Locally tame curves and surfaces in three-dimensional manifolds
HTML articles powered by AMS MathViewer
- by O. G. Harrold Jr. PDF
- Bull. Amer. Math. Soc. 63 (1957), 293-305
References
-
1. J. W. Alexander, On the sub-division of space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. vol. 10 (1924) pp. 6-8.
2. J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, ibid. vol. 10 (1924) pp. 8-10.
3. J. W. Alexander, Remarks on a point set constructed by Antoine, ibid. vol. 10 (1924) pp. 10-12.
4. L. Antoine, Sur lβhomeomorphie de deux figures et leurs voisinages, J. Math. Pures Appl. Series 8 vol. 4 (1921) pp. 221-325.
- R. H. Bing, A characterization of $3$-space by partitionings, Trans. Amer. Math. Soc. 70 (1951), 15β27. MR 44827, DOI 10.1090/S0002-9947-1951-0044827-0
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145β158. MR 61377, DOI 10.2307/1969836 7. R. H. Bing, Approximating surfaces by polyhedral ones, to appear.
- William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276β297. MR 40659, DOI 10.2307/1969543
- Samuel Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613β622. MR 7100, DOI 10.2307/2371708
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979β990. MR 27512, DOI 10.2307/1969408 11. R. Fox and J. W. Milnor, Knotted 2-spheres in 4-dimensional space.
- H. C. Griffith, The enclosing of cells in three space by simple closed surfaces, Trans. Amer. Math. Soc. 81 (1956), 25β48. MR 77111, DOI 10.1090/S0002-9947-1956-0077111-4 13. H. C. Griffith, A characterization of tame surfaces in 3-space.
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29β53, 129β152. MR 58204, DOI 10.1112/plms/s3-3.1.29
- O. G. Harrold Jr., Euclidean domains with uniformly Abelian local fundamental groups, Trans. Amer. Math. Soc. 67 (1949), 120β129. MR 33018, DOI 10.1090/S0002-9947-1949-0033018-6
- O. G. Harrold Jr., The enclosing of simple arcs and curves by polyhedra, Duke Math. J. 21 (1954), 615β621. MR 68208
- O. G. Harrold Jr., Some consequences of the approximation theorem of Bing, Proc. Amer. Math. Soc. 8 (1957), 204β206. MR 87091, DOI 10.1090/S0002-9939-1957-0087091-X
- O. G. Harrold Jr., H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12β34. MR 91457, DOI 10.1090/S0002-9947-1955-0091457-4 19. O. G. Harrold, The imbedding in three-space of cells which are locally polyhedral except at boundary points, Bull. Amer. Math. Soc. Abstract 61-1-121.
- O. G. Harrold Jr. and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. (2) 57 (1953), 575β578. MR 53504, DOI 10.2307/1969738
- Egbertus R. van Kampen, On some characterizations of $2$-dimensional manifolds, Duke Math. J. 1 (1935), no.Β 1, 74β93. MR 1545866, DOI 10.1215/S0012-7094-35-00108-9
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30β45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5 23. C. Masaitis, Complement of a finite dendrite in the compactified 3-space, Bull. Amer. Math. Soc. Abstract 62-1-118.
- J. W. Milnor, On the total curvature of knots, Ann. of Math. (2) 52 (1950), 248β257. MR 37509, DOI 10.2307/1969467
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159β170. MR 61822, DOI 10.2307/1969837 26. M. H. A. Newman and J. H. C. Whitehead, The group of a certain linkage, Quart. J. Math. Oxford Ser. vol. 8 (1937) p. 14.
- Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no.Β 2, 244β270. MR 1503106, DOI 10.2307/1968202
- Hassler Whitney, Cross-sections of curves in $3$-space, Duke Math. J. 4 (1938), no.Β 1, 222β226. MR 1546045, DOI 10.1215/S0012-7094-38-00416-8
- R. L. Wilder, Concerning Simple Continuous Curves and Related Point Sets, Amer. J. Math. 53 (1931), no.Β 1, 39β55. MR 1506797, DOI 10.2307/2370867
- D. W. Woodard, The characterization of the closed $n$-cell, Trans. Amer. Math. Soc. 42 (1937), no.Β 3, 396β415. MR 1501928, DOI 10.1090/S0002-9947-1937-1501928-8
- Leo Zippin, A Characterisation of the Closed 2-Cell, Amer. J. Math. 55 (1933), no.Β 1-4, 207β217. MR 1506957, DOI 10.2307/2371123
Additional Information
- Journal: Bull. Amer. Math. Soc. 63 (1957), 293-305
- DOI: https://doi.org/10.1090/S0002-9904-1957-10125-6
- MathSciNet review: 0088718