Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



A simple model of the derivation of fluid mechanics from the Boltzmann equation

Author: H. P. McKean Jr.
Journal: Bull. Amer. Math. Soc. 75 (1969), 1-10
MathSciNet review: 0235792
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. T. Carleman, Problémes mathématiques dans la théorie cinétique des gas, Almquist and Wiksell, Uppsala, 1957.
  • 2. G. E. Uhlenbeck and G. W. Ford, Lectures in statistical mechanics, With an appendix on quantum statistics of interacting particles by E. W. Montroll. Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado, vol. 1960, American Mathematical Society, Providence, R.I., 1963. MR 0151255
  • 3. Harold Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids 6 (1963), 147–181. MR 155541,
  • 4. David Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Chelsea Publishing Company, New York, N.Y., 1953 (German). MR 0056184
  • 5. Mark Kac, Probability and related topics in physical sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo., vol. 1957, Interscience Publishers, London-New York, 1959. MR 0102849
  • 6. H. P. McKean Jr., Chapman-Enskog-Hilbert expansion for a class of solutions of the telegraph equation, J. Mathematical Phys. 8 (1967), 547–552. MR 211099,

Additional Information