Slender groups
HTML articles powered by AMS MathViewer
- by R. J. Nunke PDF
- Bull. Amer. Math. Soc. 67 (1961), 274-275
References
- Reinhold Baer, Die Torsionsuntergruppe einer Abelschen Gruppe, Math. Ann. 135 (1958), 219–234 (German). MR 100024, DOI 10.1007/BF01351798
- S. Balcerzyk, On factor groups of some subgroups of a complete direct sum of infinite cyclic groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 141–142. (unbound insert) (English, with Russian summary). MR 0108529
- L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR 0106942
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 104728, DOI 10.2307/1970188 5. J. Rotman, On a problem of Baer and a problem of Whitehead, to appear.
- E. Sąsiada, Proof that every countable and reduced torsion-free Abelian group is slender, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 143–144 (unbound insert) (English, with Russian summary). MR 0106943
Additional Information
- Journal: Bull. Amer. Math. Soc. 67 (1961), 274-275
- DOI: https://doi.org/10.1090/S0002-9904-1961-10582-X
- MathSciNet review: 0130298