Cross sectionally simple spheres
HTML articles powered by AMS MathViewer
- by W. T. Eaton PDF
- Bull. Amer. Math. Soc. 75 (1969), 375-378
References
-
1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- R. H. Bing, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145–192. MR 150744, DOI 10.2307/1970203
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294–305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Conditions under which a surface in $E^{3}$ is tame, Fund. Math. 47 (1959), 105–139. MR 107229, DOI 10.4064/fm-47-1-105-139
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33–45. MR 160194
- R. H. Bing, Spheres in $E^{3}$, Amer. Math. Monthly 71 (1964), 353–364. MR 165507, DOI 10.2307/2313236
- C. E. Burgess, Characterizations of tame surfaces in $E^{3}$, Trans. Amer. Math. Soc. 114 (1965), 80–97. MR 176456, DOI 10.1090/S0002-9947-1965-0176456-2
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113
Additional Information
- Journal: Bull. Amer. Math. Soc. 75 (1969), 375-378
- DOI: https://doi.org/10.1090/S0002-9904-1969-12180-4
- MathSciNet review: 0239600