The ${\text {SU}}$-bordism theory
Authors:
P. E. Conner and E. E. Floyd
Journal:
Bull. Amer. Math. Soc. 70 (1964), 670-675
DOI:
https://doi.org/10.1090/S0002-9904-1964-11154-X
MathSciNet review:
0167988
Full-text PDF Free Access
References | Additional Information
- M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200–208. MR 126856, DOI https://doi.org/10.1017/s0305004100035064
- P. E. Conner and E. E. Floyd, Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574–579. MR 164356, DOI https://doi.org/10.1090/S0002-9904-1964-11204-0
- J. Milnor, On the cobordism ring $\Omega ^{\ast } $ and a complex analogue. I, Amer. J. Math. 82 (1960), 505–521. MR 119209, DOI https://doi.org/10.2307/2372970
- S. P. Novikov, Homotopy properties of Thom complexes, Mat. Sb. (N.S.) 57 (99) (1962), 407–442 (Russian). MR 0157381
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI https://doi.org/10.1007/BF02566923
- George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227–283. MR 137117, DOI https://doi.org/10.1090/S0002-9947-1962-0137117-6