Perturbation of embedded eigenvalues
HTML articles powered by AMS MathViewer
- by James S. Howland PDF
- Bull. Amer. Math. Soc. 78 (1972), 280-283
References
- E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Comm. Math. Phys. 22 (1971), 280–294. MR 345552, DOI 10.1007/BF01877511
- James S. Howland, Perturbation of embedded eigenvalues by operators of finite rank, J. Math. Anal. Appl. 23 (1968), 575–584. MR 230158, DOI 10.1016/0022-247X(68)90138-8
- James S. Howland, Embedded eigenvalues and virtual poles, Pacific J. Math. 29 (1969), 565–582. MR 254655, DOI 10.2140/pjm.1969.29.565
- James S. Howland, On the Weinstein-Aronszajn formula, Arch. Rational Mech. Anal. 39 (1970), 323–339. MR 273455, DOI 10.1007/BF00251295
- James S. Howland, Spectral concentration and virtual poles. II, Trans. Amer. Math. Soc. 162 (1971), 141–156. MR 283618, DOI 10.1090/S0002-9947-1971-0283618-5
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- B. Simon, Convergence of time dependent perturbation theory for autoionizing states of atoms, Phys. Lett. 36A (1971), 23–24. MR 329511, DOI 10.1016/0375-9601(71)90045-4
Additional Information
- Journal: Bull. Amer. Math. Soc. 78 (1972), 280-283
- MSC (1970): Primary 4748, 8147; Secondary 3577
- DOI: https://doi.org/10.1090/S0002-9904-1972-12959-8
- MathSciNet review: 0290175