The pseudo-circle is unique
Author:
Lawrence Fearnley
Journal:
Bull. Amer. Math. Soc. 75 (1969), 398-401
DOI:
https://doi.org/10.1090/S0002-9904-1969-12193-2
MathSciNet review:
246265
Full-text PDF Free Access
References | Additional Information
- 1. P. Alexandroff, Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebigen Dimension, Ann. of Math. 30 (1929), 101-187.
- 2. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729–742. MR 27144
- 3. R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451
- 4. Lawrence Fearnley, Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc. 111 (1964), 380–399. MR 163293, https://doi.org/10.1090/S0002-9947-1964-0163293-7
- 5. Lawrence Fearnley, Characterization of the continuous images of all pseudocircles, Pacific J. Math. 23 (1967), 491–513. MR 225293
- 6. L. Fearnley, Pseudo-circles and the pseudo-arc (to appear).
- 7. F. B. Jones, On homogeneity, Summary of Lectures and Seminars, The Summer Institute on Set-Theoretic Topology, Madison, Wisconsin, 1955, Amer. Math. Soc., Providence, R. I., pp. 68-70.
- 8. G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. Amer. Math. Soc. 98 (1961), 369–394. MR 120608, https://doi.org/10.1090/S0002-9947-1961-0120608-0
- 9. J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39–44. MR 166762, https://doi.org/10.4064/cm-10-1-39-44
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1969-12193-2