An algebraic approach to the topological degree of a smooth map
HTML articles powered by AMS MathViewer
- by David Eisenbud PDF
- Bull. Amer. Math. Soc. 84 (1978), 751-764
References
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- A. Beauville, Une notion de résidu en géométrie analytique, Séminaire Pierre Lelong (Analyse), Année 1970, Lecture Notes in Math., Vol. 205, Springer, Berlin, 1971, pp. 183–203. MR 0437796
- Robert Berger, Differenten regulärer Ringe, J. Reine Angew. Math. 214(215) (1964), 441–442 (German). MR 160794, DOI 10.1515/crll.1964.214-215.441
- James Damon and André Galligo, A topological invariant for stable map germs, Invent. Math. 32 (1976), no. 2, 103–132. MR 407883, DOI 10.1007/BF01389958 [Mather] J. Mather, Stability of C∞ mappings. III, Finitely determined map germs, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 127-156.
- John W. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, Charlottesville, Va., 1965. Based on notes by David W. Weaver. MR 0226651
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Günter Scheja and Uwe Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278(279) (1975), 174–190 (German). MR 393056
- V. M. Zakaljukin, Algebraic computability of the index of a singular point of a vector field, Funkcional. Anal. i Priložen. 6 (1972), no. 1, 77–78 (Russian). MR 0295384
- David Eisenbud and Harold I. Levine, An algebraic formula for the degree of a $C^{\infty }$ map germ, Ann. of Math. (2) 106 (1977), no. 1, 19–44. MR 467800, DOI 10.2307/1971156
Additional Information
- Journal: Bull. Amer. Math. Soc. 84 (1978), 751-764
- MSC (1970): Primary 55C25, 14B99; Secondary 10C05, 13B15, 26A93
- DOI: https://doi.org/10.1090/S0002-9904-1978-14509-1
- MathSciNet review: 0494226