Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


An inequality for the eigenvalues of a class of self-adjoint operators
HTML articles powered by AMS MathViewer

by William Stenger PDF
Bull. Amer. Math. Soc. 73 (1967), 487-490
  • Alexander Weinstein, The intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech. 12 (1963), 235–245. MR 0155083
  • Alexander Weinstein, An invariant fomulation of the new maximum-minimum theory of eigenvalues, J. Math. Mech. 16 (1966), 213–218. MR 0212604, DOI 10.1512/iumj.1967.16.16015
  • 3. W. Stenger, On Poincaré’s bounds for higher eigenvalues, Bull. Amer. Math. Soc. 72 (1966), 715-718. 4. W. Stenger, The maximum-minimum principle for the eigenvalues of unbounded operators, Notices Amer. Math. Soc. 13 (1966), 731.
  • N. Aronszajn, Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues. I. Operators in a Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 474–480. MR 27955, DOI 10.1073/pnas.34.10.474
  • H. L. Hamburger and M. E. Grimshaw, Linear Transformations in $n$-Dimensional Vector Space. An Introduction to the Theory of Hilbert Space, Cambridge, at the University Press, 1951. MR 0041355
  • Gaetano Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics, vol. 8, Springer-Verlag, Berlin-New York, 1965. MR 0209639, DOI 10.1007/BFb0079959
  • S. H. Gould, Variational methods for eigenvalue problems. An introduction to the Weinstein method of intermediate problems, Mathematical Expositions, No. 10, University of Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966. Second edition, revised and enlarged. MR 0209662, DOI 10.3138/9781487596002
  • J. B. Diaz, Upper and lower bounds for eigenvalues, University of Maryland, College Park, Md., 1956. Inst. for Fluid Dynamics and Appl. Math.,. MR 0093907
  • 10. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1911), 441-469.
Additional Information
  • Journal: Bull. Amer. Math. Soc. 73 (1967), 487-490
  • DOI:
  • MathSciNet review: 0208385