An inequality for the eigenvalues of a class of self-adjoint operators
HTML articles powered by AMS MathViewer
- by William Stenger PDF
- Bull. Amer. Math. Soc. 73 (1967), 487-490
References
- Alexander Weinstein, The intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech. 12 (1963), 235–245. MR 0155083
- Alexander Weinstein, An invariant fomulation of the new maximum-minimum theory of eigenvalues, J. Math. Mech. 16 (1966), 213–218. MR 0212604, DOI 10.1512/iumj.1967.16.16015 3. W. Stenger, On Poincaré’s bounds for higher eigenvalues, Bull. Amer. Math. Soc. 72 (1966), 715-718. 4. W. Stenger, The maximum-minimum principle for the eigenvalues of unbounded operators, Notices Amer. Math. Soc. 13 (1966), 731.
- N. Aronszajn, Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues. I. Operators in a Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 474–480. MR 27955, DOI 10.1073/pnas.34.10.474
- H. L. Hamburger and M. E. Grimshaw, Linear Transformations in $n$-Dimensional Vector Space. An Introduction to the Theory of Hilbert Space, Cambridge, at the University Press, 1951. MR 0041355
- Gaetano Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics, vol. 8, Springer-Verlag, Berlin-New York, 1965. MR 0209639, DOI 10.1007/BFb0079959
- S. H. Gould, Variational methods for eigenvalue problems. An introduction to the Weinstein method of intermediate problems, Mathematical Expositions, No. 10, University of Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966. Second edition, revised and enlarged. MR 0209662, DOI 10.3138/9781487596002
- J. B. Diaz, Upper and lower bounds for eigenvalues, University of Maryland, College Park, Md., 1956. Inst. for Fluid Dynamics and Appl. Math.,. MR 0093907 10. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1911), 441-469.
Additional Information
- Journal: Bull. Amer. Math. Soc. 73 (1967), 487-490
- DOI: https://doi.org/10.1090/S0002-9904-1967-11789-0
- MathSciNet review: 0208385