Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


The inverse function theorem of Nash and Moser
HTML articles powered by AMS MathViewer

by Richard S. Hamilton PDF
Bull. Amer. Math. Soc. 7 (1982), 65-222
  • Andrew Acker, A free boundary optimization problem. II, SIAM J. Math. Anal. 11 (1980), no. 1, 201–209. MR 556510, DOI 10.1137/0511018
  • J. Thomas Beale, The existence of solitary water waves, Comm. Pure Appl. Math. 30 (1977), no. 4, 373–389. MR 445136, DOI 10.1002/cpa.3160300402
  • Nicole Desolneux-Moulis, Théorie du degré dans certains espaces de Fréchet, d’après R. S. Hamilton, Bull. Soc. Math. France Mém. 46 (1976), 173–180 (French). MR 440588, DOI 10.24033/msmf.193
  • 4. R. S. Hamilton, Deformation of complex structures on manifolds with boundary.
  • Richard S. Hamilton, Deformation of complex structures on manifolds with boundary. I. The stable case, J. Differential Geometry 12 (1977), no. 1, 1–45. MR 477158
  • Richard S. Hamilton, Deformation of complex structures on manifolds with boundary. II. Families of noncoercive boundary value problems, J. Differential Geometry 14 (1979), no. 3, 409–473 (1980). MR 594711
  • 4. R. S. Hamilton, III.Extension of complex structures, preprint, Cornell Univ. 5. R. S. Hamilton, Deformation theory of foliations, preprint, Cornell Univ.
  • Lars Hörmander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62 (1976), no. 1, 1–52. MR 602181, DOI 10.1007/BF00251855
  • 7. Lars Hörmander, Implicit function theorems, lecture notes, Stanford Univ., 1977.
  • Howard Jacobowitz, Implicit function theorems and isometric embeddings, Ann. of Math. (2) 95 (1972), 191–225. MR 307127, DOI 10.2307/1970796
  • 9. M. Kuranishi, Deformations of isolated singularities and $øverline \partial \sbb$, J. Differential Geometry.
  • O. A. Ladyženskaja and N. N. Ural′ceva, Équations aux dérivées partielles de type elliptique, Monographies Universitaires de Mathématiques, No. 31, Dunod, Paris, 1968 (French). Traduit par G. Roos. MR 0239273
  • 11. Martin Lo, Isometric embeddings and deformations of surfaces with boundary in R3, thesis, Cornell Univ., 1981. 12. S. Lojasiewics, Jr. and E. Zehnder, An inverse function theorem in Fréchet spaces, preprint.
  • Jürgen Moser, A rapidly convergent iteration method and non-linear differential equations. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 499–535. MR 206461
  • John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20–63. MR 75639, DOI 10.2307/1969989
  • Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
  • L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561–576. MR 322321, DOI 10.4310/jdg/1214430643
  • 17. P. H. Rabinowitz, Periodic solutions of non-linear hyperbolic partial differential equations. I, Comm. Pure Appl. Math. 20 (1967), 145-205; II, 22 (1968), 15-39.
  • David G. Schaeffer, The capacitor problem, Indiana Univ. Math. J. 24 (1974/75), no. 12, 1143–1167. MR 393798, DOI 10.1512/iumj.1975.24.24095
  • David G. Schaeffer, A stability theorem for the obstacle problem, Advances in Math. 17 (1975), no. 1, 34–47. MR 380093, DOI 10.1016/0001-8708(75)90085-7
  • Francis Sergeraert, Une généralisation du théorème des fonctions implicites de Nash, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A861–A863 (French). MR 259699
  • Francis Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École Norm. Sup. (4) 5 (1972), 599–660 (French). MR 418140, DOI 10.24033/asens.1239
  • Francis Sergeraert, Une extension d’un théorème de fonctions implicites de Hamilton, Bull. Soc. Math. France Mém. 46 (1976), 163–171 (French). MR 494210
  • 23. M. Spivak, A comprehensive introduction to differential geometry, vol. 5, Publish or Perish, Berkeley, Calif., 1979.
  • E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math. 28 (1975), 91–140. MR 380867, DOI 10.1002/cpa.3160280104
  • K. Jittorntrum, An implicit function theorem, J. Optim. Theory Appl. 25 (1978), no. 4, 575–577. MR 511620, DOI 10.1007/BF00933522
Similar Articles
Additional Information
  • Journal: Bull. Amer. Math. Soc. 7 (1982), 65-222
  • MSC (1980): Primary 58C15; Secondary 58C20, 58D05, 58G30
  • DOI:
  • MathSciNet review: 656198