A symplectic fixed point theorem for complex projective spaces
Authors:
Barry Fortune and Alan Weinstein
Journal:
Bull. Amer. Math. Soc. 12 (1985), 128-130
MSC (1980):
Primary 58F05
DOI:
https://doi.org/10.1090/S0273-0979-1985-15314-5
MathSciNet review:
766969
Full-text PDF Free Access
References | Similar Articles | Additional Information
- V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
- Henri Berestycki, Jean-Michel Lasry, Giovanni Mancini, and Bernhard Ruf, Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38 (1985), no. 3, 253–289. MR 784474, DOI https://doi.org/10.1002/cpa.3160380302 3. G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer. Math. Soc. 14 (1913), 14-22.
- C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, DOI https://doi.org/10.1007/BF01393824 5. B. Fortune, A symplectic fixed-point theorem for CP, Ph.D. thesis, Univ. of Cal. at Berkeley, 1984.
- Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 402819, DOI https://doi.org/10.1016/0034-4877%2874%2990021-4 7. H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
- A. Weinstein, $C^{0}$ perturbation theorems for symplectic fixed points and Lagrangian intersections, South Rhone seminar on geometry, III (Lyon, 1983) Travaux en Cours, Hermann, Paris, 1984, pp. 140–144. MR 753866
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 58F05
Retrieve articles in all journals with MSC (1980): 58F05