds ≤ 2C ′′

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.(91)

Step 5 (Control of the
´
V u2 term). Taking t = tQ in (90) and applying a similar

argument to Step 4 we obtainˆ
Q

V u2χ2η2 dμ ds ≤
ˆ
Q

χ2u2η|ηs| dμ ds+

ˆ
Q

η2|u|2∇u · ∇(χ2) dμ ds

≤ C + 1

r2Q(1− σ)2

ˆ
Q

u2 dμ ds+ 1
2

ˆ
Q

|∇u|2χ2η2 dμ ds.(92)

We now apply (91) to the second term in the inequality above to conclude thatˆ
Q

V u2χ2η2 dμ ds � 1

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.(93)

Step 6 (Control of the
´
u2 term). Since V ≥ 0, the left hand side of (90) is positive

and hence by applying a similar argument to Step 4 we have

sup
t∈[tQ−(σrQ)2,tQ]

ˆ
BQ

u2(x, t)χ2(x) dμ

≤ 2

ˆ
Q

χ2u2η|ηs| dμ ds+ 2

ˆ
Q

η2|u|∇u · ∇(χ2) dμ ds

≤ C

r2Q(1− σ)2

ˆ
Q

u2 dμ ds+
1

ε

ˆ
Q

|∇u|2χ2η2 dμ ds

+
C ′ε

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.(94)

Taking ε = 1 and applying (91), we derive

sup
t∈[tQ−(σrQ)2,tQ]

ˆ
BQ

u2(x, t)χ2(x) dμ � C ′′

r2Q(1− σ)2

ˆ
Q

u2 dμ ds+

ˆ
Q

|∇u|2χ2η2 dμ ds

� 1

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.(95)

Step 7 (Putting it all together). Equations (91) and (93) giveˆ
Q

|∇u|2χ2η2 dμ ds+

ˆ
Q

V u2χ2η2 dμ ds ≤ C

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.(96)

Since χ = 1 on σBQ, η = 1 for t ≥ tQ − (σrQ)
2, and noting that

σQ =
{
(y, s) ∈ M × (0,∞) : d(xQ, y) < σrQ and tQ − (σrQ)

2 < s < tQ
}

we have by (96)ˆ
σQ

|∇u|2 + V u2 dμ ds ≤
ˆ
Q

(
|∇u|2 + V u2

)
η2χ2 dμ ds ≤ C

r2Q(1− σ)2

ˆ
Q

u2 dμ ds.

Combining this final inequality with (95) we obtain the required result. �
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We now record the following mean value inequality related to Laplace-Beltrami
operators.

Lemma 7.6. Let u be a weak subsolution of (∂t −Δ)u ≤ 0 in Q. Then

sup
(x,t)∈ 1

2Q

|u(x, t)| ≤
( C

r2Qμ(BQ)

ˆ
2
3Q

u2 dμ dt
)1/2

.

Proof. This is proved by Saloff-Coste in [31, 32]. �

Lemma 7.7 (Mean value inequality for Schrödinger). Let u be a weak solution of
(∂t −Δ+ V )u = 0 in Q. Then

sup
(x,t)∈ 1

2Q

|u(x, t)| ≤
( C

r2Qμ(BQ)

ˆ
2
3Q

u2 dμ dt
)1/2

.

Proof. Suppose that u+ is a non-negative weak solution to (∂t −Δ+ V )u+ = 0 in
Q. Then (∂t − Δ)u+ = −V u+ ≤ 0, since V is non-negative. Hence Lemma 7.6
applies to u+. �

Lemma 7.8. Let V ∈ A∞ and L = −Δ + V . Assume u is a weak solution of
(∂t + L)u = 0 in 2Q for some parabolic cylinder Q. Then for each k > 0 there
exists Ck > 0 such that

sup
(x,t)∈ 1

2Q

|u(x, t)| ≤ Ck(
1 + r2Q

ffl
B(xQ,rQ)

V
)k{ 1

r2Qμ(BQ)

ˆ
Q

|u(x, t)|2dμ dt
}1/2

.(97)

Remark 7.9.

(a) We can rewrite this in an equivalent form:

sup
1
2Q

|u| ≤ Ck(
1 + tQ

ffl
B(xQ,

√
tQ)

V
)k{ 1

r2Qμ(BQ)

ˆ
Q

|u|2
}1/2

.

(b) It is possible to improve this to exponential decay:

sup
1
2Q

|u| ≤ Ck exp
{
−
(
1 + tQ

 
B(xQ,

√
tQ)

V
)δ}{ 1

r2Qμ(BQ)

ˆ
Q

|u|2
}1/2

for some δ > 0.

Proof of Lemma 7.8. Fix k ∈ N. For each j = 1, 2, . . . , k+1 set αj =
2
3 +

j−1
3k . Our

aim is to prove that there exists C > 0 such that for each 1 ≤ j ≤ k,ˆ
αjQ

|u|2 dx dt ≤ C
k2(

1 + r2Q
ffl
BQ

V
)2β ˆ

αj+1Q

|u|2 dμ dt.(98)

By iterating this k times we thus obtainˆ
2
3Q

|u|2 dx dt ≤ C
k2k(

1 + r2Q
ffl
BQ

V
)2βk ˆ

Q

|u|2 dμ dt.

Then we may insert this into the basic subsolution estimate in Lemma 7.7 to obtain

sup
1
2Q

|u| ≤ Ck/2 kk(
1 + r2Q

ffl
BQ

V
)βk/2{ 1

r2Qμ(BQ)

ˆ
Q

|u|2 dμ dt
}1/2

.
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To arrive at (97), for each k > 0 we simply choose an integer N large enough so
that k < βN/2 and apply the preceding estimate to the integer N .

We proceed with obtaining (98). For each 1 ≤ j ≤ k we pick two cutoff functions
as follows. First set

α̃j =
1

2
(αj + αj+1) =

2

3
+

j

3k
− 1

6k
.

Then for the spatial cutoff we pick χj ∈ C∞
0 (Rn) with

suppχj ⊆ α̃jBQ, 0 ≤ χj ≤ 1, χj ≡ 1 on αjBQ, |∇χj | �
k

rQ
.

For the temporal cutoff we pick ηj ∈ C∞
0 (M) with 0 ≤ ηj ≤ 1 and

supp ηj ⊆ (tQ − (α̃jrQ)
2, tQ], ηj ≡ 1 on (tQ − (αjrQ)

2, tQ].

Let us set

m̂β(B) := mβ

(
r2B

 
B

V
)
.

Then for each j = 1, . . . , k, we haveˆ
αjQ

|u|2 dμ dt ≤
ˆ
α̃jQ

|ηjχju|2 dμ dt

≤ C
r2α̃jQ

m̂β(α̃jBQ)

ˆ
α̃jQ

|∇(ηjχju)|2 + V |ηjχju|2 dμ dt

≤ C
r2Q

m̂β(α̃jBQ)

ˆ
α̃jQ

η2j
(
χ2
j |∇u|2 + u2|∇χj |2

)
+ V |ηjχju|2 dμ dt

≤ Ck
k2

m̂β(α̃jBQ)

ˆ
αj+1Q

|u|2 dμ dt

≤ Ck
k2

m̂β(BQ)

ˆ
αj+1Q

|u|2 dμ dt.

In the second line we applied the Fefferman-Phong inequality (Lemma 7.1) to ηjχju
and the ball α̃jBQ with p = 2. In the third line we used that

|∇(ηjχju)|2 ≤ 2η2j
(
χj |∇u|2 + u2|∇χj |2

)
.

In the fourth line we applied first |∇χj | � k/rQ, and second Cacciopoli’s inequality

(Lemma 7.5) to |∇u|2 + V |u|2 on αj+1Q with σ =
α̃j

αj+1
. In this case we have

(1 − σ)−2 =
(
2k+j

3

)2 ≤ k2. In the final line we used that V is doubling, and that
2/3 ≤ α̃j ≤ 1.

Next we obtain (98) by considering two cases. If r2Q
ffl
BQ

V > 1, then using

2βm̂β(BQ) >
(
1 + r2Q

 
BQ

V
)β

we obtain (98). On the other hand, if r2Q
ffl
BQ

V ≤ 1, then since

(
1 + r2Q

 
BQ

V
)β ≤ 2β
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we may apply this with the trivial inequality

ˆ
αjQ

|u|2 dμ dt ≤ k2
ˆ
αj+1Q

|u|2 dμ dt

which always holds. In either case we obtain (98). �

In this section we apply the subsolution estimates to obtain the following.

Theorem 7.10 (Improved heat kernel bounds). Let V ∈ A∞ and L = −Δ + V .
Then the heat kernel pt(x, y) of L satisfies the following: for each k > 0 there exists
Ck > 0 and c > 0 such that for all x, y,∈ M and t > 0

pt(x, y) ≤
Ck(

1 + t
ffl
B(x,

√
t)
V + t

ffl
B(x,

√
t)
V
)k e−d(x,y)2/ct

μ
(
B(x,

√
t)
) .

Proof. Fix x, y ∈ X and t > 0 with x �= y. Set u(z, s) := ps(z, y) for each s > 0
and z �= y. We also define the cylinder Q by setting xQ = x, tQ = t, and r2Q = t/2.

Then clearly (x, t) ∈ 1
2Q and u is a weak solution of

(
∂
∂t +L

)
u = 0 in 2Q. Therefore

by the improved subsolution estimate in Lemma 7.8, we have for each k > 0 (note
that we write BQ := B(x, rQ))

|pt(x, y)| ≤ sup
(z,s)∈ 1

2Q

|u(z, s)|

≤ Ck(
1 + r2Q

ffl
B(x,rQ)

V
)k{ 1

r2Qμ(BQ)

ˆ
Q

|u(z, s)|2 dz ds
}1/2

≤ Ck(
1 + r2Q

ffl
B(x,rQ)

V
)k{ 1

r2Qμ(BQ)

ˆ
Q

e−cd(z,y)2/s

μ
(
B(z,

√
s)
) dz ds}1/2

≤ Ck(
1 + r2Q

ffl
B(x,rQ)

V
)k 1

μ
(
B(x,

√
t)
)

≤ Ck(
1 + t

2

ffl
B(x,

√
t√
2
)
V
)k 1

μ
(
B(x,

√
t)
)

≤ Ck(
1 + t

ffl
B(x,

√
t)
V
)k 1

μ
(
B(x,

√
t)
) .

In the third inequality we used the well-known Gaussian bounds on ps(z, y) since
V ≥ 0. In the final inequality we used that V is a doubling measure.

In the fourth inequality we used that s is comparable to t since s ∈ [t − r2Q, t]

implies t ≥ s ≥ t − r2Q = t/2, and applied the following computation: if z ∈
B(x, rQ) = B(x,

√
t/2) and

√
t/2 ≤ √

s ≤
√
t, then x ∈ B(z,

√
s) since

√
t/2 ≤ √

s.
Then by the doubling property (58),

μ
(
(B(x,

√
t)
)
≤ μ
(
B(z, 2

√
t)
)
≤ Cμ

(
B(z,

√
t/2)

)
≤ Cμ

(
B(z,

√
s)
)
.
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Therefore

1

r2Qμ
(
B(x, rQ)

) ˆ t

t−r2Q

ˆ
B(x,rQ)

dz ds

μ
(
B(z,

√
s)
)

≤ 1

r2Qμ
(
B(x, rQ)

) ˆ t

t−r2Q

ˆ
B(x,rQ)

C dz ds

μ
(
B(x,

√
t)
)

=
C

μ
(
B(x,

√
t)
)2 .

Finally, from the Gaussian bounds on pt(x, y), we have

|pt(x, y)|2 ≤ Ck(
1 + t

ffl
B(x,

√
t)
V
)k 1

μ
(
B(x,

√
t)
) ∣∣pt(x, y)∣∣

≤ Ck(
1 + t

ffl
B(x,

√
t)
V
)k e−cd(x,y)2/t

μ
(
B(x,

√
t)
)2 .

Taking square roots gives the estimate

pt(x, y) ≤
Ck(

1 + t
ffl
B(x,

√
t)
V
)k e−cd(x,y)2/t

μ
(
B(x,

√
t)
) .

Now symmetry of the heat kernel pt(x, y) = pt(y, x) implies that

pt(x, y)
2 = pt(x, y) pt(y, x)

≤ C2
k(

1 + t
ffl
B(x,

√
t)
V
)k 1(

1 + t
ffl
B(y,

√
t)
V
)k e−cd(x,y)2/t

μ
(
B(x,

√
t)
)

≤ 2kC2
k(

1 + t
ffl
B(x,

√
t)
V + t

ffl
B(y,

√
t)
V
)k e−cd(x,y)2/t

μ
(
B(x,

√
t)
) .

Taking square roots again gives the required estimate.
Note that we have used the inequality

(1 +A+B)k ≤ 2k(1 +A)k(1 +B)k

valid for all A,B, k ≥ 0. Indeed if x, y ≥ 1, then x−1 + y−1 ≤ 2 and hence
(x+ y)k ≤ 2kxkyk. Then it follows that

(1 +A+B)k ≤ (2 +A+B)k = (1 +A+ 1 +B)k ≤ 2k(1 +A)k(1 +B)k.

�

We now record without proof some auxiliary results related to the critical func-
tion ρ. See for example [33, 40].

Lemma 7.11. Let V ∈ RHq ∩ A∞ with q > max{1, n/2} and let ρ be a function
defined as in (63). Then we have the following:

(a) ρ is a critical function satisfying (12).
(b) There exists C > 0 so that

r2

μ(B(x, r))

ˆ
B(x,r)

V (y)dμ(y) ≤ C
( r

R

)2−n/q R2

μ(B(x,R))

ˆ
B(x,R)

V (y)dμ(y)

for all x ∈ X and R > r > 0.
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(c) For any x ∈ M , we have

ρ(x)2

μ(B(x, ρ(x)))

ˆ
B(x,ρ(x))

V (y)dμ(y) = 1.

We first prove that L satisfies (B1).

Proposition 7.12. Let L = −Δ+ V be a Schrödinger operator with V ∈ RHq ∩
A∞, q > max{1, n/2}. Then for each N > 0 there exist C and c > 0 so that

(99) pt(x, y) ≤
C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

for all x, y ∈ X and t > 0. Hence, L satisfies (B1).

Proof. From the symmetry of the heat kernel it suffices to prove that

(100) pt(x, y) ≤
C

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(x)

)−N

.

By the fact that pt(x, y) satisfies Gaussian upper bounds (60), it suffices to prove
(100) for ρ(x) ≤

√
t.

To do this, applying Lemma 7.11 we have

1 = ρ(x)2
 
B(x,ρ(x))

V (y)dμ(y) ≤ C
(ρ(x)√

t

)2−n/q

t

 
B(x,

√
t)

V (y)dμ(y)

which implies

t

 
B(x,

√
t)

V (y)dμ(y) ≥ C
( √

t

ρ(x)

)2−n/q

.

This together with Theorem 7.10 deduces (100). �
For t > 0 and x, y ∈ X, we set

qt(x, y) = p̃t(x, y)− pt(x, y).

We now prove that L satisfies (B2). We have the following result.

Proposition 7.13. Let L = −Δ+ V be a Schrödinger operator with V ∈ RHq ∩
A∞, q > max{1, n/2}. Then there exist C and c > 0 so that

(101) |qt(x, y)| ≤ C
( √

t√
t+ ρ(x)

)2−n/q 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
for all x, y ∈ X and t > 0.

In order to prove Proposition 7.13, we need the following technical lemma.

Lemma 7.14. Let V ∈ RHq ∩ A∞ with q > max{1, n/2} and let α > 0. For any
c0 > 0, there exist C > 0 and N0 > 2− n/σ so that:

(a) For all x ∈ M and
√
t ≤ c0ρ(x), we have

(102)
1

μ(B(x,
√
t)) ∨ μ(B(y,

√
t))

ˆ
X

exp
(
− d(x, y)2

αt

)
V (y)dμ(y) ≤ Ct−1

( √
t

ρ(x)

)2−n/q

.

(b) For all x ∈ X and
√
t ≥ c0ρ(x), we have

(103)
1

μ(B(x,
√
t)) ∨ μ(B(y,

√
t))

ˆ
X

exp
(
− d(x, y)2

αt

)
V (y)dμ(y) ≤ Ct−1

( √
t

ρ(x)

)N0

.
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Proof. The proof of (i) and (ii) can be done in a similar way to that in [17, Lemma
5.1], and we omit the details. �

We are ready to give the proof of Proposition 7.13.

Proof of Proposition 7.13. Note that from the Gaussian upper bounds of p̃t(x, y)
and pt(x, y) we have

|qt(x, y)| ≤ C
1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

Hence it suffices to prove (106) for ρ(x) ≥
√
t.

It is well known that by the perturbation formula we have

(104)

qt(x, y) =

ˆ t

0

ˆ
X

p̃s(x, z)V (z)pt−s(z, y)dμ(z)ds

=

ˆ t/2

0

ˆ
X

. . .+

ˆ t

t/2

ˆ
X

. . . := I1 + I2.

We take care of I1 first. Note that since p̃s(x, z) and pt−s(z, y) satisfy Gaussian
upper bounds, there exists C, c > 0 so that for 0 < s ≤ t/2,
(105)

p̃s(x, z)pt−s(z, y)

≤ C
1

μ(B(x,
√
s))

exp
(
− 2d(x, z)2

cs

) 1

μ(B(y,
√
t− s))

exp
(
− d(z, y)2

c(t− s)

)
� 1

μ(B(x,
√
s))

exp
(
− d(x, z)2

cs

)
exp
(
− d(x, z)2

ct

)
× 1

μ(B(y,
√
t))

exp
(
− d(z, y)2

ct

)
� 1

μ(B(x,
√
s))

exp
(
− d(x, z)2

cs

) 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)
.

Inserting this into the expression of I2 and using (12), we obtain that

I1 � 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

) ˆ t/2

0

ˆ
M

1

μ(B(x,
√
s))

× exp
(
− d(x, z)2

cs

)
V (z)dμ(z)

� 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

) ˆ t/2

0

( √
s

ρ(x)

)2−n/q ds

s

� 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)( √
t

ρ(x)

)2−n/q

.

Similarly we obtain that

I2 � 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)( √
t

ρ(y)

)2−n/q

.
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This together with Lemma 7.11 gives, for ρ(x) ≥
√
t,

I2 � 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)( √
t

ρ(x)

)2−n/q(ρ(x) + d(x, y)

ρ(x)

)k0(2−n/q)

� 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)( √
t

ρ(x)

)2−n/q(√t+ d(x, y)√
t

)k0(2−n/q)

� 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

c′t

)( √
t

ρ(x)

)2−n/q

.

This completes the proof of (106). �

We have the following result which shows that L satisfies (B3).

Proposition 7.15. Let L = −Δ+ V be a Schrödinger operator with V ∈ RHq ∩
A∞, q > max{1, n/2}. Then for any 0 < δ < min{δ1, 2 − n/q} there exist C and
c > 0 so that

|qt(x, y)− qt(x, y)|(106)

≤ Cmin

{(d(x, x)
ρ(y)

)δ
,
(d(x, x)√

t

)δ} 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
for all t > 0, d(x, x) < d(x, y)/4 and d(x, x) < ρ(x).

Proof. By the perturbation formula, we have

qt(x, y)− qt(x, y) =

ˆ t

0

ˆ
X

(p̃s(x, z)− p̃s(x, z))V (z)pt−s(z, y)dμ(z)ds

=

ˆ t/2

0

ˆ
X

. . .+

ˆ t

t/2

ˆ
X

. . . := I1 + I2.

We now take care of I1 first. To do this we write

I1 =

ˆ t/2

0

ˆ
B(x,B(x,d(x,y)/2)

. . .+

ˆ t/2

0

ˆ
X\B(x,B(x,d(x,y)/2)

. . . := I11 + I12.

Note that for z ∈ B(x, d(x, y)/2), d(z, y) ∼ d(x, y). This, together with (62) and
the fact that t− s ∼ t for s ∈ (0, t/2) gives

I11 �
ˆ t/2

0

ˆ
B(x,B(x,d(x,y)/2)

(d(x, x)√
s

)δ 1

μ(B(z,
√
s))

×
[
exp
(
− d(x, z)2

cs

)
+ exp

(
− d(x, z)2

cs

)]
V (z)

× 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−N

dμ(z)ds

�
ˆ ρ(x)2

0

ˆ
B(x,2d(x,x))

. . .+

ˆ t/2

ρ(x)2

ˆ
B(x,2d(x,x))

. . . := J1 + J2,

where N is a sufficiently large number which will be fixed later.
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Note that ρ(x) ∼ ρ(x) for d(x, x) ≤ ρ(x). This, together with Lemma 7.14 (a)
and δ < 2− n/q, gives

J1 � 1

μ(B(y,
√
t))

× exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−N−δ
ˆ ρ(x)2

0

(d(x, x)√
s

)δ( √
s

ρ(x)

)2−n/q ds

s

�
(d(x, x)

ρ(x)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−N−δ

.

This along with Lemma 7.11 implies that

J1�
(d(x, x)

ρ(y)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1+

d(x, y)

ρ(y)

)δk0
(
1+

√
t

ρ(y)

)−N−δ

.

Taking N = δk0, we have(
1 +

d(x, y)

ρ(y)

)δk0
(
1 +

√
t

ρ(y)

)−N

�
(
1 +

d(x, y)√
t

)δk0

.

Hence,

J1 �
(d(x, x)

ρ(y)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

d(x, y)√
t

)δk0
(
1 +

√
t

ρ(y)

)−δ

�
(d(x, x)

ρ(y)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−δ

.

Similarly, by Lemma 7.14 (b) and N0 > 2− n/q > δ, we have

J2 � 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1+

√
t

ρ(y)

)−N−δ
ˆ t/2

ρ(x)2

(d(x, x)√
s

)δ( √
s

ρ(x)

)N0 ds

s

� 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(d(x, x)
ρ(x)

)δ( √
t

ρ(x)

)N0−δ(
1 +

√
t

ρ(y)

)−N−δ0

� 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(d(x, x)
ρ(x)

)δ(ρ(y)
ρ(x)

)N0−δ(
1 +

√
t

ρ(y)

)−N−δ+N0

.

We now take N = N0(k0 + 1) and use the argument above to obtain that

J2 �
(d(x, x)

ρ(y)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−δ

.

Arguing similarly we obtain

I12 �
(d(x, x)

ρ(y)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−δ

.

Taking estimates J1, J2, and I12 into account we conclude that

I1 �
(d(x, x)

ρ(y)

)δ 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(
1 +

√
t

ρ(y)

)−δ

� min

{(d(x, x)√
t

)δ
,
(d(x, x)

ρ(y)

)δ} 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)
.
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We turn to the term I2. By a change of variable we can rewrite

I2 =

ˆ t/2

0

ˆ
X

(p̃t−s(x, z)− p̃t−s(x, z))V (z)ps(z, y)dμ(z)ds.

Using (62), Proposition 7.12, and the fact that t− s ∼ t for s ∈ (0, t/2], we obtain

I2 �
ˆ t/2

0

ˆ
X

(d(x, x)√
t

)δ 1

μ(B(z,
√
t))

exp
(
− d(x, z)2

ct

)
V (z)

× 1

μ(B(y,
√
s))

exp
(
− d(z, y)2

cs

)(
1 +

√
s

ρ(y)

)−N

dμ(z)ds

+

ˆ t/2

0

ˆ
X

(d(x, x)√
t

)δ 1

μ(B(z,
√
t))

exp
(
− d(x, z)2

ct

)
V (z)

× 1

μ(B(y,
√
s))

exp
(
− d(z, y)2

cs

)(
1 +

√
s

ρ(y)

)−N

dμ(z)ds

= I21 + I22.

Note that for s ∈ (0, t/2] we have

exp
(
− d(x, z)2

ct

)
exp
(
− d(z, y)2

cs

)
� exp

(
− d(x, y)2

c′t

)
exp
(
− d(z, y)2

c′′s

)
.

Inserting this into the expression of I21 we obtain, for N > N0,

I21 �
(d(x, x)√

t

)δ 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

c′t

)
×
ˆ t/2

0

ˆ
X

V (z)
1

μ(B(y,
√
s))

exp
(
− d(z, y)2

c′′s

)(
1 +

√
s

ρ(y)

)−N

dμ(z)ds.

If t/2 > ρ(y), then by Lemma 7.14 we have

ˆ t/2

0

ˆ
X

V (z)
1

μ(B(y,
√
s))

exp
(
− d(z, y)2

c′′s

)(
1 +

√
s

ρ(y)

)−N

dμ(z)ds

�
ˆ ρ(y)2

0

( √
s

ρ(y)

)2−n/q ds

s
+

ˆ ∞

ρ(y)2

( √
s

ρ(y)

)N0
( √

s

ρ(y)

)−N ds

s

� 1.

Hence,

I21 �
(d(x, x)√

t

)δ 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

c′t

)
� min

{(d(x, x)√
t

)δ
,
(d(x, x)

ρ(y)

)δ} 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

c′t

)
.
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If t/2 < ρ(y), then by Lemma 7.14 (a) we obtain

I21 �
(d(x, x)√

t

)δ 1

μ(B(x,
√
t))

× exp
(
− d(x, y)2

c′t

) ˆ t/2

0

( √
s

ρ(y)

)2−n/q( √
s

ρ(y)

)2−n/q−δ ds

s

�
(d(x, x)√

t

)δ 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)( √
t

ρ(y)

)δ
� 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)(d(x, x)
ρ(y)

)δ
� min

{(d(x, x)√
t

)δ
,
(d(x, x)

ρ(y)

)δ} 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

c′t

)
.

By a similar argument, we also have

I22 � 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
min

{(d(x, x)√
t

)δ
,
(d(x, x)

ρ(y)

)δ}
� 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)
min

{(d(x, x)√
t

)δ
,
(d(x, x)

ρ(y)

)δ}
� 1

μ(B(y,
√
t))

exp
(
− d(x, y)2

ct

)(d(x, x)
ρ(y)

)δ
.

This completes our proof. �
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with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), no. 2,

279–296. MR1715409
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