Equivalence of nearby differentiable actions of a compact group
HTML articles powered by AMS MathViewer
- by Richard S. Palais PDF
- Bull. Amer. Math. Soc. 67 (1961), 362-364
References
- R. H. Bing, A homeomorphism between the $3$-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, DOI 10.2307/1969804
- Deane Montgomery, Topological groups of differentiable transformations, Ann. of Math. (2) 46 (1945), 382–387. MR 13162, DOI 10.2307/1969158
- Deane Montgomery and Leo Zippin, A theorem on Lie groups, Bull. Amer. Math. Soc. 48 (1942), 448–452. MR 6545, DOI 10.1090/S0002-9904-1942-07699-3
- G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432–446. MR 87037, DOI 10.2307/1970055
- Richard S. Palais, Imbedding of compact, differentiable transformation groups in orthogonal representations, J. Math. Mech. 6 (1957), 673–678. MR 0092927, DOI 10.1512/iumj.1957.6.56037
- Richard S. Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960), 305–312. MR 123338, DOI 10.1007/BF02565942
- Richard S. Palais and Thomas E. Stewart, Deformations of compact differentiable transformation groups, Amer. J. Math. 82 (1960), 935–937. MR 120652, DOI 10.2307/2372950
Additional Information
- Journal: Bull. Amer. Math. Soc. 67 (1961), 362-364
- DOI: https://doi.org/10.1090/S0002-9904-1961-10617-4
- MathSciNet review: 0130321