Topology and logic as a source of algebra
Author:
Saunders Mac Lane
Journal:
Bull. Amer. Math. Soc. 82 (1976), 1-40
MSC (1970):
Primary 18-02, 12-02, 55-02, 02-02, 00-xx
DOI:
https://doi.org/10.1090/S0002-9904-1976-13928-6
MathSciNet review:
0414648
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
1. Richard F. Arens, Operations induced in conjugate spaces, Proc. Internat. Congr. of Math. (Cambridge, Mass., 1950), vol. I, Amer. Math. Soc., Providence, R.I., 1952, pp. 532-533.
- Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 45941, DOI https://doi.org/10.1090/S0002-9939-1951-0045941-1
- Richard Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1–19. MR 44109, DOI https://doi.org/10.1007/BF01300644 4. M. Artin, A. Grothendieck and J. L. Verdier, La théorie des topos et cohomologie étale des schémas (SGA 4), vols. I, II, III, (Séminaire de géométrie algébrique du Bois-Marie 1963/64), Lecture Notes in Math., vols. 269, 270, 305, Springer-Verlag, Berlin, Heidelberg and New York, 1972, 1973.
- Reinhold Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), no. 1, 375–416 (German). MR 1545456, DOI https://doi.org/10.1007/BF01170643
- Michael Barr, Cohomology and obstructions: Commutative algebras, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, Berlin, 1969, pp. 357–375. MR 0271192
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre IV: Polynomes et fractions rationnelles. Chapitre V: Corps commutatifs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1102, Hermann et Cie., Paris, 1950 (French). MR 0035759 9. H. Cartan, Séminaire Henri Cartan de l’École Normale Supérieure, 1954/1955, Algèbres d’Eilenberg-Mac Lane et homotopie, Secrétariat mathématique, Paris, 1955. MR 19, 438.
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480 11. E. Čech, Les groupes de Betti d’un complex infinie, Fund. Math. 25 (1935), 33-44. 12. G. J. Decker, The integral homology algebra of an Eilenberg-Mac Lane space, Thesis, Univ. of Chicago, Chicago, 1974.
- J. Duskin, $K(\pi ,\,n)$-torsors and the interpretation of “triple” cohomology, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2554–2557. MR 340384, DOI https://doi.org/10.1073/pnas.71.6.2554
- J. Duskin, Simplicial methods and the interpretation of “triple” cohomology, Mem. Amer. Math. Soc. 3 (1975), no. issue 2, 163, v+135. MR 393196, DOI https://doi.org/10.1090/memo/0163
- Eldon Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35–88. MR 141112, DOI https://doi.org/10.2307/2372804
- Beno Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment. Math. Helv. 18 (1946), 232–282 (German). MR 17536, DOI https://doi.org/10.1007/BF02568113
- Samuel Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407–447. MR 10970, DOI https://doi.org/10.2307/1969185
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure and Applied Mathematics, Vol. 58. MR 0530382
- Samuel Eilenberg and G. M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966), 366–375. MR 190204, DOI https://doi.org/10.1016/0021-8693%2866%2990006-8 20. S. Eilenberg and S. Mac Lane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 757-831. MR 4, 88.
- Samuel Eilenberg and Saunders MacLane, Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 537–543. MR 7421, DOI https://doi.org/10.1073/pnas.28.12.537
- Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155–158. MR 7982, DOI https://doi.org/10.1073/pnas.29.5.155
- Samuel Eilenberg and Saunders MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231–294. MR 13131, DOI https://doi.org/10.1090/S0002-9947-1945-0013131-6
- Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480–509. MR 13312, DOI https://doi.org/10.2307/1969165 25. S. Eilenberg and S. Mac Lane, Homology of spaces with operators. II, Trans. Amer. Math. Soc. 65 (1949), 49-99. MR 11, 379.
- Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups of spaces. II, Ann. of Math. (2) 51 (1950), 514–533. MR 35435, DOI https://doi.org/10.2307/1969365 27. S. Eilenberg and S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199. MR 14, 670.
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. I, Ann. of Math. (2) 58 (1953), 55–106. MR 56295, DOI https://doi.org/10.2307/1969820
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI https://doi.org/10.2307/1969702
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI https://doi.org/10.2307/1969702
- Samuel Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math. (2) 51 (1950), 499–513. MR 35434, DOI https://doi.org/10.2307/1969364
- Calvin C. Elgot, Monadic computation and iterative algebraic theories, Logic Colloquium ’73 (Bristol, 1973) North-Holland, Amsterdam, 1975, pp. 175–230. Studies in Logic and the Foundations of Mathematics, Vol. 80. MR 0413584
- D. B. A. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221–228. MR 213412, DOI https://doi.org/10.1007/BF01452242
- Hans Freudenthal, Der Einfluss der Fundamentalgruppe auf die Bettischen Gruppen, Ann. of Math. (2) 47 (1946), 274–316 (German). MR 17535, DOI https://doi.org/10.2307/1969247
- Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. MR 0166240
- Peter Freyd, Aspect of topoi, Bull. Austral. Math. Soc. 7 (1972), 1–76. MR 396714, DOI https://doi.org/10.1017/S0004972700044828
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125 37. G. Gentzen, Untersuchungen über das logische Schliessen. I, II, Math. Z. 39 (1934), 176-210, 405-431.
- Murray Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1–19. MR 0207793, DOI https://doi.org/10.2307/1970528
- S. I. Goldberg, Extensions of Lie algebras and the third cohomology group, Canad. J. Math. 5 (1953), 470-476. MR 57853, DOI https://doi.org/10.4153/cjm-1953-054-8
- Monique Hakim, Topos annelés et schémas relatifs, Springer-Verlag, Berlin-New York, 1972 (French). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64. MR 0364245 41. R. Hamsher, Eilenberg-Mac Lane algebras and their computation, Thesis, Univ. of Chicago, Chicago, Ill., 1973.
- G. Hochschild, Cohomology classes of finite type and finite dimensional kernels for Lie algebras, Amer. J. Math. 76 (1954), 763–778. MR 65547, DOI https://doi.org/10.2307/2372650
- G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), 698–716. MR 63362, DOI https://doi.org/10.2307/2372712
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI https://doi.org/10.1007/BF02565622
- Heinz Hopf, Relations between the fundamental group and the second Betti group, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 315–316. MR 0005315
- Heinz Hopf, Nachtrag zu der Arbeit Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 15 (1943), 27–32 (German). MR 7646, DOI https://doi.org/10.1007/BF02565629
- Heinz Hopf, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören, Comment. Math. Helv. 17 (1945), 39–79 (German). MR 12229, DOI https://doi.org/10.1007/BF02566234
- Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294–329. MR 131451, DOI https://doi.org/10.1090/S0002-9947-1958-0131451-0
- Daniel M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282–312. MR 111032, DOI https://doi.org/10.2307/1970006
- G. M. Kelly, On MacLane’s conditions for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397–402. MR 182649, DOI https://doi.org/10.1016/0021-8693%2864%2990018-3
- G. M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971), no. 1, 97–140. MR 283045, DOI https://doi.org/10.1016/0022-4049%2871%2990013-2
- G. M. Kelly and Saunders MacLane, Closed coherence for a natural transformation, Coherence in categories, Springer, Berlin, 1972, pp. 1–28. Lecture Notes in Math., Vol. 281. MR 0374237
- A. Kock and G. C. Wraith, Elementary toposes, Matematisk Institut, Aarhus Universitet, Aarhus, 1971. Lecture Notes Series, No. 30. MR 0342578
- Joachim Lambek, Deductive systems and categories. I. Syntactic calculus and residuated categories, Math. Systems Theory 2 (1968), 287–318. MR 235979, DOI https://doi.org/10.1007/BF01703261
- Joachim Lambek, Deductive systems and categories. II. Standard constructions and closed categories, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 76–122. MR 0242637
- Klaus Lamotke, Semisimpliziale algebraische Topologie, Die Grundlehren der mathematischen Wissenschaften, Band 147, Springer-Verlag, Berlin-New York, 1968 (German). MR 0245005
- F. William Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869–872. MR 158921, DOI https://doi.org/10.1073/pnas.50.5.869
- F. William Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506–1511. MR 172807, DOI https://doi.org/10.1073/pnas.52.6.1506
- F. William Lawvere, Introduction, Toposes, algebraic geometry and logic (Conf., Dalhousie Univ., Halifax, N.S., 1971) Springer, Berlin, 1972, pp. 1–12. Lecture Notes in Math., Vol. 274. MR 0376798
- Saunders MacLane, Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry, Amer. J. Math. 58 (1936), no. 1, 236–240. MR 1507146, DOI https://doi.org/10.2307/2371070
- Saunders Mac Lane, A lattice formulation for transcendence degrees and $p$-bases, Duke Math. J. 4 (1938), no. 3, 455–468. MR 1546067, DOI https://doi.org/10.1215/S0012-7094-38-00438-7
- Saunders Mac Lane, The uniqueness of the power series representation of certain fields with valuations, Ann. of Math. (2) 39 (1938), no. 2, 370–382. MR 1503414, DOI https://doi.org/10.2307/1968793
- Saunders Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372–393. MR 1546131, DOI https://doi.org/10.1215/S0012-7094-39-00532-6
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI https://doi.org/10.1090/S0002-9947-1939-0000017-3
- Saunders Mac Lane, Subfields and automorphism groups of $p$-adic fields, Ann. of Math. (2) 40 (1939), no. 2, 423–442. MR 1503470, DOI https://doi.org/10.2307/1968931
- Saunders MacLane, Note on the relative structure of $p$-adic fields, Ann. of Math. (2) 41 (1940), 751–753. MR 2860, DOI https://doi.org/10.2307/1968854
- Saunders MacLane, Modular fields, Amer. Math. Monthly 47 (1940), 259–274. MR 1969, DOI https://doi.org/10.2307/2302685
- Saunders MacLane, The homology products in $K(\Pi ,n)$, Proc. Amer. Math. Soc. 5 (1954), 642–651. MR 63674, DOI https://doi.org/10.1090/S0002-9939-1954-0063674-5
- Saunders Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316–345. MR 98773
- S. Mac Lane, Locally small categories and the foundations of set theory, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 25–43. MR 0191941
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- Studies in modern algebra, Studies in Mathematics, Vol. 2, Published by The Mathematical Association of America; distributed by Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0146228
- Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), no. 4, 28–46. MR 170925
- Reports of the Midwest Category Seminar. IV, Lecture Notes in Mathematics, Vol. 137, Springer-Verlag, Berlin-New York, 1970. Edited by S. MacLane. MR 0263888
- Saunders Mac Lane, The Milgram bar construction as a tensor product of functors, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio,1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 135–152. MR 0273618
- Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR 0354798
- Saunders MacLane, Sets, topoi, and internal logic in categories, Logic Colloquium ’73 (Bristol, 1973) North-Holland, Amsterdam, 1975, pp. 119–134. Studies in Logic and the Foundations of Mathematics, Vol. 80. MR 0384545
- Saunders MacLane and O. F. G. Schilling, Normal algebraic number fields, Trans. Amer. Math. Soc. 50 (1941), 295–384. MR 5108, DOI https://doi.org/10.1090/S0002-9947-1941-0005108-8
- F. K. Schmidt and Saunders MacLane, The generation of inseparable fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 583–587. MR 6153, DOI https://doi.org/10.1073/pnas.27.12.583
- Ernest G. Manes, Algebraic theories, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 26. MR 0419557
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- R. James Milgram, The bar construction and abelian $H$-spaces, Illinois J. Math. 11 (1967), 242–250. MR 208595
- Mitsuya Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc. Japan 5 (1953), 171–183. MR 57854, DOI https://doi.org/10.2969/jmsj/00520171
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI https://doi.org/10.2307/1970825
- Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002
- M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of $H$-spaces, Bull. Amer. Math. Soc. 71 (1965), 872–875. MR 208596, DOI https://doi.org/10.1090/S0002-9904-1965-11420-3
- Jean-Pierre Serre, Cohomologie galoisienne, Lecture Notes in Mathematics 5, Springer-Verlag, Berlin-Heidelberg-New York, 1962/1963 (French). Cours au Collège de France, 1962-1963; Seconde édition; With a contribution by Jean-Louis Verdier. MR 0180551
- Umeshachandra Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. (3) 78 (1961), 163–209 (French). MR 0132769
- James Dillon Stasheff, Homotopy associativity of $H$-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963), 293–312. MR 0158400, DOI https://doi.org/10.1090/S0002-9947-1963-0158400-5
- N. E. Steenrod, Milgram’s classifying space of a topological group, Topology 7 (1968), 349–368. MR 233353, DOI https://doi.org/10.1016/0040-9383%2868%2990012-8 92. D. P. Sullivan, Geometric topology, part 1, Localization, periodicity, and Galois symmetry, Mimeographed notes, M.I.T., Cambridge, Mass., 1970.
- John Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math. (2) 56 (1952), 294–297. MR 49950, DOI https://doi.org/10.2307/1969801 94. O. Teichmüller, p-Algebren, Deutsche Math. 1 (1936), 362-388. 95. O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. Reine Angew Math. 176 (1936), 141-152. 96. O. Teichmüller, Über die sogenannte nichtkommutative Galoissche Theorie und die Relation $\xi _ {łambda,µ,\nu }\xi _ {łambda,µ\nu ,\pi }\xi ^ {łambda}_ {µ,\nu ,\pi }=\xi _ {łambda,µ,\nu \pi }\xi _ {łambda,µ,\nu ,\pi }$, Deutsche Math. 5 (1940), 138-149. MR 2, 122. 97. O. Veblen, Analysis situs, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 5, part II, Amer. Math. Soc., Providence, R. I., 1931.
- Rodiani Voreadou, A coherence theorem for biclosed categories, Eleutheria (1978), 103–150. MR 622637 99. R. Voreadou, Non-commutative diagrams in closed categories (to appear).
- André Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications, Vol. 29, American Mathematical Society, New York, 1946. MR 0023093
- J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51–110. MR 35997, DOI https://doi.org/10.2307/1969511
- Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091, DOI https://doi.org/10.2307/2371182
- Hassler Whitney, The maps of an $n$-complex into an $n$-sphere, Duke Math. J. 3 (1937), no. 1, 51–55. MR 1545972, DOI https://doi.org/10.1215/S0012-7094-37-00306-5
- Hassler Whitney, Tensor products of Abelian groups, Duke Math. J. 4 (1938), no. 3, 495–528. MR 1546071, DOI https://doi.org/10.1215/S0012-7094-38-00442-9
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 18-02, 12-02, 55-02, 02-02, 00-xx
Retrieve articles in all journals with MSC (1970): 18-02, 12-02, 55-02, 02-02, 00-xx