Numbers of solutions of equations in finite fields
HTML articles powered by AMS MathViewer
 by André Weil PDF
 Bull. Amer. Math. Soc. 55 (1949), 497508
References

1. C. F. Gauss, Werke: (a) vol. I, pp. 445449; (b) vol. II, pp. 6792; (c) vol. X1, p. 571.
2. C. G. Jacobi, Gesammelte Werke: (a) vol. VII, pp. 393400; (b) vol. VI, pp. 254274.
3. V. A. Lebesgue: (a) J. Math. Pures Appl. vol. 2 (1837) pp. 253292; (b) J. Math. Pures Appl. vol. 3 (1838) pp. 113144.
 G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum’: IV. The singular series in Waring’s Problem and the value of the number $G(k)$, Math. Z. 12 (1922), no. 1, 161–188. MR 1544511, DOI 10.1007/BF01482074 5. H. Davenport and H. Hasse, J. Reine Angew. Math. vol. 172 (1935) pp. 151182.
 L. K. Hua and H. S. Vandiver, On the existence of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 258–263. MR 25487, DOI 10.1073/pnas.34.6.258
 L. Stickelberger, Ueber eine Verallgemeinerung der Kreistheilung, Math. Ann. 37 (1890), no. 3, 321–367 (German). MR 1510649, DOI 10.1007/BF01721360
 Charles Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. (2) 35 (1934), no. 2, 396–443 (French). MR 1503170, DOI 10.2307/1968440
Additional Information
 Journal: Bull. Amer. Math. Soc. 55 (1949), 497508
 DOI: https://doi.org/10.1090/S000299041949092194
 MathSciNet review: 0029393