New results and old problems in finite transformation groups
HTML articles powered by AMS MathViewer
- by P. A. Smith PDF
- Bull. Amer. Math. Soc. 66 (1960), 401-415
References
- R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, DOI 10.2307/1969804
- Armand Borel, Nouvelle démonstration d’un théorème de P. A. Smith, Comment. Math. Helv. 29 (1955), 27–39 (French). MR 66649, DOI 10.1007/BF02564269
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- P. E. Conner and E. E. Floyd, On the construction of periodic maps without fixed points, Proc. Amer. Math. Soc. 10 (1959), 354–360. MR 105115, DOI 10.1090/S0002-9939-1959-0105115-X
- E. E. Floyd, Orbit spaces of finite transformation groups. I, Duke Math. J. 20 (1953), 563–567. MR 58962, DOI 10.1215/S0012-7094-53-02056-0
- E. E. Floyd, Orbit spaces of finite transformation groups. II, Duke Math. J. 22 (1955), 33–38. MR 66642, DOI 10.1215/S0012-7094-55-02204-3
- E. E. Floyd, Fixed point sets of compact abelian Lie groups of transformations, Ann. of Math. (2) 66 (1957), 30–35. MR 88733, DOI 10.2307/1970115
- E. E. Floyd and R. W. Richardson, An action of a finite group on an $n$-cell without stationary points, Bull. Amer. Math. Soc. 65 (1959), 73–76. MR 100848, DOI 10.1090/S0002-9904-1959-10282-2 9. J. J. Greever, Fixed points of finite transformation groups, Dissertation, University of Virginia. 10. M. W. Hirsch and Stephen Smale, On involutions on a 3-sphere, Notices, Amer. Math. Soc. vol. 6 (1959) pp. 148-149. 11. S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, 1942. 12. B. von Kérékjártó, Über die endlichen topologischen Gruppen der Kugelfläche, Nederl. Akad. Wetensch. Proc. Ser. A vol. 22 (1919) pp. 568-569.
- John Milnor, Groups which act on $S^n$ without fixed points, Amer. J. Math. 79 (1957), 623–630. MR 90056, DOI 10.2307/2372566
- Deane Montgomery and Hans Samelson, A theorem on fixed points of involutions in $S^3$, Canadian J. Math. 7 (1955), 208–220. MR 68828, DOI 10.4153/CJM-1955-027-1 15. C. D. Papakyriakopolous, On Dehns’ lemma and the asphericity of knots, Ann. of Math. vol. 66 (1956) pp. 1-26. 16. G. de Rham, Sur les nouveaux invariants topologiques de M. Reidemeister, Recueil Math. (Moscow) new series, vol. 1 (1936) pp. 737-742. 17. H. Seifert and W. Threlfall, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. I, Math. Ann. vol. 104 (1930) pp. 1-70. 18. H. Seifert and W. Threlfall, Seminar on transformation groups, Institute for Advanced Study, 1958-195. 19. P. A. Smith, Transformations of finite period, Ann. of Math. vol. 39 (1937) pp. 137-164.
- P. A. Smith, Transformations of finite period. II, Ann. of Math. (2) 40 (1939), 690–711. MR 177, DOI 10.2307/1968950
- P.A. Smith, Fixed-point theorems for periodic transformations, Amer. J. Math. 63 (1941), 1–8. MR 3199, DOI 10.2307/2371271
- P. A. Smith, Permutable periodic transformations, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 105–108. MR 10278, DOI 10.1073/pnas.30.5.105
- Paul A. Smith, Orbit spaces of abelian $p$-groups, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1772–1775. MR 114214, DOI 10.1073/pnas.45.12.1772
- Richard G. Swan, Groups with periodic cohomology, Bull. Amer. Math. Soc. 65 (1959), 368–370. MR 115175, DOI 10.1090/S0002-9904-1959-10378-5
- J. H. C. Whitehead, On involutions of spheres, Ann. of Math. (2) 66 (1957), 27–29. MR 88732, DOI 10.2307/1970114
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491, DOI 10.1090/coll/032
- Hans Zassenhaus, The Theory of Groups, Chelsea Publishing Co., New York, N. Y., 1949. Translated from the German by Saul Kravetz. MR 0030947 28. H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg vol. 11 1936) pp. 187-220.
Additional Information
- Journal: Bull. Amer. Math. Soc. 66 (1960), 401-415
- DOI: https://doi.org/10.1090/S0002-9904-1960-10491-0
- MathSciNet review: 0125581