Rays, waves and asymptotics
HTML articles powered by AMS MathViewer
- by Joseph B. Keller PDF
- Bull. Amer. Math. Soc. 84 (1978), 727-750
References
-
1. M. Born and E. Wolf, Principles of optics, Pergamon Press, Oxford, 1975.
- Philip M. Morse and Herman Feshbach, Methods of theoretical physics. 2 volumes, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR 0059774
- D. S. Jones, The theory of electromagnetism, A Pergamon Press Book, The Macmillan Company, New York, 1964. MR 0161555 4. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 2, Partial Differential Equations, Interscience, New York, 1962. 5. J. B. Keller, The geometrical theory of diffraction, Proc. Sympos. Microwave Optics, Eaton Electronics Research Lab., McGill Univ., Montreal, Canada, June, 1953, 4 pp. 6. J. B. Keller, The geometric optics theory of diffraction, The McGill Symposium on Microwave Optics, Vol. 2, B. S. Karasik and F. J. Zucker, eds., Air Force Cambridge Research Center, Bedford, Mass., 1959, pp. 207-210.
- Joseph B. Keller, A geometrical theory of diffraction, Calculus of variations and its applications. Proceedings of Symposia in Applied Mathematics, Vol. VIII, McGraw-Hill Book Co., Inc., New York-Toronto-London, for the American Mathematical Society, Providence, R.I., 1958, pp. 27–52. MR 0094120
- Joseph B. Keller, Diffraction by a convex cylinder, Div. Electromag. Res., Inst. Math. Sci., New York Univ., Res. Rep. EM-94 (1956), 10 pp. Also: Trans. I.R.E. AP–4 (1956), 312–321. MR 94121
- Joseph B. Keller, Robert M. Lewis, and Bernard D. Seckler, Diffraction by an aperture. I, II, J. Appl. Phys. 28 (1957), 426–444, 570–579. MR 101763, DOI 10.1063/1.1722767
- Bernard D. Seckler and Joseph B. Keller, Geometrical theory of diffraction in inhomogeneous media, J. Acoust. Soc. Amer. 31 (1959), 192–205. MR 100493, DOI 10.1121/1.1907692
- Bertram R. Levy and Joseph B. Keller, Diffraction by a smooth object, Comm. Pure Appl. Math. 12 (1959), 159–209. MR 102337, DOI 10.1002/cpa.3160120108 12. J. B. Keller, Back scattering from a finite cone, Inst. Radio Eng.-Trans. Antennas and Propagation, AP-8 (1960), 175-182.
- Joseph B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52 (1962), 116–130. MR 135064, DOI 10.1364/JOSA.52.000116
- Joseph B. Keller, Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Ann. Physics 4 (1958), 180–188. MR 99207, DOI 10.1016/0003-4916(58)90032-0 15. J. B. Keller and S. I. Rubinow, Asymptotic solution of eigenvalue problems, Ann. Physics 9 (1960), 24-75. 16. M. C. Shen, R. E. Meyer and J. B. Keller, Spectra of water waves in channels and around islands, Phys. Fluids 11 (1968), 2289-2304.
- Joseph B. Keller and Frank C. Karal Jr., Surface wave excitation and propagation, J. Appl. Phys. 31 (1960), 1039–1046. MR 139319, DOI 10.1063/1.1735742
- H. Y. Yee, L. B. Felsen, and J. B. Keller, Ray theory of reflection from the open end of a wave-guide, SIAM J. Appl. Math. 16 (1968), 268–300. MR 239284, DOI 10.1137/0116023 19. W. Streifer and J. B. Keller, Complex rays with an application to Gaussian beams, J. Opt. Soc. Amer. 61 (1971), 40-43.
- J. B. Keller, R. M. Lewis, and B. D. Seckler, Asymptotic solution of some diffraction problems, Comm. Pure Appl. Math. 9 (1956), 207–265. MR 79182, DOI 10.1002/cpa.3160090205
- F. G. Friedlander, Sound pulses, Cambridge University Press, New York, 1958. MR 0097233
- Frank C. Karal Jr. and Joseph B. Keller, Elastic wave propagation in homogeneous and inhomogeneous media, J. Acoust. Soc. Amer. 31 (1959), 694–705. MR 103648, DOI 10.1121/1.1907775
- S. I. Rubinow and Joseph B. Keller, Asymptotic solution of the Dirac equation, Phys. Rev. (2) 131 (1963), 2789–2796. MR 159575, DOI 10.1103/PhysRev.131.2789
- R. N. Buchal and J. B. Keller, Boundary layer problems in diffraction theory, Comm. Pure Appl. Math. 13 (1960), 85–114. MR 119789, DOI 10.1002/cpa.3160130109 25. Ju. A. Kravcov, a) A modification of the geometrical optics method, Izv. Vysš. Učebn. Zaved. Radiofizika 7 (1964), 664-673. (Russian) b) Asymptotic solutions of Maxwell’s equations near a caustic, Izv. Vysš. Učebn. Zaved. Radiofizika 7 (1964), 1049-1056. (Russian)
- Donald Ludwig, Wave propagation near a smooth caustic, Bull. Amer. Math. Soc. 71 (1965), 776–779. MR 183271, DOI 10.1090/S0002-9904-1965-11390-8
- Donald Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19 (1966), 215–250. MR 196254, DOI 10.1002/cpa.3160190207
- D. S. Ahluwalia, R. M. Lewis, and J. Boersma, Uniform asymptotic theory of diffraction by a plane screen, SIAM J. Appl. Math. 16 (1968), 783–807. MR 241047, DOI 10.1137/0116065
- J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI 10.1002/cpa.3160270205
- Cathleen S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math. 28 (1975), 229–264. MR 372432, DOI 10.1002/cpa.3160280204
- Clifford O. Bloom and Nicholas D. Kazarinoff, Short wave radiation problems in inhomogeneous media: asymptotic solutions, Lecture Notes in Mathematics, Vol. 522, Springer-Verlag, Berlin-New York, 1976. MR 0470439, DOI 10.1007/BFb0079577
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 727-750
- MSC (1970): Primary 35-02, 35A35, 35B40, 78-02, 78A05, 78A25, 78A45
- DOI: https://doi.org/10.1090/S0002-9904-1978-14505-4
- MathSciNet review: 499726