A setting for global analysis
HTML articles powered by AMS MathViewer
- by James Eells Jr. PDF
- Bull. Amer. Math. Soc. 72 (1966), 751-807
References
- Ralph Abraham, Transversality in manifolds of mappings, Bull. Amer. Math. Soc. 69 (1963), 470–474. MR 149495, DOI 10.1090/S0002-9904-1963-10969-6 2. R. Abraham, Lectures of Smale on differential topology, Notes at Columbia University, New York, 1962-1963.
- V. I. Anosov, Critical points of periodic functionals, Soviet Math. Dokl. 1 (1960), 208–210. MR 0119115
- Richard F. Arens and James Eells Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397–403. MR 81458
- Robert G. Bartle, On the openness and inversion of differentiable mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 257 (1958), 8. MR 104172
- Andrée Bastiani, Applications différentiables et variétés différentiables de dimension infinie, J. Analyse Math. 13 (1964), 1–114 (French). MR 177277, DOI 10.1007/BF02786619 7. I. Berstein, J. Eells, Jr. and K. Gęba, Poincaré duality in function spaces, (In preparation).
- C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27–31 (English, with Russian summary). MR 193646
- Garrett Birkhoff, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), no. 1, 61–101. MR 1501934, DOI 10.1090/S0002-9947-1938-1501934-4
- Robert Bonic and John Frampton, Differentiable functions on certain Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 393–395. MR 172084, DOI 10.1090/S0002-9904-1965-11310-6
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492 12. R. Bott, Lectures on K-theory, Mimeographed notes, Harvard University, Cambridge, Mass., 1962. 13. N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1953; Chapters I-II. Hermann, Paris, 1955; Chapters III-IV.
- H. J. Bremermann, Holomorphic functionals and complex convexity in Banach spaces, Pacific J. Math. 7 (1957), 811–831. MR 88709
- Felix E. Browder, On a generalization of the Schauder fixed point theorem, Duke Math. J. 26 (1959), 291–303. MR 105629
- Felix E. Browder, Infinite dimensional manifolds and non-linear elliptic eigenvalue problems, Ann. of Math. (2) 82 (1965), 459–477. MR 203249, DOI 10.2307/1970708
- Felix E. Browder, Fixed point theorems on infinite dimensional manifolds, Trans. Amer. Math. Soc. 119 (1965), 179–194. MR 195082, DOI 10.1090/S0002-9947-1965-0195082-2
- Ion Colojoară, On Whitney’s imbedding theorem, Rev. Roumaine Math. Pures Appl. 10 (1965), 291–296. MR 182018
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- H. H. Corson, Collections of convex sets which cover a Banach space, Fund. Math. 49 (1960/61), 143–145. MR 125430, DOI 10.4064/fm-49-2-143-145
- Jane Cronin, Fixed points and topological degree in nonlinear analysis, Mathematical Surveys, No. 11, American Mathematical Society, Providence, R.I., 1964. MR 0164101
- J. A. Dieudonné, Recent developments in the theory of locally convex vector spaces, Bull. Amer. Math. Soc. 59 (1953), 495–512. MR 62334, DOI 10.1090/S0002-9904-1953-09752-X
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Jacques Dixmier and Adrien Douady, Champs continus d’espaces hilbertiens et de $C^{\ast }$-algèbres, Bull. Soc. Math. France 91 (1963), 227–284 (French). MR 163182 24a. A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Sem. Collège de France, 1964-1965.
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116 26. N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958. 27. E. Dynkin, Normed Lie algebras and analytic groups, Uspehi Mat. Nauk. 5 (1950), no. 1 (35) 135-186; Amer. Math. Soc. Transl. Vol. 97 (1953), 66 pp.
- Clifford J. Earle and James Eells Jr., Foliations and fibrations, J. Differential Geometry 1 (1967), no. 1, 33–41. MR 215320
- James Eells Jr., On the geometry of function spaces, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 303–308. MR 0098419
- James Eells Jr., On submanifolds of certain function spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1520–1522. MR 112148, DOI 10.1073/pnas.45.10.1520
- James Eells Jr., A class of smooth bundles over a manifold, Pacific J. Math. 10 (1960), 525–538. MR 120656
- James Eells Jr., Alexander-Pontrjagin duality in function spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 109–129. MR 0125580 33. J. Eells, Jr., Analysis on manifolds, Mimeographed notes, Cornell University, Ithaca, N. Y., 1964-1965.
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- James Eells Jr. and J. H. Sampson, Énergie et déformations en géométrie différentielle, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 1, 61–69 (French). MR 172310 36. J. Eells, Jr., Variational theory in fibre bundles, Proc. Kyoto Conference on Differential Geometry, Kyoto, 1965. 37. J. Frampton, Smooth partitions of unity on Banach manifolds, Ph.D. Thesis, Yale University, New Haven, Conn., 1965.
- Kazimierz Gęba, Sur les groupes de cohomotopie dans les espaces de Banach. Constructions générales, C. R. Acad. Sci. Paris 254 (1962), 3293–3295 (French). MR 139170
- K. Gęba, Algebraic topology methods in the theory of compact fields in Banach spaces, Fund. Math. 54 (1964), 177–209. MR 162117, DOI 10.4064/fm-54-2-177-209
- K. Gęba and A. Granas, Algebraic topology in linear normed spaces. I. Basic categories, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 287–290 (English, with Russian summary). MR 184235
- Georges Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1–124; erratum, insert to 6 (1958), no. 2 (French). MR 101294, DOI 10.1007/BF02790231
- A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces. I, Rozprawy Mat. 30 (1962), 93. MR 149253
- Lawrence M. Graves, Riemann integration and Taylor’s theorem in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 163–177. MR 1501382, DOI 10.1090/S0002-9947-1927-1501382-X
- Lawrence M. Graves, Implicit functions and differential equations in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 3, 514–552. MR 1501403, DOI 10.1090/S0002-9947-1927-1501403-4 44. L. Graves, Topics in functional calculus, Bull. Amer. Math. Soc. 41 (1935), 641-662; 42 (1936), 381-382.
- T. H. Hildebrandt and Lawrence M. Graves, Implicit functions and their differentials in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 127–153. MR 1501380, DOI 10.1090/S0002-9947-1927-1501380-6 46. N. Grossman, Geodesics on Hilbert manifolds, Ph.D. Thesis, University of Minnesota, Minneapolis, Minn., 1964. 47. N. Grossman, Hilbert manifolds without epiconjugate points, Mimeographed notes, Institute for Advanced Study, Princeton, N. J.
- Magnus R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math. 1 (1951), 525–581. MR 46590
- Magnus R. Hestenes, Quadratic variational theory and linear elliptic partial differential equations, Trans. Amer. Math. Soc. 101 (1961), 306–350. MR 133575, DOI 10.1090/S0002-9947-1961-0133575-0
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Lars Hörmander, Linear partial differential operators, Springer-Verlag, Berlin-New York, 1976. MR 0404822
- Klaus Jänich, Vektorraumbündel und der Raum der Fredholm-Operatoren, Math. Ann. 161 (1965), 129–142. MR 190946, DOI 10.1007/BF01360851
- Shizuo Kakutani, Topological properties of the unit sphere of a Hilbert space, Proc. Imp. Acad. Tokyo 19 (1943), 269–271. MR 14203
- H. H. Keller, Über die Differentialgleichung erster Ordnung in normierten linearen Räumen, Rend. Circ. Mat. Palermo (2) 8 (1959), 117–144 (German). MR 121554, DOI 10.1007/BF02851024
- Michael Kerner, Abstract differential geometry, Compositio Math. 4 (1937), 308–341. MR 1556977
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI 10.1090/S0002-9947-1953-0054850-X
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- Wilhelm Klingenberg, The theorem of the three closed geodesics, Bull. Amer. Math. Soc. 71 (1965), 601–605. MR 177374, DOI 10.1090/S0002-9904-1965-11353-2 59. M. Klingmann, Doctoral Dissertation, University of Heidelberg, 1965.
- M. A. Krasnosel′skiĭ, Topologicheskie metody v teoriĭ nelineĭnykh integral′nykh uravneniĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0096983
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- Ivan Kupka, Counterexample to the Morse-Sard theorem in the case of infinite-dimensional manifolds, Proc. Amer. Math. Soc. 16 (1965), 954–957. MR 182024, DOI 10.1090/S0002-9939-1965-0182024-4
- J. Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1954), 214–231 (1955). MR 68732, DOI 10.4064/sm-14-2-214-231
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257 65. D. Laugwitz, Differentialgeometrie ohne Dimensionsaxiom. I, II, Math. Z. 61 (1954), 100-118, 134-149.
- Detlef Laugwitz, Über unendliche kontinuierliche Gruppen. I. Grundlagen der Theorie; Untergruppen, Math. Ann. 130 (1955), 337–350 (German). MR 75535, DOI 10.1007/BF01343900
- Detlef Laugwitz, Grundlagen für die Geometrie der unendlichdimensionalen Finslerräume, Ann. Mat. Pura Appl. (4) 41 (1956), 21–41 (German). MR 78732, DOI 10.1007/BF02411658
- Jacqueline Lelong-Ferrand, Sur les groupes à un paramètre de transformations des variétés différentiables, J. Math. Pures Appl. (9) 37 (1958), 269–278 (French). MR 98415
- Jean Leray, Sur les équations et les transformations, J. Math. Pures Appl. (9) 24 (1946), 201–248 (French). MR 15788
- Jean Leray, La théorie des points fixes et ses applications en analyse, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R.I., 1952, pp. 202–208 (French). MR 0047318
- Jean Leray, Théorie des points fixes: indice total et nombre de Lefschetz, Bull. Soc. Math. France 87 (1959), 221–233 (French). MR 143202
- Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45–78 (French). MR 1509338 73. P. Lévy, Leçons d’analyse fonctionnelle, Gauthiers-Villars, Paris, 1922.
- Bernhard Maissen, Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229–270 (German). MR 142693, DOI 10.1007/BF02545768 75. J. H. McAlpin, Infinite dimensional manifolds and Morse theory, Ph.D. Thesis, Columbia University, New York, 1965. 76. W. Meyer, Kritische Mannigfaltigkeiten in Hilbert-mannigfaltigkeiten, Doctoral Dissertation, University of Bonn, 1964.
- A. D. Michal, General differential geometries and related topics, Bull. Amer. Math. Soc. 45 (1939), 529–563. MR 172, DOI 10.1090/S0002-9904-1939-07029-8
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4 79. C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Amer. Math. Soc. Colloq. Lectures, Amherst, Mass., 1964.
- Charles B. Morrey Jr. and James Eells Jr., A variational method in the theory of harmonic integrals. I, Ann. of Math. (2) 63 (1956), 91–128. MR 87764, DOI 10.2307/1969992 81. M. Morse, Abstract variational theory, Memor. Sci. Math. 92 (1939)
- Marston Morse, Recent advances in variational theory in the large, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R.I., 1952, pp. 143–156. MR 0044758
- Jürgen Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824–1831. MR 132859, DOI 10.1073/pnas.47.11.1824
- F. J. Murray, On complementary manifolds and projections in spaces $L_p$ and $l_p$, Trans. Amer. Math. Soc. 41 (1937), no. 1, 138–152. MR 1501894, DOI 10.1090/S0002-9947-1937-1501894-5
- S. B. Myers, Algebras of differentiable functions, Proc. Amer. Math. Soc. 5 (1954), 917–922. MR 65823, DOI 10.1090/S0002-9939-1954-0065823-1
- Mitio Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497–511. MR 42697, DOI 10.2307/2372304
- I. Namioka, A duality in function spaces, Trans. Amer. Math. Soc. 115 (1965), 131–144. MR 202133, DOI 10.1090/S0002-9947-1965-0202133-5
- Gerhard Neubauer, Über den Index abgeschlossener Operatoren in Banachrämen, Math. Ann. 160 (1965), 93–130 (German). MR 192351, DOI 10.1007/BF01361203
- Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340. MR 158410, DOI 10.1016/0040-9383(63)90013-2
- Richard S. Palais, On the homotopy type of certain groups of operators, Topology 3 (1965), 271–279. MR 175130, DOI 10.1016/0040-9383(65)90057-1 91. R. S. Palais, Lectures on the differential topology of infinite dimensional manifolds, Mimeographed notes, by S. Greenfield, Brandeis University, Waltham, Mass.; 1964-1965.
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 259955, DOI 10.1016/0040-9383(66)90013-9
- R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165–172. MR 158411, DOI 10.1090/S0002-9904-1964-11062-4
- M. E. Shanks and Lyle E. Pursell, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc. 5 (1954), 468–472. MR 64764, DOI 10.1090/S0002-9939-1954-0064764-3
- Calvin R. Putnam and Aurel Wintner, The orthogonal group in Hilbert space, Amer. J. Math. 74 (1952), 52–78. MR 45121, DOI 10.2307/2372068
- Guillermo Restrepo, Differentiable norms in Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 413–414. MR 161129, DOI 10.1090/S0002-9904-1964-11121-6
- Erich Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compositio Math. 5 (1938), 177–197 (German). MR 1556993
- E. H. Rothe, Critical points and gradient fields of scalars in Hilbert space, Acta Math. 85 (1951), 73–98. MR 43387, DOI 10.1007/BF02395742
- E. H. Rothe, Leray-Schauder index and Morse type numbers in Hilbert space, Ann. of Math. (2) 55 (1952), 433–467. MR 49493, DOI 10.2307/1969643
- E. H. Rothe, Gradient mappings, Bull. Amer. Math. Soc. 59 (1953), 5–19. MR 52681, DOI 10.1090/S0002-9904-1953-09649-5
- E. H. Rothe, Critical point theory in Hilbert space under general boundary conditions, J. Math. Anal. Appl. 11 (1965), 357–409. MR 190951, DOI 10.1016/0022-247X(65)90092-2
- H. L. Royden, Function algebras, Bull. Amer. Math. Soc. 69 (1963), 281–298. MR 149327, DOI 10.1090/S0002-9904-1963-10900-3
- Arthur Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158–174. MR 173748, DOI 10.2307/2373229
- J. Schauder, Über den Zusammenhang zwischen der Eindeutigkeit und Lösbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Math. Ann. 106 (1932), no. 1, 661–721 (German). MR 1512780, DOI 10.1007/BF01455908 106. J. Schauder, Invarianz des Gebietes in Funktionalräumen, Studia Math. 1 (1929), 123-139.
- Jacob T. Schwartz, Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307–315. MR 166796, DOI 10.1002/cpa.3160170304 108. J. T. Schwartz, Nonlinear functional analysis, Mimeographed notes, New York University, New York, 1963-1964.
- Irving Segal, Differential operators in the manifold of solutions of a non-linear differential equation, J. Math. Pures Appl. (9) 44 (1965), 71–105; ibid. (9) 44 (1965), 107–132. MR 192369
- S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. of Math. (2) 80 (1964), 382–396. MR 165539, DOI 10.2307/1970398
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
- S. L. Sobolev, Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR 0165337
- E. H. Spanier, Duality and $\textrm {S}$-theory, Bull. Amer. Math. Soc. 62 (1956), 194–203. MR 85506, DOI 10.1090/S0002-9904-1956-10014-1
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- A. S. Švarc, On the homotopic topology of Banach spaces, Dokl. Akad. Nauk SSSR 154 (1964), 61–63 (Russian). MR 0160095
- Jun Tomiyama and Masamichi Takesaki, Applications of fibre bundles to the certain class of $C^{\ast }$-algebras, Tohoku Math. J. (2) 13 (1961), 498–522. MR 139025, DOI 10.2748/tmj/1178244253
- M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR 0176364
- W. T. van Est and Th. J. Korthagen, Non-enlargible Lie algebras, Nederl. Akad. Wetensch. Proc. Ser. A 67=Indag. Math. 26 (1964), 15–31. MR 0160851
- L. Waelbroeck, Le calcul symbolique dans les algèbres commutatives, J. Math. Pures Appl. (9) 33 (1954), 147–186 (French). MR 73953
- Arthur Wasserman, Morse theory for $G$-manifolds, Bull. Amer. Math. Soc. 71 (1965), 384–388. MR 174064, DOI 10.1090/S0002-9904-1965-11306-4
- R. Wood, Banach algebras and Bott periodicity, Topology 4 (1965/66), 371–389. MR 185598, DOI 10.1016/0040-9383(66)90035-8
Additional Information
- Journal: Bull. Amer. Math. Soc. 72 (1966), 751-807
- DOI: https://doi.org/10.1090/S0002-9904-1966-11558-6
- MathSciNet review: 0203742