## Topological equivalence of a Banach space with its unit cell

HTML articles powered by AMS MathViewer

- by Victor Klee PDF
- Bull. Amer. Math. Soc.
**67**(1961), 286-290

## References

- Robert G. Bartle and Lawrence M. Graves,
*Mappings between function spaces*, Trans. Amer. Math. Soc.**72**(1952), 400–413. MR**47910**, DOI 10.1090/S0002-9947-1952-0047910-X - C. Bessaga and A. Pełczyński,
*A generalization of results of R. C. James concerning absolute bases in Banach spaces*, Studia Math.**17**(1958), 165–174. MR**115071**, DOI 10.4064/sm-17-2-165-174
3. C. Bessaga and A. Pełczyński, Some remarks on homeomorphism of Banach spaces, to appear.
4. H. H. Corson and Victor Klee, Topological classification of convex bodies, to appear.
- Robert C. James,
*Bases and reflexivity of Banach spaces*, Ann. of Math. (2)**52**(1950), 518–527. MR**39915**, DOI 10.2307/1969430 - M. I. Kadec,
*On homeomorphism of certain Banach spaces*, Doklady Akad. Nauk SSSR (N.S.)**92**(1953), 465–468 (Russian). MR**0059469** - M. Ĭ. Kadec′,
*On strong and weak convergence*, Dokl. Akad. Nauk SSSR**122**(1958), 13–16 (Russian). MR**0098977** - Victor L. Klee Jr.,
*Convex bodies and periodic homeomorphisms in Hilbert space*, Trans. Amer. Math. Soc.**74**(1953), 10–43. MR**54850**, DOI 10.1090/S0002-9947-1953-0054850-X - V. L. Klee Jr.,
*A note on topological properties of normed linear spaces*, Proc. Amer. Math. Soc.**7**(1956), 673–674. MR**78661**, DOI 10.1090/S0002-9939-1956-0078661-2 - V. Klee,
*Mappings into normed linear spaces*, Fund. Math.**49**(1960/61), 25–34. MR**126690**, DOI 10.4064/fm-49-1-25-34
11. Victor Klee, Topological structure of infinite-dimensional linear spaces, to appear.
12. S. Mazur, Une remarque sur l’homéomorphic des champs fonctionnels, Studia Math. vol. 1 (1929) pp. 83-85.
- Ernest Michael,
*Continuous selections. I*, Ann. of Math. (2)**63**(1956), 361–382. MR**77107**, DOI 10.2307/1969615

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**67**(1961), 286-290 - DOI: https://doi.org/10.1090/S0002-9904-1961-10589-2
- MathSciNet review: 0125431