Direct integral theory for weights, and the Plancherel formula
Author:
Colin E. Sutherland
Journal:
Bull. Amer. Math. Soc. 80 (1974), 456-461
MSC (1970):
Primary 46K15; Secondary 46L10, 46L05, 43A10
DOI:
https://doi.org/10.1090/S0002-9904-1974-13448-8
MathSciNet review:
0338789
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. J. Dixmier, Algèbres quasi-unitaires, Comment. Math. Helv. 26 (1952), 275–322 (French). MR 52697, https://doi.org/10.1007/BF02564306
- 2. Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée; Cahiers Scientifiques, Fasc. XXV. MR 0352996
- 3. George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, https://doi.org/10.1007/BF02392428
- 4. M. Takesaki, Theory of operator algebras, U.C.L.A. Lecture Notes, 1969.
- 5. Gert K. Pedersen and Masamichi Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53–87. MR 412827, https://doi.org/10.1007/BF02392262
- 6. Nobuhiko Tatsuuma, Plancherel formula for non-unimodular locally compact groups, J. Math. Kyoto Univ. 12 (1972), 179–261. MR 299729, https://doi.org/10.1215/kjm/1250523567
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 46K15, 46L10, 46L05, 43A10
Retrieve articles in all journals with MSC (1970): 46K15, 46L10, 46L05, 43A10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1974-13448-8