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MULTIPLICITY STRUCTURE OF PREIMAGES OF INVARIANT
MEASURES UNDER FINITE-TO-ONE FACTOR MAPS

JISANG YOO

ABSTRACT. Given a finite-to-one factor map 7 : (X,T) — (Y, S) between topo-
logical dynamical systems, we look into the pushforward map 7. : M(X,T) —
M (Y, S) between sets of invariant measures. We investigate the structure of
the measure fiber m; }(v) for an arbitrary ergodic measure v on the factor
system Y. We define the degree d,, of the factor map 7 relative to v and the
multiplicity of each ergodic measure p on X that projects to v, and show that
the number of ergodic preimages of v is dr , counting multiplicity. In other
words, the degree dr , is the sum of the multiplicity of p, where p runs over
the ergodic measures in the measure fiber 7r;1(1/). This generalizes the follow-
ing folklore result in symbolic dynamics for lifting fully supported invariant
measures: Given a finite-to-one factor code m : X — Y between irreducible
sofic shifts and an ergodic measure v on Y with full support, 7, 1(V) has at
most dr ergodic measures in it, where dr is the degree of m. We apply our
theory of the structure of measure fibers to the special case of symbolic dy-
namical systems. In this case, we demonstrate that one can list all (finitely
many) ergodic measures in the measure fiber ' (v).

1. INTRODUCTION

Under some reasonable assumptions, a classical dichotomy result on factor maps
7 : X — Y between symbolic dynamical systems (i.e., factor codes) classifies them
into two categories (see Theorem [Tl for a precise statement). The first category
consists of finite-to-one factor codes where typical fibers have finite cardinality and
the factor system Y and the extension X have the same entropy. The other category
consists of infinite-to-one factor codes where typical fibers have infinite cardinality
and the factor system Y has lower entropy than X.

Finite-to-one factor codes are more well understood than infinite-to-one codes.
For a finite-to-one factor code 7, one can associate a single number d = d, called
the degree of 7, such that the map 7 is almost d-to-one in some sense. This is a
topological analogue to a result in ergodic theory that a finite-to-one factor map
between two ergodic systems is a.e. constant-to-one, i.e., mod 0 isomorphic to a
constant-to-one map. On the other hand, we do not have an analogue of a stronger
result like Rohlin’s skew-product theorem that any factor map between two ergodic

Received by the editors December 27, 2016, and, in revised form, March 6, 2017.

2010 Mathematics Subject Classification. Primary 37B10; Secondary 37A99, 37B15.

Key words and phrases. Degree, factor code, SFT, sofic subshfit, factor map, finite-to-one,
invariant measure.

This research was supported by BK21 PLUS SNU Mathematical Sciences Division. This
research was supported by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (2012R1A6A3A01040839) and the
National Research Foundation of Korea (NRF) grant funded by the MEST 2015R1A3A2031159.

(©2018 American Mathematical Society
8111


http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7234

8112 JISANG YOO

systems is isomorphic to that from a skew-product (Theorem 3.18 in [6]). Finite-
to-one factor codes in general cannot be represented as any kind of topological
skew-product.

Given a factor map 7 : X — Y between irreducible sofic shifts or subshifts of
finite type, we have an induced onto map m, from the set of invariant probability
measures on X to that of Y. We are interested in the structure of the measure fiber
77 1(v), where v is a fixed ergodic measure on Y. A classical folklore result says that
if 7 is finite-to-one and v has full support, then the number of ergodic measures in
its measure fiber is bounded by the degree d. If we relax the full support condition
of v, the number may exceed d but is still finite (see Example [[I5]). Since the
ergodic measures in 7, !(v) are precisely its extreme points, the measure fiber is a
simplex with finitely many extreme points. Since a simplex is determined by its
extreme points, knowing 7, *(v) is the same as knowing all ergodic measures that
project to v.

A surprising result along this line concerns the special case when v is a (fully
supported) Markov measure (which forces Y to be a subshift of finite type rather
than a strictly sofic shift) or more generally when v is the unique equilibrium
state (or, equivalently, invariant Gibbs measure) of some regular potential function
defined on a mixing subshift of finite type Y. In [I3], Tuncel proved the following
theorem: if v is as described, then it lifts uniquely through the finite-to-one factor
code 7. In other words, there is only one measure p in 7, (), even when d > 1.
The unique lift p is easily described from v and w. In particular, if v is Markov,
so is p. This case is strictly a special case: Every such equilibrium state is ergodic
and fully supported, but not every fully supported ergodic measure on Y is an
equilibrium state of a regular potential function. In fact, such equilibrium states
come with very strong mixing properties that are typically not shared by arbitrary
fully supported ergodic measures [12].

Tuncel’s result can be thought of as a generalization of an earlier and more
easily proved result that finite-to-one factor codes preserve maximal measures (i.e.,
measures of maximal entropy). That is, m.uo = vy, where pg, 1 are the unique
maximal measures on X, Y, respectively.

In this paper, we develop a theory of the structure of 7, !(v) for the general case
when v is an arbitrary ergodic measure. Even when we are mainly interested in
Markov measures, the general case can be of interest for the following reason. When
we are given a Markov measure p on X that we want to investigate, we might find
a convenient finite-to-one factor code m on X to exploit, but the image measure
v := 7. does not have to be a Markov measure. In fact, the sofic measure (the
image of a Markov measure, a.k.a. the stationary hidden Markov chain) in general
may not even be an equilibrium state of any regular potential, let alone a Markov
measure. (See [4] for examples and an introduction.)

Finite-to-one factor codes are also relevant for studying the evolution of measures
under surjective cellular automata. When X =Y = A? for some alphabet A, any
factor code between X, Y is a one-dimensional surjective cellular automaton and m
is finite-to-one because X and Y have the same entropy.

For infinite-to-one factor codes, there are usually infinitely many ergodic mea-
sures in 7, !(v). In this case, people are more interested in the finitely many
entropy maximizing ergodic measures within 7 !(v), which are called measures of
maximal relative entropy [I[IT]. The problem of lifting invariant measures through
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finite-to-one factor codes has a close connection with the problem of lifting through
infinite-to-one factor codes. Understanding the former can help in understand-
ing the latter because of the following two reduction results. One is that in each
infinite-to-one factor code m : X — Y, under some reasonable assumptions, one
can always find a subshift X; € X on which the induced factor code 7’ : X1 — Y
is finite-to-one [I0]. The other is that the infinite-to-one factor code 7 : X — Y
can be decomposed into the composition of two factor codes m; : X — M and
mg : M — Y, where 5 is finite-to-one and 77 is a class degree one factor code (this
is to be published in a subsequent paper). We hope that the theory of finite-to-one
measure fiber structure can shed new light on the study of measures of maximal
relative entropy and relative thermodynamic formalism in general.

As part of the structure of the measure fiber 7, 1(v), for each ergodic measure
W in it, we define the multiplicity of u over its image v = m,u. A simple example
to motivate the notion of multiplicity is the following from [14].

Example 1.1. Let X =Y = {0,1}% be two copies of the full two shift. Define
m:X =Y by n(z) =y, where y; = z; + z;41 (mod 2) for ¢ € Z. If this map is
seen as an endomorphism of the full shift rather than as a factor code, then this
is nothing but the rule 102 cellular automaton (which induces Ledrappier’s three
dot example). The factor code 7 is 2-to-1. For each 0 < p < 1, define p, to be the
Bernoulli product measure on X with probability p for value 1 and 1 —p for 0. Let
ty, = p1—p- Then p, and p;, project to a common measure v, = 7(u,) = 7(4;,) on
Y. The two measures f,, u; are distinct unless p = % After we define multiplicity
in a later section, we will see that the measure p 1= ,u/% is of multiplicity two w.r.t.

T over v, and we will see that for p # %, the measures fi,, j1;, have multiplicity one
over vp.

We also introduce the notion of degree joining which is an essentially unique
object obtained by joining all ergodic lifts p of v counted with multiplicity. In
order to take shortcuts by relying on the theory of joinings, we define and construct
the degree joining before we define multiplicity. Then we build a general theory of
multiplicity by relying on the constructed degree joining.

By exploiting the multiplicity structure of finite-to-one measure fibers, we are
able to demonstrate that in many cases, given an ergodic measure p on X, as soon
as one knows a concrete way to list all points in the fiber 771(7(z)) from a given
point z € X, one also has a way to list all ergodic measures in 7~ (7 ()) and count
the number of them. In particular, we can build an example of a 5-to-1 factor code
such that in a broad class of (fully supported) v, the number of ergodic measures
in 771(v) is strictly between 1 and the degree 5. Previously there have been no
tools to establish such examples.

The next sections are organized as follows. In Section 2] we fix notation and
elementary definitions. In Section [ we define measure-theoretical degree and
canonical lift. In Section ] degree joinings are introduced. In Section [l the mul-
tiplicity of ergodic measures over finite-to-one factor maps is defined. In Section [6]
we demonstrate examples of calculating measure fibers using degree joinings in the
case of cellular automata. In Section [7] the special case of symbolic dynamics is
further investigated and some irregular examples involving measures without full
support are mentioned.
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2. BACKGROUND

Unless stated otherwise, a topological dynamical system (TDS for short) in this
paper means a compact metric space X equipped with a self-homeomorphism T :
X — X on it, and a shift of finite type (SFT) means a (one-dimensional) two-
sided shift of finite type with a finite alphabet. In particular, we only deal with
invertible systems. Shift spaces and sofic shifts are also assumed to be two-sided and
with a finite alphabet. Irreducible shift spaces mean shift spaces that are forward
transitive. We remark that converting between invariant measures on one-sided
shift spaces and those on two-sided shift spaces is straightforward, and therefore
the two-sided condition is a minor technical assumption.

For a point # = (z;);ez in a shift space X and indices i < j, we denote by z; 5
the word z;x; 1242 - - - x;. The shift map ox : X — X is defined by

y=ox(z) < yi=x,41 M EZ)

and will be denoted by o without the subscript if there is no confusion.

The topological entropy of a topological dynamical system (X, T') is denoted by
h(X,T), or just h(X) if T is understood. A subset Xy C X is said to be a subsystem
of (X, T) if it is nonempty, closed, and T-invariant (i.e., TXo = Xp). A subsystem
is said to be proper if it is a proper subset of the ambient space X.

When we say p is a measure on X, we mean that p is a Borel probability measure
on it. We denote by M (X)) the set of all measures on X. M (X) is a compact metric
space under the weak star topology. If Xy C X is measurable and p(Xy) = 1, then
1 is said to be supported on Xy. We may identify measures on X that are supported
on Xy with measures on Xg. For p € M(X), supp() C X denotes the topological
support of the measure p, i.e., the smallest closed set of full measure w.r.t. p. The
topological support of any invariant measure on X is a subsystem of X. Given a
topological dynamical system (X, T), the set of all ergodic measures on it will be
denoted by F(X,T) or just E(X) if the action T is understood. If the topological
support of u € E(X,T) is X, we say p is fully supported or has full support. For
uw € E(X,T), a point z € X is called a u-generic point if the forward averages
= Zgil T™§, converge to p, where ¢, denotes the point mass at x (see [0]).

Each p € E(X) gives rise to an (abstract) measure-preserving system (X, T, i)
as in ergodic theory after forgetting the topology on X but keeping the Borel
sigma-algebra. Ergodic measure-preserving systems will be called ergodic systems
for short.

A factor map is a continuous onto map between two topological dynamical sys-
tems that commutes with the associated homeomorphisms. A factor code is a factor
map between two shift spaces. When we say 7 : X — Y is a factor code on an SFT
X, it is therefore assumed that Y is the image of X under 7 (and hence Y is a sofic
shift space). Given a factor map 7 : (X,T) — (Y, S) between topological dynamical
systems, we will say a measure y on X is a lift or preimage of a measure v on Y
if the (pushforward) image of p under 7 is v, i.e., if m,u = v. For brevity, the
pushforward map 7. : M(X) — M(Y) is denoted by 7 when there is no confusion.
In other words, we write 7y for muu = pom 1.

For more background on ergodic theory and the theory of joinings, see [6]. For
background on factor codes for symbolic dynamics, see [9].
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3. MEASURE-THEORETICAL DEGREE AND CANONICAL LIFT

In this section, we define the notion of degree over an arbitrary ergodic measure
on a factor system. This extends the classical notion of degree of finite-to-one factor
codes. For this, we need the following lemmal]

Lemma 3.1. Let (X,T) and (Y,S) be topological dynamical systems and let 7 :
X — Y be a factor map. Then the map F :' Y — {1,2,...} U {co} defined by
y — |71 (y)| is constant a.e. with respect to each ergodic measure v on'Y. (The
constant may depend on v.)

Proof. First, we show that F' is universally measurable, i.e., F' is measurable w.r.t.
every measure on Y@ Recall that a subset of a Polish space is said to be an
analytic set if it is the image of a Borel subset of another Polish space under a
Borel-measurable map, and that any analytic subset of a Polish space is universally
measurable. See [6, p. 52] or [7, p. 155] for these facts.

For each k € N, the superlevel set {y € Y : |7~ 1y| > k} is the projection to Y of
a Borel subset in X* x Y, namely, the subset consisting of all (x1,29,...,2%,Y) €
kaonrwhichw(xi):yforalllgigkandxi#xj foralll1 <i<j <k
Therefore the superlevel set is an analytic subset of Y, and hence a universally
measurable set. It follows that the map F' is universally measurable.

Recall that a measurable function defined on an ergodic system is a.e. constant
if the function is invariant (w.r.t. the ergodic action). Since the map F is invariant
with respect to the action S, it must be constant a.e. with respect to each ergodic
measure on Y. |

Recall that we are assuming invertibility. The lemma fails in general for non-
invertible systems because F' is not S-invariant in such cases. (A noninvertible
counterexample is with X =Y being the one-sided golden mean shift and = = ox.)

For each v € E(Y"), we define the degree of v relative to 7 to be the unique number
de {1,2,...} U{oo} such that for v-a.e. y € Y, there are precisely d points in the
fiber 771 (y). We will denote this number by d, ,,, and if 7 is understood, by d,,.

If a factor map 7 : X — Y has the property that d,, = dr,» whenever v and
V' are fully supported ergodic measures on Y, then it makes sense to define the
degree of the factor map to be the common value d,, and denote it by d,. This
measure-theoretical definition generalizes the classical definition (see Section [7)) of
degree of finite-to-one factor codes on irreducible SE'Ts and sofic shifts: recall that
if #: X = Y is a finite-to-one factor code on an irreducible sofic shift, then its
degree is defined to be the unique number d € N such that |[771(y)| = d for all
doubly transitive points y € Y (points y whose forward orbits and backward orbits
are dense). The two definitions of degree are consistent because the set of doubly
transitive points in Y has full measure with respect to each fully supported ergodic
vonY (Lemma[lH]). Even when a factor code has a finite degree, the degree of an
arbitrary (not necessarily fully supported) ergodic measure on Y may be different

(see Example [.T4]).

1Since the notions of measure-theoretical degree and canonical lift in this section are in some
sense natural and obvious (modulo the task of establishing necessary measurability), this section
should be considered elementary and is possibly folklore. Nonetheless, we prove the required
measurability lemmas and give names to these notions because later sections depend on them.

2A referee has pointed out that one can prove something stronger: F is Borel-measurable.
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We say (X,Y, 7, v) is a factor quadruple if 7 : X — Y is a factor map between
two topological dynamical systems and v € E(Y). Note that a factor quadruple
always has degree, namely d ,, whether finite or infinite. If the degree d is finite,
it makes sense to say the factor quadruple is d-to-one almost everywhere.

Next, we introduce the notion of canonical lift of an ergodic measure under an
a.e. finite-to-one factor map.

Lemma 3.2. Let m : X — Y be a Borel-measurable map between Polish spaces.
Let A C X be a Borel subset. Then the map Fa:Y — {0,1,2,...} U{oo} defined
by
y = [ (y) N A
1is universally measurabled
Proof. For each k € N, the set
{yeY |jn lynA| >k}

is the projection of a Borel subset in X* x Y, namely, the subset consisting of all
(w1,29,...,2,y) € X¥ x Y for which 7(z;) =y and z; € A for all 1 <i < k and
xz; # x5 for all 1 < i < j <k, and therefore this set is an analytic subset of Y,
and hence a universally measurable set. It follows that the map F4 is universally
measurable. (]

Theorem 3.3. Let (X,Y,m,v) be a factor quadruple with finite degree d := d, <
oo. Then there is a (not necessarily ergodic) invariant measure p on X such that
mu = v and that the disintegration {u, }ycy of pu overY has the property that u, is
the uniform distribution on the d-points subset m=*(y) C X for v-a.e. y € Y. Such
W is unique, and we will call it the canonical lift of v and denote it by £, (v).

Proof. (Existence) For each Borel measurable A C X, we define

Fa(y)dv(y)
w(A) = fyf
This is well defined because of the previous lemma, and it is easy to verify that u
is countably additive and pu(@) = 0 and u(X) = 1.
w is T-invariant because
_ Fr-1a(y)dv(y)
WIT'A) = Jy y
_ Jy Fa(Sy)dv(y)
d
_ Jy Faly)dv(y)
d )
where the last equality holds because v is S-invariant. It is also easy to verify
T =v.
Let Yy be a Borel subset of ¥ such that v(Yp) = 1 and Fx(y) = d for all
y € Yy. Then the map U : Yy — M (X) defined by requiring that U, be the uniform
distribution on the d points in 7~ !(y) is a v-measurable map by the previous

3The map F4 may not be Borel-measurable, since the superlevel set {F4 > 1} is precisely the
image mA which may not be a Borel set.
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lemma because Uy(A) = FAT(y) for each Borel measurable A ¢ X[ This map U is
a disintegration of p over Y, since
Jy Paly)dv(y)
(A) = F—

- [ v,
Yo

Since U : (Yp, {v-measurable subsets of Yp}) — M(X) is measurable, there exists
a Borel subset Y7 C Y, of full measure such that the restriction of U to Y7 is
Borel-measurable. Therefore y — U, (A) is Borel-measurable on Y; for each A. By
extending and modifying the map U on the single null set Y \ Y7, we can meet the
measurability requirement of the disintegration theorem.

(Uniqueness) If p’ is another such measure, then

u':/ Uydv(y)
Y
= M.

4. RELATIVE JOININGS AND DEGREE JOININGS

In this section, we introduce the notion of degree joining and investigate its
properties.

Recall the definition of joining: For invariant measures p and p’ on topological
dynamical systems (X, T) and (X', T"), respectively, a measure A on X x X" is called
a (2-fold) joining of p and g if it is a T' x T’-invariant measure whose margins on
X and X’ are p and p/, respectively.

We are interested in a relative version of the notion of joining. Given a factor
map 7 : (X,T) — (¥, S) between topological dynamical systems, define the n-fold
(self-)fiber product

XT o= (0,2, 20) € X7 5 m(n) = () = - = m(an)}
= E ) xr ) x o x T ()
yey

An n-fold w-relative joining is an invariant measure A on X" for which the n-fold
fiber product X is a full measure set, i.e., A(X?) = 1. We will call such X an n-fold
relative joining if 7 : X — Y is understood from the context. We will say that such
a measure A is a relative joining of margins 1, ..., g, over their common image v
if p;A = p; for each i, where p; : X™ — X is the projection to the ith component,
and mp; A = v for some i (and hence for all 7). We will say that such a measure A
is separating if for A-a.e. (x1,x2,...,2,), the points z1,xa,...,z, are n distinct
points, i.e., z; # x; whenever 1 <i < j < n.

4A map U’ from a measurable space Y/ to M(X) is measurable with respect to the Borel
structure on M(X) induced by its weak star topology if and only if y +— U (A) is a measurable
function for each Borel A C X. This follows because the sigma-algebra on M (X) generated by
the weak star topology is the same as the one generated by the family of evaluation functions
u— pu(A) if X is a compact metric space (see Theorem 17.24 in [7]). There may be other places
in this paper that rely on this equivalence.
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Remark 4.1. m-relative joinings as defined here are related to the notion of join-
ings of ergodic systems over a common factor as usually defined in ergodic the-
ory. In ergodic theory, if (X,T,u) and (X', T’, ') are two ergodic systems and
7w (X, T,u) = (Y,S,v) and 7’ : (X, T',1/) — (Y, S,v) are homomorphisms so
that (Y,S,v) is a common factor, then a joining A\ of the two ergodic systems
is called a joining of (X,T,u) and (X', T’,1') over (Y,S,v) if the fiber product
{(z,2") : mz = 7’2’} € X x X’ is a full measure set w.r.t. A (see [0]). A differ-
ence in our setting is that two topological dynamical systems and a factor map
between them are fixed. Let 7 : (X,T) — (Y, 5) be a factor map between topo-
logical dynamical systems. If A is a w-relative joining of 1, ..., u, € E(X,T) over
v € E(Y,S), then X is also a joining of the collection of n ergodic systems (X, T, p;),
1 <4 < n, over a common factor (Y, S,v).

Lemma 4.2. Let n be a positive integer and let (X,Y,7,v) be a factor quadruple.
If \ is an n-fold relative joining over v, then almost every ergodic component of A
is an n-fold relative joining over v. In other words, if X = [ Ndp(X\') is the ergodic
decomposition of \, then X is a relative joining over v for p-a.e. X .

Proof. 1t is easy to verify that almost every ergodic component of a relative joining
is a relative joining. It only remains to show that ergodic decomposition preserves
the image of v. Note that the ergodic decomposition of A induces an ergodic
decomposition of v in the form of

V=7mpmA= /71'101/\’dp(/\’)7

but since v is already ergodic, the induced decomposition must be trivial. Therefore,
mp1 N = v for almost every X', and hence ) is a relative joining over v. O

Now we are ready to define and prove the existence of a degree joining, which is
a particular way of joining together all ergodic preimages of v.

Definition 4.3. Let (X,Y,7,v) be a factor quadruple with finite degree d :=
dr, < 00. A measure on X% is a degree joining over v with respect to = if it is a
d-fold ergodic separating relative joining over v.

Theorem 4.4. For each factor quadruple with finite degree, there exists a degree
joining for the quadruple.

Proof. Let (X,Y,m,v) be a factor quadruple with finite degree d := d,, < co. Let
w := £:(v) be the canonical lift of v. Let A be the d-fold relatively independent
joining of u over v, i.e., A is the measure whose disintegration over Y is given by

Ayzﬂy®ﬂy®"'®ﬂy.

(See [6, Chapter 6] for basic properties of relatively independent joinings.)

The measure A is a relative joining over v, and by the previous lemma, almost
every ergodic component of X is an ergodic relative joining over v. Since p, is a
uniform distribution on d points, we have

d—1 d-2 1
M(Z) =" T2
d d d

d!

:E>O,
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where Z is the set of all (z1,...,24) € X% such that x; # zjforall 1 <i<j<d.
In particular, we have A(Z) > 0.
Let A = [ Ndp(X\') be the ergodic decomposition of A. Then, since

0<\N2Z) = /A’(Z)dp(A’%

we have ' (Z) > 0 for each X' in some A’ C E(X?) with p(A’) > 0. Since each
N € A is ergodic and Z is an invariant subset of X, this implies \'(Z) = 1, and,
in particular, )’ is separating. ([l

In later sections, we will show that a degree joining can be used to unpack all
ergodic lifts of v from it and that it is usually easier to construct a degree joining
than to find all lifts of v directly. But first, we show that degree joinings are unique
up to permutations of the d coordinates.

Lemma 4.5. Let (X,T,pn) and (X', T, 1) be two ergodic measure-preserving sys-
tems with (Y, S,v) as a common factor. Then there is an ergodic joining of the two
systems over the common factor.

Proof. We start by noting that there is at least one (not necessarily ergodic) joining
A of p, p' over v. In fact, it is easy to check that the relatively independent joining

A=p®, = /uy @ pydv(y)

is such a joining.

It remains to show that the ergodic components of A satisfy the desired proper-
ties. Since pu, i, v are ergodic, almost all measures in the ergodic decomposition of
A must also have p, p' as their margins and v as their image on Y. It is also easy
to check that almost all measures in the ergodic decomposition are supported on
the fiber product inside X x X', |

Degree joinings are universal with respect to other w-relative joinings over the
same image in the following sense.

Theorem 4.6. Let (X,Y,m,v) be a factor quadruple with finite degree d and let n
be a positive integer. Let A be a degree joining over v and let X' be an n-fold ergodic
relative joining over v. Then there is a function f : {1,...,n} — {1,...,d} such
that N = pygX, where py : X% — X™ is the map induced by f so that

pf(ftl, N .,:Ed) = («Tf(l)a ‘e ,xf(n)).

We remark that in this theorem we do not assume A’ to be separating. Therefore
n is allowed to be bigger than d and f does not have to be injective.

Proof. There is an ergodic joining A" of A and ) over v, which follows from the
previous lemma. \” is a measure on X% x X™. Let Y be a Borel subset of ¥ such
that for each y € Yy the fiber 7= 1(y) consists of precisely d points and v(Yp) = 1.
Let Zy be the set of all (z1,...,24) € X% for which there is some y € Y such that
Z1,...,2Tq are the d distinct preimages of y.

Zy is a Borel subset of full measure so that A\(Zy) = 1 since it is the intersection
of the following two sets, each of which is a Borel subset of X% of full measure:

{(z1,...,2q) : w(z1) € Yo},
{(z1,...,2q) :w(x1) = = 7(xq), @ #aj; forall 1l <i<j<d}
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Let W be the set of all (x1,...,24,2},...,2,) C X% x X" such that m(z;) =

c=m(xg) = 7w(z)) = =7w(2),) and (z1,...,24) € Zo. It is easy to see that
N'(W) =1, because X is a relative joining of A and N over v and A(Zp) = 1.

For each (z1,...,xq4,21,...,2,) € W, the points z1, ..., x4 are d distinct preim-
ages of a point y in Yy (hence they are all the d preimages of that point y) and
(x},...,2,) is a finite sequence of preimages of the same point y. Therefore, in par-
ticular, the point a) for example is equal to one and only point among z1, ..., z4.

In other words, there is a function g : W — {1,...,d} such that

I
L1 = Tg(a1,...,xq,x) ,...,xh,)

holds for all (x1,...,xq,2),...,2),) € W.

The function g is measurable and \”-a.e. defined on X% x X™. Since g is \"-a.e.
invariant w.r.t. the product action TxT x---xT on X%x X™ and ) is ergodic, the
function g must be A”-a.e. constant. Define f(1) to be the a.e. constant value of
g. Define f(2),..., f(n) similarly. The function f: {1,...,n} — {1,...,d} defined
in this way has the desired property because

(21, xn) = (@A), - Tpmy) = Pf(21, ..., 2q)

holds for N’-a.e. (z1,...,2q4,2%,...,2}). O

Conversely, each measure of the form pyA, where A is a degree joining over
v, is an n-fold ergodic m-relative joining over v. Since any relative joining over
v decomposes by ergodic decomposition into ergodic relative joinings over v, we
have just classified all possible w-relative joinings over v in the following sense.
Any n-fold 7-relative joining over v is a convex combination Y pagf - prA for some
coefficients ay > 0 whose sum is 1, where X is a fixed degree joining. This is a finite
convex combination because there are only d™ possibilities for f.

Universality implies uniqueness of degree joining up to permutation as proved in
the following theorem.

Theorem 4.7. Let (X,Y,m,v) be a factor quadruple with finite degree d and let
n be a positive integer. If A and N are degree joinings over v, then there is a
permutation f of {1,...,d} such that X' = py\ and therefore also X = py-1 X

Proof. There is a function f : {1,...,d} — {1,...,d} such that X = ps\. Suppose
to the contrary that f is not surjective. Without loss of generality, we may assume

f)=rf2)=1

For A-a.e. (z1,...,%q) we have that ps(z1,...,2q) is of the form (x},...,2))
with 2§ = 2. Therefore, for N-a.e. (zf,...,2}), we have 2§ = zf, but this
contradicts the assumption that )\’ is separating. |

5. MULTIPLICITY STRUCTURE

In this section, we define multiplicity of ergodic measures on X and extract the
multiplicity structure of the measure fiber from the degree joining.

Having established the uniqueness of degree joining, we now show that its mar-
gins are precisely the ergodic lifts of v. This property is why degree joinings are a
useful tool to investigate the lifts of ergodic measures under a.e. finite-to-one factor
maps.
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Theorem 5.1. Let (X,Y,m,v) be a factor quadruple with finite degree d and let A
be a degree joining over v. Then

is the set of all ergodic measures in 7~ 1(v).

Proof. Each margin p; A is an ergodic measure on X that maps to v, because A is
an ergodic joining over v and each projection p; : X4 — X is a factor map.

Each ergodic measure in 7~ 'v is a 1-fold ergodic relative joining over v, and
hence Theorem applies to it and therefore is one of the margins of A. |

The above theorem allows us to define multiplicity of ergodic measures in the
following way.

Definition 5.2. Let (X,Y,n,v) be a factor quadruple with finite degree d. Let
u € E(X) be an ergodic lift of v. The multiplicity, denoted m, (1), of u with respect
to 7 is the number of times it appears as a margin in a degree joining over v. In
other words,

my(p) :=#{i:1<i<d, piA=u},
where A is a degree joining over v.

Since degree joining is unique up to permutation, the notion of multiplicity above
is well defined, i.e., it does not depend on the choice of A\. Our goal in defining this
notion was to establish the following result which looks like a trivial result until we
give different characterizations of multiplicity later in this section.

Theorem 5.3. Let (X,Y,w,v) be a factor quadruple with finite degree d. Then
d= Z zs (M)7
o

where p runs over all ergodic lifts of v.

In particular, the degree d is an upper bound on the number of ergodic lifts. In
some sense, we can say there are d such lifts if we count with multiplicity.

Theorem 5.4. Let (X,Y, 7, v) be a factor quadruple with finite degree d. Then for
v-a.e. y €Y, each point in the fiber 7~ 1(y) is a generic point for some ergodic
measure in ©1(v). Furthermore, let p1,...,ux be all ergodic lifts of v and let
mi, ..., my be their multiplicities. Then for v-a.e. y € Y, the fiber 7= 1(y) consists
precisely of my points generic for uy, and mo points generic for ps, ..., and my
points generic for .

Proof. Let X be a degree joining over v. For M-a.e. (x1,...,24), we have that z; is
generic for p1 A, and x5 is generic for po A, and so on. The desired conclusion follows
by transferring to Y.

More precisely, for each 1 < i < d, since p; is ergodic, there is a Borel subset
G; C X such that p;(G;) = 1 and every = € G, is generic for p;. Let Zg C X< be
defined as in the proof of Theorem Then the intersection

7' =7ZyN (pflGl n--- Op;lGd)

is a Borel subset of X% of full measure. Its image Y’ := 7p;Z’ in Y is a (v-
measurable but not necessarily Borel) full measure set, too, i.e., v(Y’) = 1 because it
is the image of a full measure set under the measure-preserving map mp; : X¢ = Y.
By definition, every y € Y satisfies the desired properties. (Il
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The above theorem implies in particular that if we are given a factor quadruple
(X,Y,m,v) with finite degree, we can read the preimage measures py, ..., u; and
their multiplicities by just looking at the set 7—1(y) after fixing a random point
y € Y chosen according to v. Note that within the class of finite-to-one factor
codes on SFTs, there are varying levels of difficulty in extracting 7=!(y) from y
depending on 7. For example, the easiest case for reading 7~ !(y) from y is the
class of biclosing factor codes and the next easiest case is the class of right-closing
factor codes. See [9] for definitions and properties of such classes.

Theorem 5.5. Let (X,Y,m,v) be a factor quadruple with finite degree d. Let
w € E(X) be an ergodic lift of v and let m be its multiplicity. Let {{u,}yey be the
disintegration of u over'Y. Then

(1) For v-a.e. y, the measure i, is uniformly distributed on G, N 7 (y),
where G, is the set of points generic for u, and there are exactly m points
in G, N (y).

(2) m is the mazimum number such that there is an m-fold separating relative
joining of margins (i, ..., | over v.

3) (p@, w{(z,a):x=2a"} = .

(4) The factor map 7 : (X, u, T) = (Y,v,5) seen as a homomorphism between
two ergodic systems is (a.e.) m-to-one up to null set in the sense that
almost every p, is an atomic measure that gives positive measure to exactly
m points.

Proof.

(1) To prove the first property, we start by observing that G, is a T-invariant
Borel subset of X such that x(G,) =1 and by Theorem [5.4] that the canonical lift
£ (v) satisfies

m
L (v)(G) = i > 0.
Therefore, the conditional measure p', resulting from conditioning the canonical
lift to G,, defined by

) EANG,) d
lr(V)(Gp) m
for each Borel A C X, is an invariant probability measure on X.

The image of p/ on Y is v because otherwise v can be written as a nontrivial
convex combination of two invariant measures mu' and 7wu” both different from v,
where u” is the conditional measure resulting from conditioning the canonical lift
to the complement of G, and that would contradict the ergodicity of v. Now it is
straightforward to show that the disintegration of u’ over Y satisfies the property
that for v = mu'-a.e. y € Y, the measure y; is the uniform distribution on the
m-points set G, N7 (y).

To prove the first property in the theorem for p, it only remains to show that
p = ', but that follows from p'(G,) = 1 and the fact that the only invariant
measure supported on G, is p itself.

(2) We can obtain an m-fold separating relative joining of w,...,u over v by
projecting a degree joining over v to the m coordinates for which p is the corre-
sponding margin. Now suppose X’ is an (m + 1)-fold such joining. Then for X -a.e.
(z1,...,Tm+1), the points z1, ..., z;41 are m—+1 distinct points and they are all in
G, N7 (m(z1)). By transferring this observation to (Y, v), we have that for v-a.e.

(V) (ANG)
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y, the size of G, N7~ 1(y) is at least m + 1. But this contradicts Theorem [£.4] and
so there can be no such (m + 1)-fold joining.
(3) For v-a.e. y, we have (uy, ® p,){(z,2') : + = 2’} = L because p, is the
uniform distribution on m points. Integrating over (Y, v) gives the desired result.
(4) This follows from (1). O

Remark 5.6. Each of the four properties shown in the above theorem can be taken
to be an alternative (but equivalent) characterization/definition of the multiplicity
of u. The second property can be interpreted as saying that for the measure p to
have multiplicity bigger than one, the (v-almost every) fiber 7 ~!(y) must allow some
room for a copy of i to get in to form a 2-fold separating self-joining. Each of the last
two properties characterizes m as something that depends only on the isomorphism
mod 0 class of the corresponding homomorphism = : (X, u, T) — (Y, v, S) between
the induced ergodic measure-preserving transformations. In particular, m is just the
size of the fiber component resulting from applying Rohlin’s skew-product theorem
to that homomorphism.

Using the notion of canonical lift, we can obtain yet another characterization of
the notion of multiplicity, as weights in the ergodic decomposition of the canonical
lift.

Theorem 5.7. Let (X,Y,m,v) be a factor quadruple with finite degree d. Let
Wi, px be all ergodic lifts of v and let mq, ..., myg be their multiplicities. Then
the ergodic decomposition of the canonical lift of v is given by

km
D=2

Proof. For each 1 <i <k, let G; C X be the set of all points generic for u;. In the
proof of the first property in the previous theorem, we showed that
s
L()(Gy) = —-
v)G) ="
and that

Lr(V)(-|Gi) = ().

Since £ (v )(UZ 1Gi) = ZZ 1, 7 = 1, the collection {G;}1<i<x forms a mod 0
partition of the probability space (X, ¢, (v)). We disintegrate the probability space

w.r.t. this partition to obtain

:Z&T(V)(Gz) Z d,uz

Since the measures u; are distinct ergodic measures and the coefficients are
positive, the above decomposition is also the ergodic decomposition. (Il

m;

In the above sense, the canonical lift contains all possible ergodic lifts of v.

Corollary 5.8. Let (X,Y,m,v) be a factor quadruple with finite degree d. The
canonical lift L. (v) is ergodic if and only if there is only one invariant measure L
on X that projects to v, in which case the canonical lift is that one measure .
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Proof. Since v is ergodic, almost every ergodic component of any invariant measure
on X that projects to v is again a measure that projects to v. Therefore, there
is only one invariant measure on X that projects to v if and only if there is only
one ergodic lift of v. By the previous theorem, this is the case if and ony if the
canonical lift is itself ergodic. ]

6. EXAMPLES

In this section, we build some examples before we move on to a general theory
of degree joinings for symbolic dynamics.

Examples in this section come from endomorphisms of full shifts, except for one
example. In particular, X and Y are always the same full shift in the examples. In
terms of cellular automata theory, examples here are based on two linear cellular
automata that generalize the rule 102 automaton in Example [[Jl The two endo-
morphisms we introduce share the special property that |7~1(y)| do not depend on
y € Y, in other words, they are constant-to-one factor codes. Recall that in this
case, the degree d, of the measure v € E(Y) is the same for all v € E(Y) including
those v that are not fully supported. We will see that measure fibers already exhibit
diverse behavior within this simple class of factor codes.

Example 6.1. Let N € N. Let X =Y be the full N shift. Then the factor code
7 : X — Y defined by

x = (2;)icz — () = (Tiy1 — T;)icz  (mod N)
is an N-to-1 map. Indeed, if the map s : X — X is defined by
= (z;); = (¥; +1); (mod N),
then we have
Y rx) = {z,8(x),...,s" Hx)} = {s"(z) : k € Z},
for all z € X. For any ergodic p € E(X), its image A under the map
z i (2,8(x),...,s" ()

is a degree joining over wu. (A is ergodic because it is an image of p under a shift-
commuting map.) Therefore, all ergodic lifts of 7y are in the list p, s(p), . . ., sV =1 (1)
and the multiplicity of p is the number of times it appears in the list and is therefore
always a divisor of N. The number of ergodic lifts of 7y also divides IV, and N is
the product of that number and the multiplicity of u.

In particular, if g is the Bernoulli product measure on X given by a probability
vector (a1, ...,ay), then its multiplicity is %, where L is the least period of the
sequence (aq,...,an). For almost all probability vectors (aq,...,ay), the value
of L is the full length N, and p,s(u),...,s™" "1 (u) are N different lifts of wp. If
N =4 and (a1,...,aq4) = (%, %, %, %), then we have

(s (1), 5% (1), 8% (1) = (s 512, 1, 512),

where sy is the different Bernoulli product measure from the shifted vector (%, %,
%, %) In this case, the number of ergodic lifts of mp is 2, which is strictly between
1 and the degree 4. This is over a fully supported member in E(Y) and therefore
should be considered less trivial than CO-measures (ergodic measures supported

on periodic orbits) in E(Y).
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On the other hand, finding and verifying an example of v € E(Y') with precisely
two ergodic lifts on X for N = 4 without requiring full support is elementary
and does not require the degree joining theory. For example, the CO-measure v
supported on the fixed point - --222.222--- € Y has four preimages in X that form
two periodic orbits, each with least period 2. One of the two periodic orbits is the
orbit of ---0202.0202--- € X and the other is the orbit of ---1313.1313--- € X.
The two CO-measures supported on these two periodic orbits are precisely the
ergodic lifts of v, and they have multiplicity 2 because the map 7 collapses each of
these periodic orbits by halving their periods. We generalize this observation about
CO-measures shortly in the next example before moving to a more complicated
example.

Given the example, we raise the following question.

Question 6.2. With 7 : X — Y from the previous example, is there a subset
E' C E(Y) such that E’ is a residual set in the simplex of all invariant measures
on Y and that each v € F’ has exactly N ergodic lifts?

We suspect the answer is yes. We remark that the fully supported ergodic
measures form a residual set in the simplex [5]. Therefore the question can also
be thought of as a question on the residual behavior of measure fibers over fully
supported ergodic measures on Y.

Example 6.3. Let 7 : (X,T) — (¥,5) be a factor map between topological dy-
namical systems. Let v be the CO-measure supported on some periodic orbit Y~
in Y with least period p. Then d, is finite iff the fiber over some point (or, equiva-
lently, every point) in the periodic orbit is finite. Now suppose d,, is finite and let
d = d,. The inverse image X’ = 7~ 1(Y”) contains dp points. Since X’ is a finite
subsystem of X, it consists only of periodic points and hence is some finite disjoint
union of periodic orbits in X. Recall that CO-measures can be identified with pe-
riodic orbits. It is easy to verify that the ergodic lifts of v are exactly the periodic

X! X!
= |‘Y¢“ = % The number

m; measures how 7 folds the periodic orbit X! and can be thought of as a discrete
winding number. A simple counting argument shows that ) . m; = d. It is also
easy to verify that the winding number m; is the multiplicity of the CO-measure
w; € E(X) corresponding to X/ since the map 7 : (X, u;) — (Y, v) seen as a factor
map between two ergodic systems is a.e. m;-to-one. In this sense, the multiplicity
of an arbitrary ergodic measure generalizes the winding number of periodic orbits.
Therefore, another motivation for the multiplicity theory is the viewpoint that the
ergodic measures on a topological dynamical system is a generalization of periodic
orbits.

orbits in X’. For each periodic orbit X/ in X', let m;

For the next example which exhibits a more complicated behavior for the measure
fibers, we need a lemma.

Lemma 6.4. Let (X, T, ) be an ergodic system. Denote by 2 = (2, S,v) the unique
ergodic system consisting of two atoms. Then the following are equivalent:

(1) The system (2,S,v) is a factor of (X, T, ).
(2) The product system (X x 2,T x S, u® v) is not ergodic.

If these conditions hold, we will say that 2 is a factor of .
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Proof. If (2,S5,v) is a factor of (X,T,u), then (X,T,u) x (2,S5,v) has a factor
(2,5,v) x (2,S,v) which is not ergodic, and therefore the product system is not
ergodic.

It remains to show —(1) = —(2). Let f: X x2 > R be a p®rv-ae. T x S-
invariant measurable function. We want to show that this function is a.e. constant.
Since f is invariant, f(z,0) = f(Tx,1) and f(z,1) = f(Tz,0) hold for a.e. . So
f(z,0) + f(x,1) is T-invariant and hence, by the ergodicity of T, a.e. constant.
So for some r € R we have f(z,0) + f(z,1) = r a.e. On the other hand, we
have f(z,0) — f(x,1) = —(f(Tx,0) — f(Tz,1)). So f(z,0) — f(x,1) is a.e. zero,
because otherwise it would be a.e. nonzero by the ergodicity of 7" and then the
sign of f(x,0) — f(x,1) can be used to form a factor map to (2,5, v) which would
contradict our starting assumption. So f(x,0) = f(x,1) holds a.e., and therefore
f(:L‘,O)Zf(fL‘,l):%. U

Example 6.5. Let X = Y be the full 5 shift. Then the factor code 7 : X — Y
defined by
x = (xz)z — (xi+1 + J?l)z (IIlOd 5)

is a 5-to-1 map. Unlike the previous example, we are taking the sum of two con-
secutive numbers instead of taking the difference, making it impossible to define a
shift-commuting function s : X — X to sweep inside fibers as before. Let u be an
ergodic measure on X such that 2 is not a factor. To form a degree joining over
wu, we need some auxiliary measures. Let 17 be the unique ergodic measure on the
shift space Z consisting of two points ((—1)); and ((—1)**!);. The image X of p®n
under the map

(,2)— (v, + 2z, + 22,2+ 32,2 +42) mod 5

is a degree joining over wu. (A is ergodic because pu ® 7 is, by the previous lemma.)
Since ¢ + 4z = z — z mod 5 and the image of 77 under the map z — —z is n, we
can verify that the second margin and the last margin of A are the same, and we
denote it by p’. Also, the third margin and the fourth margin are the same and we
denote it by u”. The measures p, ', are all ergodic lifts of wy. In many cases of
w€ E(X), p,p',p” are three distinct measures. One such case will be mentioned
in the next theorem. When they are distinct, their multiplicities are 1, 2, and 2
respectively, and the number of ergodic lifts of mu is strictly between 1 and the
degree 5 and does not divide the degree. Whenever v is an ergodic measure on Y
such that 2 is not a factor, the number of its ergodic lifts is at most 3.

Theorem 6.6. Let m: X — Y be the factor code from the previous example. Let
P={xe€X:xz0=0}. Let p € E(X) be such that 2 is not a factor and u(P) > 3.
Then wu has exactly three ergodic lifts on X.

Proof. Let p/, 1" be as in the previous example. It is enough to show that u, ', u”
are different. Let P’ = {x € X : xp € {1,4}} and let P = {z € X : 29 € {2,3}}.
Then we have

p(P)=pen{(z,2):x+2z€ P (modb5)})
= (r@n)({(z,2) : w0 + 20 € {1,4} (mod 5)})
> (pe@n)({(z,2) 20 = 0,20 € {£1}})

= p(P) >
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Similarly, p”/(P") > 1. Since P, P’, P" are disjoint subsets of X such that u(P) >
5.4/ (P') > &, 4" (P") > %, the three measures must be different. O

In particular, if u is the Bernoulli product measure from any probability vector
(g, 1, ..,q) with ag > %, it satisfies the hypothesis of the theorem. This
example demonstrates that it is possible to have different multiplicities within one

measure fiber over a fully supported ergodic measure.

Example 6.7. Let 7 : X — Y and (Z,7n) be from the previous example, but
this time we suppose u € E(X) has 2 as a factor. There is a shift-commuting
measurable function F': X — Z such that Fp = 7. The image of p under the map

x (x,x 4+ F(x),z+2F(x),z 4+ 3F(z),x + 4F(z)) mod 5

is a degree joining over . When the margins are different, their multiplicities will
be 1.

Question 6.8. With 7 : X — Y from the previous example, is there a subset
E’ C E(Y) such that E’ is a residual subset of the simplex of invariant measures
on Y and that each v € E’ has exactly 3 ergodic lifts?

Remark 6.9. One can similarly investigate the factor code with 5 replaced by arbi-
trary N > 1. We only did N = 5 because 5 was the smallest number to reveal the
general pattern for larger V.

7. DEGREE JOININGS FOR FINITE-TO-ONE FACTOR CODES

In this section, we identify degree joinings for general finite-to-one factor codes.
In this case, we show that a degree joining can be obtained by just lifting v to
an easily constructed subshift of finite type, which we will call topological degree
joining. First we recall some facts from the classical theory of degree of such factor
codes.

Theorem 7.1 (Theorem 8.1.19 in [9]). Let X be an irreducible sofic shift and let
m: X =Y be a factor code (hence Y is also an irreducible sofic shift). Then the
following are equivalent. The factor codes satisfying any of these conditions are
called finite-to-one factor codes:

(1) For everyy € Y, the fiber m=1(y) is countable.

(2) For everyy €Y, the fiber m=1(y) is finite.

(3) The map is bounded-to-one, i.e., there is M € N such that, for everyy € Y,
[ (y)| < M.

(4) X is a relative zero entropy extension of Y, i.e., h(X) = h(Y).

Theorem 7.2 (Lemma 9.1.13 in [9]). Let X be an irreducible sofic shift and let
m: X =Y be a finite-to-one factor code. Then a point x € X is doubly transitive
if and only if its image w(x) is as well.

Theorem 7.3 (Corollary 9.1.14 in [9]). Let X be an irreducible sofic shift and let
m: X — Y be a finite-to-one factor code. There is d; € N such that each doubly
transitive point in'Y has exactly d, preimages. This number d is called the degree
of the factor code .

A set of points in a 1-step SFT is mutually separated if each pair of points never
occupies the same symbol at the same time.
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Theorem 7.4 (essentially Proposition 9.1.9 in [9]). Let X be an irreducible 1-step
SET and let # : X — Y be a finite-to-one 1-block factor code. Let y € Y (not
necessarily doubly transitive). Then there are at least d. mutually separated points
in the fiber 1=Y(y). In particular, if y € Y is such that |7~(y)| = d, (which is the
case whenever y is doubly transitive or 7 is constant-to-one), then all points in the
fiber are mutually separated.

To prove the above well-known theorem using only propositions in [9], one can
repeat its proof of Proposition 9.1.9 to establish the theorem for doubly transitive
y € Y first, and then pass to arbitrary y € Y by a diagonal argumentﬁ The diagonal
argument works because the property of being mutually separated is preserved
under limits.

For the symbolic dynamical case of this section, we will mainly work with those
v € E(Y) that are fully supported, because d,, = d, holds for all such v. This
follows from the following lemma.

Lemma 7.5. Let (X,T) be a topological dynamical system and let p € E(X,T) be
fully supported. Then the set of doubly transitive points is a full measure set w.r.t.
I

Proof. Let U be a nonempty open set. Since p is ergodic, u-a.e. x € X has the
property that its forward orbit visits U with frequency given by u(U). But p(U) is
positive because p has full support. Therefore p-a.e. x is forward transitive. Using
the inverse map T, it follows that p-a.e. x is backward transitive as well. O

Another reason we work with fully supported measures is that they are preserved
under lifting via finite-to-one factor codes. This is a measure-theoretical analogue
of Theorem and is a direct consequence of the following lemma.

Lemma 7.6. Let (X, T) be a topological dynamical system that is entropy minimal,
i.e., every proper subsystem of (X, T) has strictly smaller entropy. Letw: (X, T) —
(Y, S) be a factor map and let h(Y,S) = h(X,T). Then an invariant measure i on
X has full support if and only if mu has full support.

Proof. Since 7 is continuous, we have m(supp(p)) = supp(mwp). In particular,
supp(u) = X implies supp(wp) = Y. Now it remains to prove the converse. Suppose
7 has full support but u does not. Let Xy = supp(p). Then X is a proper sub-
system of X, and hence h(X) > h(Xy), but we also have 7(Xy) = supp(mu) =Y,
and hence h(Xy) > h(n(Xo)) = h(Y). Therefore, h(X) > h(Xo) > h(Y), which
contradicts the equal entropy assumption h(X) = h(Y). |

Lemma 7.7. Let X be an irreducible sofic shift and let m : X — Y be a finite-to-
one factor code. An invariant measure p on X has full support if and only if the
pushforward image wp has full support.

Proof. An irreducible sofic shift is entropy minimal (see Corollary 4.4.9 in [9] for
example). h(X) = h(Y) follows from Theorem [[ZIl Therefore, the previous lemma
applies in this case. (I

5Proposition 9.1.9 relies on magic symbols rather than magic words to make a simpler exposi-
tion. By repeating the same kind of proof but using a magic word instead, one can show mutual
separatedness over any doubly transitive y € Y without recoding 7 : X — Y. We state the
theorem in this unrecoded form because it later slightly simplifies the construction of topological
degree joining later.
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Let 7 : (X, T) — (Y,5) be a factor map between topological dynamical systems.
For each n > 0, recall that the n-fold fiber product X is a subsystem of X" where
n-fold relative joinings live. It is easy to check that X is an n-fold topological
joining of X with itself, in other words, it is a subsystem of X" with projections
pi(X?) = X for each 1 < i < n. In the symbolic case where 7 is a 1-block factor
code on a 1-step SFT X, the fiber product X is also a 1-step SFT.

Definition 7.8. Let 7 : X — Y be a finite-to-one factor code from an irreducible
SFT X and let d be the degree of m. Additionally, we assume 7 is recoded, in
other words, we assume that 7 is a 1-block factor code and X is a 1-step SFT. The
topological degree joining for the code 7 is the set A of all (z(), 2 ... 2(¥)) e x4
such that (M, 2 .. 2@ are d distinct mutually separated points.

It is easy to check that the topological degree joining A is a 1-block SFT contained
in the self-fiber product X2, but it is in general not irreducible.

Theorem 7.9. The d projections of A are all X, that is, p;,(A) = X for each
1 <i<d. Inparticular, A is a d-fold topological joining of X. The mapwp : A =Y
defined by mp = mopy = wopy =+ =mopy is a 1-block factor code. In particular,
A 1S a finite-to-one 1-block factor code from a (not necessarily irreducible) 1-step

SFT.

Proof. Theorem [74] implies that the map 7, is onto. It is a 1-block factor code
because m and p; are as well. It is finite-to-one because it is a restriction of the
finite-to-one map X2 — Y.

In order to show p;(A) = X, fix ¢ and let X := p;(A) C X. Since mpy = 7o p;a
is onto, it follows that the subsystem X, projects onto Y under m. Now we use
the same argument as in the proof of Lemma [[771 We have h(Xy) > h(w(Xy)) =
h(Y) = h(X). By entropy minimality of X, this implies Xy = X; in other words,
pi(A) = X. O

We can now show that A is a space hosting all degree joinings over all possible
v with full support.

Theorem 7.10. Under the assumptions from Definition [.8, for each fully sup-
ported v € E(Y), the quadruple (X,Y,m,v) is a factor quadruple with degree d. In
this case, the set of all degree joinings over v w.r.t. T is

{ANe E(A) : mpaA=v}.

Proof. Since A C X2, each invariant measure A on A is a d-fold m-relative joining.
Such )\ is separating because mutually separated points are distinct. Therefore,
each member of the set {\ € E(A) : ma\ = v} is a degree joining over v.

Conversely, suppose A is a degree joining over v.

First we show that \-a.e. (a?(l), . ,x(d)) is mutually separated. By definition,
for A-a.e. (x(l),...,x(d)), the points (), ..., z(® are the d distinct preimages
of m(z™M). Since v-a.e. y is doubly transitive and v = 7p;\, we can conclude
that the point m(z(1)) is doubly transitive for A-a.e. (z(),... 2(9). Therefore
its d preimages are mutually separated by Theorem [[4l This shows that M-a.e.
(™. .., 2(D) is indeed mutually separated and so A(A) = 1. Now, it follows
easily that A is in F(A) with mpoA = v by definition of 4. O

The theorem above implies that in order to construct all lifts of v through the
factor code m : X — Y, it is enough to lift v to an ergodic measure on A through
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the new factor code 7y just once and then obtain all lifts in X as margins of the
constructed degree joining. This also works as a more constructive proof of existence
of a degree joining for the symbolic dynamics case because the nonemptiness of the
set {A € E(A) : maA = v} follows directly from the fact that 7 is a factor map
onto Y. We note that the SF'T A is easily computable from the code 7 : X — Y in
the following precise sense. Using the construction of labeled products of labeled
graphs (see [9]), one can represent the topological degree joining A together with s
as a subgraph of the labeled product of d copies of the labeled graph representing
.

If the factor code 7 is constant-to-one, then we obtain the same result for all
v € E(Y) even when v is not fully supported.

Theorem 7.11. In addition to the assumptions from Definition [[.8], also assume
that 7 is constant-to-one, i.e., eachy € Y has precisely d preimages. Then for each
v € E(Y), the quadruple (X,Y,m,v) is a factor quadruple with degree d, and the
set of all degree joinings over v w.r.t. w is

{ANe EA) i mpaA=v}.

Proof. The same argument as in the proof of the previous theorem shows that the
d preimages of an arbitrary y € Y are mutually separated. The rest of the proof is
similar. ]

Remark 7.12. We remark that a factor code between two irreducible SFTs is
constant-to-one if and only if it is biclosing. Within the class of surjective cellular
automata as a special case of factor codes, constant-to-one cellular automata are
called open cellular automata because they are characterized as cellular automata
whose maps are open maps in [§].

Next we show that degree joinings for sofic shifts can be obtained from degree
joinings for SF'Ts which are almost one-to-one covers of the original sofic shifts.
Recall that each irreducible sofic shift X has an extension ng : Xz — X, where
Xpg is an irreducible SFT and ng is a factor code that is almost invertible (in this
case, equivalent to having degree one). Minimal right-resolving presentations are a
special case (see [9]).

Theorem 7.13. Let 7 : X — Y be a finite-to-one factor code on an irreducible
sofic shift X with degree d. Let v € E(Y) be fully supported. Fiz a 7 : Xp — X
such that Xg is an irreducible SFT and mgr is an almost invertible factor code.
Then:

(1) (X,Y,7,v) and (XRg,Y,womg,v) are factor quadruples with the same degree
d.

(2) For each degree joining A\g for (Xg,Y, T o g, v), its projection to X¢ is a
degree joining for (X,Y,n,v). In other words, if we set A := (7r)®¥(Ag),
then X is a degree joining for (X,Y,m, v).

Proof. For each doubly transitive y € Y, by Theorem [[3] the point y has exactly
d preimages in X. But since v is fully supported, by Lemma [[.5] such y form a full
measure set in Y w.r.t. v. So it follows that (X,Y, 7, v) is a factor quadruple with
degree d.

The degree of the composition 7 o g is the product of the degree of m and
that of mg, but the degree of mg is one. Therefore m o mr has degree d. It follows
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that (Xg,Y, 7 omg,v) has the same degree d by a similar argument using doubly
transitive points in Y.

Next we show that A is a degree joining for the quadruple (X,Y,7,v). The
measure ) is an ergodic measure on X¢ because it is an image of an ergodic measure
on (Xg)? under the shift-commuting map (7g)®¢: (Xg)¢ — X9,

The map (7z)®? maps the d-fold fiber product for m o 7 into a subset of the
d-fold fiber product for 7. Therefore A(X9) = 1 follows.

Next, we show that mpyA = v. With abuse of notation, we write p; for both
the projection X? — X to the first component and the projection (Xg)? — Xg.
First, we have mp o p; = p1 o (mg)®?, which implies that Trp; Ag = p1A. Therefore,
m(p1A) = w(mrp1AR) = (7o r)(P1AR), but this is just v because Ag is a degree
joining w.r.t. mo g over v. We just showed np1 A = v.

To summarize, we showed that A is an ergodic d-fold relative joining for the
quadruple (X,Y, 7, v) and now we only need to show that it is a separating joining.

To see that ) is separating, first notice that v-a.e. y is doubly transitive, because
v has full support. Hence, for Ag-a.e. (z(M, 23, . .. z(D) ¢ (Xg)4, each (¥ is
doubly transitive by Theorem [[.2] but mr must be injective on doubly transitive
points because 7 has degree 1. Therefore images in X of (M), 2 ... (9 under
7R are d distinct points, for Ag-a.e. (1), 2 ... @) € (Xg)%. Since X is defined
to be the image of Ag under (7z)®?, this shows that ) is separating. O

The following two examples show some pathologies when v is not fully supported
and 7 is not constant-to-one.

Example 7.14. Let Y be a mixing SFT with some fixed point y € Y so that
o(y) = y. By using the blowing-up lemma (Lemma 10.3.2 in [9]), there exist a
mixing SFT X and a finite-to-one factor code m : X — Y such that 7=!(y) consists
of one periodic orbit of least period 2, and every periodic point that is not y has
exactly one preimage under w. Since every periodic point of sufficiently large least
period has a unique preimage, the factor code m has degree one. On the other
hand, v := J, is an ergodic measure that is not fully supported and d, = 2. In
particular d, exceeds the degree of the factor code. The number of ergodic lifts of
v in this case does not exceed the degree of m because the unique invariant measure
supported on the periodic orbit of period 2 that maps to y is the unique lift of v.

Example 7.15. Let X be a mixing SFT with at least two distinct fixed points
z,7/ € X. Let Y = X and let y = z. By using Ashley’s extension theorem
(Theorem 3.15 in [2]), there exists a degree one factor code m : X — Y such that
n(z) = m(2’) = y. The measure v := §, € E(Y) is not fully supported and has
at least two different ergodic lifts, namely 6, and J,,. In particular, the number of
ergodic lifts of v exceeds the degree of 7.

The following example generalizes the above example in order to make the mea-
sure v less trivial.

Example 7.16. Let M, M’ be irreducible SFTs conjugate to each other and let
M N M’ = 0. Let X be another irreducible SFT such that M U M’ C X. On the
image side, let N = M and Y = X so that N is a proper subsystem of Y. By using
Ashley’s stronger extension theorem in [3], we can extend the obvious two-to-one
map M UM’ — N to a degree one factor code 7 : X — Y. Let v be any ergodic
measure on N. Then v, seen as an element in E(Y'), is not fully supported because
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N is a proper closed subset of Y. The measure v has at least two distinct ergodic
lifts p, 1’ which are copies of v on M, M’, respectively. In particular, the number
of ergodic lifts of v exceeds the degree of 7.

We remark that an interesting direction for further research may be to specialize
to the problem of lifting finitely described ergodic measures. As a first step in this
direction, we raise the following question.

Question 7.17. Let 7 : X — Y be a finite-to-one factor code on a mixing SFT.
Let v € E(Y) be a hidden Markov measure. Is there an algorithm to decide the
number of ergodic lifts of 7 A closely related question is the following. Is there
an algorithm to decide which of the margins of a degree joining are equal to which
other margins?
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