Stable manifolds for hyperbolic sets
Authors:
Morris W. Hirsch and Charles C. Pugh
Journal:
Bull. Amer. Math. Soc. 75 (1969), 149-152
DOI:
https://doi.org/10.1090/S0002-9904-1969-12184-1
MathSciNet review:
0254865
Full-text PDF Free Access
References | Additional Information
- 1. R. B. Holmes, A formula for the spectral radius of an operator, Amer. Math. Monthly 75 (1968), 163–166. MR 227783, https://doi.org/10.2307/2315890
- 2. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, https://doi.org/10.1090/S0002-9904-1967-11798-1
- 3. V. I. Arnold and A. Avez, Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, No. 9, Gauthier-Villars, Éditeur, Paris, 1967 (French). MR 0209436
- 4. D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR 145 (1962), 707–709 (Russian). MR 0143156
- 5. Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1969-12184-1