Generalization of Schwarz-Pick lemma to invariant volume in a Kähler manifold
HTML articles powered by AMS MathViewer
- by Kyong T. Hahn and Josephine Mitchell PDF
- Bull. Amer. Math. Soc. 73 (1967), 668-670
References
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Stefan Bergmann, Sur les fonctions orthogonales de plusieurs variables complexes avec les applications à la théorie des fonctions analytiques, Mémor. Sci. Math., no. 106, Gauthier-Villars, Paris, 1947 (French). MR 0032776
- Alexander Dinghas, Ein $n$-dimensionales Analogon des Schwarz-Pickschen Flächensatzes für holomorphe Abbildungen der komplexen Einheitskugel in eine Kähler-Mannigfaltigkeit, Festschr. Gedächtnisfeier K. Weierstrass, Westdeutscher Verlag, Cologne, 1966, pp. 477–494 (German). MR 0203077
- K. T. Hahn and Josephine Mitchell, Generalization of Schwarz-Pick lemma to invariant volume in a Kähler manifold, Trans. Amer. Math. Soc. 128 (1967), 221–231. MR 243120, DOI 10.1090/S0002-9947-1967-0243120-2
- K. T. Hahn and Josephine Mitchell, Generalization of Schwarz-Pick lemma to invariant volume, Canadian J. Math. 21 (1969), 669–674. MR 261516, DOI 10.4153/CJM-1969-076-2
- I. I. Pjateckiĭ-Šapiro, Geometriya klassicheskikh oblasteĭ i teoriya avtomorfnykh fuiktsiĭ, Sovremennye Problemy Matematiki, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0136770
- È. B. Vinberg, S. G. Gindikin, and I. I. Pjateckiĭ-Šapiro, Classification and canonical realization of complex homogeneous bounded domains, Trudy Moskov. Mat. Obšč. 12 (1963), 359–388 (Russian). MR 0158415
Additional Information
- Journal: Bull. Amer. Math. Soc. 73 (1967), 668-670
- DOI: https://doi.org/10.1090/S0002-9904-1967-11817-2
- MathSciNet review: 0243119