The recognition problem: What is a topological manifold?
Author:
J. W. Cannon
Journal:
Bull. Amer. Math. Soc. 84 (1978), 832-866
MSC (1970):
Primary 57-00, 54B15, 54C10, 54C60
DOI:
https://doi.org/10.1090/S0002-9904-1978-14527-3
MathSciNet review:
0494113
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. F. D. Ancel, The locally flat approximation of cell-like embedding relations, Doctoral thesis, University of Wisconsin at Madison, 1976.
- 2. F. D. Ancel and J. W. Cannon, The locally flat approximation of cell-like embedding relations, Ann. of Math. (2) 109 (1979), no. 1, 61–86. MR 519353, https://doi.org/10.2307/1971267
- 3. J. W. Alexander, Bull. Amer. Math. Soc. 28 (1922), 10.
- 4. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat Acad. Sci. U.S.A. 10 (1924), 6-8.
- 5. J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
- 6. J. W. Alexander, Remarks on a point set constructed by Antoine, Proc. Nat Acad. Sci. U.S.A. 10 (1924), 10-12.
- 7. M. L. Antoine, Sur la possibilité d'étendre l'homéomorphie de deux figures à leurs voisinages, C. R. Acad. Sci. Paris 171 (1920), 661-663.
- 8. M. L. Antoine, Sur l'homéomorphie de deux figures et de leurs voisinages, J. Math. Pures Appl. 86 (1921), 221-325.
- 9. Steve Armentrout, Monotone decompositions of 𝐸³, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 1–25. MR 0222865
- 10. R. H. Bing, The Kline sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946), 644–653. MR 16645, https://doi.org/10.1090/S0002-9904-1946-08614-0
- 11. R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354–362. MR 49549, https://doi.org/10.2307/1969804
- 12. R. H. Bing, A characterization of 3-space by partitionings, Trans. Amer. Math. Soc. 70 (1951), 15–27. MR 44827, https://doi.org/10.1090/S0002-9947-1951-0044827-0
- 13. R. H. Bing, Point-like decompositions of 𝐸³, Fund. Math. 50 (1961/62), 431–453. MR 137104, https://doi.org/10.4064/fm-50-4-431-453
- 14. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294–305. MR 131265, https://doi.org/10.1090/S0002-9947-1961-0131265-1
- 15. R. H. Bing, Tame Cantor sets in 𝐸³, Pacific J. Math. 11 (1961), 435–446. MR 130679
- 16. William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276–297. MR 40659, https://doi.org/10.2307/1969543
- 17. M. G. Brin, Three-manifold compactifications of open three-manifolds, Doctoral Thesis, University of Wisconsin at Madison, 1977.
- 18. J. L. Bryant and R. C. Lacher, Resolving 0-dimensional singularities in generalized manifolds. Notices Amer. Math. Soc. 24 (1977), A396. Abstract #77T-G68.
- 19. C. E. Burgess and J. W. Cannon, Embeddings of surfaces in 𝐸³, Rocky Mountain J. Math. 1 (1971), no. 2, 259–344. MR 278277, https://doi.org/10.1216/RMJ-1971-1-2-259
- 20. J. W. Cannon, 𝑈𝐿𝐶 properties in neighbourhoods of embedded surfaces and curves in 𝐸³, Canadian J. Math. 25 (1973), 31–73. MR 314037, https://doi.org/10.4153/CJM-1973-004-1
- 21. J. W. Cannon, Taming cell-like embedding relations, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 66–118. Lecture Notes in Math., Vol. 438. MR 0391104
- 22. J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, https://doi.org/10.2307/1971245
- 23. J. W. Cannon, J. L. Bryant, and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 261–300. MR 537735
- 24. J. W. Cannon and R. J. Daverman, Cell-like decompositions arising from mismatched sewings: applications to 4-manifolds, Fund. Math. 111 (1981), no. 3, 211–233. MR 611761, https://doi.org/10.4064/fm-111-3-211-233
- 25. J. W. Cannon and R. J. Daverman, A totally wild flow, Indiana Univ. Math. J. 30 (1981), no. 3, 371–387. MR 611226, https://doi.org/10.1512/iumj.1981.30.30029
- 26. Lawrence O. Cannon, Sums of solid horned spheres, Trans. Amer. Math. Soc. 122 (1966), 203–228. MR 190912, https://doi.org/10.1090/S0002-9947-1966-0190912-3
- 27. A. V. Černavskiĭ, The identity of local flatness and local simple connectedness for imbeddings of (𝑛-1)-dimensional into 𝑛-dimensional manifolds when 𝑛>4, Mat. Sb. (N.S.) 91(133) (1973), 279–286, 288 (Russian). MR 0334222
- 28. E. H. Connell, A topological 𝐻-cobordism theorem for 𝑛≥5, Illinois J. Math. 11 (1967), 300–309. MR 0212808
- 29. Robert J. Daverman, A new proof for the Hosay-Lininger theorem about crumpled cubes, Proc. Amer. Math. Soc. 23 (1969), 52–54. MR 246274, https://doi.org/10.1090/S0002-9939-1969-0246274-4
- 30. Robert J. Daverman, Locally nice codimension one manifolds are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410–413. MR 321095, https://doi.org/10.1090/S0002-9904-1973-13190-8
- 31. R. J. Daverman, Servings of closed n-cell complements, Trans. Amer. Math. Soc. (to appear).
- 32. Robert J. Daverman, Every crumpled 𝑛-cube is a closed 𝑛-cell-complement, Michigan Math. J. 24 (1977), no. 2, 225–241. MR 488066
- 33. A. Dold, Lectures on algebraic topology, Springer-Verlag, New York-Berlin, 1972 (German). Die Grundlehren der mathematischen Wissenschaften, Band 200. MR 0415602
- 34. R. D. Edwards, The double suspension of a certain homology 3-sphere is S, Notices Amer. Math. Soc. 22 (1975), A 334. Abstract #75T-G33.
- 35. R. D. Edwards, Ann. of Math, (to appear).
- 36. R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, Notices Amer. Math. Soc. 24 (1977), A 649. Abstract #751-G5.
- 37. M. C. Escher, The graphic work of M. C. Escher, Ballantine Books, New York, 1971.
- 38. D. Everett, Shrinking countable decompositions of E, in Proceedings of the Georgia Topology Conference, 1977 (to appear).
- 39. S. Ferry, [sic]
- 40. David E. Galewski and Ronald J. Stern, Classification of simplicial triangulations of topological manifolds, Ann. of Math. (2) 111 (1980), no. 1, 1–34. MR 558395, https://doi.org/10.2307/1971215
- 41. O. G. Harrold Jr., Locally peripherally euclidean spaces are locally euclidean, Ann. of Math. (2) 74 (1961), 207–220. MR 139155, https://doi.org/10.2307/1970234
- 42. O. G. Harrold Jr., A characterization of locally euclidean spaces, Trans. Amer. Math. Soc. 118 (1965), 1–16. MR 205240, https://doi.org/10.1090/S0002-9947-1965-0205240-6
- 43. N. Hosay, The sum of a real cube and a crumpled cube is S, Notices Amer. Math. Soc. 10 (1963), 666. Abstract #607-17.
- 44. Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. MR 0645390
- 45. R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495–552. MR 645403, https://doi.org/10.1090/S0002-9904-1977-14321-8
- 46. W. B. R. Lickorish and L. C. Siebenmann, Regular neighbourhoods and the stable range, Trans. Amer. Math. Soc. 139 (1969), 207–230. MR 239605, https://doi.org/10.1090/S0002-9947-1969-0239605-7
- 47. Lloyd L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534–549. MR 178460, https://doi.org/10.1090/S0002-9947-1965-0178460-7
- 48. Lloyd L. Lininger, Actions on 𝑆ⁿ, Topology 9 (1970), 301–308. MR 266244, https://doi.org/10.1016/0040-9383(70)90054-6
- 49. T. Matumoto, Variétés simpliciales d'homologie et variétés topologiques métrisables, Thesis, Université de Paris-Sud, 91405 Orsay, 1976.
- 50. Edwin E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96–114. MR 48805, https://doi.org/10.2307/1969769
- 51. Robert L. Moore, Concerning a set of postulates for plane analysis situs, Trans. Amer. Math. Soc. 20 (1919), no. 2, 169–178. MR 1501119, https://doi.org/10.1090/S0002-9947-1919-1501119-X
- 52. R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), no. 4, 416–428. MR 1501320, https://doi.org/10.1090/S0002-9947-1925-1501320-8
- 53. R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- 54. H. Poincaré, Oeuvres, Vol. 6, Gauthier-Villars, París, 1953, pp. 181-498.
- 55. G. Pólya, How to solve it, Doubleday, Garden City, N. Y., 1957.
- 56. Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
- 57. C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR 0350744
- 58. T. Benny Rushing, Topological embeddings, Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 52. MR 0348752
- 59. C. L. Seebeck III, Codimension one manifolds that are locally homotopically unknotted on one side. I and II (preprint).
- 60. H. Seifert and W. Threlfall, Lehrbuch der Topologie, reprinted by Chelsea, New York.
- 61. L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271–294. MR 295365, https://doi.org/10.1016/0040-9383(72)90014-6
- 62. Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391–406. MR 137124, https://doi.org/10.2307/1970239
- 63. M. Starbird, Cell-like, 0-dimensional decompositions of E (to appear).
- 64. Michael Starbird, Flexible regular neighborhoods for complexes in 𝐸³, Topology Proc. 2 (1977), no. 2, 593–619 (1978). MR 540630
- 65. C. Weber and H. Seifert, Die beiden Dodekaederräume, Math. Z. 37 (1933), no. 1, 237–253 (German). MR 1545392, https://doi.org/10.1007/BF01474572
- 67. E. Woodruff, Decompositions of E, in Proceedings of the Georgia Topology Conference, 1977 (to appear).
- 68. Samuel Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407–447. MR 10970, https://doi.org/10.2307/1969185
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57-00, 54B15, 54C10, 54C60
Retrieve articles in all journals with MSC (1970): 57-00, 54B15, 54C10, 54C60
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1978-14527-3