Entropies and factorizations of topological Markov shifts
Author:
D. A. Lind
Journal:
Bull. Amer. Math. Soc. 9 (1983), 219-222
MSC (1980):
Primary 58F15, 28D20; Secondary 58F11, 58F19
DOI:
https://doi.org/10.1090/S0273-0979-1983-15162-5
MathSciNet review:
707961
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Roy L. Adler, Don Coppersmith, and Martin Hassner, Algorithms for sliding block codes. An application of symbolic dynamics to information theory, IEEE Trans. Inform. Theory 29 (1983), no. 1, 5–22. MR 711274, DOI https://doi.org/10.1109/TIT.1983.1056597
- Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, DOI https://doi.org/10.1090/memo/0219
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675 4. F. R. Gantmacher, The theory of matrices, Vol. II, Chelsea, New York, 1959.
- William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55–66. MR 161372, DOI https://doi.org/10.1090/S0002-9947-1964-0161372-1
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI https://doi.org/10.1090/S0002-9904-1967-11798-1
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI https://doi.org/10.2307/1970908
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 58F15, 28D20, 58F11, 58F19
Retrieve articles in all journals with MSC (1980): 58F15, 28D20, 58F11, 58F19