On uniqueness for half-wave maps in dimension $d \geq 3$
HTML articles powered by AMS MathViewer
- by Eugene Eyeson, Silvino Reyes Farina and Armin Schikorra;
- Trans. Amer. Math. Soc. Ser. B 11 (2024), 508-539
- DOI: https://doi.org/10.1090/btran/171
- Published electronically: February 22, 2024
- HTML | PDF
Abstract:
Extending an argument by Shatah and Struwe [Int. Math. Res. Not. 11 (2002), pp. 555–571] we obtain uniqueness for solutions of the half-wave map equation in dimension $d \geq 3$ in the natural energy class.References
- Bjorn K. Berntson, Rob Klabbers, and Edwin Langmann, Multi-solitons of the half-wave maps equation and Calogero-Moser spin-pole dynamics, J. Phys. A 53 (2020), no. 50, 505702, 32. MR 4188797, DOI 10.1088/1751-8121/abb167
- Piero D’Ancona, A short proof of commutator estimates, J. Fourier Anal. Appl. 25 (2019), no. 3, 1134–1146. MR 3953500, DOI 10.1007/s00041-018-9612-8
- Francesca Da Lio and Tristan Rivière, Three-term commutator estimates and the regularity of $\frac 12$-harmonic maps into spheres, Anal. PDE 4 (2011), no. 1, 149–190. MR 2783309, DOI 10.2140/apde.2011.4.149
- Patrick Gérard and Enno Lenzmann, A Lax pair structure for the half-wave maps equation, Lett. Math. Phys. 108 (2018), no. 7, 1635–1648. MR 3802724, DOI 10.1007/s11005-017-1044-x
- Loukas Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734, DOI 10.1007/978-1-4939-1194-3
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- J. Ingmanns, Estimates for commutators of fractional differential operators via harmonic extension, arXiv:2012.12072 2020.
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048, DOI 10.1353/ajm.1998.0039
- Anna Kiesenhofer and Joachim Krieger, Small data global regularity for half-wave maps in $n=4$ dimensions, Comm. Partial Differential Equations 46 (2021), no. 12, 2305–2324. MR 4321584, DOI 10.1080/03605302.2021.1936021
- Joachim Krieger and Yannick Sire, Small data global regularity for half-wave maps, Anal. PDE 11 (2018), no. 3, 661–682. MR 3738258, DOI 10.2140/apde.2018.11.661
- E. Lenzmann, A short primer on the half-wave maps equation, Journ. Equ. Deriv. Partielles, (2018), Exposé no. IV, 12 p.
- Enno Lenzmann and Armin Schikorra, On energy-critical half-wave maps into $\Bbb {S}^2$, Invent. Math. 213 (2018), no. 1, 1–82. MR 3815562, DOI 10.1007/s00222-018-0785-1
- Enno Lenzmann and Armin Schikorra, Sharp commutator estimates via harmonic extensions, Nonlinear Anal. 193 (2020), 111375, 37. MR 4062964, DOI 10.1016/j.na.2018.10.017
- E. Lenzmann and J. Sok, Derivation of the half-wave maps equation from Calogero–Moser spin systems, arXiv:2007.15323 2020.
- Yang Liu, Global well-posedness for half-wave maps with $S^2$ and $\Bbb H^2$ targets for small smooth initial data, Commun. Pure Appl. Anal. 22 (2023), no. 1, 127–166. MR 4525905, DOI 10.3934/cpaa.2022148
- Y. Liu, Global weak solutions for the half-wave maps equation in $\mathbb {R}$, Preprint, arXiv:2308.06836, Aug. 2023.
- Martí Prats and Eero Saksman, A $\textrm {T}(1)$ theorem for fractional Sobolev spaces on domains, J. Geom. Anal. 27 (2017), no. 3, 2490–2538. MR 3667439, DOI 10.1007/s12220-017-9770-y
- T. Runst, Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), no. 4, 313–346 (English, with Russian summary). MR 877164, DOI 10.1007/BF01909369
- Thomas Runst and Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter & Co., Berlin, 1996. MR 1419319, DOI 10.1515/9783110812411
- Armin Schikorra, $\varepsilon$-regularity for systems involving non-local, antisymmetric operators, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3531–3570. MR 3426086, DOI 10.1007/s00526-015-0913-3
- Jalal Shatah and Michael Struwe, The Cauchy problem for wave maps, Int. Math. Res. Not. 11 (2002), 555–571. MR 1890048, DOI 10.1155/S1073792802109044
- Yannick Sire, Juncheng Wei, and Youquan Zheng, Infinite time blow-up for half-harmonic map flow from $\Bbb R$ into $\Bbb S^1$, Amer. J. Math. 143 (2021), no. 4, 1261–1335. MR 4291253, DOI 10.1353/ajm.2021.0031
- Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. MR 1820329, DOI 10.1155/S1073792801000150
- Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443–544. MR 1869874, DOI 10.1007/PL00005588
- Daniel Tataru, Local and global results for wave maps. I, Comm. Partial Differential Equations 23 (1998), no. 9-10, 1781–1793. MR 1641721, DOI 10.1080/03605309808821400
Bibliographic Information
- Eugene Eyeson
- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- Email: eue3@pitt.edu
- Silvino Reyes Farina
- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- Email: sir25@pitt.edu
- Armin Schikorra
- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- MR Author ID: 880438
- ORCID: 0000-0001-9242-1782
- Email: armin@pitt.edu
- Received by editor(s): January 16, 2023
- Received by editor(s) in revised form: August 25, 2023
- Published electronically: February 22, 2024
- Additional Notes: The work was funded by NSF Career DMS-2044898 and Simons foundation grant no 579261.
- © Copyright 2024 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Trans. Amer. Math. Soc. Ser. B 11 (2024), 508-539
- MSC (2020): Primary 35L05, 35B40
- DOI: https://doi.org/10.1090/btran/171
- MathSciNet review: 4707711