Adjoints, numerical ranges, and spectra of operators on locally convex spaces
Author:
Robert T. Moore
Journal:
Bull. Amer. Math. Soc. 75 (1969), 85-90
DOI:
https://doi.org/10.1090/S0002-9904-1969-12154-3
MathSciNet review:
0239448
Full-text PDF Free Access
References | Additional Information
- 1. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, https://doi.org/10.1090/S0002-9947-1961-0133024-2
- 2. Nelson Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354. MR 63563
- 3. Robert T. Moore, Banach algebras of operators on locally convex spaces, Bull. Amer. Math. Soc. 75 (1969), 68–73. MR 236723, https://doi.org/10.1090/S0002-9904-1969-12147-6
- 4. R. T. Moore, Generation of equicontinuous semigroups by hermitian and sectorial operators, (in preparation).
- 5. R. T. Moore, Operator theory on locally convex spaces I: Banach algebras, states and numerical ranges (in preparation).
- 6. R. T. Moore, Approximating spectra by numerical ranges (in preparation).
- 7. George H. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), 75–79. MR 157244, https://doi.org/10.1090/S0002-9939-1964-0157244-4
- 8. R. S. Phillips, The adjoint semi-group, Pacific J. Math. 5 (1955), 269–283. MR 70976
- 9. Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121–128 (German). MR 84733, https://doi.org/10.1007/BF01186601
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1969-12154-3