A symplectic fixed point theorem for complex projective spaces
HTML articles powered by AMS MathViewer
- by Barry Fortune and Alan Weinstein PDF
- Bull. Amer. Math. Soc. 12 (1985), 128-130
References
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
- Henri Berestycki, Jean-Michel Lasry, Giovanni Mancini, and Bernhard Ruf, Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38 (1985), no. 3, 253–289. MR 784474, DOI 10.1002/cpa.3160380302 3. G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer. Math. Soc. 14 (1913), 14-22.
- C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, DOI 10.1007/BF01393824 5. B. Fortune, A symplectic fixed-point theorem for CP, Ph.D. thesis, Univ. of Cal. at Berkeley, 1984.
- Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 402819, DOI 10.1016/0034-4877(74)90021-4 7. H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
- A. Weinstein, $C^{0}$ perturbation theorems for symplectic fixed points and Lagrangian intersections, South Rhone seminar on geometry, III (Lyon, 1983) Travaux en Cours, Hermann, Paris, 1984, pp. 140–144. MR 753866
Additional Information
- Journal: Bull. Amer. Math. Soc. 12 (1985), 128-130
- MSC (1980): Primary 58F05
- DOI: https://doi.org/10.1090/S0273-0979-1985-15314-5
- MathSciNet review: 766969