Uniqueness in Cauchy problems for diffusive real-valued strict local martingales
HTML articles powered by AMS MathViewer
- by Umut Çetin and Kasper Larsen;
- Trans. Amer. Math. Soc. Ser. B 10 (2023), 381-406
- DOI: https://doi.org/10.1090/btran/141
- Published electronically: March 6, 2023
- HTML | PDF
Abstract:
For a real-valued one dimensional diffusive strict local martingale, we provide a set of smooth functions in which the Cauchy problem has a unique classical solution under a local $\frac 12$-Hölder condition. Under the weaker Engelbert-Schmidt conditions, we provide a set in which the Cauchy problem has a unique weak solution. We exemplify our results using quadratic normal volatility models and the two dimensional Bessel process.References
- Leif Andersen, Option pricing with quadratic volatility: a revisit, Finance Stoch. 15 (2011), no. 2, 191–219. MR 2800214, DOI 10.1007/s00780-010-0142-8
- S. Basak and D. Cuoco, An equilibrium model with restricted stock market participation, Rev. Financial Stud. 11, no. 2 (1998), 309–341.
- Erhan Bayraktar and Hao Xing, On the uniqueness of classical solutions of Cauchy problems, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2061–2064. MR 2596042, DOI 10.1090/S0002-9939-10-10306-2
- Andrei N. Borodin and Paavo Salminen, Handbook of Brownian motion—facts and formulae, Probability and its Applications, Birkhäuser Verlag, Basel, 1996. MR 1477407, DOI 10.1007/978-3-0348-7652-0
- Peter Carr, Travis Fisher, and Johannes Ruf, Why are quadratic normal volatility models analytically tractable?, SIAM J. Financial Math. 4 (2013), no. 1, 185–202. MR 3032939, DOI 10.1137/120871973
- Umut Çetin, Diffusion transformations, Black-Scholes equation and optimal stopping, Ann. Appl. Probab. 28 (2018), no. 5, 3102–3151. MR 3847983, DOI 10.1214/18-AAP1385
- G. Chabakauri, Asset pricing with heterogeneous preferences, beliefs, and portfolio constraints, J. Monetary Econ. 75 (2015), 21–34.
- Alexander M. G. Cox and David G. Hobson, Local martingales, bubbles and option prices, Finance Stoch. 9 (2005), no. 4, 477–492. MR 2213778, DOI 10.1007/s00780-005-0162-y
- F. Delbaen and H. Shirakawa, No arbitrage condition for positive diffusion price processes, Asia-Pacific Financial Markets 9, no. 3-4 (2002), 159–168.
- H. J. Engelbert and W. Schmidt, Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III, Math. Nachr. 151 (1991), 149–197. MR 1121203, DOI 10.1002/mana.19911510111
- Erik Ekström and Johan Tysk, Bubbles, convexity and the Black-Scholes equation, Ann. Appl. Probab. 19 (2009), no. 4, 1369–1384. MR 2538074, DOI 10.1214/08-AAP579
- Erik Ekström, Per Lötstedt, Lina Von Sydow, and Johan Tysk, Numerical option pricing in the presence of bubbles, Quant. Finance 11 (2011), no. 8, 1125–1128. MR 2823298, DOI 10.1080/14697688.2010.495078
- Steven N. Evans and Alexandru Hening, Markov processes conditioned on their location at large exponential times, Stochastic Process. Appl. 129 (2019), no. 5, 1622–1658. MR 3944779, DOI 10.1016/j.spa.2018.05.013
- R. Fernholz and I. Karatzas, Stochastic portfolio theory: an overview, Handbook of Numerical Analysis, (2009), 15, 89–167.
- S. L. Heston, M. Loewenstein, and G. A. Willard, Options and bubbles, Rev. Financial Stud. 20, no. 2, 2007, 359–390.
- Hardy Hulley and Eckhard Platen, A visual criterion for identifying Itô diffusions as martingales or strict local martingales, Seminar on Stochastic Analysis, Random Fields and Applications VI, Progr. Probab., vol. 63, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 147–157. MR 2857023, DOI 10.1007/978-3-0348-0021-1_{9}
- Hardy Hulley and Johannes Ruf, Weak tail conditions for local martingales, Ann. Probab. 47 (2019), no. 3, 1811–1825. MR 3945760, DOI 10.1214/18-AOP1302
- Julien Hugonnier, Rational asset pricing bubbles and portfolio constraints, J. Econom. Theory 147 (2012), no. 6, 2260–2302. MR 2996647, DOI 10.1016/j.jet.2012.05.003
- Kiyosi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected. MR 345224
- Svante Janson and Johan Tysk, Feynman-Kac formulas for Black-Scholes-type operators, Bull. London Math. Soc. 38 (2006), no. 2, 269–282. MR 2214479, DOI 10.1112/S0024609306018194
- Robert A. Jarrow, Philip Protter, and Kazuhiro Shimbo, Asset price bubbles in complete markets, Advances in mathematical finance, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2007, pp. 97–121. MR 2359365, DOI 10.1007/978-0-8176-4545-8_{7}
- Monique Jeanblanc, Marc Yor, and Marc Chesney, Mathematical methods for financial markets, Springer Finance, Springer-Verlag London, Ltd., London, 2009. MR 2568861, DOI 10.1007/978-1-84628-737-4
- Guy Johnson and L. L. Helms, Class $D$ supermartingales, Bull. Amer. Math. Soc. 69 (1963), 59–62. MR 142148, DOI 10.1090/S0002-9904-1963-10857-5
- Olav Kallenberg, Foundations of Modern Probability, 3rd Edition, Springer, 2021.
- Ioannis Karatzas, John P. Lehoczky, Steven E. Shreve, and Gan-Lin Xu, Martingale and duality methods for utility maximization in an incomplete market, SIAM J. Control Optim. 29 (1991), no. 3, 702–730. MR 1089152, DOI 10.1137/0329039
- Ioannis Karatzas and Johannes Ruf, Distribution of the time to explosion for one-dimensional diffusions, Probab. Theory Related Fields 164 (2016), no. 3-4, 1027–1069. MR 3477786, DOI 10.1007/s00440-015-0625-9
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1988. MR 917065, DOI 10.1007/978-1-4684-0302-2
- Constantinos Kardaras, Dörte Kreher, and Ashkan Nikeghbali, Strict local martingales and bubbles, Ann. Appl. Probab. 25 (2015), no. 4, 1827–1867. MR 3348996, DOI 10.1214/14-AAP1037
- Constantinos Kardaras and Johannes Ruf, Projections of scaled Bessel processes, Electron. Commun. Probab. 24 (2019), Paper No. 43, 11. MR 3978692, DOI 10.1214/19-ECP246
- Constantinos Kardaras and Johannes Ruf, Filtration shrinkage, the structure of deflators, and failure of market completeness, Finance Stoch. 24 (2020), no. 4, 871–901. MR 4152276, DOI 10.1007/s00780-020-00435-2
- Shinichi Kotani, On a condition that one-dimensional diffusion processes are martingales, In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, Lecture Notes in Math., vol. 1874, Springer, Berlin, 2006, pp. 149–156. MR 2276894, DOI 10.1007/978-3-540-35513-7_{1}2
- S. Kotani and S. Watanabe, Kreĭn’s spectral theory of strings and generalized diffusion processes, Functional analysis in Markov processes (Katata/Kyoto, 1981) Lecture Notes in Math., vol. 923, Springer, Berlin-New York, 1982, pp. 235–259. MR 661628
- D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Ann. Appl. Probab. 9 (1999), no. 3, 904–950. MR 1722287, DOI 10.1214/aoap/1029962818
- Dmitry Kramkov and Kim Weston, Muckenhoupt’s $(A_p)$ condition and the existence of the optimal martingale measure, Stochastic Process. Appl. 126 (2016), no. 9, 2615–2633. MR 3522295, DOI 10.1016/j.spa.2016.02.012
- H. Langer and W. Schenk, Generalized second-order differential operators, corresponding gap diffusions and superharmonic transformations, Math. Nachr. 148 (1990), 7–45. MR 1127331, DOI 10.1002/mana.3211480102
- Mark Loewenstein and Gregory A. Willard, Local martingales, arbitrage, and viability. Free snacks and cheap thrills, Econom. Theory 16 (2000), no. 1, 135–161. MR 1774056, DOI 10.1007/s001990050330
- G. Lowther, Properties of expectations of functions of martingale diffusions, Working paper, 2008.
- Philip E. Protter, Stochastic integration and differential equations, Stochastic Modelling and Applied Probability, vol. 21, Springer-Verlag, Berlin, 2005. Second edition. Version 2.1; Corrected third printing. MR 2273672, DOI 10.1007/978-3-662-10061-5
- D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer Science & Business Media 293, 2013.
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. Itô calculus; Reprint of the second (1994) edition. MR 1780932, DOI 10.1017/CBO9781107590120
- Paavo Salminen and Bao Quoc Ta, Differentiability of excessive functions of one-dimensional diffusions and the principle of smooth fit, Advances in mathematics of finance, Banach Center Publ., vol. 104, Polish Acad. Sci. Inst. Math., Warsaw, 2015, pp. 181–199. MR 3363986, DOI 10.4064/bc104-0-10
- Stanley Sawyer, A Fatou theorem for the general one-dimensional parabolic equation, Indiana Univ. Math. J. 24 (1974/75), 451–498. MR 350880, DOI 10.1512/iumj.1974.24.24036
- Michael Sharpe, General theory of Markov processes, Pure and Applied Mathematics, vol. 133, Academic Press, Inc., Boston, MA, 1988. MR 958914
- Mikhail Urusov and Mihail Zervos, Necessary and sufficient conditions for the $r$-excessive local martingales to be martingales, Electron. Commun. Probab. 22 (2017), Paper No. 10, 6. MR 3607805, DOI 10.1214/17-ECP42
- C. Zühlsdorff, The pricing of derivatives on assets with quadratic volatility, Appl. Math. Finance 8, no. 4, (2001), 235–262.
Bibliographic Information
- Umut Çetin
- Affiliation: Department of Statistics, London School of Economics and Political Science, London WC2A 2AE, England
- Email: u.cetin@lse.ac.uk
- Kasper Larsen
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- MR Author ID: 781270
- ORCID: 0000-0003-0823-578X
- Email: kl756@math.rutgers.edu
- Received by editor(s): April 14, 2021
- Received by editor(s) in revised form: May 10, 2022, and August 7, 2022
- Published electronically: March 6, 2023
- Additional Notes: The second author was supported by the National Science Foundation under Grant No. DMS 1812679 (2018 - 2022). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).
The second author is the corresponding author. - © Copyright 2023 by the authors under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (CC BY NC ND 4.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 10 (2023), 381-406
- MSC (2020): Primary 60G44; Secondary 60J60
- DOI: https://doi.org/10.1090/btran/141
- MathSciNet review: 4556218