Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
1567301
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Tammo tom Dieck
Title:
Transformation groups and representation theory
Additional book information:
Lecture Notes in Math., vol. 766, Springer-Verlag, Berlin and New York, 1979, viii + 300 pp., $18.00.
M. F. Atiyah and D. O. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969), 253–297. MR 244387, DOI 10.1016/0040-9383(69)90015-9
Andreas W. M. Dress, Contributions to the theory of induced representations, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 183–240. MR 0384917
3. H. Hauschild and S. Waner, The equivariant Dold theorem mod k (to appear).
G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 208–212. MR 598689, DOI 10.1090/S0273-0979-1981-14886-2
5. J. McClure, The groups JO (to appear).
G. B. Segal, Equivariant stable homotopy theory, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 59–63. MR 0423340
Graeme Segal, Permutation representations of finite $p$-groups, Quart. J. Math. Oxford Ser. (2) 23 (1972), 375–381. MR 322041, DOI 10.1093/qmath/23.4.375
8. S. Waner, Equivariant RO(G)-graded singular cohomology (preprint).
- 1.
- M. F. Atiyah and D. O. Tall, Group representations, λ-rings, and the J-homomorphism, Topology 8 (1969), 253-297. MR 0244387
- 2.
- A. Dress, Contributions to the theory of induced representations, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin and New York, 1973, pp. 183-240. MR 384917
- 3.
- H. Hauschild and S. Waner, The equivariant Dold theorem mod k (to appear).
- 4.
- G. Lewis, J. P. May and J. McClure, Ordinary RO(G)-graded cohomology (to appear). MR 598689
- 5.
- J. McClure, The groups JO (to appear).
- 6.
- G. B. Segal, Equivariant stable homotopy theory, Actes Internat. Congres Math., Tome 2, 1970, pp. 59-63. MR 423340
- 7.
- G. B. Segal, Permutation representations of finite p-groups, Quart. J. Math. Oxford (2) 23 (1972), 375-381. MR 322041
- 8.
- S. Waner, Equivariant RO(G)-graded singular cohomology (preprint).
Review Information:
Reviewer:
J. P. May
Journal:
Bull. Amer. Math. Soc.
4 (1981), 90-93
DOI:
https://doi.org/10.1090/S0273-0979-1981-14868-0